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A Dynamic Programming Model for Joint
Optimization of Electric Drayage Truck Operations
and Charging Stations Planning at Ports

Xuanke Wu"™, Yunteng Zhang", and Yuche Chen

Abstract— The adoption of electric vehicles at ports is a
promising approach to achieve sustainability goals. However,
realizing the full potential of this strategy depends on effective
coordination between infrastructure planning and operational
scheduling. In this paper, we propose a joint optimization frame-
work that can co-optimize these two components to minimize the
overall system cost. To capture the dynamic nature of scheduling
decisions, we model the problem using dynamic programming
techniques. Our model accounts for the spatial and temporal
heterogeneities of charging and driving costs for different truck
trips. To evaluate the effectiveness of our proposed framework,
we conducted an empirical study at the Port of Los Angeles and
Port of Long Beach. Specifically, we aimed to fulfill 5% of the
daily 20-foot equivalent unit containers using electric drayage
trucks. Our model identified the optimal number of electric
trucks, charging stations, and truck schedules required to meet
the container throughput requirement. We also analyzed the cost
per container as a function of daily throughput level for various
scenarios. Our findings provide insights on how to determine
charger supply based on daily throughputs at ports, and how to
choose the appropriate ratios of electric trucks and battery sizes
in the truck fleet under different throughput and electric price
cases.

Index Terms— Truck operation scheduling, dynamic program-
ming, electric truck.

I. INTRODUCTION

ARGO shipping has contributed a significant amount of
Cparticulate matter, oxides of nitrogen, and sulfur oxide
emissions [1], [2] While shipping emissions primarily occur
at sea, the most noticeable and health-damaging effects are
typically experienced in port areas and nearby cities [3].
In particular, the drayage trucks used for transporting goods
within ports make a significant contribution to the air pollution
in and around port areas [4]. The electrification of port drayage
fleets is widely recognized as a promising approach to mitigate
emissions at ports [5]. Trucks can be classified into two
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main categories: light-duty trucks and heavy-duty trucks. The
electrification process for these two types of trucks differs
significantly. Light-duty trucks are defined as trucks with a
gross vehicle weight of up to 3,860 kg and a payload capacity
of up to 1,815 kg. They are primarily used for passenger
transportation and household goods delivery. In recent years,
several car manufacturers have introduced, or announced plans
to introduce, electric light-duty trucks such as Ford’s electric
F-150, Rivian’s R1T, and General Motors’ Hummer EV. These
electric light-duty trucks offer driving ranges between 200 to
350 miles, which is sufficient for most of the daily usage of
light-duty trucks. As a result, there is a growing trend in the
adoption and penetration of light-duty trucks in the market.
However, the situation is markedly different for the electric
heavy-duty truck market. Heavy-duty trucks are defined as
trucks with a gross vehicle weight exceeding 12,000 kg and
are primarily used for long-haul freight transportation (such
as interstate transportation) and short-haul goods movement
(such as drayage trucks in port areas). Currently, there are very
few electric heavy-duty truck models available in the market,
including BYD’s 8TT, Volvo VNR, and Daimler eCascadia.
These trucks offer driving ranges between 70-120 miles, with
battery sizes ranging from 200 to 300 kWh. Most of the elec-
tric heavy-duty trucks planned for introduction by 2030-2035
are expected to have a battery size of at least 500 kWh and a
mileage range above 200 miles. The current market offerings
of heavy-duty trucks, as well as their battery specifications,
clearly demonstrate that limited driving range remains a sig-
nificant obstacle to the widespread adoption of electric trucks.
This is especially true for the adoption of electric drayage
trucks in port areas [6]. Many port authorities, including those
in Los Angeles and Long Beach, have considered deploying
electric drayage trucks in their jurisdictions as a solution
to air quality issues. However, they have all acknowledged
the limitations of driving range and the lack of experience
in managing electric truck fleets [4], [5]. For this reason,
it is crucial to efficiently plan, manage, and operate electric
heavy-duty trucks and charging infrastructure to ensure the
successful adoption of electric trucks in port areas [7], [8], [9].

There is a body of literature dedicated to managing
and operating electric cars and their charging infrastruc-
ture. Numerous studies have investigated routing problems
in various real-world scenarios, with the goal of maximizing
passenger flow while minimizing fleet size and operating
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costs. Specifically, many of these studies have addressed
the mileage range challenges for electric cars in passenger
transportation, taking into account factors such as driving
range and charging features. Some studies have focused on
developing routing strategies that consider charging func-
tions [10], [11], [12], [13], [30], [39], [40], [42]. For example,
Montoya et al. [14] extended classical electric vehicle routing
problems to consider non-linear charging functions, i.e. state
of charge level is not linearly increased with charging time.
They developed a mixed-integer programming method and
converted the non-linear feature of charging into a series of
linear constraints. Other studies investigated assigning elec-
tric vehicles for predetermined routes considering charging
facility locations [15], [16], [17]. And other studies focused
on co-optimization of charging infrastructure management and
electric vehicle operations [37], [38].

And yet other studies focused on minimizing charging
costs by optimizing recharging schedules and specifica-
tions of charging, such as charger power and battery size
[18], [19], [20]. Though these studies are interesting, they
do not apply to drayage truck planning and operating
optimization. Drayage truck operation has challenges in
1) sequential decision making, given that drayage trucks
must frequently move between locations in port areas;
2) freight transportation is different from passenger transporta-
tion because the goods are normally heterogeneous products
and require different transport truck types and movement
distances can vary significantly.

Limited studies studied electric trucks. Sassi and Oulamara
[21], developed models for optimally assigning electric trucks
to predetermined routes and scheduling charging activities
at a single depot. Vahdani and Shahramfard [22] developed
a dual-objective optimization model to solve for assignment
of trucks and forklifts for a multidoor, cross-dock problem.
Schiffer and Walther [23] developed a robust optimization
to coordinate plan charging location and truck routing for
freight transportation. They find that the coordinated decision
process can improve system performance and reduce system
costs. Above relevant studies of electric trucks focus on
determining routes and charging locations for long-haul freight
transportation. But drayage trucks have features of frequent
movements and frequent acceleration/deceleration within a
confined area [24]. These features makes the time-dependent
operating decision to be critical in drayage truck fleet
management.

There are limited studies related to drayage truck operations
and management. There are some studies related to truck
appointment systems for drayage truck operations in ports and
Huynh et al. [25] summarized these studies. Drayage truck
appointment studies focus on optimally coordinating arrival
time among drayage trucks to arrive at port terminals. And
most drayage appointment studies focus on the one-time
arrival of trucks, which means each truck (normally belonging
to different companies) only comes to the terminal one time
per day to transport containers. For example, Chen et al. [26]
developed an integer programming framework to optimally
spread the terminal arrival time of a fleet of drayage trucks
to reduce waiting time at terminal gates. It does not consider
the sequential decision of drayage truck operations. Phan and
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Kim [27] proposed a decentralized decision-making model for
the terminal to coordinate the arrival time of drayage trucks
from different companies. The paper formulated drayage truck
negotiations with equilibrium constraints. But the paper still
focuses on one-time arrival per day for each drayage truck.
Above literature failed to consider sequential decision-making
of drayage truck movements within the port terminal during
the day. Other relevant studies investigate trip characteristics
of drayage trucks. For example, You and Ritchie [28] analyzed
drayage truck driving data in Los Angles Port and showed trip
length, trip average speed, and trip types of drayage trucks
during a typical day of operation. Prohaska et al. [29] con-
ducted a similar study on the drayage truck driving behavior
of Long Beach Port. These studies provide informative drayage
truck driving data, but they do not consider optimizing drayage
truck fleet management given the driving data. There is even
no relevant study on electric drayage truck operation and
planning optimization. Some studies look at the feasibility of
deploying electric drayage trucks and analyzed the installation
and operating cost of charging stations at port areas [4], [5].
These studies provide useful information but are not directly
relevant to operation and planning.

The above literature review indicates a gap in research on
electric drayage truck operation at ports, which is crucial for
achieving sustainability. Drayage truck operations have unique
challenges that require sequential decision-making for efficient
management and optimization, including frequent movements
and dynamic task types. Relevant studies on electric cars and
buses are not directly applicable due to differences in passen-
ger and freight transportation. Similarly, studies on electric
long-haul trucks do not consider time-dependent decisions.
Existing drayage truck studies either focus on appointment
systems or cost-benefit analysis, which do not address sequen-
tial decision-making. Thus, there is a need for robust methods
to design decision-making processes for electric drayage truck
operation and charging activities.

This paper presents a novel approach to addressing the
knowledge gap in the literature surrounding the deployment
of electric drayage trucks in port areas. Our proposed solution
is a joint optimization framework that integrates fleet planning
and operation decisions for electric drayage trucks. We utilize
a mixed-integer dynamical programming model to optimize
infrastructure planning decisions such as charging supply and
truck battery size, as well as sequential daily operational
decisions such as delivery activities and charging schedules.
We aim to minimize system costs and improve operating
efficiency. Our contribution to the literature lies in the devel-
opment of a robust mathematical optimization framework
capable of determining intra-day trip and charging activities
for trucks of various battery sizes. Finally, we provide a case
study based in the Los Angeles Ports to demonstrate the
effectiveness of our framework.

II. METHODOLOGY

Drayage trucks are utilized for local transportation of
cargo and empty containers between shipping terminals and
nearby warehouses or distribution centers. The electrification
of port drayage trucks entails decision-making at two stages:
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(a) planning stage, which involves determining the number
and type of electric drayage trucks to be deployed as well as
the number of charging stations required within the port; and
(b) operation stage, which involves designing the daily
activities of electric trucks to meet container throughput
requirements. Decisions made during the planning stage
regarding trucks and charging stations not only affect planning
costs but also determine the availability of trucks and charging
stations during the operation stage. During the operation stage,
the following decisions must be made on a daily basis:
(1) How many trucks should be assigned to take transport
tasks in each period?
(2) Which type of delivery should they make: inland, inter-
mediate, or near-dock?
(3) When should batteries get charged, considering the
electricity price during peak and off-peak hours?
(4) How can trucks avoid unnecessary idling?

The decision-making process is divided into two levels, with
the upper level responsible for determining the allocation of
resources, and the lower level responsible for determining how
these resources will be utilized. The overall aim is to minimize
the total cost.

We build a bilevel mixed-integer optimization model, from
a central operator perspective, to find optimal decisions at
the upper-level planning stage (number of electric drayage
trucks, charging stations) and lower-level operations stage
at hourly resolution (scheduling operational activities) while
fulfilling container throughput requirements. Specifically, the
lower-level operations stage includes a sequential truck activity
decision during each scheduling hour. The decision of one
truck at one scheduling hour will be influenced by prior
decisions of that truck and other trucks (through charging
station availability). This sequential decision-making can be
solved using a dynamic programming method. The overall
objective is to achieve a minimum summation of infrastructure
and operating costs.

With the notation defined in Table I, we can define some
functions and then introduce the bilevel optimization model.
There are three types of decision variables, i.e., the total
number of electric drayage trucks to purchase, y;, the total
number of charging stations to install, yx, and daily decision
x;”i. xr‘f!i = 1 is a binary variable, and it equals 1 if truck
i is conducting activity a in period n. There are a total
of 6 activities, thus, a can be 1 to 6 each corresponds to
different activities as shown in Table I. Dynamic program-
ming algorithm requires definitions of status variables, which
include truck battery state of charge (SOC) S, ; and vehicle
delivery remaining hour R, ;. The transition function of SOC
status variable is Syt1,; = Sp,i — 2123V Xyt )/l-4-x2’l.,
which subtracts delivery consumption from the previous stage
SOC or add charged battery capacity. The transition function
for vehicle delivery remaining hour is R,y1; = R,; +
Za=1,2,3 le"i -(hg — 1) —XS,,-- In operational stages, decisions
are made in every stage (i.e., one hour), but vehicle delivery
can take several hours. Thus R, ; is used to record the number
of remaining hours for a truck delivery trip. R, ; equals O when
truck i finishes a delivery trip and back to port at n-7 or a truck
is not choosing any delivery trip (i.e., a # 1, 2, 3).
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The objective as shown in Equation (1) contains planning
costs and the sum of daily operation cost over 5 years. The
planning cost is defined as ¢, (y1,yk) = cr - y1 + ¢k - Yk,
i.e. cost of purchasing y; electric drayage truck and installing
vk charging station. The daily operational cost ¢g (y7, yg) is
compromised by two parts, Zﬁlzl > B x, ;- refers to
the total operating cost associated with charging, waiting, and
delivery activities, and ZQ’ZI ly1=1 &n -xf“. “(Sni — Sn—1.i)s
refers to the total charging cost, wherein (S,; — Sp—1.;)
refers to the change in battery state of charge (SOC)
from period n — 1 to n. The daily container throughput
is defined as ¢% (y;, yx) = Zflv:l ?ilx“ which counts
containers delivered by all trucks over periods within a

n,i
day.

Minimize W = @ (y1, k) + g (1, YK) (1
Subject to @7 (yr, yx) = Ta,a=1,2,3 (2)
6
Za:] x4 =1,Vi,n (3)
)7
D Fni S K. Vn 4)
Li = (Sui—v) =M - (1 —x3;).
a=1,2,3,Yin (5)

Sn,i + Vi4 : xn4’l- -U; =M- (1 —X;;"i) ,Vi,n
(6)

Equations (2) to (6) are constraints. Equation (2) ensures the
minimum daily container throughput 7, is met. Equation (3)
ensures that truck i can perform only one activity in any period
n. Equation (4) guarantees that at any period n, the number
of charging trucks does not exceed the available charging
stations. Equation (5) controls electric trucks’ decisions when
their battery state of charge is low. It prevents a truck to
choose any type of delivery activity if the completion of
delivery will result in a battery level below the minimum level.
Equation (6) states the battery level of a truck cannot exceed
battery capacity.

For operation cost ¢, (y;, yk ), the decision space is N - y,,
wherein N is the number of decision periods and y; is
the number of decisions to be made in each period. The
computational demand exponentially expands with an increase
in the dimensionality of the decision space. A dynamic
programming model can significantly reduce the computa-
tional power required for solving the model compared with
traditional programming models when the problem has inher-
ent characteristics like a dynamic nature [19], [30], [31].
We approach the second stage operating cost minimization
problem with a multiperiod dynamic programming model and
convert the one-time N - y; decision space into N sequential
period decisions with only y; decisions to be made in each
period. Specifically, we define the value function Z, (Sp) as
the minimum operational cost from period 1 to n with the
state set 8y. Therefore, the objective function in operation
stage @, (y1, yx) equals Zy(8n). According to Bellman’s
principle of optimality [32], n-stage decision-making can be
considered a process of the first n-1 stages plus the last

n'™ stage. Thus, we can define the recursive value function
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TABLE I
NOTATION AND NOMENCLATURE

Parameters Description
n Index of time stage in the operational decision process, n={1,...,N}
i Index of vehicle, i={1,...., y;}
a Index of activity decision by vehicles, a={1: long-distance delivery, 2: middle-distance
delivery, 3: short-distance delivery, 4: charging, 5: idling, 6: a vehicle is on a delivery trip}
(o} The unit cost associated with the type of truck, $/truck
Ck The unit cost of building an electric charging station, $/station
. a=1, 2, 3: delivery associated cost at stage n, $/hour
n a=4,5: labor cost associated with charging or idling at stage n, $/hour
&n Electricity associated cost at stage n (peak/off-peak hours), $/hour
a a=1, 2, 3: energy consumption associated with deliveries for vehicle 7, kWh
Yi a=4: battery energy recovery while charging for vehicle i, kWh
h, a=1, 2, 3: required hours for deliveries, hours
U; Battery capacity for vehicle i, kWh
L; Battery minimum level for vehicle i, kWh
T, a=1, 2, 3: required daily throughput for deliveries, TEUs

Value functions

o .(y1,¥x) = ¢; -y + ¢ -y, Infrastructure cost for y; electric trucks and yy charging stations

Operational cost when daily throughput is met of y; electric trucks and yy charging stations

o1, Yk)
PRCIRD) O YK) = TN TV T B x4+ TN XY e X (Sni — Sne1)
g )
N VI
o1V yK) = x%;,a=1,23.
P11 YK) e ZZ

Operational daily throughputs under y; electric trucks and yy charging stations

Decision variables

¥ Total number of trucks to purchase, including large and small
Yk Total number of electricity chargers to install
Xni Binary variable, whether vehicle i takes activity decision « at stage n

Status variable

State of charge of all vehicles at stage n, S,, = (Sn_l, weSpi e Sn‘yI)T, specifically, S;; = U;

Sn and Sn,i € (Li‘ Ui),Vi,n
Sn+1,i = Sni — Z v xni vt vin

a=1,2,3

The remaining hours that vehicle 7 is out for delivery, specifically, R, ; = 0

Rn,i
Ruvri = Rug+ ) xii (hg = 1) = x5,V i,n
Zy (Sp) as
. i
Z, (8y) = min [Zor a0+ 20 > B,
i
> e (Sui = Sum)} %

The boundary conditions are Zy(8¢) = 0, which means
no operating costs are incurred before the operation
stage starts, and Sp; = U;, which assumes all trucks
start with a fully charged status. The solution process
of the dynamic programming algorithm starts with stage
n = 1. Since Zp(8y) = 0 and So;, = Ui, Z1(81) =
minge (S0, 3, B0 x{, + XLy enxd, - (S1 - U))
This becomes a standard linear programming problem to
find the optimal truck activities decision variables of xj ;.
Once x;”i are determined, the state variable set, 8 (state
of charging at beginning of stage 2), can be calculated.

At stage 2, the model will determine the truck activities in
this stage based on trucks’ state of charging levels 8. The
truck activities will be optimized to minimize the sum of
previous stages’ costs, i.e. Z; (81), and current stage costs,
i.e. the remaining part in Equation (7). The algorithm will
continue until it traverses all stages.

We implement our proposed model on a case study at the
Port of Long Beach and Port of Los Angeles and build the
model based on empirical input parameters (see Table II).
The input for daily port throughput is 1,299 TEU containers,
which is 5% of the total containers processed at San Pedro
Bay Port Complex (a combination of the Port of Los Angeles
and Port of Long Beach), the largest port in the United States.
We assume three tiers of delivery trips, with round trip dis-
tances of 4 miles, 22 miles, and 108 miles. This categorization
is based on a study conducted by the National Renewable
Energy Laboratory [29] using more than 36,000 miles of
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TABLE I
SUMMARY OF INPUT PARAMETERS

Parameter Value Reference

Vehicle parameters

Battery sizes of electric Truck Type 1: 250 kWh 250 kWh [33] for regular trucks.
trucks Truck Type 2: 500 kWh 500 kWh [34] for high-end trucks.
Cost parameters

250 kWh: $288,000

Cost of electric truck 500 kWh: $360.000

The study conducted for the ports of Long
Beach and Los Angeles [35].

Cost of charging station $105,000 (including

installation and materials)

Assuming 200kW direct current fast charging
[35].

.. $0.28 per kWh (off-peak) Los Angeles Department of Water and Power’s
Cost of electricity $0.56 per kWh (peak) time-of-use rate plans.
Delivery:

Labor and maintenance
costs for the delivery,
charging and waiting

e Labor: $9.8/hour

e  Charging and waiting:

Cost assumptions are consistent with the
technical report of electrification for the ports of
Los Angeles and Long Beach [4].

$4.9/hour
ft for infi hi
Budget period 5 years ? en psed or infrastructure ownership and
inancing analysis [4].
Operation parameters
Truck operation hours 4to 12 am.

Minimum Container
throughput

1,299 TEUs/day

TEU: 20-foot equivalent unit.

5% of total TEU throughput at the Port of Long
Beach and Port of Los Angeles.

Near dock: 4mi/lhr/ 10%
Intermediate: 22mi/2hr/50%

Round-trip delivery

. . °
distance/time/% of TEUs Inland: 108mi/4hr/40%

Average distance, time, and percentage of TEUs
for three tiers of trips based on a real-world
study at ports of Long Beach and Los Angeles
[29].

Round-trip delivery
energy consumption
(truck type 1/ type 2)

Charging station power 150 kW
Initial truck battery state

0,
of charge 100%

in-use drayage truck data collected at the Port of Los Angeles
and Port of Long Beach. The tier 1 drayage truck trip covers
most of the port area and near-dock trips, which transfer
containers between shipping carriers. The tier 2 trip is referred
to as an intermediate trip, which mainly transfers containers to
railyard or similar facilities that are relatively close to ports.
The tier 3 trip is an inland trip, which transports containers
from arriving ships to warehouses at inland locations and
delivers containers to final locations using long-haul trucks.
The laboratory report provides data such as trip distance,
duration, and percentage of 20-foot equivalent units (TEUs)
for each tier of drayage truck trips based on real-world data.

III. CASE STUDY AND RESULTS
We run the dynamic programming model to solve for
optimal planning and operation decisions for the port electric
drayage truck optimization that satisfies the 1299 TEUs per

Near dock: 7kWh/10kWh
Intermediate: 53 kWh/66kWh
Inland: 146kWh/162kWh

Average distance, time, and energy consumption
for three tiers of trips based on a real-world
study at Port of Long Beach [29]; note the type 2
truck (500 kWh) energy consumption per trip is
larger because type 2 trucks are heavier and
thus, require more energy for propulsion
Assumptions from a technical report of
electrification for ports of Los Angeles and
Long Beach [4].

All electrics are assumed to be fully charged
during the no-activity time of 12 am-4 am.

day throughput requirement. The composition of TEUs is
129 (inland), 640 (intermediate), and 530 (near-dock).

We tried to search for optimal solutions for various sce-
narios considering different battery size trucks. The results in
Table III show that, in Scenario#1, there are at least 140 trucks
with normal battery sizes (250 kWh) and 51 charging stations
needed for daily TEU transport requirements. The infrastruc-
ture cost is $45,675,000, and the 5-year operating cost reaches
$74,692,359, making a total 5-year cost of $120,367,359, i.e.,
$50.8 per TEU. If only considering trucks with large battery
sizes (500 kWh, see Scenario#2), it requires 125 trucks and
22 charging stations, with a higher average cost of $52.9 per
TEU over a 5-year budget period. This is because larger battery
size trucks are heavier and have higher energy consumption
rates, which contribute to a higher operation cost. Therefore,
to take both advantages of higher endurance mileages from
the large batter-size trucks and lower energy consumption
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Fig. 1. Flowchart of concept.
TABLE III
TRUCKS, CHARGING STATIONS AND COSTS UNDER
DIFFERENT SCENARIOS
Scenarios 1 2 3

# of 500 kWh 0 125 60
battery trucks
# of 250 kWh 140 0 70
battery trucks
# of chargers 51 22 34
Infrastructure $46 m $47 m $45m
cost
Operation cost $75m $78 m $ 75m

Total $120 m $125m $119m

Per-TEU cost $50.8 $52.9 $49.1

rates from the regular ones, Scenario#3 comes to the most
economically friendly solution in our case studies with a
combination of two types of trucks, 60 large battery size trucks
and 70 normal battery size trucks with 34 charging stations,
whose average S5-year budget cost is only $49.1 per TEU.
We believe this solution with a combination of two types of
trucks can achieve of balance between truck usage and charg-
ing infrastructure demand. The model prefers the 250 kWh
trucks over 500-kWh truck because of the lower cost. But the
250-kWh truck needs to be charged in higher frequency and
demands more chargers (as shown when comparing results of
Scenario 1 and 2). The results of Scenario 3 is the combination
that can achieve minimum cost while satisfying the TEU
throughput requirements.

In addition to minimizing the total cost, the model also
generates an optimal daily operating schedule. We only present
the optimal operation decisions for Scenario #1, which consists
of 140 regular size battery (250 kWh) trucks and 51 charging
stations. Fig. 2 summarizes the three types of delivery deci-
sions made at each stage. Trucks that are either on delivery
trips or are charging or idling are excluded, and the number of
charging and idling activities for trucks are reported in Fig. 3
and Fig. 4, respectively. For instance, if 20 trucks decide to

I
! Dynamic Programming
I

1 R ‘“Iﬂll!!,lll"llll;lll

11715

___________________ 1 . e
X Elgctrluty S
Truck Operation Schedule : price =
| .
Three types of delivery (inland, 1 Delivery .
intermediate, near dock) : distance 9—9
: Ch?rg'ng ' Electricity
* Idling ! ;
| consumption
1204 119 = Inland

mmm Intermediate
B Near Dock

Number of drayage trucks
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Fig. 2. The number of deliveries as a function of operating periods.
50 4
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1 @ o 0 a0 0 e @ e o e
Fig. 3. The number of charging stations as a function of operating periods.

make inland deliveries at 4 a.m., they will not be counted
repeatedly between 5 to 8 a.m., as an inland round trip usually
takes 4 hours.

In Fig. 3, we can observe the number of trucks charging
over the operation period. The results indicate that no trucks
are scheduled to charge during peak hours, which is between
2 to 7 p.m. This finding is reasonable since electricity rates
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Fig. 4. The number of trucks in idling status as a function of operating
periods.

TABLE IV
TIME DISTRIBUTION OF TRUCK ACTIVITIES IN A DAILY OPERATION

Activity Throughput Hours Perf:lerr?fage
Inland 129 TEUs 516 hr 18%
delivery
Intermediate 640 TEUs 1,280 hr 46%
delivery
Near-dock 530 TEUs 530 hr 19%
delivery
Charging -- 247 hr 9%
Idling -- 227 hr 8%

Total 1,299 TEUs 2,800 hr 100%

during peak hours are twice as high as off-peak hours. The
optimized results demonstrate an increasing number of trucks
charging before peak hours and a high charging volume during
the first two hours after the peak hours. Moreover, during
peak hours, there is a notable increase in the number of trucks
delivering TEU activities at 2 p.m. (Fig. 2), which reduces the
number of trucks idling at the port due to low battery status
(see Fig. 4).

Fig. 4 shows the number of trucks that are in idle status
as a function of time. Several reasons can lead to an idling
decision at each stage. One is that after several deliveries, the
truck’s battery cannot afford another delivery before getting
charged; however, when there are not enough chargers, drivers
have no other choice but to wait. Another possible reason is
that the model will proactively reserve some trucks idling at
the beginning in case that a high charging volume will be
encountered when they all return to the port and need charging
at the same time. For example, at the beginning of 4 a.m.,
21 trucks, accounting for 15% of the total fleet, are purposely
assigned idling for the second reason while there is a spike in
the number of idling trucks at 7 p.m., and in this case, they
are more likely waiting to get charged because the charging
stations are limited (see the high-level of charging volumes in
Fig. 3 at 8 and 9 p.m.).

Table IV presents the time distribution of each activity.
We can see three kinds of deliveries, inland, intermediate,
and near-dock deliveries, take up the most time each day,
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Fig. 5. Computation time (minutes) on high-performance computing cluster
as a function of annual TEU container throughput.

accounting for 83%, whereas charging and idling almost
equally share the rest of the time, at 9% and 8%, respectively.
This implies that the optimal operation schedule makes the
most use of time and truck capacities to accomplish the TEU
transport requirements.

The optimization program is executed on the Hyperion,
a high-performance computing (HPC) cluster provided by the
University of South Carolina. Each node on the HPC cluster
has 28 cores with a computing speed of 2.8 GHz and a memory
of 128GB, which enables parallel computing. The program
takes ~5 minutes to determine the optimal fleet size, charging
station, and daily activity schedules for a daily throughput
of 1299 TEUs (i.e., 500,000 annual TEUs), which represents
around 5% of the total TEUs processed at the Port of LA, the
largest port in the United States. To evaluate the scalability
of the model, we increased the daily throughput to 10%,
25%, 50%, and 100% of LA’s TEUs, and we present the
corresponding computation time in Fig. 5.

Our framework offers practical applications for ports that
are considering the adoption of electric drayage trucks. By uti-
lizing our bilevel model, ports can effectively determine the
optimal size and composition of the truck fleet, along with
the required number of chargers, to accommodate any desired
level of throughput using electric trucks. A notable example is
the Port of LA, the largest port in the US, which currently han-
dles an annual throughput of 10 million TEUs, as illustrated
in Fig. 5. Employing our model on the Hyperion HPC cluster,
the planning decisions and corresponding daily operational
schedules for the entire port’s drayage electrification can be
determined within approximately 3 hours. Additionally, the
lower-level dynamic programming-based schedule optimiza-
tion model can be executed in just 1-2 minutes. This enables
port authorities to easily adapt their daily schedules in response
to changes in the availability of charging stations and electric
trucks, facilitating efficient and flexible operations.

IV. CONCLUSION

The primary objective of this paper is to present a novel
bi-level mixed-integer programming model. This model effi-
ciently addresses the optimization of infrastructure planning
decisions, encompassing factors such as charging supply,
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truck battery size, delivery activities, and charging sched-
ules. The overarching goal is to minimize the overall costs
associated with port electrification. To tackle the complex
decision-making process spanning multiple periods, we have
devised a dynamic programming model. This approach
effectively mitigates computational demands and reduces the
problem’s dimensionality by decomposing it into a series of
recursive subproblems.

To demonstrate the applicability of our model, we imple-
mented a numeric experiment to plan and schedule 5% of daily
container throughput at the Port of Long Beach and Port of
Los Angeles, the two largest ports in the United States. The
results show that the algorithm helps saving emissions from
drayage trucks. More specifically, it saves 0.62 ton of PM; s,
112.12 tons of NOy, 0.45 ton of SOy, 38.28 tons of CO and
47,860.22 tons of estimated CO;, per year (estimated from
heavy-duty and diesel-fueled trucks with an equivalent 5%
amount of TEU transport mileage, i.e., 72,356 mi/day [36]).
In this study, we established certain assumptions regarding key
factors such as truck battery size, charging station quantity,
electricity price, energy consumption rate, and various opera-
tional and infrastructure costs. These assumptions were based
on relevant research conducted on electric drayage trucks
at ports. By leveraging our proposed model, we were able
to determine the optimal fleet size and number of charging
stations required to minimize system costs while achieving
the desired daily container throughput. Furthermore, the model
generated delivery and charging schedules for the truck fleet
with a granularity of 1 hour. These schedules were optimized
to avoid charging activities during periods of peak electricity
prices in the afternoon, while prioritizing deliveries during
the early morning and late evening to mitigate traffic con-
gestion. Additionally, we performed a comparative analysis of
scenarios involving electric trucks with different battery sizes,
specifically 500 kWh and 250 kWh.

The findings presented in this paper hold significant prac-
tical implications for the electrification of drayage trucks
in ports. Firstly, it emphasizes the importance of aligning
the size of the electric truck fleet with the port’s daily
throughput, thus enabling optimal planning of charging sta-
tions and daily operational schedules. Secondly, determining
the appropriate battery size for electric trucks necessitates a
comprehensive cost-benefit analysis that takes into account
factors such as typical drayage truck trips, local traffic con-
ditions, and the availability of charging infrastructure. Lastly,
the cost-effectiveness of port electrification is greatly influ-
enced by electricity prices, underscoring the need for careful
consideration in this aspect. To investigate these implica-
tions, we conducted a series of experiments with varying
throughput levels using a high-performance computing cluster.
The results indicate that as the annual throughput rises from
500,000 TEUs (5% of the Port of Los Angeles’ throughput)
to 10 million TEUs (100%), the computation time increases
from 5 minutes to approximately 3 hours. In addition, the
use of electric drayage trucks has the potential to significantly
reduce vehicle emissions, improving air quality in and around
ports. Our findings reveal that when electric drayage trucks
are deployed to handle 5% of TEU throughput at the Port of
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Los Angeles, 72,365 miles of diesel truck mileage are replaced
with electricity.

We acknowledge certain limitations in our current model
and propose several avenues for future research to address
these limitations. One limitation pertains to the time resolution
of the model, which is currently set at 1 hour. This may result
in some inflexibility in scheduling planning. To overcome
this constraint, a promising future direction is to enhance
the granularity of the modeling period, potentially reducing
it to 30 minutes or even 15 minutes. This increased resolu-
tion would allow for more flexible and precise operational
scheduling.

Another limitation of our model is its reliance on fixed
truck trip distance/time and energy consumption per trip for
three types of shipments. This assumption may not accurately
reflect real-time traffic conditions. To tackle this limitation,
a prospective research direction involves incorporating the
stochastic nature of these parameters. This could be achieved
by analyzing large volumes of real-time traffic data and truck
energy consumption data. By doing so, the model would be
better equipped to account for dynamic and varying traffic con-
ditions, thus providing more realistic and accurate optimization
outcomes.
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