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Diamond Message Set Groupcasting: From an Inner
Bound for the DM Broadcast Channel to the
Capacity Region of the Combination Network

Mohamed Salman

Abstract— Multiple groupcasting over the broadcast chan-
nel (BC) is studied in a special setting. In particular, an inner
bound is obtained for the K -receiver discrete memoryless (DM)
BC for the diamond message set which consists of four groupcast
messages: one desired by all receivers, one by all but two
receivers, and two more desired by all but each one of those
two receivers. The inner bound is based on rate-splitting and
superposition coding and is given in explicit form herein as a
union over coding distributions of four-dimensional polytopes.
This inner bound is then shown to be the capacity for a certain
class of partially ordered DM BCs with order defined via the less
noisy condition. When specialized to the so-called combination
network, which is a class of three-layer (two-hop) broadcast
networks parameterized by 2% —1 finite-and-arbitrary-capacity
noiseless links from the source node in the first layer to as many
nodes of the second layer, our top-down approach from the DM
BC to the combination network yields an explicit inner bound
as a single polytope via the identification of a single coding
distribution. This inner bound consists of inequalities which are
then identified to be within the class of generalized cut-set outer
bounds recently obtained by Salimi et al for broadcast networks.
We hence establish the capacity region of the general K-user
combination network for the diamond message set, and do so
in explicit and structured form. Such a result implies a certain
strength of our inner bound for the DM BC in that it (a) produces
a hitherto unknown capacity region when specialized to the
combination network and (b) may capture many combinatorial
aspects of the capacity region of the K -receiver DM BC itself for
the diamond message set. Moreover, we extend that inner bound
by adding binning to it. As in the no-binning case, we provide
the more general inner bound in explicit form.

Index Terms— Broadcast Channel (BC), capacity, combination
network, groupcast.

I. INTRODUCTION

GENERAL order-theoretic framework for groupcasting
over the K-receiver DM BC was proposed in [2, Theo-
rem 1], that allows for a succinct, albeit indirect description
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of the rate region achieved by up-set rate-splitting and super-
position coding for simultaneously sending the complete set
of 2K —1 independent messages, each desired by some dis-
tinct subset of receivers. In up-set rate-splitting, a message
intended for some subset of receivers is split into sub-
messages, with each sub-message to be delivered to some
distinct subset of receivers for all possible such subsets that
include the originally intended set of receivers. The set of
sub-messages that are intended for the same group of receivers
are then collected to form a new reconstructed message.
Among the numerous choices [3], the type of superposition
coding used for generating the codebooks for the reconstructed
messages is the one with the superposition order taken to
the subset inclusion order [2]. Finally, each receiver jointly
decodes its desired reconstructed messages which contain
the desired messages as well as the partial interference
contained in the undesired sub-messages assigned to it via
rate-splitting.

The inner bound in [2, Theorem 1] is given in implicit
form in that it gives an indirect description of per-distribution
polytopes in terms of the split rates (in higher dimen-
sion) rather than the original message rates. In princi-
ple, the split rates can be projected away with Fourier
Motzkin Elimination (FME) [4], but in practice, this is
only possible for small settings, i.e., small number of
receivers and/or small message sets since projecting away
all split rates in this general setting is intractable in gen-
eral.

In a different line of work on network coding, certain
three-layered broadcast (single-source) networks named com-
bination networks were introduced in [5] to demonstrate that
network coding for a single multicast session can attain
unbounded gain over routing alone. A combination network is
defined more generally in [6] to be a class of three-layer (two-
hop) broadcast networks (as depicted in Fig. 2 for K = 3)
parameterized by 2/ —1 finite-and-arbitrary-capacity noiseless
links from the source node in the first layer to as many
nodes of the second layer, with each node in the second layer
connected to a distinct subset of K destination nodes via
infinite capacity links. For the complete message set, a linear
network coding scheme and a matching converse was provided
to obtain the capacity region of the three-receiver combina-
tion network in [7] (see also [6]). Moreover, the symmetric
capacity region—in which the rates of the messages desired
by the same number of users are equal—of the symmetric
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combination network! was found in indirect and explicit forms
in [8] and [6], respectively. The general capacity region of
the general combination network for a complete message set
(with 25 —1 messages) for K>3 remains an open problem.
In this regard, the work of [9] must be mentioned for having
produced partial results: in particular, for two nested messages,
i.e., a multicast message intended for all receivers and a private
message intended for a subset of the receivers, the capacity of
the K-user general combination network is established in [9]
when the number of receivers that demand only the multicast
message is no more than three.

The general combination network can be seen as a special
class of deterministic DM BCs as observed in [2]. A top-
down approach was initiated therein to study the combination
network. In particular, a portion (i.e., an inner bound) of
the general inner bound of [2, Theorem 1] based on up-set
rate-splitting and superposition coding for the DM BC for a
complete message set is proposed as an achievable rate region
for the combination network in [2, Theorem 2] through the
specification of a single random coding distribution. Its indi-
rect description notwithstanding, it was shown in [2], via its
alternative description in [2, Theorem 2], that that achievable
rate region recovers the capacity (for K = 3) and symmetric
capacity (for general K) for symmetric combination net-
works, results previously obtained via linear network coding in
[6]-[8]. Hence, the work in [2] provides a certain validation
of the strength of the rate-splitting and superposition coding
inner bound of [2, Theorem 1] for the K-receiver DM BC
itself for the complete message set.

We continue that study for general (not only symmetric)
combination networks for any K > 3, but by focusing on
the diamond message set. That message set consists of four
messages, one desired by all K receivers, one by all but
two receivers, and two more desired by all but each one of
those two receivers.? In particular, we show that adopting the
general framework of [2, Theorem 1] even in this incomplete
diamond message set case’ is sufficient to produce the hitherto
unknown capacity region of the combination network. The
capacity result for the combination network in the special case
of three degraded messages, obtained by setting the rate of one
of the messages desired by all but one receiver to zero, was
also previously unknown. Moreover, special instances of the
diamond message set capacity result for various two message
set cases, by setting the rates of the other two messages to
Zero, recover two-message capacity results for the combination
network from [9] and [11].

In particular, we present an inner bound for K-receiver
DM BC in terms of the actual rates of the four messages

'A symmetric combination network is one in which the capacity of links to
nodes in the second layer that are connected to the same number of receivers
are identical.

2The name diamond message set is derived from the depiction of the
associated ordered set of four message indices, each message index being
a subset of the set of all receiver indices at which that message is desired,
with the order taken to be the subset inclusion order, in the form of a Hasse
diagram, which would hence be diamond-shaped (see Fig. 1).

3A more general framework that builds on that of [2] is given in [10]
to account for incomplete message sets in general, but that extra generality
turns out to be unnecessary for the sake of discovering the capacity of the
combination network for the diamond message set, as demonstrated here.

instead of the split rates as in [2, Theorem 1] by projecting
away the split rates via Fourier-Motzkin elimination [12] as
described in Appendix II, in spite of the indeterminate number
of inequalities that describe the per-distribution achievable rate
region in original- and split-rate space. We then specialize
this inner bound first to a class of partially ordered DM BCs
(ordered via the less-noisy condition) and show that it is the
capacity region for that class of DM BCs.

We then specialize the inner bound for the general DM BC
to the combination network by choosing a single distribution
for the auxiliary and input random variables to obtain an
explicit polyhedral inner bound for the general combination
network. We establish the capacity result by identifying the
inequalities present in the aforementioned explicit inner bound
to be within the class of generalized cut set bounds proposed
in [6] as outer bounds for broadcast networks. Notably, our
order-theoretic description of the inner bound enables that
identification by permitting a description of the inequalities in
the inner bound that is similar to the form of the generalized
cut-set bounds of [6].

Beyond establishing the capacity of the general K-user
combination network for the diamond message set, our
top-down approach suggests that the inner bound of [2, Theo-
rem 1] given in a more explicit form here is a good one for the
much more general DM BC (with the diamond message set)
in that it specializes to the capacity region in the combination
network without symmetry assumptions and possibly captures
many combinatorial aspects of the capacity region of the DM
BC itself. Nevertheless, we extend that inner bound by adding
binning to rate-splitting and superposition coding and provide
an expression for the resulting inner bound also in explicit
form.

The rest of this paper is organized as follows. In Section II,
we present the order theory notation and describe the sys-
tem models for the DM BC and the combination network.
In Section III, we present the inner bound for the DM BC and
show that it is capacity achieving for (a) a class of partially
ordered DM BCs and (b) for the general K -user combination
network along with proofs of converses, establishing the
capacity regions for the two cases. In Section IV, we extend
the inner bound for the DM BC of Section III based on
rate-splitting and superposition coding by adding binning to
it. While binning is not needed to achieve the capacity of the
combination network it is an interesting open question as to
whether the more general inner bound of Section IV would be
optimal for BCs that are more general than the combination
network such as the deterministic broadcast channel. Finally,
the paper is concluded in Section V. Proofs of DM BC inner
bounds are given in Appendices I, II, and IV, and the proof of
the capacity region for the partially ordered DM BCs is given
in Appendix III.

II. NOTATION AND SYSTEM MODEL
A. Order Theory

We find it convenient to introduce ideas from order theory
following the notation in [2] to enable the descriptions of
the system model and the results. We consider the ground
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set to be an ordered set of subsets of receiver indices in
{1,2,--- K} £ [1 : K]. We assume the order to be that
of set inclusion, i.e., S < S’ if and only if S C S" while S
and S are incomparable if neither S C S  nor S’ C S.LetP
be such an ordered set of sets and Q be a subset of P. Note
that the sans serif letter is used to represent a set of sets like
P,Q and E to distinguish it from sets. We say that Q is an
up-set if S € Q, S e P, and S’ > S implies S e Q and a
down-set if S € Q, S € P,and S < S implies S € Q.

Moreover, for any subset Q C P, we define the smallest
down-set containing Q as |p Q = {S’ eP:S§ <8 S¢€ Q}
and the smallest up-set containing Q as Tp Q = {S’ e P:
S < S’,S € Q}. For the sake of simplicity, we abbreviate
the set {i1,i2,..,iny} € [1 : K] for any positive number
N < K as t1i9---iy, adopting the convention that i; <
19 < --- < iy. For instance, let P be the set of non-empty
subsets of [1: 3], i.e., P ={1,2,3,12,13,23,123}. Then, for
instance, we have |p {13} = {1,3,13}, |p {1,3} = {1,3},
Tp {13} = {13,123}, and Tp {1,3} = {1,3,12,13,23,123}.
In some cases, especially when the set S = {i1,42,..,in} has
many elements, we find it more convenient to denote it by_its
complement, i.e., S = [1 : K]\S. For example, the set {i;},
also denoted 7, is the set [1: K]\ {i}.

Finally, for any F C P and i € [1 : K|, we define Wf as the
set of sets in F containing i so that WF 2 {S ¢ F:i ¢ S}.

From the given notation, we can show that the following
relationships are true:

1) For any set S = iyiz---iny C [1: K], we have

UresWy =Tp {i1,d2, -+ ,in} (1

NkesWE =Tp {iriz- - in} )

2) For any set S = dyio---iy C [l : K| and any
el: K]

Lwe {7072, -+ AN YU Twe {8} = Wy 3)

lwe {in, 32, in N Twe {S}=¢ “

Jind =W, (5)
iN}=¢ (6)

lwf {?}U wa {ila Qg
Lwe {830 Twe {in, iz, -

B. System Model

We consider a DM BC with the transmitter denoted by
the transmitted symbol X € X, K receivers denoted by
their respective channel outputs Y; € ), and the channel
transition probability W (y1,y2,- - ,yx|x) where the con-
ditional probability of n channel outputs Y*,--- Y2 with

Y 2 (Yg1, - ,Yen), conditioned on n channel inputs
X 2 (Xy,---,X,) is given (in the absence of feedback) by
p(y?a T ’y}zlmn) = H W(ylj7 T 7ij|xj)
j=1

where X;,Y; ;,--- Yk ; are the channel input and outputs in
the j*" channel use.

The message Mg € [1 : 2"Es] of rate Rg is indexed
by the subset S C [1 : K] of receivers it is intended for.
Hence, Mz is the message intended for all receivers except

225
123 1234
12 13 123 124
1 12
(@) K'=3 (b) K =4
12345
1234 1235 - =1
\123/ K-1K
) K=5 (d) General K
Fig. 1. Hasse diagrams for the four sets of message indices in the diamond

message sets for K = 3,4 and 5 and general K. For instance, for K = 5,
there is a message intended for receivers 1, 2, and 3, a message for receivers 1,
2, 3 and 4, a message for receivers 1, 2, 3 and 5 and one for all five receivers.

the receivers in S. The diamond message set consists of
four messages, M=, a message intended for all receivers,
Mz—7 a message intended for the first K —2 receivers*, and
Mz— and M7, two messages intended for all but receivers
K — 1 or K. Define E as the set of all message indices so
that E = {$, K,K — 1, K — 1.K}. Note that receiver Y
demands M7 and Mpr—, receiver Yx—; demands M and
M+, while the rest of receivers {Y;}2 % demand all four
messages. See Fig. 1 for an illustration of diamond message
sets for K = 3,4,5 and general K via their diamond-shaped
Hasse diagrams.

Denote the set of the four messages {Mgs : S € E} to
be sent over a K-user DM BC as Mg. A ({2"%5}g¢cg,n)
code consists of (i) an encoder that assigns to each message
tuple me € [[gee[l : 2"75] a codeword z™(me) (i) a
decoder at each receiver, with the k" decoder mapping the
received sequence Y;* for each k € [1 : K] into the set of
decoded messages {ms : S € WE} ¢ HSewE[ : 2nBs))
denoted as mme. It is assumed that all four messages are
independent and uniformly distributed over their ranges. The
probability of error Pe(”) is the probability that not all receivers
decode their intended messages correctly. The rate tuple (Rg :
S € E) is said to be achievable if there exists a sequence of
({27F5 } gcg, ) codes with P\ — 0 as n — o0o. The convex
closure of the union of achievable rates is the capacity region.

Next, we define a restriction of the DM BC by constraining
pairs of receivers via the well-known less noisy ordering.

Definition 1: [13, Definition 2] Receiver Y is less noisy
than Receiver Z if I(U;Y)>I(U;Z) for all U —o—
(Y,Z) forming a Markov chain. Henceforth,
we denote this condition as Y > Z.

X —o—

4The dot separating K — 1 and K in M—— &—17c 18 a slight abuse of notation
since the subscript in Mz—77 can be confusing.
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Fig. 2. The three-receiver combination network with 7 intermediate nodes
and three receivers. The dark/dashed lines represent finite/infinite capacity
links, respectively. The capacity of the dark link connecting the node X to
the node Vg is Cg for each S € P. For brevity, the source/destination nodes
are denoted by their transmitted/received symbols and the intermediate nodes
by their output symbols. Encoders/decoders are not shown.

The K-receiver DM BC (Y1, Y5, -+, Yk ) is said to be a less
noisy DM BC if it is totally ordered per less noisy ordering,
ie.,, when Y7 > Y5, --- > Yk _1 > Yk. In this paper, we will
be interested in a certain larger class of partially-ordered
DM BCs.

The combination network [2], [6] is a special case of the
general DM-BC. As shown in Fig. 2 for the three-receiver
case, it consists of three layers of nodes. The top layer
and bottom layer consist of the single source node X and
K receivers {Y;}X |, respectively. While, the middle layer
consists of 2% — 1 intermediate nodes, denoted Vg for all
S € P where P be the power set of [1 : K| excluding the
empty set. The source is connected to each of the intermediate
nodes Vs through a noiseless link of capacity C's (per channel
use). On the other hand, each receiver Y; is connected to
2K=1 intermediate nodes Viy» = {Vs}gewr via noiseless
links of unlimited capacity. Anlinteresting connection between
the combination networks and the DM BC is revealed in [2]
wherein the authors considered the combination network to
be a network of noiseless DM BCs with the channel input
vector X connected in different ways to the channel outputs
{Y;}X | each through a noiseless BC. In particular, the channel
input X contains 2% —1 components Vg, for all S ¢ P.
For each S, the component Vs € Vg, where [Vg| = 25,
is noiselessly received at each receiver Y; for all ¢ € S and
not received at the receivers Y; with j € S, ie., Y; = Viyr.
We also define Cw = ) g\ Cs forany W C P. For instance,
CW§ = Zsewg’ Cs.

III. RESULTS

In the following theorem, we present the inner bound of
[2, Theorem 1] specialized to the diamond message set in the
more explicit form of a union of four-dimensional polytopes.

Theorem 1: An inner bound of K-user DM BC for the
diamond message set with E = {¢, K, K —1,K — 1.LK}
is the convex closure of the set of non-negative rate tuples
(Rg7 Ry, Rp—, Rp—75) satisfying the following for all
JsJ1sJ2 € {1527"' 7K—2}

Rg + Rir= < I(U$7 U= Yi) (7)

Ry + R < I(Uz, U Yie—1) ()
R + Ry + R < I(Ugs; Yic1|Us)

+1(Ug, Ug=; Yi) ©)
Rg—f— Ri— + Ry < I(Uz—; YK|U$)

+ I(Ug, Ugs Y -1) (10)
Rs+ Rg— + R + R < 1(X1Y)) (11)
R;+ Rg—7 + R + Rg—x < 1(X; Y;|U3, Ug=)

+ 1(Us, Ug=; Yx) (12)
Ry + Rg—7 + R + Rg—x < 1(X:Y;|U3,Ug)

+ 1(Uz, Ugg; Yic—1) (13)

Rg—i— R+ Rz + Rg—=% < I(X; Yj|U$7 U=, Uf)
+ I(Uf, YK_1|U$) + I(Ug, Um; YK)
(14)
Ry + R + R + Bg—x < I(X;Y;|U5, Ug—, Uk)
+ I(Uﬁ, YK|U$) + I(Ug, Uf; YKfl)
(15)
2R + Ry + Bye + B < 1(X;Y;|U5, U, U)
+ I(U$, Uf; YK—l) + I(UJ, Uﬁ; YK)
(16)
2R$+ 2R+ 2R+ Rp—=x < I(X;Y]‘|U$)
+ I(Ug, Ui Y1) + 1(Ug, Ug—: Y )
(17)
2RG + 2Rp= + 2Rg + 2Rg=x < 1(X;Y;,|U3)
+ I(X; Y, |Ug, U=, Ug)
+ I(Ug, Ui Y1) + (U, Ug—: Y )
(18)

for some joint distribution of the auxiliary and input random

variables (Ug, Uz, Ugg=t, X ) and the output random variables
that is of the form

plug, ugs, v Y1, YK)= plug) X pluglug) X plug—lug)

xp(xlug, ug, u=T)

xp(y1, -+ YK |z) (19)

Proof: Random coding via rate-splitting and super-

position coding is used. A detailed proof is given in

Appendices I and II. [ ]

A. A Capacity Result for a Class of Partially Ordered
DM BCs

In this section, we show that the achievable rate region of
Theorem 1 is the capacity region for a certain class of partially
ordered DM BCs.

Theorem 2: The capacity region of the class of partially
ordered DM BCs with E = {$, K,K — 1,K — .K} con-
strained by the K — 2 less-noisy conditions

Y, =Yk 1 =Yk iE[lZK—Q]
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is the convex closure of the set of non-negative rate tuples
(R, Ry, Rg—y, Rg—7 ) satisfying

Rg + Rﬁ < I(Ug; YK) (20)
R < 1(X;Yi|Ug) (22)

for some joint distribution of the auxiliary and input random

variables (U, Uzz, X) of the form
p(ugv u?a Ty Y1, Ug) xp(u?h%) Xp(CC|’LL?)

Xp(ylv 7yK|33) (23)

Proof:  Achievability is proved via the inner bound
of Theorem 1. A key ingredient of the converse proof is
the information inequality of [14, Lemma 1]. The detailed
proof of achievability and the converse result are given
in Appendix III. |

B. Capacity of the Combination Network

We next state the inner bound of Theorem 1 when it is
applied to the combination network by setting X = Vp and
Y, = VwP The mutual information terms in the bounds are
written as the difference between the entropy and conditional
entropy so that we may get insights into optimizing the rate
region over the coding distributions.

Corollary 1: An inner bound of K-user combination net-
works E = {5, K,K —1,K — 1.K} is the convex closure of
the set of non-negative rate tuples (R$7 Ry, Rg—, Rp—=%)

satisfying the following for all j, j1,72 € {1,2,--- , K — 2}
R + R < (VWP)*H(VWP |U$, ﬁ) (24)
R—+R—§H(VWP )= H(Vie |U5.U) (25)
R+ R + Rg < HVoyr_ |U=) — H(Voyr_ Uz, U)
+ H(Vie, ) = H(Ve Uz, Ug=) (26)
RG + Rg—7 + Rig < H(Vwe |U3) — H (Ve |Ug, Ug=7)
+HWVywe ) —HWVye Uz Ug) (27
R + R+ Rg + Rg—x 1K<H(VWP) (28)
By + B+ B + Bg—7x 1K<H(VWP| Ur=1)
+H(Ve ) — H(Viye |U5 _) (29)
R$+R 1+R JrRK 1K<H(VWP| > _)
+H(WVwe ) —HVwe Uz Ug) (30)
R$+R 1+R +RK 1K<H(VWP| K 1an)
+H(Vw';<7]|U) (Vw"f | , Ux)
+ H(Vwe,) — H(Viye U3, _) (3D
R$+R 1+R +RK 1K<H(VWP| K 1aU7)
+ H (Ve |Ug) — H(Vie |US, m)
+H(VWP 1)—H(VWP |U— Ux) (32)
2R + Rg—1 + Rg + Bg—tx 1K<H(VWP| U= 1’Uf)
+ H(Vwe ) — H(Viye |U5 _)
+HWVwe ) —HVye | Ux) (33)

227

2R$ + 2Rﬁ + ZR? + RW < H(VWP |U$)

+ H(Vwe ) — H(Vwe Uz, Ug=)

+H(Vpe )= HVye_ Uz, Ug) (34)
2Ry + 2Ry + 2Ry + 2Ry < H(VWZ 1U5)

+H(VWP U @ Ug= pUF)

+ H(Ve ) — H(Viye |U, Ug=7)

+H(Vpe ) - (Vwr;{f1 U5 Ux) (35)

for some joint distribution of the auxiliary and input random

variables (U, Uz, Ug—7, X = Vp) that is of the form

= p(ug) x pluglug) x p(ug=tlug)

X p(w|u$, Uz, Uﬁ) (36)

p(ug, ug, U=, )

In the following theorem, we show that the inner bound
in Theorem 1 achieves the capacity region of the general
combination network by identifying the optimal distribution
for the auxiliary random variables Ug, Uz, U% and the
channel input components {Vs}gep. The optimality of that
distribution is proved indirectly by showing that the resulting
inequalities are particular members of the generic family of
generalized cut-set (outer) bounds found in [6].

Theorem 3: The capacity region of the K-user combi-
nation network for the diamond message set with E =
{ M7, M, Miz—, M7z—3} is the set of non-negative rate

[oX
tuples (R( Ry, Rg—, Rp—75) satisfying for all j ¢

(1,2, K—92

R;+ Rg=t < Cur, (37)
R+ Rg < Cup__ (38)
R+ B+ Bg <C,, @ +Cu, (9
Rs+ R + R + Rm < Cype (40)
2R5 + Ry + R + Re— <

Clw5{m} +Cwe_ +Cye (41)
2R5 + 2Rg—1 + 2Rz + Rg— <

C o (R Cwe .+ Cup, (42)

where, recall that Cyy = ZSEW Cys for any W C P.

Remark 1: Note that the right hand side of (39), (41),
and (42) remain unchanged when K and K — 1 are inter-
changed, as they should.

Remark 2: This capacity result generalizes three previously
known results. First, it reproduces the capacity region for two
nested (i.e., degraded) messages with at most two receivers
demanding only the common messages Mg given in [l5,
Theorems 4 and 5] and [9, Theorem 3] by setting Rp—7 =
Rz = 0 and R = Ryx— = 0 in (37)-(42). Moreover,
Theorem 3 also recovers the capacity region for two messages
each intended for K — 1 receivers given in [15, Theorem 3] by
setting R$ = Rz=7% = 0 in (37)-(42). It must be noted here
that the converse proofs in [9] and [15] are established from
“first principles”, and while they use the sub-modularity of
entropy, they do not take a top-down approach as we do here
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in Section III-D of making the connection to the generalized
cut-set bound framework of [6]. Moreover, achievability for
up to two common receivers was proved in [9, Proposition 1]
using linear network coding tailored to the combination net-
work and two nested messages, whereas we take the top-down
approach in Section III-C of [2], [15] of starting from an inner
bound for the DM BC and specializing it to the combination
network.

The special case of Theorem 3 for three degraded mes-
sages (which is more general than [15, Theorem 5] and
[9, Theorem 3]) is given next. We simply set Rzz— = 0 in
Theorem 3 and note that (39) becomes redundant because
of (44) since CLWP

Moreover, (42) alsfi)d)ecomes redundant because the sum of
inequalities (38) and (40) is tighter since CWP < C\NP —l—CWp —

> .
TUWh CW@} N

{f} + Cwl;( = CWP

CWPmWP 1NWE =0, p{KK ]}+CWP-

Corollary 2: The capacrty region of the K-user combi-
nation network for the three degraded messages, i.e., E =
{M=, M3, M7=} is the set of non-negative rate tuples

(Rg, R, Rg—r7) satisfying for all j € {1,2,--- ,K — 2}
R < Cye. (43)
R5+ Rg < Cwe (44)
Rz + R+ R < CW;? (45)
2R+ Rz + R <
CLW? =1y + Owe_ +Cwe (46)

Remark 3: The capacity region of the K-user combina-
tion network for the two degraded messages, ie., E =
{Mg, Mz—7} is the set of non-negative rate pairs
(B3 RK 1) satisfying for all j ¢ {1,2, K — 2}
the inequalities (43)-(46) (with Rz = 0). This capacity
region coincides with the one found in [15, Theorem 5] and
[9, Theorem 3].

C. Proof of Achievability for Theorem 3

One or both of the two negative conditional entropy terms,
namely, H(Viye |Ug, Ug=r) and H(Vye  |Ugz, U) appear
in all the bounds (except in (28)) of the inequalities of
Corollary 1. Hence those bounds can be upper bounded by
seting Ve = f(Ug, Ug=y) and Vyye = g(Ug, Ug) for
some determrnrstrc functions f and g. Next, one or both of
the positive entropy terms H (Viye 71) and H (VWZ ) appear
in each of the bounds (except in (28)) and all such terms
can be maximized by taking the deterministic functions f
and g to be identity maps so that Viye = (Ug, Ug=y) and
Ve (U Uzz) (thus this choice maximizes the first two
bounds (24) and (25) of Corollary 1). Note that, if we make
the choice Viye = f(Ug, Ug=p) and Ve = g(U3, Ug),
then the latter ch01ce of letting f and g be identity maps also
simultaneously maximizes the positive conditional entropy
terms of the form H(VWP| 7 Ug—7) and H(V\NP| 5 Ur)
in the bounds of (29) and (30) and H(Viwe |Ug, U= Uxe)
in the bounds of (31)-(34). Next, consider the posmve condi-
tional entropy terms of the form H(Viye  |Uz), H (Ve [U3)

in the bounds of (26)-(27) and (31)-(32) and H(VW;?|U$)
in (34)-(35). All of these terms are maximized by choosing
(given Vye = (U, Ug=7) and Vwe = (U5, Ug)) Ug to
be the just the common part of VW% » and VW% After making
these choices, given that there are cardinality constraints on
the alphabet Vg of Vg of 2Cs all the bounds are maximized
by choosing the input components (Vs : S € F) to be uniform
and independent with Vg taken to be [1 : 2°5].

The above greedy optimization suggests (even though it
does not prove the optimality of) the choice of coding dis-
tribution resulting by setting

U =Vie(k-1.K} (47)
Ug=r = Viwr, (48)
U = Ve (49)
X =V (50)

and choosing the channel input components Vg for all S € P
to be independent and uniformly distributed over Vg where
[Vs] 2¢s. The achievability proof now follows from
Theorem 1 by choosing the above coding distribution. Note
that such a choice of the auxiliary random variables and the
channel input components (U, Uz, Ug—, X) has a joint
distribution that satisfies (19), as it must. For this spe-
cific choice, we can compute the mutual information terms
in (7)-(18) using Y; = VW»_: and (3)-(6) to obtain

I(Uz, U= Yk) = Cwe. (51)
I(Ug, Uz Yi—1) = Oy (52)
I(Ug: Yi—1|Uz) = CLWP (7 (53)
K—1
I(Ug=: Yk |U3) = CLWP (F=T) (54)
K
I(X;Y;) = C\NJP (55)
I(X;Y5|U5,Ug) = €| &y (56)
(X Y| (/)7 1) :Clwi?{—_l} (57)
I(X; Y| X Ug= 1’U?):CLWP{K—1 K} (58)
I(X;Y5|U3) = C) k&) (59
J

where j € {1,2,---, K —2}. Hence, we get (37)-(38) by sub-
stituting (51)-(52) in (7)-(8) and (39) by substituting (53)-(54)
in (9)-(10) since C

Moreover, we get (40) drrectly by substrtutlng (55) in (11).
Then, we obtain (41) from (16) using (51)-(52) and (58).
Finally, we get (42) by substituting (51)-(52) and (59) in (17).

The rest of the inequalities in the inner bound,

e., (12)-(15) and (18) are redundant, as we show next.
By computing the mutual information terms in (12)-(15)
and (18) for the specified coding distribution in (47)-(50), it is
left to the reader to verify that we obtain the following five
categories of bounds (with each 7, ji,j2 taking all possible
values in the set {1,2,--- | K —2})

Rg-ﬁ- R+ R+ Rp—=7% < ClWP{?} + OW%
j

{K}+CWP :Cl P {K 1}+CWK L

(60)
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R
(61)
R+ Rg—y + R + Rz <
Ol 717y +Clyy 1y + Cin (62)
Rt Ry + Rz T R <
Cl wo A= w1 T O, o (R= w1 T Cwe,_, (63)
2R¢ + 2R+ 2Rz + 2Rz—=7% <
C e (RE=T) + CLW?1 ®@=iw TCOwe_, +Cuwe  (64)

We next show that these categories of bounds are all redun-
dant. First, (60) and (61) are redundant from (40). Using (79),
we can rewrite the right hand side of (60) and lower bound it
as follows

Cryp(®y + Cwge = Cwr = Cwrowg + Cw,

> COwp (65)

where (65) follows from the fact that CmeWp < C’Wp.

Similarly, we can show that (61) is redundant due to (40).
Moreover, (62) and (63) are also redundant from (40) since

we can rewrite the right hand side of (62), using (79), and

lower bound it as follows
Crp=try + O @)+ Cwg
= Cwe —=Cwerweowe, ) +C0we

)+ COwe_owe,

~Owge +Cws,

(66)

710W?<71
= ij - OW?m(W;uW';(
> CWJPv

-1

where (66) follows from the modularity of Cyy.

Finally, (64) is redundant from two times (40) since the
right hand side of (62) can be written, using (79)-(80), and
lower bounded as follows

Olw§ (RE-1} T Olw§ m=rry T COwe_, + Cwe,
1 2
= Cwr, = Cwr, ow

+ OWl;(,l + CW?(

Lowe T Owe = Cwe e ows)

=Cwr = COwe awe_ awe, + COwe_ aws,
J2 J2

> Cwr + Cwe

OV uwR)  Cwg_, uw ©7)

where (67) follows from the modularity of Cyy, and hence,
Cwg_, + Cwg = Cwg, LW

This concludes the achievability of the polytope described
by the inequalities (37)-(42) by the single coding distribution
given in (47)-(50).

Remark 4: In Section III-D, we show that the polytope
(in the positive orthant) described by (37)-(42) is indeed the
capacity region of the combination network. This indirectly
shows that when the inner bound of Theorem 1 is specialized
to the combination network as a union of polytopes with the
union taken over all admissible coding distributions of the

owg T COw,
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form (19) then the distribution given in (47)-(50) is extremal
in that the rate region it produces subsumes the rate regions
produced by any other distribution that satisfies (19).

D. The Converse Proof for Theorem 3

The converse proof of (37)-(38) and (40) follows directly
from the cut-set bounds. In what follows, we show that the
inequalities (39) and (41)-(42) are outer bounds by identifying
them as belonging to the infinite class of generalized cut-set
bounds obtained in [6]. Those bounds provide a generic
framework that can be used to obtain upper bounds on the
achievable rates sent over any broadcast network that can be
described by a directed acyclic graph with a non-negative
capacity for each link or arc in the graph (and hence, over the
combination network). As shown in [6], these upper bounds
take the generic form

D iRy wewg, o we) < D @iCwe g, wh) (68)

ies’ ies’
where S is a finite non-empty set, «¢;’s are non-negative real
numbers and {®;}, ¢ is a collection of set operators. The
set operator is defined as a finite sequence of intersections
and unions acting on any K subsets of P to produce a subset
of P. Furthermore, these set operators {®;}; ¢ in (68) must
satisfy the following extremal inequality

Zaif((I)i(Wl7"' ) Zﬂ] Wla aWK))
i€S, JES2
+Z’Yl le aWK))_f(Fl_(WthK)))
leSs3
(69)

for any submodular function f, with equality holding when
f is a modular function, {W;}®, C P, nonempty finite
sets 51,592,953, collection of non-negative real numbers
(a4, B35,7), and a collection of set operators Hj,Ff,Fl_
such that II;, F;’ are finite sequences of unions only,
and F;(Wl,WQ,"' ,WK) Q Ff(Wl,Wg,- o ,WK) for
any | € Ss.

The main problem in using the framework of generalized
cut-set bounds of the form (68) is to identify the set operators
®;,11;, 1,1 forall i € Si, j € Sy and | € Sz that
satisfy the extremal inequality (69) and provide specific upper
bounds (68) that exactly match with (39) and (41)-(42), and
thereby establishing the converse proof. With the aid of the
order-theoretic relations (1)-(6), we show that the following
extremal inequalities proposed before in [6, Proposition 1]
provide tight upper bounds that match (39) and (41)-(42).
From [6, Proposition 1], we get the following three extremal
inequalities for j € {1,2,--- | K — 2}

FWk_1 UWg) < f(Wg_1) + f(Wk) = f(Wk_1 N Wk)
(70)
f(WK—l UWK @] W]) + f(WK_1 ﬂWK) S
FW;) = fF(W; n(Wg_1 UWg)) + f(Wk-1) + f(Wk)
(71)
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f(WK—l UWg U W]) + f((WK_1 n WK)U
(Wk-1 nW;) U(Wg NW;)) <
W) = fF(W; D Wkt N W) + f(Wk—1) + f(Wk)
(72)

Using them, we get immediately from (68) the following
generalized cut-set bounds

Rywe ows, = Cwe owe, (73)
Rwe, uwe owe + Bwe  awe <
Cwe_ uwe owe +Owe we, (74)
Rwe,  uws owe + Bows | awe)uws, | aws)uwe nwe) <
Cwe_ uwe owp + Cowe awe ) uwe._ AwP)uWe AwP)
(75)

By computing the left hand side of the above three inequal-

ities, we get for any j € {1,2,--- , K — 2}
Ryt we = R+ Ry + R (76)
Rwe,  uwg owe + Bwe qwe =
2R+ Rp— + R +RK1K (77)
Rwe,_ uwe owe + Baws, | awe )uws, _ nwe)uwe nwe) =
2R;+ 2R+ 2R + Rg—=% (78)

These match with the left hand side of (39) and (41)-(42).
Showing that the right hand sides of (73)-(75) match with
that of (39) and (41)-(42), respectively, is less straightforward.
We first use (1)-(6) to rewrite the right hand side of (39)
and (41)-(42) in a form that is closer to the generalized cut-
set bounds. From (1)-(6), we can show that the following two

equalities hold for any set S = lily---Iy C {1,2,---,K}
and j € [1: K]

Cl p {5} 7 CwP *wawr’ UWE U UWE ) (79)

Ciws{ﬁ,zz,---,m} = Cwe = Cwenwe awp nowr ) (80)

where Cyw = ) g\ Cs for any W C P. Using (79)-(80),
we can rewrite the achievable bounds in (39) and (41)-(42) as
follows

2R$ + RK—l + R? + RK—l.K <

Cwe = Cwerwe, uws,) + Cwe |+ Cwe, (82)
2R$ +2Rg—+ 2R+ Rg—=7% <

Cwe = Cwerwe._ aws) + Cwe |+ Cwe, (83)

By comparing (73)-(74) with (81)-(83), the new representation
of the achievable bound, we can see that the right hand
side of both group of inequalities are identical using the
extremal inequalities (70)-(72) for modular function since Cyy
is modular function for any W C P. Hence, the generalized
cut-set bounds in (73)-(74) are tight. This concludes the
converse proof.

Example 1: The capacity region for the complete message
set for the four-receiver combination network is not known.

We specify the achievable rate region of Theorem 3 for K =4
for the diamond message set, but without the structure in
the order-theoretic specification of the bounds, as being the
explicit polytope in the positive orthant described by the set
of rate pairs (R12, R123, R124, R1234) that satisfy the following
nine linear inequalities
Ry234 + Ri2qg < Cy+ Cra+ Cog + C3y
+ C124 + C134 + C234 + Ci234
Ri234 + Ri23 < O3+ C13+ Coz + Czy
+ Cl23 + Ci34 + C234 + C1234
Ri234 + Rigq + Ry123 < C3+ Cy + C13
+ Cry + Co3 + Cag + C34 + Cr23
+ C124 + C134 + C234 + Ci234
Ri234 + Ri2g + R123 + R12 < C1 + C12 + C13 + Cy
+ Cl23 + Cra4 + C134 + Ci234
Ri234 + Ri24 + Ri23 + Ri2 < Oy + C12 + Ca3 + Coy
+ Cl23 + Crag + C234 + Ci234
2R1234 + Ri24 + Ria3 + Ri2 < C1 + C3 + Cy + C2
4+ Ci3 + Cr1q + Co3 + Coy + 2C34 + Cio3
+ C124 + 2C134 + 2Ca34 + 2C1234
2R1234 + Ri24 + Ria3 + Ri2 < O + C3 + Cy + C2
4+ Ci3 + Ci1q + Ca3 + Coy + 2C34 + Co3
+ C1a4 + 2C134 + 2Ca34 + 2C1234 (90)
2R1234 + 2R124 + 2R193 + Ry < C1 + 03+ Cy + Ch2
+2C13 +2C14 + Co3 + Cag + 2034 + 2C123
+2C124 + 2C134 + 2Ca34 + 2C1234 (29)
2R1234 + 2R124 + 2R123 + R12 < Co +C3 + Cy + C12
+ C13 + Cra + 2Co3 4 2C24 + 2C34 + 2C'1 23
+2C124 + 2C134 + 20534 + 2C1234 92)

(84)

(85)

(86)
(87)

(88)

(89)

IV. INNER BOUND FOR THE DM BC WITH BINNING

For the sake of completeness and further investigation,
we generalize Theorem 1 by enhancing the achievable scheme
therein by adding to it the technique of binning.

Theorem 4: An inner bound of K-user DM BC for the
diamond message set with E = {¢, K, K —1,K — 1.LK}
is the convex closure of the set of non-negative rate tuples
(R, Rz, Rig—t, Rg—7¢) satisfying the following for all
JsJ1,J2 € {1a27"' ’K_Q}

R$+Rm<I(U¢,UK 7 Yi) (93)
Rg—FRfSI(U(/),UK,YK_l) 94)

Ry + Rg— + R < I(Ug; Yk 1|Ug) + 1(Ug, U= YK )

— (U Ug=U3) (95)
Ry + Ry + R <I(Ug—; Y |U3) + (U, Ugr; Yic 1)
— (U Ug=lU3) (96)

2R + Ry + Rz < I(Us, Uz Yic—1)
+ (U3, Uz Yi) — (Ui Ug=IU5)  (97)
R34+ Rg— + Rg + Rg—x < 1(X;Y)) (98)
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R+ Ry + Ry + Ry < 10X Y;|Us;, Ug=)

+ I(U5, Ug=p: Y)  (99)
R$+Rm+3f+3m<1()f Y;|Uz, Ug)

+ I(U, Uge; Yic—1) (100)
Ry + Rg—t + R + Rt < I(X;Y;|U3 KlvU?)
+ 11Uz Y 1|Up) + (U U= Yk)
— I(Ug Ug=|U5)  (101)
R+ Ry + Ry + Ry < 1(X:Y;|Us;, U=, Ut
+ I(Ug—: Yk |Ug) + (Ug7 Uiz Yi—1)
— I(Ug Ug—|U5)  (102)
2R$+Rm+R—+Rm§I(X U5, U 1,Uf)

(U</>7U?§YK—1)+I(U¢7UK 7 Vi)
— (U UglU5) (103)

2Ry + 2R + 2R + R < I(X;Y;|Uz)
(UWU?;YK—I)JFI(UWUK 7 Vi)

— I(Ugs; Ug=lU3)  (104)
2R3 + 2R + 2R + 2R—x < I[(X; Y}, |U3)
+I(X | K 17Uf)

+I(U$7Uf;YK_1)+I(U Uz Yk)
— (U U=t 1|U) (105)
2R+ +RK 1-|—2R + Rye—7 < I(X; Y;|U- s Uz—)
(U(/),UK 1,YK)+I(U(/),UK,YK_1)
_I(U?QUK 1| _) (106)
1+R + Bg=rr < I(X; 5|0, > Ux)
(U(/),UK 1,YK)+I(U(/),UK,YK_1)
— (U U= |0, ) (107)
2R$+2Rm+2R?+2Rm<I(X Y71| = Ux)
+I(X§sz|U$vUK7) (U U= Yk)
+I(U$aUF§YK—1)* (UKvUK—1|U¢) (108)

for some joint distribution of the auxiliary and input random
variables (U, Uz, Ug—, X) that is of the form

2R5 + 2Rp—

p(ug, v, U=, T, Y1, -+ YK ) = plug) xp(ug, ug=tlug)

Xp(x\u(/—), U U=T)

Proof: An outline of the proof is given in
Appendix IV. |
Remark 5: By setting I(Uz; Ug—|U3) = 0 (i.e., no bin-
ning), we get that (97) is redundant from (93) and (94), (106)
is redundant from (99) and (94), (107) is redundant from (100)
and (93), and (108) is redundant from (99) and (100), thereby
recovering Theorem 1. While the greater generality offered by
binning is not necessary in establishing the capacity region
of the combination network for the diamond message set
it is an interesting open question as to whether the above
achievable rate region is tight for say the more general deter-
ministic DM BC where each output Y; is some deterministic
function of g;(X).
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Remark 6: In the achievable rate region for the K = 2 case
of Theorem 4 obtained for the complete message set E =
{1, 2,12} by setting R7=—5r = 0 (in this case X is a function
of Uy,Uz and Uio) and Y; = const. for j € [3 : K] it
is easily seen that all but the first five inequalities (93)-(97)
are redundant. In particular, this special case of Theorem 4
recovers [16, Theorem 5], where it was first obtained, as it
must, and is also given in [17, Theorem 8.4].

Remark 7: The special case of K = 3 and three degraded
messages with E = {1,12,123} which is a subset of the
diamond message set E = {1,12,13,123} can be deduced
by setting K = 3 and R;3 = 0 in Theorem 4. This
special case was also addressed in [18, Theorem 2]. There are
some notable differences between the two regions however”.
First, the distributions for the input and auxiliary random
variables is taken to belong to a more restrictive class in
[18, Theorem 2] that can be obtained by setting U3 = U,
(Uy23,U12) = Vo and (Uias,Us3) = V3 and restricting
to joint distributions wherein we have the Markov chains
U —o— Vo —o— (Vg,X)and U —— V3 —— (V2,X)
which is a stronger restriction than the one herein which is
that Uyo3 —— (U1a,U13) —o— X. However, the restriction
in the class of coding distributions in [18, Theorem 2] is
without loss of generality as argued in [18]. More importantly
however, the achievable region of [18, Theorem 2] corresponds
to one wherein Receiver 3 decodes the common message
M23 non-uniquely via V3, whereas in the specialization of
Theorem 4, Receiver 3 decodes the common message uniquely
via Ujas. This results in more inequalities in the region of
Theorem 4 (when specialized to K = 3 and E = {1,12,123})
than the ones in [18, Theorem 2]. However, it is left to the
reader to verify along the lines of [18, Proposition 8] that
unique and non-unique decoding at Receiver 3 result in the
same region per coding distribution. In effect, the additional
inequalities due to unique-decoding are redundant. In par-
ticular, [18, Proposition 8] shows that the achievable region
of [18, Theorem 2] for the three degraded message set in
which Receiver 2 decodes the common message uniquely and
Receiver 3 decodes the common message non-uniquely, when
specialized to the two degraded message set E = {1,123} (by
setting R12 = 0), is equivalent to the achievable rate region of
[18, Proposition 5] obtained by having both Receivers 2 and 3
decode the common message non-uniquely.

V. CONCLUSION

In this paper, we propose an inner bound based on
rate-splitting and superposition coding in explicit form for
the K -user DM BC as a union of four-dimensional polytopes
described in terms of the rates of the four messages. By spe-
cializing it to the combination network through the choice of
a single coding distribution we obtain a single polytope which
is then shown to be the capacity region of that network for the
diamond message set. Our converse proof uses the generalized
cut-set bound framework of [6] to recognize, by developing

SThere is a typographical error in the last inequality in the rate region given
in [18, Theorem 2]: the term I(Ui2; Y2|Ui23) in the bound should instead
be I(U12, U123; Y2).
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key connections between our order-theoretic description of the
inner bound and the set-theoretic description of the generalized
cut-set bounds, the inequalities in the inner bound as indeed
being generalized cut-set outer bounds. Most significantly,
our interpretation of this capacity result is that it suggests a
certain strength of the coding scheme for the general DM
BC itself, from whence it was obtained. Put differently, our
top-down approach allows us to conclude that rate-splitting
and superposition coding (with subset inclusion order) results
in a strong inner bound for the DM BC with the diamond
message set as opposed to presenting the more conventional
view that rate-splitting and superposition coding may not be
strong enough to attain the capacity of the entire DM BC
for the diamond message set. Nevertheless, we extend the
rate-splitting and superposition coding inner bound by adding
binning to it and obtain a rate region that is again given as a
union of explicit four-dimensional polytopes in terms of the
four message rates.

Moreover, we expect that the proposed top-town approach,
initiated in [2] and continued in [15] and the present work, can
be used to obtain inner bounds for the DM BC for message sets
other than the diamond message set, and validate them as being
strong, provided that, when specialized to the combination
network, they establish its capacity region.

APPENDIX I
ACHIEVABILITY PROOF FOR THEOREM 1

First, up-set rate splitting is used, i.e., each message Mg
is divided into a collection of sub-messages Mg_,g» where
S" €1e S. Then, the sub-message Mg_, o will be treated as
if it was intended for the receivers in the larger set S instead
of in S. Hence, the messages Mz—3, M7 and My—
are split

into (M= 5 Mg—r x Mr—Tr "1
Mg=g x7r) (Mg 3 Mg x) (Mg
Mﬁ_}ﬁ), with rates (RK—I.KH$7RK71.K—>?7
R x1 Fr—tr x—xr) (Bx 3 Brg x) and
(Rg=1 .3 Rg—1_7—7)- respectively. The common message
and a sub-message of each of the other three messages
of the form MSH&, that is, the reconstructed message
(Mg, M= 5, Mz 5, Mz—x .3) is represented by
the cloud center Uz Conditionally independently
(conditioned on Uy), the reconstructed message pair
(M= 7%= M7z=—F%_7—=7) is represented by Up—t
and (Mz 7, Mz—%_ %) is represented by Uz. Finally,
Mz—%_ 75— is represented by Uz— = X. Receivers
{V;}5°2 decode the four intended messages by the joint
unique decoding of X (and hence Uy, Uy, Ug—, Ug=15):
and this happens successfully as long as

R+ Rg— + R + R < I(X;Y)) (110)
RK—l + R+ Rg—x
_Rﬁﬂ$_R?ﬂ$_RK TR = (XY|U)
(111)
R+ R —Rg 3
- R 77— Br—r_3 < {(XyY|Uz, Ug—)
(112)

Rg=+ Rg=x — Bg=_3
_'I%KF—LAGaif__]%KG—IJ(—»¢ = ()( }7| @ ‘_)
(113)
Rg—r—BrTr "1
~Rrr ® - Brar 3= 1(X; }/| Uz Ux)
(114)

forall j € {1,2,---,K —2}.

On the other hand, receiver Yx_; finds the two intended
messages M and Mz by decoding (Ug, Uz), and receiver
Yi find the two intended messages Mz and Mp— by
decoding (Ug, Ug—)- Receivers Y _1 and Yi decode their
intended pair of messages successfully provided the following
inequalities hold:

Rz + R+ Rg= 3

+Rp—=xw %+ Rr—x K3 = I(U Uz Y1)

Ry — RK*)(? + Rg—=x % < I(UK» YK—1|U$)

R$ + R+ Rf_@

+Rpmr w1t RKfl.K—E < I(Uga U= Yk)

117)
Rpg=1_3 + Rg=rr—w=1 < [(Ug=; Y&|U3)
(118)

(115)
(116)

RK—l -

Besides inequalities (110)-(118) there are eight inequalities
to account for the non-negativity of the split rates

— Rp—=%+
RK 1.K—K— 1+RK 1K~>K+RK 1.K— (15<0
(119)
—Rg—=rg x=1<0 (120)
— Rpe—=% 7 <0 (121)
—Rg=r 3<0 (122)
—Rg+Rg <0 (123)
— R 5<0 (124)
—Rg—+Rg= 3<0 (125)
—Rig= 3<0 (126)

Taken together, these inequalities describe a nine-dimensional
polytope (per admissible distribution of (19)) in original- and
split-rates space. By projecting away the five split rates using a
structured form of the FME method described in Appendix II
to follow, we get the achievable region in the positive orthant
defined by the inequalities (7)-(18).

APPENDIX II
THE FME FOR THEOREM 1

As described in Appendix I, the coding scheme includes
rate-splitting and since we consider arbitrary K receivers,
there are an indeterminate number of inequalities that describe
the polyhedral achievable rate region per random cod-
ing distribution in nine-dimensional original- and split-rate
space. In particular, there are 5K + 2 inequalities given
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by (110)—~(118) and (119)-(126) that describe each such poly-
tope. This means that the FME procedure must deal with
groups of inequalities (for general K) at a time instead of
exhaustively listing them (for this reason, the FME software
f [19] which is designed to take in a definite number
of inequalities in exhaustive form cannot be directly used).
Moreover, the elimination of the five split rates presents
5! = 120 possibilities for the orders in which to elim-
inate them, all of which must lead, in principle, to the
right four-dimensional polytope described by the inequalities
(7)-(18). It turns out however, that at least some of these orders
render the FME procedure too tedious to perform by hand
beyond even the second or third steps of the five-step process,
including the identification (and hence, elimination) of the
redundant inequalities that arise at each step. In this appendix,
we provide a “good” order of elimination and the intermediate
results obtained after projecting out each of the five split rates
in that order that not only makes it possible to complete
the five-step task with reasonable effort by hand, but also
offers the possibility of verifying if two of the successively
reduced-dimensional polytopes at the end of steps 2 and 4
satisfy certain symmetry conditions which, intuitively, they
must (and which they do). The outline of the FME procedure
is given next.

In particular, we propose to do the projection in five steps
in the following order:

) Rg=_3

2) Rg 3

3 Bpr-w

D Rrg w1

5 Rp—=xr 3
Note that this order maintains a certain symmetric structure
in the problem, in that after projecting away the first two
split rates in the above list we expect a symmetry in the
description of the resulting seven-dimensional polytope around
K and K — 1 (i.e., exchanging K and K — 1 should not
change it). Similarly, such a symmetry should result again
after projecting away the first four split rates in the above
list, and eventually after projecting away the fifth split rate
that yields the four-dimensional polytopes specified in The-
orem 1, which is indeed symmetric in the sense described
above.

At the end of each projection to eliminate a split rate,
we must remove all redundant inequalities so that the FME
procedure remains tractable in future steps. We do not address
the issue of why inequalities that are not retained at the end
of each step are redundant, leaving this task at each step
(beyond step 2, when they arise) to the interested reader.
Judicious applications of the data processing inequality and
the Markov chain relationships between the involved random
variables are all that are needed. The task of identifying which
inequalities are redundant is, however, solved in that these are
precisely the inequalities that we omit from including in the
projected reduced-dimensional region given at the end of each

step.

In the first two steps, we project away the
split rates Rﬁﬁg and Rfﬁg and obtain, after
rearranging the inequalities, the following inequalities

233

with j € {1,2,--- , K — 2}

Rg-ﬁ-Rﬁ-l-R—-l-RW

< I(X;Y;|Us, U) + 1(Us, Ugs; Yic 1) (127)
RJ-FRﬁ-i-R +RK e

< I(X; Y;|Us, Ug=y) + 1(Uz, Ug=r: Yic) (128)
R+ Rg—1 + R + R < 1(X;Y)) (129)
RK—I.K — Rp=x_3 < 1(X;Y;|U3) (130)
RK—I.K - RK—l.K—></> - Rmﬁﬁ

< I(X3Y;|Us, Ug—) (131)
RK—I.K_RK—I.KH$_RK TRAR = I(X; Y| _)

(132)

Rp=x_ 7= < I(Ug=; Yk|U3) (133)
R ¢ < I(Ugs Yic—1|U3) (134)
R +R 1+RK 1KH¢+RK T.K—>K—1

<I(U Un—r: Yic) (135)
R¢+RK+RK—1.KH$+Rm—>F

< I(Uz, Ug; Yi—1) (136)
RJ-FRﬁ-FRf-FRK 1K+RK TRR"—I

< I(X;Y;|U5) + I(Us, Ue—: Yx) (137)
Rg-ﬁ-Rﬁﬁ-R +RK 1.K+RK—1.KH?

< I(X: Y;|Us) + [(Ug, Ugs; Yic—1) (138)
R+ Ry + R+

Rm_@ +Rggr w1t BrTr-%©

< (U Yic—1|Ug) + I(Us, Uge—y: Y (139)
Ry + Ry— + R+

Rgar 3t frTr 71+t BrTr ®

< I(Uge=y: Yi|Us) + I(Us;, Uges Yic—1) (140)
Rg—r — Bx= mﬁz—Rmﬁﬁ—Rmﬁ?

< I(X; Y;|Us, U, U) (141)
2R + 2R 1+2RK+

RK—I.K + R 3+ RBgmrr—r=1 + Br=1. KHF
SI(X7Y|U/>)+I(U(/)5UfaYK—l)+I(U(/)5UK K )

(142)

—Rm-‘r
Rgmr ro + Brmrw T Rr—rr_3 <0 (143)
—Rp=x x=<0 (144)
—Rggx_x <0 (145)
—Rg=gr 3<0 (146)

Observe that the above seven-dimensional polytope remains
unchanged if K —1 and K are exchanged, as one might expect.
Indeed, observe this symmetry in every group of inequalities
separated by a new line. There were no redundant inequalities
in the first two steps.

In the third step, we project away the split rate Re—%_ %
Notice now that we have a group of inequalities in (141)
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which give lower bounds for Riz—7%_,% and a group of
inequalities in (138) and (142) that give upper bounds for
Ri=—7% 7% Hence, to project the split rate Rpe—7% &%
from these, we have to introduce new variables ji,j2 €
{1,2,---, K — 2} since we get a multiplicative increase in
the number of inequalities. By projecting away the split rate
Ri#—%_7% > we obtain, by rearranging the inequalities and
getting rid of the redundant ones °, the following for 7, j1, j2 €
{1,2,--- ,K — 2}

R—-i-Rﬁ-l—R—-i-Rm

< I(X;Y;|U- 5 U +I(U(/),U7;YK_1) (147)
Rj+ Rp— + Rz +RK 7

< I(X;Y;|U- 5 U =) + (Ud),UK 7 Yk) (148)
Rz + Rg—+ Ry +RK e < 1(X;Y)) (149)
R$+Rﬁ+R—+Rm

< I(X; V5|0, EX U= Ug)

+I(U?,YK_1|U$) (U U= Yk) (150)
Rz + Rg—+ Rg + Rg—%

<I(X»YJ| U= Ux)

+ (U= YK|U$) (Ug, Uz Y1) (151)
2R; + 2Rp— + 2Rx + 2Rp—x

<I(X;Y}1|U()+I(X7Yp| 7 U™ pr)

(Ud),U?;YK_lﬂ—I(Ud),UK 7 Yk) (152)

Rp=x — Br=rr_7 < 1(X;Y;|U5) (153)
Rg—x — Bg= 1K—></>

< I(X;Y;|U- e Ug) + I(Ug; Yie—1|U) (154)
RK—I.K - RK—I.K—>$ - Rmﬁﬁ

< I(X;Y;|Ug, Ug=x) (155)
RK—I.K - RK—I.KH$ - Rmﬁﬁ

< I(X; }/j|U$, U=, Ux) + I (U YK_1|U$) (156)
R$+ R?+ RK—I.K - RK—l.Kﬁﬁ

< I(X; YU, U=, Ug) + I(U3, Ugs Yie—1) - (157)
Rz + Rg—+ Rgp + 2Rg—x — Rg—w 35—

RK w1 < [(X;Y;,|Ug)+

I(X; Y5, |U; > U= Ur) + (UWU?§YK71) (158)
Rp=x_w= < I(X;Y;|Ug, Ug=) (159)
Re=r_r=1 < I(Ug=: Yk |U3) (160)
Ry + R+ Rp—=x_3 SI(Ud),U?;YK_l) (161)
R¢+RK—1+RK+RK 1K+RK 1.K—>K—1

gI(X;Yj|U$)+ (U Uz Yk) (162)
R$ + Rﬁ + Rf + RKfl.K + RKfl.Keﬁ

< I(X;Y;|U3, Ug)

+ (U Yk 1|U3) + I(Uz, Ug=; Yk) (163)

%Note that we get redundant inequalities by eliminating the split rate
Rig—%_ 7 from (132) and (136), (138), (140), and (142), and also

from (145) and (138).

Ry + R+ R 3+ Brmrr_w=1

< I(U(/WUK 1,YK) (164)
R +R 1+R +RK 1K—></)+RK T.K—-K—1

<I(UK,YK 1| ) (U(/)7UK 1,YK) (165)
R$ + RK—l + R? + RK—I.KH¢ + RK—l.KHm

< I(Ug=: Yk|U3) + (U3, Ug; Y —1) (166)
2R$+2Rﬁ+2Rf+ RK—I.K+RK—1.KH$

+ Rge=rr_w=1 < 1(X3Y;|U3)

—l—I(Ug,Uf,YK_l)—‘rI(U UK 1,Y ) (167)
- RKfl.K + RK TR-RK—T T RKfl.K—u/) <0 (168)

—Rg=x w1<0 (169)

- Rpe—7% 7.7 <0 (170)

In the fourth step, we project away the split rate
Ri—%_7—=7 from the polytope described by the inequal-
ities (147)-(170). Note that the inequalities (155)-(158)
and (169) give lower bounds and the inequalities (159)-(160),
and (162)-(168) give upper bounds on Rx—%_,w—5- Hence,
we have K2—K—1 lower bounds and 4K —3 upper bounds
with the rest of the inequalities remaining unchanged.

Projecting away the split rate Riz—_ 7—7 from the
aforementioned inequalities, in which there are five lower
bounds and nine upper bounds, counting a group of inequal-
ities as one inequality, we obtain 45 groups of inequalities
(including groups of size one). However, and we leave it
to the reader to show this, the nine inequalities, besides the
unchanged inequalities, shown next, are the only ones that are
not redundant. Hence, we get the five-dimensional polytope
described by the following inequalities for all j,j1,72 €
{1,2,--- ,K — 2}

R + Rg=+ Ry —|—RK e

<I(X Y;|U P )+I(U(/),U7;YK_1) (I71)
Rg—l—Rﬁ—i-RK—i—RK TR

SI(X§YJ'|U$7UK—) (U U= Yk) (172)
R——I—Rﬁ%-R?—i—RK = < 1(X;Y;) (173)
R + Rg—=+ R+ Rg—=F%

<I(X7YJ| U= 1aU7)

+I(Uf;YK_1|U$) (U Uz Yk) (174)
Rg—FRﬁ—i—RF—i—RKfvi

<I(XY| X Uk pr)

+ (U= 1,YK|U) (U$7 Uz Yi—1) (175)
2R + 2R+ 2R + 2Rpe—=%

SI(XaY31|U)+I(X7 Y, |Ug, U= pU?)

+I(U$,Uf;YK_1)+I(U¢,UK 7 Yk) (176)
R$+Rm+RmHE§I(U U= Yk) a77)
Rg—f— Ry=+ Rmﬂg < I(U¢, Uz Yi-1) (178)
Rg—I—Rﬁ—i—RF—i—Rmﬁg

SI(Uf;YK_ﬂUg)—&- (U U= Yk) (179)
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Rg + R—K—l + Rf + R—K—l.K—@

< I(Uﬁ, YK|U$) + I(U$, Uf; YK—l) (180)
2R$ + RK—l + R? + RK—I.K + RK—l.K_@
< I(X;Y;|Ug, Ug—, Ug)

2R$—|— 2Rg=—=+ 2R+ Rg—=7% + RK—l.KH$
< I(X;Yj|Us) + 1(Us, Ugs; Yic 1) + 1 (Uz, Ug=: Yx)

(182)
Rp—tx — Br=rr 3 < I(X;Y;|U3) (183)
RK—I.K - RK—I.Kﬂg
< I(X;}/;‘1|U$, Uﬁ)+I(X;1/}2|U$, U%) (184)
Reg—=x — RK—I.Kﬂg
< I(X; Yj|U$7 Uig—) + I (U= YK|U$) (185)
RK—I.K - RK—l.K—>$
< I(X;}/j|U$, Ug) + I(Ugs YK,1|U$) (186)
RK—I.K - RK—l.K—@
< I(X;Y;|Ug, U=, Ug)
+ (U Y -1|Uz) + I(Uz=; YK|U$) (187)
—Rgmx + Bg—gx 5 =0 (188)
—Rg=x 3<0 (189)

Observe again the symmetry in the above five-dimensional
polytope, which is that it remains unchanged when K — 1 and
K are exchanged (even within every group of inequalities
separated by new line), as expected.

Finally, in the fifth step, we project away the split rate
Rg=x 7 from the five-dimensional polytope described by
the inequalities (171)-(189). After doing this projection, and
eliminating redundant inequalities, it is left to the reader to
verify that we obtain the four-dimensional polytope in the
original rates given in Theorem 1. Note again the presence of
symmetry of that polytope when K — 1 and K are exchanged
in that four-dimensional polytope. This concludes the outline
of the FME procedure.

APPENDIX III
PROOF OF THEOREM 2

The achievability proof follows by adopting a special case
of the up-set rate-splitting scheme used to prove Theorem 1.
In particular, we set the split rates as follows

Rg—rx_5=0 (190)
Ry .z =0 (191)
Rtz =0 (192)
RK—l K—-K-1.K — RK—I K (193)
Rg 5=0 (194)
Rg 7 =Ry (195)
Ry 5= Rg— (196)
Ry 7= =0 (197)

235

For these split rates, the messages (Mg, Mzp—y) with rate
Reg=—=+ R$ are represented by Ug, the cloud center codebook.
Then the message M is represented by the first satellite code-
book Uz (superposed on Ug), and following that Mp——+
is represented by the second satellite X codebook which is
superposed on Uz Note that by doing so, we set Up— =
const. By using the less noisy conditions Y; > Yx_1 = Yg
for each ¢ € {1 : K — 2}, we get the stated achievable region.
The converse proof uses the information inequality of
[14, Lemma 1] which we state it here for easy reference.
Lemma 1: Let X——(Y, Z) be a DM BC without feedback
and Y > Z. Consider M to be any random variable such that
M—o—X"—— (Y™, Z") forms a Markov chain. Then,

(YL Z M) >1(Z7 Y Z)M) 1 <i<n
I(YTL Y| M) >1(Z7h M) 1 <i<n

For achievable rates tuple {Rs}sce, we show that
there exist random variables Uz, Uz, X, where (U$ —o—
Uz —o— X —o— (Y1---Yg) forms a Markov chain, such
that inequalities in (20)-(22) holds for Y; > Yx_1 > Yk for
each i € {1: K —2}.

The optimal auxiliary random variables are Uy, =
Y1 Mg M= and U, = Yy, 1, Mg, M=y, M.
The converse proof for (20)-(21) is similar to that in [20,
Theorem 1]. Hence, the proof is omitted and left to the reader.

The proof that (22) is an outer bound is shown as follows:
we have each j € [1: K — 2]

nRg—x = H(Mgz—=x)
< I(Mz=r7: Yj1 |MG, M=, M) + ney,
(198)

M=

< I(X33 Y| Mg, M=y, Mz, Yi1') + ne

1

.
Il

(199)

{1(X3: Y| M, M=, M)~

|

s
Il
-

I (yjz:l; Yj 4| Mz, M=, Mz)} + ney,
(200)

-

@
Il
A

{1(X33 Y54 | Mo, M=, M) —

I(Yli(_—ll,l; Yj,i|M$v My, Mf)} + nen
(201)

|

s
Il
-

I(X3; Y| My, Mgy, M, Y 1) + ney

(202)

|

s
Il
-

I(XZ, }/j,i|Uf7i) + ne,

where (198) follows from Fano’s inequality and the indepen-
dence among all messages. Moreover, (199), (200) and (202)

follow from the Markov chain
(Mg, Mg, M, Y71 Yy ) —o— Xy —o— Y (203)

and (201) follows from Lemma 1.
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The rest of the proof proceeds along standard lines,
i.e., we define a time-sharing uniform random variable @
that takes the values {1,2,3,--- ,n} and independent of
all other involved random variables. Identify Uz=(Uz ;. Q).
Ug=Uz g @), X = Xq and V=Yg for all | €
{1,2,---, K}. It is clear that this choice of auxiliary random
variables implies that Ug —o— U —o— X. Finally, take the
limit as n — oo, so that ¢, — 0, to get (20)-(22). This
completes the converse proof.

APPENDIX IV
PROOF OF THEOREM 4

The achievable scheme of Theorem 1 that is based on
rate-splitting and superposition coding is enhanced by adding
to it the technique of binning that involves generating the
Uz and Uz—7 codebooks at excess rate and creating bins
of codewords in place of codewords for the associated mes-
sages and selecting a pair of codewords from the prod-
uct bins selected by the messages that are jointly typical
per the allowed joint distribution of Uz and Uz— (con-
ditioned on Ug). In particular, the messages Mz, Mp—,
and Mz are split as in the proof of Theorem 1. The
reconstructed message (Mg, Mz= 3, Mz 3, Mmﬂg)
is represented by the cloud center Uy again as in Theo-
rem 1. For each u%(m% mﬁ_@, mf_@, W{m_}g) ran-
domly and independently generate (a) 2"f'% independent
sequences ’u%(mglmﬁﬁg,m?*)g7mm%$,’ﬁ’Lﬁ), for
each g€ [1: 2" P %] with

Rg > Rg—x %+ Rz % (204)

and (b) 2"Fr=T independent sequences u’;(_ 1(m$, ME—1 .3

M5 M=t _3 =) for each mp— € [1 : 2"'%=T]
and

RK—l > RK—l.KHK—l + Rﬁ%K—l (205)

Partition the 2""*% sequences u2- into orfr—rx iR %)
subcodebooks (or bins) and the 2"fE=T
into 2"(Frmw_m=TtRr—T_%=7)
sized subcodebooks, with the indexed
by the sub-message pairs (mK_—l:KHF,m?H?) and
(mr—7% =7 M7r—1_]—7)  respectively. The tuple (m$’

equi-sized
n
sequences Uz

equi-
subcodebooks

mMg=1-% M- "r1r-p "K1R-K "EOR
M T R_RK—T mﬁ_)ﬁ) identifies two subcodebooks
of u% and u?{_ T sequences respectively from which a jointly
typical (u%, u% ) pair is selected. For each such pair,
generate onfir=—Tr TR independent ™ sequences indexed
by the sub-message mp—%_ ,x—7 - To ensure that each
product bin contains a jointly typical pair with arbitrarily high
probability, we require by the mutual covering lemma [17]

that

RK—I.KH? +R?HF + RK—I.KHK—I + RK—1Hﬁ

Receivers {Yj}f:_f decode all four intended messages

by the joint unique decoding of X (and hence of

U Uge, Ug=1, Ug=rz)- and this happens successfully as
long as (110)-(114) hold. On the other hand, receiver Y _1
finds its two intended messages Mz and Mz by jointly
uniquely decoding (U, Ugz), and similarly, receiver Y find
its two intended messages M and My— by jointly uniquely
decoding (Ug, Ugz—)- Receivers Y _1 and Yi decode their
intended pair of messages successfully provided the following
inequalities hold:

R+ Rg_ 5+ Rg—_3+ Rg=x_3+ Rx

S I(U—, Uf; YK—l) (207)
Ry < I(Ug; Yi1|U3) (208)
Ry + R 5+ Rg= 5+ Re=xm 3+ Br=1
< I(Ug, Ug—:Yk) (209)

&
Rig— < I(Ug—; Yk |Ug) (210)

At this point, inequalities (110)-(114), (204)- (210) and
the non-negativity of message rate constraints define a
11-dimensional polytope. Extending the FME method as
outlined in Appendix II for the projection required in
Theorem 1 — the details of which are left to the reader —we
obtain the rate region given in the statement of Theorem 4.
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