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ABSTRACT
State-of-the-art many-body wave function techniques rely on heuristics to achieve high accuracy at an attainable computational cost to solve
the many-body Schrödinger equation. By far, the most common property used to assess accuracy has been the total energy; however, total
energies do not give a complete picture of electron correlation. In this work, we assess the von Neumann entropy of the one-particle reduced
density matrix (1-RDM) to compare selected configuration interaction (CI), coupled cluster, variational Monte Carlo, and fixed-node diffu-
sion Monte Carlo for benchmark hydrogen chains. A new algorithm, the circle reject method, is presented, which improves the efficiency of
evaluating the von Neumann entropy using quantum Monte Carlo by several orders of magnitude. The von Neumann entropy of the 1-RDM
and the eigenvalues of the 1-RDM are shown to distinguish between the dynamic correlation introduced by the Jastrow and the static corre-
lation introduced by determinants with large weights, confirming some of the lore in the field concerning the difference between the selected
CI and Slater–Jastrow wave functions.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0119260

I. INTRODUCTION

The development of computational algorithms to solve the
many-electron problem is one of the grand challenges in modern
physics, chemistry, and materials science. Such algorithms allow
for accurate simulation of essentially all of chemistry and mate-
rials science, and indeed, a significant fraction of computer time
is devoted to these simulations. By far, density functional the-
ory (DFT) is the most common technique to achieve this goal;
however, because of the unknown functional, it is difficult to sys-
tematically improve the performance despite significant attempts.1–5

Wave function techniques, such as quantum Monte Carlo (QMC),6,7

coupled cluster (CC),8–10 density matrix renormalization group
(DMRG),11,12 or various truncated configuration interaction (CI)
methods,13–15 offer a systematically improvable path to accurate
quantum simulations at the cost of larger computational expense
compared with mean-field theories. Naïve methods such as exact
diagonalization scale exponentially, in general; high accuracy at
an attainable computational cost is only obtained using heuris-
tics. For example, fixed-node diffusion Monte Carlo (FN-DMC)
requires accurate wave function nodes, CC uses an exponential
ansatz, and in CI methods, the determinants to be included must be
selected.

It is interesting to compare the heuristic nature of many-
electron algorithms to the no free lunch theorem16 in optimization.
Shortly stated, any two optimization algorithms are equivalent in
performance when averaged across all possible problems. However,
in practice, some optimization algorithms perform much better than
others on problems in a given class. In many-electron simulations,
we are concerned with problems that represent realistic physical
situations, which is a very small subclass of all problems. While
some many-body problems are provably computationally hard,17

it is not always clear a priori which heuristics will lead to accu-
rate and efficient solutions and how to assess different heuristics
in a way that allows insight into how they treat electron correla-
tion. The current state of the art focuses on total energy compar-
isons,18 which, while important, often does not offer much insight
into how the choice of approach affects the treatment of electron
correlation.

There exist a number of approaches to quantify electronic cor-
relation, each with its advantages and disadvantages. For example,
the spatial entanglement19 is closely related to the performance of
DMRG;20,21 however, it requires the replica trick in Monte Carlo,22

which can be rather expensive computationally. Similarly, the two-
particle reduced density matrix (2-RDM) is often too expensive
to compute in its entirety. Hence, measures such as the cumulant
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two-particle reduced density matrix23 can be impractical for
larger scale calculations. Other proposed measures24,25 rely on the
definition of a particular reference, which we did not find suit-
able for benchmarking across multiple methods. Finally, we should
mention the idea of orbital-based entanglement measures,26 which
are well suited for understanding the DMRG11 performance, but
again require the 2-RDM. To compare disparate methods that may
be under active development, it is critical that a quantification of
correlation is very simple to evaluate.

In this work, we assess multipartite entanglement, defined
as the von Neumann entropy of the one-particle reduced density
matrix, as a tool to compare standard heuristics for treating elec-
tron correlation in many-particle wave functions, most significantly,
quantum Monte Carlo approaches vs the selected configuration
interaction approaches. We develop a new technique based on the
rejection of eigenvalues, which improves the performance of Monte
Carlo evaluations of the von Neumann entropy by several orders
of magnitude. We find that the multipartite entanglement quanti-
fies much of the current lore about how different wave function
ansatzes add correlations. For example, Jastrow correlation factors
are often said27 to capture dynamic correlation, while configura-
tion interaction with a few determinants captures static correlation.
We use the von Neumann entropy of the one-particle reduced
density matrix (1-RDM) to characterize electron correlation and
find that the entropy of the 1-RDM correlates closely with these
ideas.

II. MULTIPARTITE ENTANGLEMENT
We quantify the multipartite entanglement of a many-electron

wave function Ψ using its 1-RDM

ρij,σ = �Ψ�c†iσcjσ �Ψ�, (1)

where c†iσ and ciσ are creation and annihilation operators for the
single-particle orbital ϕi with spin σ. The entanglement entropy is
defined as

s = −Tr(ρ ln ρ). (2)

One can rewrite this using the entanglement spectrum, i.e., the
eigenvalues of the 1-RDM, λi, as

s = −�
i

λi ln λi. (3)

This quantity is closely related to the natural orbital occupation
number commonly used in chemistry to characterize many-body
wave functions.

The multipartite entanglement entropy measures how much
information is lost when a single determinant is used to describe the
wave function. It is monotonically related to the quasiparticle renor-
malization factor that appears in Fermi liquid theory, which also can
be computed in quantum Monte Carlo as a measure of correlation.28

As we shall show in this paper, the spectrum of the 1-RDM gives
extra information about the type of correlation present in the wave
function.

III. METHODS
A. Electronic structure methods

In this work, we performed calculations on one-dimensional
chains of N equally spaced hydrogen atoms, where N = 2, 4, 6, 8, and
10. We consider systems with interatomic separation r equal to 1.4
and 3.0 in units of the Bohr radius [aB = h 2�(me2)] to compare
weak and strong correlations. The ground-state wave functions were
generated using Hartree–Fock (HF), heat-bath configuration inter-
action (HCI), coupled cluster with singles and doubles (CCSD), vari-
ational Monte Carlo (VMC), and fixed-node diffusion Monte Carlo
(FN-DMC). The CCSD in H6 and smaller systems was performed
using a correlation consistent 5-zeta valence basis set (cc-pV5Z). A
correlation consistent triple-zeta valence basis set (cc-pVTZ)29 was
used for all other calculations.

We started by constructing HF and HCI wave functions. Each
HCI wave function was specified by the threshold of the Hamil-
tonian matrix element �1, which controls which determinants are
included.15 We gradually decreased �1 until the energy converges.
Due to limited computational resources, converged HCI wave
functions were obtained only for hydrogen chains with N ≤ 6.

We used multi-determinant Slater–Jastrow (MSJ) wave func-
tions to perform VMC and FN-DMC calculations. In the particular
case of a single determinant, we will refer to the wave function
as Slater–Jastrow (SJ). The SJ wave functions were constructed by
multiplying the HF wave function by a two-body Jastrow factor eU ,30

Ψ SJ = eU D↑[ϕi(rj)]D↓[ϕi(rj)]. (4)

The MSJ wave functions are given by

Ψ MSJ = eU ��cα �≤�2

cαD↑α[ϕi(rj)]D↓α[ϕi(rj)], (5)

where the determinants were taken from a HCI calculation with
cutoff �1 and further selected by including only determinants with
coefficients �cα� ≤ �2. We used VMC to optimize the parameters in
the Jastrow function U, the molecular orbitals {ϕi}, and the deter-
minant coefficients {cα} and then applied FN-DMC to project out
the ground state at a time step τ = 0.02 Ha−1.

Since the operator ρ̂ does not commute with the Hamiltonian,
we used the extrapolated estimator7 to evaluate the 1-RDM of the
fixed-node wave function ΨFN,

ρextrapolated = ρ mixed + ρ†
mixed − ρVMC, (6)

where ρ mixed = �Ψ FN�ρ̂�Ψ T� and ρ VMC = �Ψ T�ρ̂�Ψ T�. Here, �ΨT� and�ΨFN� are the optimized trial wave function and fixed-node wave
function. To derive Eq. (6), we take δΨ = ΨFN −ΨT and only keep
O(δΨ),

�Ψ FN�ρ̂�Ψ FN� = �(Ψ T + δΨ)�ρ̂�(Ψ T + δΨ)�
≈ �Ψ T�ρ̂�Ψ T� + �δΨ�ρ̂�Ψ T� + �Ψ T�ρ̂�δΨ�
= �Ψ FN�ρ̂�Ψ T� + �Ψ T�ρ̂�Ψ FN� − �Ψ T�ρ̂�Ψ T�.

It is important that ρmixed and ρ†
mixed are evaluated using separate

FN-DMC calculations in order for the circular distribution to be
obeyed (Fig. 1) and thus for the circle reject algorithm to be applica-
ble. If ρmixed and ρ†

mixed were from the same stochastic evaluation of
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FIG. 1. The eigenvalues λi of the CCSD 1-RDM with added noise σ follow circular
distribution.

the density matrix, the resulting extrapolated density matrix would
be a mixture of symmetrized and non-symmetrized random matri-
ces, which leads to a large bias in the estimated entropy as we will
show in Sec. III B.

All quantum Monte Carlo (QMC) calculations were performed
using the PyQMC package,31 and the HF, HCI, and CCSD calcula-
tions were performed using the PySCF package.32 We performed
these calculations using a Snakemake workflow, which is available
in the GitHub repository “Energy-Entropy.”33

B. Computing the entanglement entropy
for stochastic matrices: Circle reject algorithm

The entanglement entropy is biased when evaluated naïvely on
a matrix with stochastic noise using Eq. (3). So it is necessary to
develop a method to compute the entropy correctly from quantum
Monte Carlo evaluations of the 1-RDM. Assume the true value of

the 1-RDM is Ā and its quantum Monte Carlo evaluation is A with
uncertainty �; then, the probability density of A is

ρ(A�Ā, �)∝�
ij

exp
�����
(Aij − Ā ij)2

2�2
ij

�����. (7)

We would like to evaluate the true von Neumann entropy

s̄ = −�
i

λ̄i ln λ̄i, (8)

where λ̄i are the eigenvalues of the matrix Ā.
Our objective is to infer, from A, the most probable values of λ̄i

and, therefore, s̄. One complication is that most physical 1-RDMs
have only a few non-zero eigenvalues; most are close to 1 or 0.
In contrast, a random positive definite matrix has eigenvalues that
almost always deviate from 0 to 1. For the part of the 1-RDM that
is zero, the stochastic noise brought by QMC distribute eigenvalues
uniformly in a circle,34 which gives rise to a bias in the computed
entropy.

To illustrate the distribution of eigenvalues of noisy matrices,
we added Gaussian noise with standard deviation σ to each element
of the 1-RDM: Aij = Āij + χij, χij ∼ N (0, σ), where Ā was computed
using the CCSD for H6 at a 3.0 aB separation and a cc-pV5Z basis
set. Figure 1 shows the eigenvalues of the matrix A with standard
deviation σ = 0.0, 0.002, and 0.005, where the coordinates represent
the real and imaginary parts of the eigenvalues. The red circles on the
plot have radii σ

√
N, where N is the size of the matrix. The noise in

the eigenvalue spectrum is covered by the red circles, given by ran-
dom matrix theory.34 If all the eigenvalues with noise 0.002 and 0.005
were included to evaluate the von Neumann entropy using Eq. (3),
the resultant entropy would be biased from the zero-noise value.

We considered the following three strategies of reducing the
bias in entropy naïvely computed using Eq. (3) due to the presence
of noise, shown in Fig. 2(a).

1. Symmetrize the matrix by diagonalizing A+A†

2 .
2. Enforce positivity by diagonalizing A and setting all negative

eigenvalues to zero, and all imaginary components to zero.
3. Circle reject by removing all eigenvalues within the circular

distribution given in red in Fig. 1.

In Fig. 2, we show the bias in the entropy as a function of noise
σ added to a CCSD 1-RDM. It is clear from the figure that the cir-
cle reject algorithm (noted by the upper and lower bounds) has a
dramatically lower bias than the other strategies.

Our best strategy is the circle reject algorithm, which we give in
detail here. The strategy is as follows:

1. Compute the eigenvalues λi of matrix A.
2. Estimate the radius r = σ

√
N of the circle.

3. Adjust the radius as

r′ = max({�λi� : �λi� > r, �Re(λi)� < r})(1 + δ).
4. Compute the first estimate of entropy as

S = −∑�λi �≥r′ λi ln λi.

5. Estimate the upper and lower bounds of entropy using
Eqs. (10) and (12).
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FIG. 2. (a) Estimated entropy per atom using different strategies vs the noise
added to a CCSD 1-RDM. The circle reject technique corrects the bias in the
entropy due to statistical fluctuations. The upper (lower) bound of entropy was
estimated from the missing trace and bounds above (below) the exact result. (b)
Zoomed-in circle reject estimations shown in (a).

We found that step 3 improved the performance of the algo-
rithm, since occasionally, the noise falsely brings some small eigen-
values out of the circle with radius r. Step 3 makes sure these
eigenvalues are rejected. We found that using an empirical value of
0.01 for the parameter δ yields reasonable estimates of the entropy
in step 4.

In step 5, the upper and lower bounds are estimated by dis-
tributing the missing trace due to rejection in different ways. The
total trace of the 1-RDM should be N, where N is the number of
electrons; however, there is usually a small remainder due to the
fact that the circle rejection removes some small eigenvalues as an
unwanted side effect. If the remaining trace were ignored, the esti-
mated entropy would be a lower bound. Because the remaining
trace is below the estimated circle distribution, we do not know how
the eigenvalues are distributed; however, we show how to establish
approximate bounds on the entropy.

Rather than rejecting the eigenvalues, we obtain a tighter lower
bound as follows. We equally re-distribute the missing trace among
m eigenvalues in a minimum entropy way, which is the fewest num-
ber of maximal eigenvalues that would have been rejected by the
algorithm. We distribute the eigenvalues such that they are just
below the rejection radius r′, i.e.,

λ l = N −∑�λi �≥r′λi

m
,

m = �N −∑�λi �≥r′λi

r′ �, (9)

where �� indicates the smallest integer greater than the argument,
and λi are the eigenvalues of the QMC 1-RDM. We compute the
lower bound as

S l = − ��λi �≥r′
λi ln λi −mλ l ln λ l. (10)

To estimate the upper bound of the entropy, we equally re-
distribute the missing trace among all the rejected eigenvalues. This
is the maximum entropy that the missing trace could contribute to
the total,

λu = N −∑�λi �≥r′λi

n
, (11)

where n is the total number of eigenvalues that are rejected. Then,
the approximate upper bound is

S u = − ��λi �≥r′
λi ln λi − nλ u ln λ u. (12)

Figure 2 shows that the circle reject algorithm is much more
efficient for the 1-RDM with Gaussian noise than the other two
strategies we considered. The lower bound derived is always a strict
lower bound, but the upper bound occasionally falls below the true
value. The upper bound fails when a statistical fluctuation results in
an enhancement of the eigenvalues outside the circle reject radius so
that the maximum missing entropy is underestimated. For the rest
of the paper, the estimated upper and lower bounds will be reported
in all estimations of the entropy using stochastic methods (VMC and
DMC), in lieu of single-σ uncertainties.

The scaling of the entropy calculation using the circle reject
algorithm is O(N3), where N is some number indicating the system
size. The evaluation of the 1-RDM per MC sweep is O(N2

b), where
Nb is the number of basis functions. Since the radius grows as

√
Nb,

one needs to perform a number of sweeps proportional to Nb to keep
the radius constant, resulting in a scaling of O(N3

b), the same as the
total energy calculation for a constant error on the total energy. In
practice, we find that the evaluation of the 1-RDM does not add a
large cost to an energy-only calculation.

IV. RESULTS
First, we check the energy convergence of our high accuracy

calculations. Figure 3 shows the ground state energies obtained using
different methods (HCI, CCSD, VMC, and FN-DMC) vs the num-
ber of determinants for a strongly correlated system H6, r = 3.0aB.
Similar results were also obtained for weakly correlated systems; data
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FIG. 3. (H6, r = 3.0aB) The energies computed using HCI wave functions (obtained
using cc-pVTZ basis), VMC and FN-DMC (time step = 0.02) with SJ and MSJ wave
functions, and CCSD (with cc-pV5Z basis) vs the number of determinants. The
energies obtained agree across different methods, as the number of determinants
increases.

are available in the repository.33 Figure 3 shows that the energies
computed using the FN-DMC approach yield near-exact energies
with a small number of determinants. The energies computed using
VMC, FN-DMC, and CCSD agree well as the number of determi-
nants increases. The converged HCI energy is quite close to the
FN-DMC and CCSD energies; however, note that we could only
afford to perform converged HCI calculations at the triple-zeta level
of basis.

In Fig. 4, we compare the energy and entropy of wave func-
tion methods as they converge toward the exact ground state for the
weakly correlated r = 1.4aB interatomic separation. Like the energy,
the entropy converges to a similar value for different methods. As
one might expect for weak correlation, we find that in this case, the
Jastrow factor and DMC, in general, are highly effective in describing
the entropy of the system regardless of the number of determinants
in the wave function.

In Fig. 5, we compare the energy and entropy of wave func-
tion methods as they converge toward the exact ground state for
the strongly correlated r = 3.0aB interatomic separation. Similar to
the weakly correlated systems, FN-DMC with MSJ wave functions

FIG. 4. (a) Converged ground state
energy vs entropy per atom for a weakly
correlated system (H6, r = 1.4aB), com-
puted using CCSD (with cc-pV5Z basis),
HCI wave functions (with cc-pVTZ
basis), and VMC and FN-DMC using
SJ and MSJ trial wave functions. (b)
Zoomed-in lower-right portion of (a). The
numbers next to each point denote the
numbers of determinants selected in the
corresponding optimized wave functions.
The edges of the bars on the VMC
or FN-DMC points represent the lower
and upper bounds computed following
the method described in Sec. III B. (c)
The scaling of entropy per atom with
system size for weakly correlated sys-
tems (r = 1.4aB). The number of deter-
minants included in the converged HCI
wave functions is annotated. (d) The
scaling of energy per atom with sys-
tem size for weakly correlated systems(r = 1.4aB).
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FIG. 5. (a) Converged ground state
energy vs entropy per atom for
a strongly correlated system (H6,
r = 3.0aB), computed using CCSD (with
cc-pV5Z basis), HCI wave functions
(with cc-pVTZ basis), and VMC and
FN-DMC using SJ and MSJ trial wave
functions. (b) Zoomed-in lower-right
portion of (a). The numbers next to
each point denote the numbers of
determinants selected in the corre-
sponding optimized wave functions.
The edges of the bars on the VMC or
FN-DMC points represent the lower
and upper bounds computed following
the method described in Sec. III B.
(c) The scaling of entropy per atom
with system size for strongly correlated
systems (r = 3.0aB). The number of
determinants included in the converged
HCI wave functions is annotated. (d) The
scaling of energy per atom with system
size for strongly correlated systems(r = 3.0aB).

is highly effective in describing the entropy of the system regardless
of the number of determinants in the wave function. Unlike weakly
correlated systems in which the dynamic correlation is dominant, in
strongly correlated systems, FN-DMC with SJ wave functions results
in energies very close to those computed using MSJ wave functions,
but misses a part of the entropy, which corresponds to the static
correlation.

The difference in how the methods add correlation aligns with
the ideas of dynamic and static correlations often discussed in the
quantum chemistry literature. Dynamic correlation is identified as
originating from a large set of determinants D↑,↓α with small coef-
ficients cα. Dynamic correlation corresponds to the perturbative
behavior that can be captured from a qualitatively correct, effective
one-body reference state. Static correlation is identified from a small
number of determinants D↑,↓α with sizable coefficients cα toward the
full many-body expansion.35

We further look into the entanglement spectrum (difference
between the eigenvalues of the 1-RDM and those of an idempotent
matrix [the 1-RDM of a non-interacting system]) for a strongly cor-
related system (H6, r = 3.0aB) shown in Fig. 6. This figure mainly
gives us 3 pieces of information. The selected CI and Jastrow factors
are complementary in their treatment of correlation. The selected
CI wave functions first include the static correlation, then add more

dynamic correlation, and treat the static correlation more accurately
as the expansion approaches convergence. The Jastrow factor allows
VMC and FN-DMC to treat dynamic correlation more efficiently
with fewer number of determinants compared with selected CI.

First, when a SJ wave function performed using VMC obtains
approximately the same entropy as a HCI wave function does,
they primarily treat different types of correlations. In Fig. 6, the
entropies computed using the HCI wave function with only 78
determinants (HCI@78) and the VMC single-determinant SJ wave
function (VMC-SJ) are approximately the same. The entangle-
ment spectrum of HCI@78 shows more evident static correlation,
as 2 of its eigenvalues of ρ differ significantly from those of an
idempotent matrix. On the other hand, the VMC-SJ primarily
describes dynamic correlation, as it has most of the eigenvalues
closer to those of an idempotent matrix. This information implies
that the Jastrow factor reduces the wave function energy by includ-
ing more dynamic correlation, which is equivalent to adding small
components of high-energy determinants into the wave function.
Meanwhile, when reducing the wave function energy, the HCI pri-
marily treats static correlation by truncating determinants with
small coefficients. This observation supports the idea that selected
CI and Jastrow factors are complementary in their treatment of
correlation.36–38
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FIG. 6. The entanglement spectrum of a strongly correlated system (H6,
r = 3.0aB), computed using HCI wave functions with different number of deter-
minants, VMC using optimized SJ and MSJ wave functions, and FN-DMC with
MSJ trial wave functions. The numbers of determinants included in the wave func-
tions are labeled after the names of the methods. The sorted eigenvalues λi of
the 1-RDMs (for spin up) minus either 0 or 1 are plotted against the index i of the
eigenvalues. Only the ten largest eigenvalues are shown.

Second, a converged HCI wave function treats both dynamic
correlation and static correlation better than an unconverged HCI
wave function. Correspondingly, the converged HCI wave func-
tion has a larger entropy than the unconverged one. For the system
shown in Fig. 6, the HCI wave function converges when using 16 601
determinants (HCI@16601). Compared with the ρ of HCI@78 that
has only a few non-zero eigenvalues, the ρ of HCI@16601 has
many small eigenvalues, which are omitted in the figure. In addi-
tion, the first few eigenvalues of HCI@78 are closer to those of
an idempotent matrix than those of HCI@16601. This information
implies that when CI wave functions approach convergence, they
add more dynamic correlation and also treat static correlation more
accurately.

Third, the FN-DMC treats the correlation efficiently using a
trial wave function with only a few optimized determinants from
a converged HCI wave function. As shown in Fig. 6, the entangle-
ment spectra of DMC-MSJ@18 and HCI@16601 are very similar.
The trial wave function used in the DMC-MSJ is optimized with only
18 out of 16601 determinants computed by the HCI wave function,
but the DMC-MSJ obtains almost the same entropy as the HCI wave
function.

V. CONCLUSION
In conclusion, we used multipartite entanglement and its spec-

trum to evaluate the differences between quantum chemistry and
quantum Monte Carlo approaches to the treatment of electron cor-
relation. We developed a new algorithm, the circle reject method,
to evaluate the entropy of randomized matrices, which enabled
an accurate evaluation of this quantity using the quantum Monte
Carlo. We found that the Jastrow factor, indeed, appears to mainly
add dynamic correlation by creating many small eigenvalues of
the 1-RDM, while selected CI methods tend to create a few large

eigenvalues first, which is an explicit observation of the complemen-
tary nature of these terms in the wave function.

The circle reject algorithm could find more uses, as the use of
stochastic algorithms in quantum chemistry appears to be increas-
ing.39 It is particularly worth using if a matrix is likely to have
very few non-zero eigenvalues but is evaluated stochastically. Other
methods along similar lines could potentially be developed; the key
insight is to recognize prior knowledge about the output of a given
function. In this way, the circle reject algorithm is similar strategi-
cally to the maximum entropy principle,40 although with a different
set of assumptions.

The eigenvalues of the 1-RDM are simple to compute, and we
believe that it should become more standard to evaluate multipartite
entanglement as a measure of electronic correlation. Such a measure
also allows one to make contact with the roughly equivalent homo-
geneous electron gas, since the momentum distribution is known for
several values of rs.28
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APPENDIX: ANOTHER QUANTITY
TO MEASURE CORRELATIONS:
THE DEVIATION FROM IDEMPOTENCE

We computed another quantity to measure the correlations of
wave functions, as proposed by Ref. 41,

Λ = Tr(ρ − ρ2). (A1)

For an uncorrelated wave function, the 1-RDM is idempotent, i.e.,
ρ = ρ2, Λ = 0. Thus, this quantity can be viewed as a deviation from
idempotence.

Figure 7 shows that the entropy and the deviation from idem-
potence Λ show similar dependence on energy. The shape of the
data distribution for the deviation from idempotence is slightly more
spread out than that of the entropy, as they have different metrics
and units. While the deviation from idempotence is easier to eval-
uate and less susceptible to the stochastic errors in QMC methods,

FIG. 7. Entropy and deviation from idempotence show similar dependence on
energy. The calculations were performed in a strongly correlated system (H6,
r = 3.0aB), using CCSD (with cc-pV5Z basis), HCI wave functions (with cc-pVTZ
basis) using different number of determinants, and VMC and FN-DMC using SJ
and MSJ trial wave functions. (a) Energy vs entropy per atom. The edges of the
bars on the VMC or FN-DMC points represent the lower and upper bounds com-
puted following the method described in Sec. III B. (b) Energy vs the deviation from
idempotence per atom. The VMC or FN-DMC points are represented using plus
marks. The upper and lower bounds were not evaluated.

the von Neumann entropy gives more information about correlation
through entanglement spectrum, as shown in Fig. 6.
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