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Abstract

Current metrics for evaluating factuality for

abstractive document summarization have

achieved high correlations with human judg-

ment, but they do not account for the vision

modality and thus are not adequate for vision-

and-language summarization. We propose

CLIPBERTSCORE, a simple weighted com-

bination of CLIPScore (Hessel et al., 2021)

and BERTScore (Zhang* et al., 2020) to lever-

age the robustness and strong factuality de-

tection performance between image-summary

and document-summary, respectively. Next,

due to the lack of meta-evaluation benchmarks

to evaluate the quality of multimodal factu-

ality metrics, we collect human judgments

of factuality with respect to documents and

images. We show that this simple combi-

nation of two metrics in the zero-shot set-

ting achieves higher correlations than exist-

ing factuality metrics for document summa-

rization, outperforms an existing multimodal

summarization metric, and performs competi-

tively with strong multimodal factuality met-

rics specifically fine-tuned for the task. Our

thorough analysis demonstrates the robustness

and high correlation of CLIPBERTSCORE

and its components on four factuality metric-

evaluation benchmarks. Finally, we demon-

strate two practical downstream applications

of our CLIPBERTSCORE metric: for select-

ing important images to focus on during train-

ing, and as a reward for reinforcement learning

to improve factuality of multimodal summary

generation w.r.t automatic and human evalua-

tion.1

1 Introduction

Multimodal abstractive summarization is the task

of generating an abridged text that contains the

most important information of the source inputs

from various modalities. This challenging task

1Our data and code are publicly available at https://
github.com/meetdavidwan/faithful-multimodal-summ

builds upon the success of document summariza-

tion, where the input is only text documents. For

document summarization, there has been tremen-

dous progress in improving the quality of the sum-

maries with the help of large pre-trained models

(Lewis et al., 2020; Zhang et al., 2020; Raffel et al.,

2020). However, one crucial problem for such

models is hallucination, where the model gener-

ates contents that are not present or entailed by the

document (Maynez et al., 2020; Falke et al., 2019).

While there have been significant advancements

in developing metrics that correlate highly with the

human judgment of factuality (Kryscinski et al.,

2020; Durmus et al., 2020; Goyal and Durrett,

2021; Scialom et al., 2021), these metrics only

measure factuality between the document and the

summary. The lack of judgment between other

modalities, such as vision, and the summary makes

such metrics not suitable for multimodal settings.

We demonstrate this with the example in Figure 1.

The given summary captures less relevant informa-

tion (cutting the nail) from the document, but it is

still considered factual to the document. However,

the image shows the main point of the document

(finding the place where the nail separates from

the quick), making the summary not factual with

respect to the image. Current factuality metrics do

not account for the image and thus cannot correctly

assess factuality for multimodal summaries.

In this work, we introduce a metric that judges

factuality of the summary with respect to each in-

put modality. Focusing on the vision-and-language

summarization, we propose CLIPBERTSCORE, a

simple and robust automatic factuality evaluation

metric for multimodal summaries that combines

two successful metrics: CLIPScore (Hessel et al.,

2021), which shows strong performance in detect-

ing hallucinations between image and text, and

BERTScore (Zhang* et al., 2020), which correlates

well with the human judgment of factuality for doc-

ument summarization (Pagnoni et al., 2021).
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2017) benchmark that explores how well the metric

can detect hallucinations present in the captions.

Thus, it serves as a fitting candidate for factuality

evaluation between the image and the summary.

We use CLIP-S, which calculates the cosine sim-

ilarity between the image embedding v and the text

embedding of the summary sentence t. To adapt

to multimodal summarization, where we have mul-

tiple images and multi-sentence summaries,3 we

take the average of the scores of all image and

sentence pairs. Formally, given a list of image em-

beddings V and summary sentence embeddings T

from CLIP’s image and text encoder, respectively:

CLIP-S(V, T ) =
1

|V ||T |

|V |∑

i=1

|T |∑

j=1

cossim(vi, tj)

Document-Summary. To better detect halluci-

nations present in the summary with respect to

the document, we use the precision variant of

BERTScore (Zhang* et al., 2020), which achieves

high correlations with human judgments of factu-

ality for document summarization (Pagnoni et al.,

2021). See Section 4.4 for a detailed discussion and

comparison against other text-based factuality met-

rics. Formally, given the contextual embeddings of

each token in the document D and summary S, it

calculates the pairwise cosine similarity between

each document and summary token embeddings:

BERT-S =
1

|S|

∑

s∈S

max
d∈D

cossim(d, s)

Full Metric. The final score is a combination of

the factuality score for image-summary with CLIP-

S and that for document-summary with BERT-S:

CLIPBERTSCORE = αCLIP-S+(1−α)BERT-S,

where α is a tunable parameter. Please see Sec-

tion 3.4 for other ways to learn this combination.

3 Metric Meta-Evaluations

Next, after defining the multimodal factuality met-

ric CLIPBERTSCORE, we want to evaluate the

quality of this new metric by checking whether it

correlates with human judgments, similar to what

has been done for textual factuality metrics (Wang

et al., 2020; Kryscinski et al., 2020; Durmus et al.,

2020; Scialom et al., 2021). As there is no human

3The text encoder of CLIP was trained only on single-
sentence captions, and the maximum length is set to be 77
tokens. This limits its ability (and that of CLIPScore) to
represent multiple sentences.

annotations of factuality for multimodal summa-

rization, we first propose a Multimodal Factuality

Meta-Evaluation (MUFAME) benchmark derived

from WikiHow to test the correlations of CLIP-

BERTSCORE with human judgments of factuality.

3.1 MUFAME

Dataset. We construct an English multimodal

WikiHow summarization dataset (Koupaee and

Wang, 2018) for the human evaluation, as this

datasets has been extensively studied for document

summarization (Koupaee and Wang, 2018; Ladhak

et al., 2020), and the images associated with the

how-to-articles are relevant to the text. We use

a recent WikiHow collection effort by Yang et al.

(2021) containing images.4 We generate the step-

level multimodal WikiHow dataset by breaking

each article into steps and following the construc-

tion described in Koupaee and Wang (2018): We

consider the first sentence of a step as the summary

and the rest of the paragraph as the document, and

add the corresponding image. We randomly select

6,000 articles as the validation and test set each,

and break each example into steps.5 Statistics of

the dataset can be found in Table 16 of the Ap-

pendix. For annotation, we randomly sample 50

articles from the test set, and evaluate the generated

summaries for all the corresponding steps. Similar

to Kryscinski et al. (2020), we split the 50 articles

into 10 articles as the validation and 40 as the test

set, resulting in 52 and 193 step-level examples for

the validation and test set, respectively.

Summarization Systems. Following Pagnoni

et al. (2021), we include model summaries from

summarization models with varying factuality ca-

pabilities. We train four abstractive summarization

systems on the multimodal WikiHow dataset, in-

cluding two document summarization models, T5

(Raffel et al., 2020) and PEGASUS (Zhang et al.,

2020), and two multimodal summarization models,

CLIP-BART (see section 5), and MOF (Zhu et al.,

2018). Details of the models are provided in Ap-

pendix A.2. We additionally include the reference

4
https://github.com/YueYANG1996/wikiHow-VGSI.

We initially attempted to crawl and align images to the
original summarization dataset, but many of the links to the
articles are no longer valid or the contents have changed since
the original construction.

5Although we are primarily interested in the step-level
summarization setup for annotation purpose, this creation
process also allows future works to experiment with the article-
level summarization task by concatenating all the summaries,
documents and images of an article.



summaries, resulting in a total of 260 and 965 ex-

amples for the validation and test set, respectively.

Annotations. We conduct the annotations on

Amazon Mechanical Turk6 (AMT) platform. For

each HIT, we provide the document and the image

and ask the workers to read the five summaries.

The workers then need to choose whether each

summary is faithful to the document and the im-

age separately. An example of the annotation page

can be seen in Appendix A.3. For high-quality

annotations, we first conduct a qualification test,

where we compare the annotations from the work-

ers against annotations by the authors. Only the

workers who have the same annotations on the se-

lected example can perform the actual annotation

task. We further select workers from the United

States, who have more than 10,000 HITs approved

and an approval rate greater than 98%. We pay 0.18

USD per task to ensure a > $12 hourly rate. Each

task consists of three unique workers, and we take

the majority class for the document and image fac-

tuality judgments, similar to Pagnoni et al. (2021).

We consider the summary to be faithful only if it

is considered faithful to both document and image.

We also experiment beyond binary judgment by

taking the average over the two factuality judgment

to indicate a summary may be partially faithful to

one of the source, which is shown in Appendix B.

Inter-Annotator Agreement. We report Fleiss

Kappa κ (Fleiss, 1971) and percentage p of anno-

tators agreement on the majority class, similar to

Durmus et al. (2020). We obtain κ = 0.50, with

p = 88.5%, indicating a moderate agreement (Lan-

dis and Koch, 1977).7

3.2 Experimental Setup

CLIPBERTSCORE. For CLIP-S, we use the

RN50x64 visual backbone instead of the ViT-B/32

version used in the original metric, as the larger

backbone shows a higher correlation on fac-

tuality benchmarks. For BERT-S, we choose

RoBERTa-large-mnli to compute the contextual-

ized embeddings instead of RoBERTa-large for the

same reason. We refer readers to Section 4 for more

details. We use the validation set of MUFAME to

tune α, where we find that α = 0.25 achieves the

6
https://www.mturk.com

7For reference, our agreement values are similar to :
Pagnoni et al. (2021) reports κ = 0.58, p = 91%, and Dur-
mus et al. (2020) reports p = 76.7% on their respective meta-
evaluation annotations of XSum and CNN/DM.

best correlations on the combined judgment. We

use this parameter for all experiments (See Sec-

tion 3.4 for other ways to learn this combination).

Baseline Metrics. Having separate judgments

for document-summary, image-summary, and mul-

timodal settings allows us to evaluate the metrics’

performance with different modality combinations.

For document-summary, we compare against exist-

ing factuality metrics, including FactCC (Kryscin-

ski et al., 2020), DAE (Goyal and Durrett, 2021),

QuestEval (Scialom et al., 2021), and the original

BERTScore (Zhang* et al., 2020). We also measure

the performance of the text-matching component

of CLIPScore, which we refer to as CLIPText-S.

For image-summary evaluation, we compare our

CLIP-S against Triplet Network, as described in

Yang et al. (2021). We train this metric on the

multimodal WikiHow dataset, allowing compar-

isons of correlations between CLIP-S in the zero-

shot setting and a fine-tuned metric for this task.

For multimodal factuality metrics, we experiment

with several weighted combinations of document-

summary and image-summary metrics by tuning

the weights on the validation set, including com-

binations of DAE with CLIP-S, Triplet Network

with BERT-S, and RefCLIP-S. We also compare to

MMAE (Zhu et al., 2018) developed for evaluating

the summary quality of multimodal summarization.

As the metric is originally designed for a different

dataset, we similarly use the multimodal WikiHow

to train its image-summary component IMMax. We

refer the readers to Appendix A.1 for details of the

metrics.

3.3 Meta-Evaluation Results

Table 1 shows the Pearson correlation of the au-

tomatic metrics. We first note that the combined

judgments require taking both modalities into con-

sideration. Metrics that only consider the docu-

ment correlate less with the combined judgment

than with the document-only judgment, indicating

the importance of capturing the vision modality for

evaluating factuality for multimodal summariza-

tion. Multimodal factuality metrics, on the other

hand, show positive transfers, as they correlate

higher on all three settings than its components.

Next, for the document-summary factuality judg-

ments, BERT-S achieves the highest correlation,

outperforming DAE by 8 points and the original

BERTScore by 4 points. Compared to MMAE,

which is developed for evaluating the quality of





Prompt Metric Random Category Similarity

Document

FactCC 41.66 38.54 37.28

DAE 69.51 69.54 68.37

CLIPText-S 91.12 87.38 82.81

BERTScore 82.46 80.10 77.07

BERT-S 86.24 84.97 81.97

Image

CLIP-S ViT-B/32 78.13 69.47 53.92

Triplet Net 82.21 75.23 65.18

CLIP-S 81.14 74.47 60.24

Combined

RefCLIP-S 93.04 88.05 78.66

Triplet Net + BERT-S 94.27 91.99 87.03

CLIPBERTScore 95.46 92.56 85.12

Table 3: WikhowFact ranking accuracy given differ-

ent input modalities. CLIPBERTSCORE shows the

largtest positive transfers when combined, outperform-

ing RefCLIP-S on all settings and Triplet Net + Bert-S

on random and category settings.

image as the prompt and includes four choices con-

sisting of the correct summary and three negative

summaries generated by random, category, and

similarity sampling strategies described in Yang

et al. (2021). We note that this setup is actually a

more challenging task than the original VGSI task.

See Appendix C.1 for more details. Similar to the

meta-evaluation in Section 3.2, we consider the

document, image and combined settings depending

on the choice of the prompt, and evaluate using

the the same sets of metrics. We further compare

CLIP-S to that using the smaller ViT-B/32 visual

backbone. We compute the ranking accuracy of

assigning a higher score to the correct summary.

See Appendix C.1 for more details.

Results. We present the WikiHowFact result in

Table 3. First, for the image-summary setting,

we observe the power of larger visual backbone

at improving factuality, as CLIP-S achieves a 3,

5, and 6.3 point increase compared to CLIP-S

ViT-B/32 for the random, category, and similar-

ity split, respectively. For document-summary set-

ting, CLIPText-S and BERT-S achieve high accu-

racy across the sampling strategies. Interestingly,

CLIPText-S performs better than BERT-S, but this

does not apply to the multimodal case: CLIP-

BERTSCORE actually outperforms RefCLIP-S,

showing the better positive transfer between CLIP-

S and BERT-S. Similar to the meta-evaluation re-

sults, the Triplet Network outperforms CLIP-S for

the image-summary setting, but the difference on

random and category splits is only around 1 point.

CLIPBERTSCORE still outperforms Triplet Net-

work + BERT-S on the random and category splits,

indicating the strong performance of combining the

Metric no-ref 1-ref 4-ref

length* - 50.2 50.2
ROUGE-L* - 71.7 79.3
CLIPText-S ViT-B/32 - 87.1 90.6
CLIPText-S RN50x64 - 87.8 92.0
BERT-S - 87.8 93.6

Triplet Net + BERT-S 60.5 85.0 90.7
RefCLIP-S ViT-B/32 86.8 91.7 92.6
RefCLIP-S RN50x64 90.1 92.0 93.8
CLIPBERTScore 90.1 92.7 95.0

Table 4: FOIL accuracy. * indicates results taken from

Hessel et al. (2021). Top section represents correlations

of factuality metrics for the document-summary set-

ting, while the bottom section show that for the image-

summary setting (no-ref) and multimodal setting.

two metrics for evaluating factuality.

4.2 Hallucination in Image Captioning

The FOIL (Shekhar et al., 2017) dataset mea-

sures how well the metric can differentiate correct

MSCOCO captions from hallucinated ones gener-

ated by adversarially swapping out noun phrases.

We follow Hessel et al. (2021) and evaluate met-

rics on the paired setting. We compute the ranking

accuracy by giving only the image (no-ref), and

with 1 or 4 additional reference captions. We com-

pare CLIPBERTSCORE and its components with

CLIPScore variants using the ViT-B/32 backbone.

We refer the readers to Appendix C.2 for more

details and results on all visual backbones. We

present the results in Table 4. BERT-S achieves

the highest accuracy in terms of the text-matching

performance. Especially when more text (4 refer-

ences) is provided, it outperforms CLIPText-S by

1.6 points. For image-text matching, we observe

similar improvement with larger visual backbones.

CLIPBERTSCORE showcases its strength at posi-

tive transfer of its two components: we observe im-

provement over RefCLIP-S RN50x64 of 0.7 points

for 1-ref and 1.2 points for 4-ref.

4.3 Fine-grained Visual Grounding

BISON (Hu et al., 2019) measures the ability of

the metric to select the correct MSCOCO image

from a semantically similar image, requiring more

fine-grained visual grounding to achieve high ac-

curacy. We compare the image-summary metrics,

and refer the readers to Appendix C.3 for results

on all CLIP-S variants. Table 5 shows that CLIP-

S actually outperforms the fully fine-tuned SOTA

metric, SCAN t2i (Lee et al., 2018), indicating its



Metric Acc

SCAN t2i* 85.89
Triplet Net 63.16
CLIP-S ViT-B/32 83.85
CLIP-S 86.03

Table 5: BISON accuracy. * indicates result copied

from Hu et al. (2019).

robustness and strong text-image detection perfor-

mance in the zero-shot setting. Triplet Network on

the other hand is not robust to this task, achieving

much lower accuracy than all other metrics.

4.4 Document Summarization Factuality

Evaluation

We compare how BERT-S and CLIPText-S corre-

late on FRANK, a factuality benchmark evalua-

tion for document abstractive summarization con-

taining 2,250 annotations for generated summaries

on XSum (Narayan et al., 2018) and CNN/DM

(Hermann et al., 2015). We report Pearson and

Spearman correlations, using the official evaluation

script.10 The result is shown in Table 13 in the

Appendix. CLIPText-S does not perform well for

detecting faithful summaries for summarization, as

Pearson and Spearman coefficients are around 0.10

for all datasets and 0.05 for XSum Spearman. In

contrast, BERT-S that uses RoBERTa (Liu et al.,

2019) model finetuned on the MNLI (Williams

et al., 2018) correlates higher than the original

BERTScore on Pearson and Spearman across both

datasets. It is thus useful to treat factuality as an

entailment problem and use the appropriate model.

5 Downstream Applications

Finally, we present two useful downstream applica-

tions for improving factuality of multimodal sum-

marization models: first by using the metric as a

reference image selection to guide the model in

attending important images, and second by using it

as a reward for self-critical sequence training. For

both applications, we train strong baseline mod-

els by adapting CLIP-BART (Sung et al., 2022)

for multimodal summarization. Specifically, we

extract visual features with CLIP and use a projec-

tion layer to transform the dimension of the visual

representation to the correct dimension of BART

(Lewis et al., 2020). Then, the projected features

are concatenated with the text features from the

10
https://github.com/artidoro/frank

original encoder as the joint input representation

for BART. See Appendix D for more details.

5.1 Multimodal Visual Guidance

One of the well-known tasks is multimodal summa-

rization with multimodal output (Zhu et al., 2020,

MSMO), which incorporates the associated images

with the CNN/DM articles. The authors shows that

previous models suffer from modality bias, as the

cross-entropy loss is only based on the text modal-

ity. To help the model also attend to the vison

modality, the authors propose to create visual ref-

erences by ranking and selecting the most relevant

input images. While the authors show improved

performance by ranking the images by the ROUGE

score between the corresponding caption and the

reference summary, such reference does not explic-

itly guide the model to generate summaries faithful

with respect to the images. We thus propose to use

CLIPBERTSCORE to select reference images. To

incorporate the visual guidance into the training,

we add a guidance loss by minimizing the cross-

entropy loss, where we consider the selected im-

ages by the reference as correct, and the remaining

images as incorrect. We use each image’s hidden

representation from the encoder to produce a binary

prediction using a linear layer.

We compare against the model using ROUGE

as the visual guidance. Following Zhu et al.

(2018), we report the performance of the models on

ROUGE, and image precision (IP) of the model’s

recommended images and human-annotated rel-

evant images. We additionally evaluate factual-

ity using BertScore, FactCC, DAE, and QuestE-

val. The result is shown in Table 6. We observe

a correlation between the guidance metric and the

metric score, as the model with ROUGE guidance

achieves higher ROUGE scores, and the model

with CLIPBERTSCORE guidance improves all

factuality metrics and IP. Though the gain is rela-

tively small, the improvement on factuality metrics

is greater than the negligible drop in ROUGE.

5.2 Self-Critical Sequence Training with

CLIPBERTSCORE Reward

A more generalized application to improve factual-

ity is to use CLIPBERTSCORE as a reward for the

self-critical sequence training (Rennie et al., 2017,

SCST), which optimizes the model using the RE-

INFORCE algorithm (Williams, 1992). Formally,

given document d, images v, and the summary y,



Model R1 R2 RL IP BERTScore FactCC DAE ↓ QuestEval

CLIP-BART ROUGE guidance 43.66 20.79 30.42 74.25 94.21 87.60 6.31 58.79

CLIP-BART CLIPBERTSCORE guidance 43.52 20.67 30.27 74.87 94.29 88.47 5.71 58.92

Table 6: MSMO result with different guidance strategies. DAE: lower is better (↓). For reference, the SOTA

model UniMS (Zhang et al., 2022) achieves 42.94 for R1, 20.50 for R2, and 69.38 for image precision (IP).

CLIPBERTSCORE as a guidance improves IP and all factuality metrics with a minor decrease in ROUGE.

Dataset Model R1 R2 RL IP BERTScore FactCC DAE ↓ QuestEval

MMSS
Base 55.95 32.18 51.81 - 93.59 66.75 12.20 54.37
Base + Reward 55.99 32.60 52.05 - 94.79 71.60 6.60 58.59

MSMO
Base 43.52 20.67 30.27 74.87 94.29 88.47 5.71 58.92
Base + Reward 43.87 20.92 30.04 74.31 94.87 94.96 0.61 60.48

Table 7: SCST result on MMSS and MSMO. DAE: lower is better (↓). We train a CLIP-BART model as the base

model for MMSS, and use CLIP-BART CLIPBERTSCORE guidance as the base model for MSMO. We observe

consistent improvement on all metrics with SCST over the base model on MMSS, and consistent improvement

on all factuality metrics on MSMO. For reference, the SOTA model on MMMS by Li et al. (2020b) achieves

48.19/25.64/45.27 for ROUGE.

Model Document Image Comb

Base 88.67 52.67 70.67
Base + Reward 95.00** 55.00* 75.00**

Table 8: Human evaluation results on MMSS. Model

with SCST training are statistically signficiantly more

factual with respect to document, image, and both. *

indicates p < 0.05 and ** indicates p < 0.01.

the self critical loss is defined as:

LSCST = −(r(ys)− r(ŷ))
∑N

t=1
logP (yst |y

s
1
, ..., yst−1

, d, v)

where r(·) is a reward function, ys is the sampled

summary, and ŷ is the summary obtained by greedy

decoding. We follow previous works (Pasunuru and

Bansal, 2018; Li et al., 2019; Parnell et al., 2021)

and train on the combined loss of cross-entropy

LXE and the self-critical loss: L = αLRL + (1−
α)LXE , where we set α = 0.998.

We use CLIPBERTSCORE and ROUGE-2 as

the rewards, so as to improve factually while main-

taining informativeness. Following Pasunuru and

Bansal (2018), we alternate the rewards for each

step during the training. We upweight CLIP-

BERTSCORE by 2x (tuned on the validation set).

We experiment on MSMO, and the multimodal sen-

tence summarization (Li et al., 2018, MMSS) task,

which combines the Gigaword corpus (Graff et al.,

2003; Rush et al., 2015) with crawled images.11

11Since there is only one image associated with each ex-
ample for MMSS, we do not add visual guidance for models
trained on this dataset.

As the base models, we use the CLIP-BART +

CLIPBERTSCORE model trained in Section 5.1

for MSMO, and we similarly train a CLIP-BART

model for the MMSS. We then use the fine-tuned

models and train with SCST. Details of the training

details can be found in Appendix D. We report the

same metrics for MMSS except for IP, since the

task does not contain gold image labels.

The result is shown in Table 7. We see consis-

tent improvement over all metrics with SCST for

MMSS. Specifically, we observe a 5-point improve-

ment for FactCC and DAE, and a 4-point increase

for QuestEval while maintaing similar ROUGE

score. We observe a similar trend for training with

SCST on MSMO dataset, where SCST training im-

proves FactCC, DAE and QuestEval by 8 points, 5

points, and 1.5 points, respectively.

To evaluate the factuality of the summaries gen-

erated by models trained with SCST against that by

the base model, we conduct a human evaluation on

a randomly sampled 100 articles from the MMSS

test set. We perform the same AMT experiment

as described in Section 3.1. We ensure the same

> $12 hourly rate and pay 0.1 USD per HIT. For

each summary, we aggregate the 3 annotator scores

for the document, image, and combined judgments.

The final factuality score is the average across the

100 examples. The result is shown in Table 8. The

model with SCST training achieves a statistically

significantly better factuality score with respect to

the document (p = 0.002), image (p = 0.041), and

especially to the combined case (p < 0.001) using



bootstrap test (Efron and Tibshirani, 1993). This

aligns with the factuality improvement we observe

with the automatic factuality scores in Table 7.

6 Related Work

Multimodal Summarization. The task of multi-

modal summarization takes additional inputs from

multiple modalities apart from the input text docu-

ment, including images (Li et al., 2018; Zhu et al.,

2020; Li et al., 2020a) and videos (Li et al., 2020c;

Palaskar et al., 2019). To incorporate multiple

modalities, many works have developed models

with multimodal attention (Zhu et al., 2020). When

multiple images are present, the rich information

present in the images may distract and thus hurt

the model’s performance. To this end, approaches

such as selective gating (Li et al., 2020b), visual

guidance (Zhu et al., 2020), and knowledge distilla-

tion Zhang et al. (2022) have been proposed. While

these methods have demonstrated improvement in

ROUGE, to the best of our knowledge, factuality

for such tasks has not been studied. We aim to

provide an evaluation benchmark for evaluating

factuality, and demonstrate methods to improve

factuality for the multimodal summarization task.

Faithfulness and Factuality Metrics. Many

metrics have been proposed to evaluate the fac-

tuality of generated summaries. The metrics

can be roughly categorized into entailment-based

and question generation and question answer-

ing (QGQA) metrics. Entailment-based metrics

(Kryscinski et al., 2020; Goyal and Durrett, 2021)

train metrics to predict entailment between the doc-

ument and summary units, such as sentences or

dependency arcs. QGQA approaches (Durmus

et al., 2020; Wang et al., 2020; Scialom et al.,

2021; Fabbri et al., 2022) generates questions from

one source using a question generation model and

then in turn uses a question answering model to

answer the generated questions given the other

source. Additionally, counterfactual estimation

(Xie et al., 2021) and embedding-based metrics

(Zhang* et al., 2020) have been explored. While

significant progress has been made, the proposed

metrics rely only on the document to detect hal-

lucinations and ignore the other modalities. We

thus propose CLIPBERTSCORE that addresses

the missing modalities while maintaining similar

or higher correlations with human judgment of

factuality for the document and mulitmodal sum-

marization task. Meta-evaluations have also been

proposed to evaluate such metrics for text summa-

rization that differ in sizes and datasets (Fabbri

et al., 2021; Maynez et al., 2020; Wang et al., 2020;

Kryscinski et al., 2020; Pagnoni et al., 2021). Our

MUFAME is a similar effort but is the first meta-

evaluation proposed for the multi-modal summa-

rization task.

7 Conclusion

In this work, we present CLIPBERTSCORE, an

automatic metric for evaluating factuality for mul-

timodal abstractive summarization. Through meta-

evaluation with MUFAME and additional factuality

benchmarks, we show CLIPBERTSCORE and its

modules correlate well with the human judgment

of factuality with respect to the document, image

and combined. CLIPBERTSCORE is robust across

the different image and text domains and achieves

competitive correlation in the zero-shot setting with

more complex metrics. We hope this work provides

a meta-evaluation for evaluating future multimodal

factuality metrics with MUFAME, a strong base-

line metric CLIPBERTSCORE to compare against,

and two methods to improve the factuality of mul-

timodal abstractive summarization models.

8 Limitations

We limit our work to the task that only contains the

vision modality through images and the text modal-

ity. However, we note that multimodal summariza-

tion also contains video and audio, which we leave

for future works. Furthermore, similar to all pre-

training models, CLIPScore and BERTScore are

also known for reflecting biases of the pre-training

data (Hessel et al., 2021; Agarwal et al., 2021),

leading to some incorrect predictions. Our work

is also focused for datasets in English. Ladhak

et al. (2020) proposed a multi-lingual WikiHow

by aligning the steps from various languages with

the image, and thus our work could be extended to

include other languages by including the images to

that dataset.
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A Meta-Evaluation Details

A.1 Metrics Details

We describe the metrics we use for computing cor-

relations. We use the official scripts from the re-

spective repository.



Model Optimizer Learning rate Label Smoothing Num steps Batch size

T5 AdamW 5e-5 0.1 15,000 256
PEGASUS AdaFactor 8e-5 0.1 15,000 256

CLIP-BART AdamW 5e-5 0.1 15,000 256
MOF Adam 1e-3 0.0 50,000 512

Table 9: Hyper-parameters of the models trained on the multimodal WikiHow summarization task.

FactCC. FactCC (Kryscinski et al., 2020) is an

entailment-based metric that uses BERT to output

a binary prediction of factuality given the concate-

nation of the document and a summary sentence

as input. The final score is the average factuality

score of all summary sentences.

DAE. DAE (Goyal and Durrett, 2021) is an

entailment-based metric that evaluates factuality on

dependency arc level instead of on sentence level.

We report the sentence-level error. The sentence is

considered to contain an error if any of its arcs are

predicted to be non-factual, and the final score is

the average of all sentence predictions. 0 indicates

a sentence contains no error, and 1 indicates the

sentence contains an error.

QuestEval. A QGQA metric, Scialom et al.

(2021) generates questions using a question gener-

ation model from both the document and the sum-

mary. Then, a question-answering model answers

the question generated using the document with

the summary, and answers the question generated

using the summary with the document. The final

score is the harmonic mean of the accuracy of the

predicted answers to the true answers from the

question generation model.

CLIPText-S. CLIPScore provides a variant of

the metric that takes in references for the image

captioning, and calculates the cosine similarity be-

tween the text embeddings T and that of the ref-

erences R. The final score is calculated by taking

the average over the maximum reference cosine

similarity:

CLIPText-S(T,R) =
1

|T |

|T |∑

i=1

max
r∈R

cossim(vi, r)

BERTScore/BERT-S. The original BERTScore

uses roberta-large by default. For BERT-S, we

use roberta-large-mnli up to the 11th layer af-

ter tuning on FRANK’s validation set.

Triplet Network. This network maps image and

summary embeddings into the same space and min-

imize the distance between the positive pair and

maximize that between the pair of image and nega-

tive summaries with the Triplet loss (Vassileios Bal-

ntas and Mikolajczyk, 2016). Specifically, a triplet

Network takes in a triplet (V, Spos, Sneg), the rep-

resentation of an image V , and that of a positive

summary and negative image. We then map the

representation to the same space and normalize the

embeddings. We then use the triplet loss with a

margin of 0.2. To generate the negative summaries,

we use the similarity split of VGSI and take the

summaries for the three negative choices. We use

the CLIP RN50x64 visual backbone to generate the

visual representation and use BERT to generate the

summary representation. We modify the example

training code provided by Transformers, and train

for 10 epochs with a learning rate of 5e-5. We use

the other default settings.

MMAE. MMAE (Zhu et al., 2018) is initially

developed for evaluating the summary quality on

MSMO, which we adapt to our task. The metric

consists of three submodules: image precision (IP),

IMMAX, and ROUGE-L. For MUFAME, since we

only have a single image, IP is just 1. IMMAX

is trained on the multimodal WikiHow dataset,

where the negative image-summary pair is from

the same batch. We use the same hyper-parameters

of the original MMAE metric. To combine the

three scores, we use the MLP variant tuned on the

validation set of MUFAME.

Combined Metrics. We tune the combined met-

rics on the validation set of MUFAME. We use

α = 0.45 for CLIP-S + DAE, α = 0.10 for Triplet

Net + BERT-S, and 0.25 for CLIPBERTSCORE.

A.2 Model Details

We train the models on the proposed multimodal

WikiHow dataset. The hyper-parameters are shown

in Table 9. The pre-trained models and the training

scripts for the transformer-based models are taken

from HuggingFace’s transformers library (Wolf

et al., 2020). We set the maximum input length

to 256 and output length to 32 for all models.



T5. T5 (Raffel et al., 2020) is an encoder-decoder

model pre-trained on a collection of tasks in a text-

to-text format. We use the t5-small model and

fine-tune as a document summarization tasks, ig-

noring the images. The total number of parameters

is around 60 million. We use mixed precision, and

training was performed on 2 NVIDIA RTX A6000

GPUs for approximately 6 hours.

PEGASUS. PEGASUS (Zhang et al., 2020) is

another encoder-decoder model specifically de-

signed for the abstractive summarization task by

imitating the summarization setup during pre-

training. We use PEGASUS-large checkpoint and

fine-tune without the images. The total number of

parameters is around 571 million. Training was

performed on a single NVIDIA RTX A6000 GPU

for approximately 28 hours.

CLIP-BART. The architecture of CLIP-BART

is described in Section 5. The total number of

parameters is around 140 million. We fine-tune

the model starting from the BART-base checkpoint,

and use the CLIP RN50x64 visual encoder to extract

image features. We use mixed precision, and the

training was performed on a single NVIDIA RTX

A6000 GPU for approximately 6 hours.

MOF. MOF is based on Zhu et al. (2018), a mul-

timodal summariaziton model with multimodal at-

tention (Li et al., 2018). The model consists of a

single-layer unidirectional LSTM (Hochreiter and

Schmidhuber, 1997) with the embedding dimen-

sion of 256 and hidden dimension of 512 for the

text encoder and text decoder. The multimodal at-

tention is computed by concatenating the textual

attention layer and visual attention layer over the

visual features, extracted from the global fc7 lay-

ers from VGG19 (Simonyan and Zisserman, 2015).

The total number of parameters is around 83M.

Training was performed on a single NVIDIA RTX

A6000 GPU for approximately 40 hours.

A.3 Annotation Details

Figure 3 shows a screenshot of the annotation task

on AMT.

B Meta-Evaluation with Continuous

Labels

We also experiment with combining the two judg-

ments in a continuous way, by taking the average of

the two judgments so that a score of 0.5 indicates

Metric Cont. Combined

FactCC 0.01
DAE 0.43

QuestEval 0.39
CLIPText-S 0.19
BERTScore 0.50

BERT-S 0.54

CLIP-S 0.23
IMMax 0.07

Triplet Net 0.25

MMAELogis 0.27
MMAEMLP 0.26
RefCLIP-S 0.26

CLIP-S + DAE 0.47
Triplet Net + BERT-S 0.56
CLIPBERTSCORE 0.56

Table 10: Pearson correlation coefficients between au-

tomatic metrics and human judgments of factuality

with respect to the continuous combined judgment.

Metric Random Category Similarity

Random 25.00 25.00 25.00
Triplet Net* 78.48 74.65 66.07

CLIP-S ViT-B/32 83.05 75.42 62.86
CLIP-S 87.79 81.37 70.94

Human* 92.00 89.20 86.00

Table 11: Original Wikihow VGSI. Results with * indi-

cates results taken from the original paper.

that the summary is faithful to only one modal-

ity. The combined judgment is shown in Table 10.

While the correlations are higher overall for all

metrics, the trend is similar to the Table 1, where

CLIPBERTSCORE can match the correlations of

the fine-tuned metric, Triplet Net + BERT-S, indi-

cating the effectiveness and simplicity of our met-

ric.

C Additional Factuality Benchmark

Evaluations Details

C.1 WikiHowFact Details

The three negative images are selected with three

different sampling strategies, following Yang et al.

(2021): Random selects the three images arbitrarily,

Category randomly selects three negative images

from the same WikiHow category12, and Similar-

ity selects top-3 most similar images from differ-

ent articles using similarity computed using FAISS

(Johnson et al., 2019). Random consists of 153,961

examples, similarity consists of 153,770 examples,

12
https://www.wikihow.com/Special:

CategoryListing



Metric Acc

SCAN t2i* 85.89
Triplet Net 63.16
CLIP-S ViT-B/32 83.85
CLIP-S ViT-B/16 85.36
CLIP-S ViT-L/14 85.89
CLIP-S RN50 83.50
CLIP-S RN101 83.97
CLIP-S RN50x4 84.95
CLIP-S RN50x16 85.22
CLIP-S RN50x64 86.03

Table 12: BISON accuracy. * indicates result copied

from Hu et al. (2019).

and category contains 153,961 examples.

The three sampling strategies provide settings

with increasing difficulty in terms of the negative

summaries; random is the easiest setting and simi-

larity is the hardest. Depending on which modality

we provide as the prompt, we can further break

down the task and evaluate the metric’s perfor-

mance with different combinations of modalities.

We use the same sets of metrics described in Sec-

tion 3.1 for each modality combination. FactCC

and DAE produce binary labels and thus are at a dis-

advantage for the ranking experiment, and we thus

use the probability for the factual label for FactCC

and the token error for DAE. To explore how larger

visual backbone can improve image-summary fac-

tuality detection, we compare against the original

CLIP-S that uses the ViT-B/32 backbone.

Comparison with VGSI. As described in Sec-

tion 4.1, the difference between VGSI and Wik-

iHowFact is what information is provided as the

prompt and the choices. For VGSI, we use the step

sentence, or the summary, as the prompt and ask

the models to select the correct image. Since the

document is not provided, we use CLIP-S to cal-

culate the score for each summary and image pair.

We show the result in Table 11. We see the same

surprising result that CLIP-S with the ViT-B/32

backbone achieves better ranking accuracy than the

Triplet Net model trained on the training split. In-

creasing the capacity of the CLIP-S with RN50x64,

the ranking accuracy improves by 4 points for ran-

dom, and 8 points for category and similarity, ap-

proaching the human performance, especially for

the random case. Additionally, when comparing

the performance of the same model for WikiHow-

Fact and VGSI, the ranking accuracies for VGSI

are much higher, indicating that WikiHowFact is

more difficult.

C.2 FOIL

We explore the ability of CLIP-S at differentiating

hallucinating captions. The FOIL (Shekhar et al.,

2017) dataset measures how well the metric can

differentiate hallucinated captions from the correct

ones. The task uses MSCOCO reference captions

and adversarially swaps out noun phrases to create

hallucinating summaries to create 64K test pairs.

One benefit of captioning tasks is that the cap-

tioning data contain references that can be treated

as the document in our setting, and thus enable eval-

uation of different modality combinations similar

to the multimodal summarization setting. We con-

sider three settings, where we show no reference

(evaluating only on the image-text setting), as well

as providing 1 or 4 additional reference captions

(excluding the true caption being evaluated). We

concatenate the references and consider them as

documents. We compare CLIPBERTSCORE and

its components primarily against the CLIPScore

variants, including CLIPText-S and RefCLIP-S.

For the image-text hallucination detection, we

focus on how the different CLIP backbones af-

fects factuality detection between image and the

summary. This includes ViT-B/32, ViT-B/16,

ViT-L/14, RN50, RN101, RN50x4, RN50x16, and

RN50x64.

We present the results in Table 14. We observe

a clear trend that larger visual backbones improve

accuracy when considering only the visual perfor-

mance for the no-ref case. Interesingly, ViT-based

models outperform the RN-based ones for this task.

C.3 BISON

BISON (Hu et al., 2019) measures the ability of the

metric to select the correct image from two seman-

tically similar images, and thus assesses whether

the metric is able to detect fine-grained informa-

tion present in the text and image. We compare

the image-summary metrics, including all CLIP-S

variants, similar to FOIL (Appendix C.2)

Table 12 shows the result. We observe a similar

improvement in accuracy with larger visual back-

bones as observed with the FOIL dataset. While

we similarly observe improvement as the model

size grows, CLIP-S RN50x64 is the only backbone

that outperforms the fully fine-tuned SOTA metric,

SCAN t2i (Lee et al., 2018).



All data CNN/DM XSum

Metric
Pearson Spearman Pearson Spearman Pearson Spearman
ρ p-val ρ p-val ρ p-val ρ p-val ρ p-val ρ p-val

FactCC* 0.20 0.00 0.30 0.00 0.36 0.00 0.30 0.00 0.07 0.73 0.19 0.00
DAE* 0.18 0.00 0.20 0.00 0.03 0.38 0.33 0.00 0.27 0.00 0.22 0.00

BERTScore* 0.30 0.00 0.25 0.00 0.38 0.00 0.31 0.00 0.20 0.00 0.09 0.17
QuestEval 0.23 0.00 0.23 0.00 0.27 0.00 0.25 0.00 0.18 0.00 0.10 0.00

CLIPText-S 0.11 0.00 0.09 0.00 0.11 0.00 0.12 0.00 0.10 0.00 0.05 0.17
BERT-S 0.31 0.00 0.26 0.00 0.40 0.00 0.32 0.00 0.22 0.00 0.11 0.00

Table 13: Correlation with human judgment of factuality on FRANK. BERT-S achieves overall higher correlations

than its original variant and achieves the highest Pearson correlation on all data.

Metric no-ref 1-ref 4-ref

length* - 50.2 50.2
ROUGE-L* - 71.7 79.3
CLIPText-S ViT-B/32 - 87.13 90.58
CLIPText-S ViT-B/16 - 87.58 91.43
CLIPText-S ViT-L/14 - 88.52 92.01
CLIPText-S RN50 - 86.59 89.91
CLIPText-S RN101 - 86.99 89.50
CLIPText-S RN50x4 - 87.62 90.50
CLIPText-S RN50x16 - 87.79 91.42
CLIPText-S RN50x64 - 87.82 92.01
BERT-S - 87.84 93.59

Triplet Net + BERT-S 60.47 84.97 90.74
RefCLIP-S ViT-B/32 86.84 91.70 92.55
RefCLIP-S ViT-B/16 89.00 91.80 93.37
RefCLIP-S ViT-L/14 89.24 92.58 93.77
RefCLIP-S RN50 86.15 91.25 91.83
RefCLIP-S RN101 86.72 91.84 93.12
RefCLIP-S RN50x4 87.42 91.83 93.27
RefCLIP-S RN50x16 88.49 92.09 93.54
RefCLIP-S RN50x64 90.05 91.95 93.79
CLIPBERTScore 90.05 92.68 95.01

Table 14: FOIL accuracy. * indicates results copied

from Hessel et al. (2021).

C.4 FRANK

We show the result in Table 13. As described in

Section 4.4, we compare existing factuality met-

rics with CLIPText-S and BERT-S. We also in-

clude QuestEval, which does not correlate better

than BERTScore variants. CLIPText-S does not

perform well for detecting faithful summaries for

summarization, as Pearson and Spearman coeffi-

cients are around 0.10 for all datasets and 0.05 for

XSum Spearman. In contrast, BERT-S that uses

RoBERTa (Liu et al., 2019) model finetuned on

the MNLI (Williams et al., 2018) correlates higher

than the original BERTScore on Pearson and Spear-

man across both datasets. It is thus useful to treat

factuality as an entailment problem and use the

appropriate model.

D Downstream Applications Details

For both experiments, we use the CLIP RN50x64

visual encoder to extract the visual features and we

limit the maximum number of images to 10. We

train the models with transformers library. For all

models, We train the models with mixed precision

and AdamW (Loshchilov and Hutter, 2019). Other

hyper-parameters are found in Table 15.

All CLIP-BART models are trained with 4

NVIDIA RTX A6000 GPUs. The training took

approximately an hour for MMSS, and approxi-

mately 19 hours for both MSMO baseline models.

For SCST training, we train the models on a

single NVIDIA RTX A6000 GPU. Training took

approximately 7 hours for MMSS and approxi-

mately 70 hours for MSMO. We perform a hyper-

parameter search manually by evaluating the mod-

els on the validation set of the corresponding

datasets and select the best-performing parame-

ter according to BERTScore and ROUGE-2 (since

these are the scores we optimize for). We first

determining the α from {0.90, 0.95,0.99, 0.995,

0.998, 0.999, 1.0}, where we find 0.998 to per-

form the best. We then tune the weight of CLIP-

BERTSCORE from {1,2,5} and find that 2 per-

forms the best for both datasets.




