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Abstract

Recent work on explainable NLP has shown

that few-shot prompting can enable large pre-

trained language models (LLMs) to generate

grammatical and factual natural language ex-

planations for data labels. In this work, we

study the connection between explainability

and sample hardness by investigating the fol-

lowing research question – “Are LLMs and hu-

mans equally good at explaining data labels

for both easy and hard samples?” We an-

swer this question by first collecting human-

written explanations in the form of generaliz-

able commonsense rules on the task of Wino-

grad Schema Challenge (Winogrande dataset).

We compare these explanations with those gen-

erated by GPT-3 while varying the hardness

of the test samples as well as the in-context

samples. We observe that (1) GPT-3 expla-

nations are as grammatical as human expla-

nations regardless of the hardness of the test

samples, (2) for easy examples, GPT-3 gener-

ates highly supportive explanations but human

explanations are more generalizable, and (3)

for hard examples, human explanations are sig-

nificantly better than GPT-3 explanations both

in terms of label-supportiveness and generaliz-

ability judgements. We also find that hardness

of the in-context examples impacts the quality

of GPT-3 explanations. Finally, we show that

the supportiveness and generalizability aspects

of human explanations are also impacted by

sample hardness, although by a much smaller

margin than models.1

1 Introduction

Prior work on explainable NLP (Wiegreffe and

Marasovic, 2021) has explored different forms

of explanations ranging from extractive ratio-

nales (Zaidan et al., 2007; DeYoung et al.,

2020), semi-structured, and structured explana-

tions (Jansen et al., 2019; Mostafazadeh et al.,

1Supporting code and data are available at https://

github.com/swarnaHub/ExplanationHardness.

2020; Saha et al., 2021) to free-text explana-

tions (Camburu et al., 2018). Due to the flexibility

of free-text explanations, they have emerged as a

popular form of explanations with multiple bench-

marks developed around them, as well as models

that generate such explanations using seq2seq lan-

guage models (Ehsan et al., 2018; Camburu et al.,

2018; Rajani et al., 2019; Narang et al., 2020).

Few-shot prompting (Radford et al., 2019; Schick

and Schütze, 2021) with Large Language Mod-

els (LLMs) like GPT-3 (Brown et al., 2020) has

been shown to produce highly fluent and factual

natural language explanations that are often pre-

ferred over crowdsourced explanations in existing

datasets (Wiegreffe et al., 2022). However, past

work has not yet explored a critical dimension of

datapoint-level explanations, which is how hard

the data point is to classify correctly. Given re-

cent work on measuring hardness of individual

data points (Swayamdipta et al., 2020), we study

how sample hardness influences both LLMs’ and

humans’ ability to explain data labels. In sum-

mary, we are interested in investigating the follow-

ing three research questions:

1. RQ1. Do LLMs explain data labels as well as

humans for both easy and hard examples?

2. RQ2. How much do LLM explanations vary

based on the size and the hardness of the re-

trieval pool for choosing in-context samples?

3. RQ3. Are humans equally good at explaining

easy and hard examples?

As a case study, we investigate these questions

for a classical commonsense reasoning task, Wino-

grad Schema Challenge (Levesque et al., 2012) on

a large-scale dataset, Winogrande (Sakaguchi et al.,

2020) (examples in Fig. 1). We first collect gen-

eralizable rule-based explanations from humans

like “If X is larger than Y, then X does not fit in

Y.”. To measure data hardness, we use Data Maps

(Swayamdipta et al., 2020), an approach based on

the training dynamics of a classification model.
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Sentence Options (Answer) Human Explanation GPT-3 Explanation

Katrina had the financial means to afford a new

car while Monica did not, since _ had a high

paying job.

Katrina/Monica If X has a high paying job, then

X is able to afford expensive pur-

chases

If X has a higher paying job than Y,

then X would have more money to af-

ford a new car.

Angela tried to calm Carrie’s nerves at the air-

port because _ was scared of flying in airplanes.

Angela/Carrie If X is afraid and Y is not, then

Y can help calm X down.

If X is scared of flying, then Y will try

to calm X down.

Donald was always reading while Kenneth did

not, as _ liked to read books all the time.

Donald/Kenneth If X enjoys reading more than Y,

X will read more books than Y

If X reads more than Y, then X likes to

read books all the time.

Justin spent less on dog food than Eric because

_ had a puppy dog at their house.

Justin/Eric If X has a puppy and Y has a

dog, then a puppy eats less so X

spends less on dog food.

If X has a Y at their house, then X will

spend less on Y.

I grabbed a pile of clothes from the basket that

contained a T-shirt and a Sweater, since it was

hot outside I put on the _ to wear.

Sweater/T-Shirt If X is cooler than Y, then X will

be chosen when it is hot outside.

If X is hot, then Y should be worn.

Helen was curious about how the ball broke the

window, because the _ was hard.

ball/window If it is surprising that X is broken

then X must have been hard, oth-

erwise it wouldn’t be surprising

that Y broke X.

If X is hard and Y isn’t, then Y is more

likely to break when hit by X.

Figure 1: Representative examples of explanations for Winograd Schema written by humans and generated by GPT-

3 for easy (first 3 rows) and hard examples (last 3 rows). For easy examples, GPT-3 explanations are almost as

good as humans, although less generalizable. For example, humans can generalize ‘cars’ to ‘expensive purchases’

while the model does not. For hard examples, GPT-3 explanations are often much worse than human ones.

Similar to Wiegreffe et al. (2022), we generate

post-hoc explanations by conditioning on the an-

swer leveraging GPT-3 with in-context learning.

We perform human evaluation of the crowdsourced

and model-generated explanations and compare

them on the basis of ‘grammaticality’, ‘supportive-

ness’ and ‘generalizability’. In summary, we report

the following findings:

• LLM-generated explanations match the grammat-

icality/fluency of human-written explanations re-

gardless of the hardness of test samples.

• For easy examples, both models and humans

write ‘supportive’ explanations, but humans write

more ‘generalizable’ explanations that can ex-

plain multiple similar data points. For hard ex-

amples, humans write explanations that are not

only more ‘generalizable’ but also significantly

more ‘supportive’ of the label.

• While choosing in-context examples, factors like

size and hardness of the retrieval pool affect the

quality of model-generated explanations.

• Humans, while much better than models in ex-

plaining hard examples, also struggle with writ-

ing generalizable explanations for these points,

succeeding only about 2/3rd of the time.

2 Method and Experimental Setup

Our method first estimates hardness of the samples

using Data Maps (Swayamdipta et al., 2020) and

then chooses a subset of easy, medium, and hard

examples, for which we collect human-written ex-

planations and generate explanations from a state-

of-the-art model. Next, we answer our research

questions by comparing the explanations against

multiple granular evaluation axes.

Data Maps. We estimate sample hardness

via a model-based approach2 called Data

maps (Swayamdipta et al., 2020). Data Maps

characterize points xi in a dataset along two

dimensions according to a classifier’s behavior

during training: (1) confidence µ̂i which measures

the mean model probability of the true label y∗
i

across E epochs, and (2) variability σ̂i which

measures the standard deviation of the model

probability of the true label across epochs.

µ̂i =
1

E

E
∑

e=1

p
θ(e)

(y∗

i |xi)

σ̂i =

√

∑

E

e=1(pθ(e)(y
∗

i
|xi)− µ̂i)2

E

where p
θ(e)

denotes the model’s probability with pa-

rameters θ(e) at the end of the eth epoch. These two

metrics give rise to different portions in the dataset

including easy-to-learn examples where the model

consistently predicts the sample correctly across

epochs (high confidence, low variability), hard-to-

learn examples where the model rarely predicts the

sample correctly (low confidence, low variability)

and ambiguous examples where the model is inde-

cisive about its predictions (high variability). We

2We do not rely on human annotations for hardness quan-
tification because of its subjectivity. Data Maps also provide a
hardness ranking of the samples, which might be difficult to
obtain from humans.



fine-tune RoBERTa-large (Liu et al., 2019) on the

Winogrande dataset to compute the confidence and

variability of each training sample in the dataset.

The two metrics are then used to rank the sam-

ples from easy to hard (most confident to least

confident) and least-ambiguous to most-ambiguous

(least variable to most variable). As discussed later,

we choose a subset of these examples to compare

human and model-generated explanations.

Explanations for Winograd Schema. Next, we

define the structure of explanations for the Wino-

grad Schema Challenge (Levesque et al., 2012).

Specifically, these are semi-structured if-then com-

monsense rules as shown in Fig. 1. This charac-

terization of explanations allows us to (1) capture

generalizable commonsense knowledge via place-

holders X (and Y) capable of explaining a number

of similar data points, (2) enforce the common

structural form of an if-then rule for all data points

in this task, while still maintaining the flexibility

of free-text explanations (see Fig. 1 for some ex-

amples), (3) ensure non-trivial explanations that do

not leak the label (Hase et al., 2020), with the aim

of avoiding explanations that only repeat the label

without providing generalizable background knowl-

edge (a common issue in past explanation datasets),

(4) evaluate explanation properties with reduced hu-

man subjectivity due to their semi-structural form.

Human Explanation Collection. Using the

above criteria for constructing explanations (see

detailed instructions in Fig. 6), we collect human-

written explanations on Amazon Mechanical Turk.

In order to ensure that the explanations do not ex-

plicitly leak the label, the annotators are asked to

write explanations in the form of generalizable com-

monsense rules consisting of placeholders X (and

Y) without mentioning the actual options. We col-

lect explanations for 500 easiest and 500 hardest

samples, along with 100 examples with medium

hardness (around the median confidence). We do

not collect explanations separately for least and

most ambiguous samples because ambiguity corre-

lates strongly with hardness, i.e., the least ambigu-

ous examples are often the easiest while the most

ambiguous examples are also typically the hardest.

Explanation Generation via GPT-3. Next, we

select GPT-3 (Brown et al., 2020) as a representa-

tive candidate of today’s NLP model landscape to

generate explanations from. For each set of 500

easy and hard samples, we randomly split them

into 400 samples for retrieving in-context samples

and 100 samples for testing. We generate explana-

tions for the test samples using the largest (175B)

“text-davinci-002” InstructGPT model of GPT-3

by conditioning on the context and the gold label

(as shown in Fig. 8). The in-context samples are

chosen by computing the embeddings of the test

sample and the retrieval samples using Sentence

BERT (Reimers and Gurevych, 2019) and selecting

the top-k samples (see Appendix C for examples).

We set k to 5 in our experiments. Further details of

our prompting method are in Appendix B.

Explanation Evaluation. Having obtained hu-

man and model explanations, we now describe

their evaluation process. Due to the limitations of

automatic metrics for evaluating explanation qual-

ity (Clinciu et al., 2021), we follow Wiegreffe et al.

(2022) to conduct human evaluation of both crowd-

sourced and GPT-3 explanations on MTurk based

on three attributes – grammaticality, supportive-

ness, and generalizability. When evaluating expla-

nations for grammaticality, we evaluate their syn-

tax and fluency while ignoring spelling mistakes

and typos (which also hardly ever appear in model

explanations). Given the semi-structured nature

of our explanations, we evaluate supportiveness

as whether, when appropriately replacing X and Y

with the two options, the explanation answers the

question “Why does this point receive the label it

does?” (Miller, 2019). Lastly, we evaluate gener-

alizability as how applicable the explanation is for

other samples with different X and Y. We maintain

a trained pool of annotators for both explanation

authoring and verification while ensuring that they

do not verify their own data. Each explanation is

evaluated by 3 different annotators and the final

results are obtained by majority voting. We report

moderate inter-annotator agreement scores of Krip-

pendorff’s α (Krippendorff, 2011) between 0.4-0.6,

details of which are discussed in Appendix A.

3 Results

3.1 RQ1: Do LLMs explain data labels as

well as humans for both easy and hard

examples?

In Fig. 2, we compare the human and GPT-3 ex-

planations for easy, medium, and hard3 examples

3Some hard examples can have incorrect la-
bels (Swayamdipta et al., 2020). When collecting
explanations from humans, we ask if they agree with the label
(see Fig. 6). If they do not, we discard such examples (about







Limitations

The goal of our study is to evaluate how well mod-

els explain the data labels and not their own an-

swers for the data points. Hence, both humans and

models write or generate post-hoc explanations by

conditioning on the gold labels. This also leads

us to evaluate the explanations for how acceptable

they are to the humans rather than their faithful-

ness to the model decisions (Wiegreffe and Pinter,

2020; Jacovi and Goldberg, 2020). The notion of

data maps-driven instance difficulty (Swayamdipta

et al., 2020) is primarily model dependent, and

it is conceivable that different choices of mod-

els (or model-families) would yield different rank-

ordering of data points by hardness. However, we

measure the relative hardness of the data points

and it is very unlikely that the k-easiest samples

for RoBERTa (which is used to estimate sample

hardness) will be the k-hardest samples for GPT-3

(which is used to generate explanations) or vice

versa. In addition, we find that humans also strug-

gle to explain our estimated ‘hard’ examples. These

factors make our results fairly generalizable and

future work can explore this direction further. It

would also be interesting to see how our results

generalize to other forms of explanations in NLP

like rationales or structured explanations.

Acknowledgements

We thank the reviewers for their helpful feedback

and the annotators for their time and effort. This

work was supported by NSF-CAREER Award

1846185, NSF-AI Engage Institute DRL-2112635,

DARPA MCS Grant N66001-19-2-4031, ONR

Grant N00014-18-1-2871, and Google PhD Fel-

lowship. The views contained in this article are

those of the authors and not of the funding agency.

References

Shourya Aggarwal, Divyanshu Mandowara, Vishwa-
jeet Agrawal, Dinesh Khandelwal, Parag Singla, and
Dinesh Garg. 2021. Explanations for common-
senseqa: New dataset and models. In Proceed-
ings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 3050–3065.

Faeze Brahman, Vered Shwartz, Rachel Rudinger, and
Yejin Choi. 2021. Learning to rationalize for non-
monotonic reasoning with distant supervision. In
Proceedings of the AAAI Conference on Artificial In-
telligence, volume 35, pages 12592–12601.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Oana-Maria Camburu, Tim Rocktäschel, Thomas
Lukasiewicz, and Phil Blunsom. 2018. e-snli: Nat-
ural language inference with natural language expla-
nations. In NeurIPS.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Miruna-Adriana Clinciu, Arash Eshghi, and Helen
Hastie. 2021. A study of automatic metrics for the
evaluation of natural language explanations. In Pro-
ceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 2376–2387.

Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani,
Eric Lehman, Caiming Xiong, Richard Socher, and
Byron C Wallace. 2020. ERASER: A benchmark
to evaluate rationalized nlp models. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4443–4458.

Bradley Efron and Robert J Tibshirani. 1994. An intro-
duction to the bootstrap. CRC press.

Upol Ehsan, Brent Harrison, Larry Chan, and Mark O
Riedl. 2018. Rationalization: A neural ma-
chine translation approach to generating natural lan-
guage explanations. In Proceedings of the 2018
AAAI/ACM Conference on AI, Ethics, and Society,
pages 81–87.

Peter Hase, Shiyue Zhang, Harry Xie, and Mohit
Bansal. 2020. Leakage-adjusted simulatability: Can
models generate non-trivial explanations of their be-
havior in natural language? In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing: Findings, pages 4351–4367.

Alon Jacovi and Yoav Goldberg. 2020. Towards faith-
fully interpretable nlp systems: How should we de-
fine and evaluate faithfulness? In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4198–4205.

Peter A Jansen, Elizabeth Wainwright, Steven
Marmorstein, and Clayton T Morrison. 2019.
WorldTree: A corpus of explanation graphs for el-
ementary science questions supporting multi-hop in-
ference. In 11th International Conference on Lan-
guage Resources and Evaluation, LREC 2018, pages
2732–2740. European Language Resources Associ-
ation (ELRA).



Klaus Krippendorff. 2011. Computing krippendorff’s
alpha-reliability.

Andrew K Lampinen, Ishita Dasgupta, Stephanie CY
Chan, Kory Matthewson, Michael Henry Tessler,
Antonia Creswell, James L McClelland, Jane X
Wang, and Felix Hill. 2022. Can language models
learn from explanations in context? arXiv preprint
arXiv:2204.02329.

Hector Levesque, Ernest Davis, and Leora Morgen-
stern. 2012. The winograd schema challenge. In
Thirteenth International Conference on the Princi-
ples of Knowledge Representation and Reasoning.

Alisa Liu, Swabha Swayamdipta, Noah A Smith, and
Yejin Choi. 2022. WANLI: Worker and ai collabora-
tion for natural language inference dataset creation.
arXiv preprint arXiv:2201.05955.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian
Riedel, and Pontus Stenetorp. 2022. Fantastically
ordered prompts and where to find them: Overcom-
ing few-shot prompt order sensitivity. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 8086–8098.
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A Crowdsourcing Details

All our crowdsourcing studies are done on Amazon

Mechanical Turk. We select crowdworkers who are

located in the US with a HIT approval rate higher

than 96% and at least 1000 HITs approved. We

conduct qualification tests before crowdworkers are

allowed to write and verify explanations. As shown

in Figure 5, it tests the annotator’s understanding

of the Winograd Schema Challenge by asking to

choose the correct option given the sentence and

get all questions correct. In Figure 6, we show

the instructions and interface for collecting human-

written explanations. Finally, in Figure 7, we show

the interface for explanation verification. We pay

annotators $0.10 for each HIT of explanation con-

struction and $0.15 for each HIT of explanation

verification at an hourly wage of $12-15.

Easy Hard

Grammaticality 0.63 0.61

Supportiveness 0.51 0.43

Generalizability 0.45 0.37

Table 1: Inter-annotator agreement scores (Krippen-

dorff’s α (Krippendorff, 2011)) for human evaluation

of explanations for easy and hard examples along three

evaluation axes.

Sentence Options

I wanted to buy small tweezer to fit in my wristlet,
but they still didn’t fit. The _ were too small. tweezer / wristlet

The documents contained in the files could not
fit properly. The _ were too large. documents / files

I measured the area in my kitchen, but the stove
didn’t fit because the _ was too small. kitchen / stove

Table 2: Examples from the Winogrande dataset requir-

ing the same commonsense knowledge that “If X is

larger than Y, then X does not fit in Y”.

Inter-annotator Agreement. Each explanation

is evaluated by three annotators. We report inter-

annotator agreement using Krippendorff’s α (Krip-

pendorff, 2011). Despite the subjective nature of

our task, we observe moderate agreement scores

among annotators, as reported in Table 1. Per-

haps unsuprisingly, we find the agreement score for

grammaticality to be the highest and that of gener-

alizability to be the lowest. For supportiveness, we

observe an α in the range of 0.4–0.5. Between easy

and hard examples, the agreement scores for hard

examples are lower, which also shows that these

examples are harder for humans to agree on.

B Prompting Details

We avoid prompt tuning by largely follow-

ing Wiegreffe et al. (2022) for prompt construction

and choosing a layout that resembles Wiegreffe

et al. (2022)’s CommonsenseQA prompt. Follow-

ing Liu et al. (2022), we order the in-context sam-

ples in increasing order of similarity to the test

sample such that the most similar sample is last in

the context. All our generated explanations are ob-

tained using the largest “text-davinci-002” model

of GPT-34 with greedy decoding and maximum

token limit of 50. While prior works (Zhao et al.,

2021; Lu et al., 2022) have shown that in-context

learning methods have high variance based on the

hyperparameters chosen or the order of examples,

we find that our generated explanations are fairly ro-
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Sample 1st Similar Example 2nd Similar Example

Katrina had the financial means to afford a
new car while Monica did not, since _ had a
high paying job.

Leslie was able to buy new paint for his house
this weekend unlike Nelson, because _ was
wealthy.

Kyle was not able to have a lavish
lifestyle but Lawrence could because _
had lots of money.

Bill’s new houseboat he purchased would not
fit in his garage, the _ was too small.

I tried to set the plant in the pot, but it didn’t
work because the _ was too large.

The bottles supplied is not enough to
collect the water. The _ is too much.

She had a cold and decided to ditch the vita-
mins and use medicines, because the _ were
less effective.

My cousin preferred the treatments over the
procedures because the _ were better for your
health.

I removed beef from my diet and added
pork, as the _ turned out to be un-
healthy.

Table 3: Examples of similar samples retrieved for in-context learning. The similar examples require similar

commonsense reasoning for inferring the correct answer.

Sentence Options Answer GPT-3 Explanation Reason

Matthew is trying to make William’s

wiener dog happy, because _ is left alone

with it.

Matthew/William Matthew If X is left with Y then X is re-

sponsible for Y.

Unable to understand what X

and Y are in the context.

The couple couldn’t decide whether to get

a new refrigerator or new laundry machine.

They went with the former because their

old _ was dilapidated.

refrigerator/laundry machine refrigerator If X is old and Y is new, you

will go with X.

Doesn’t explain the core con-

cept that old things must be re-

placed first.

Jean preferred to use the scrub over the

body soap to clean off dead skin because

the _ was harsher.

scrub/body soap scrub If X is harsher than Y, then X is

preferred.

Misses the important part of

“preferred for cleaning” without

which the explanation is incom-

plete and not generalizable.

We tried to get the bookcase through the

door, but the _ was not narrow enough.

door/bookcase bookcase If X is not narrow enough, then

Y can’t get through.

Wrong explanation as it does

not support the label.

Because Lindsey wanted to make a mess

and Victoria did not, _ cracked her eggs

and opened them over the bowl.

Lindsey/Victoria Victoria If X wanted to make a mess, and

Y didn’t, then Y would do the

opposite of X.

Explanation not relevant to the

context.

Table 4: A few representative examples of bad explanations generated by GPT-3 for hard examples.




