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ABSTRACT

We describe a new open-source Python-based package for high accuracy correlated electron calculations using quantum Monte Carlo (QMC)
in real space: PyQMC. PyQMC implements modern versions of QMC algorithms in an accessible format, enabling algorithmic development and
easy implementation of complex workflows. Tight integration with the PySCF environment allows for a simple comparison between QMC
calculations and other many-body wave function techniques, as well as access to high accuracy trial wave functions.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0139024

. INTRODUCTION

Ab initio calculations play an integral role in advancing
our knowledge of molecules and materials. They link materials
properties to physical mechanisms in pristine systems, eliminat-
ing many difficult-to-control experimental factors. Without the
need for experimental inputs, ab initio calculations and mod-
els also accelerate the search and design of new materials."”
Strongly correlated materials, including unconventional supercon-
ductors,® 2D materials,”” and defect systems,“‘T require computa-
tional approaches with careful treatment of electron correlation.®

Calculations have an inherent trade-off between accuracy and
computational cost: more accurate methods scale more steeply with
the number of electrons, and exact calculations scale exponentially

with system size. Quantum Monte Carlo (QMC) offers a good bal-
ance between accuracy and scalability, capable of treating systems
with thousands of electrons.” '* The past few years have seen sev-
eral advances in QMC methods: new wave functions using machine
learning techniques,”” " new algorithms for optimizing excited
states,”” *” complex observables, such as energy density’**” and den-
sity matrices,”® a new method to derive effective Hamiltonians from
ab initio QMC,” " and new time-stepping algorithms to reduce
timestep error.””’

Developing new tools and expanding the reach of QMC-level
accuracy are necessary to address current problems in condensed
matter physics but come with challenges. Achieving the highest
performance can depend on subtle details of algorithm implemen-
tation,*” and adding new methods can require significant changes
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to algorithms. A bottleneck in this development process is the
testing and implementation of new ideas in code. Several high-
performance real-space QMC codes are under active development,
including QMCPACK,** CASINO,"” TurboRVB,*” and CHAMP.”® These
real-space QMC software packages are written in low-level com-
piled languages, such as C++ and/or Fortran,'”"* " to achieve high
performance suitable for large-scale calculations; however, these
packages are bulky (many lines of code) and are challenging to
modify.

To streamline the development and teaching of new ideas in
quantum Monte Carlo, we have written PyQMC, an all-Python, flexi-
ble implementation of real-space QMC for molecules and materials.
PyQMC is part of the PySCF ecosystem, a collection of libraries that
achieve performance close to that of compiled languages while being
implemented in the much more flexible Python language. In this
manuscript, we will describe the implementation of PyQMC and note
some of its advantages: integration with PySCF, fast development,
modularity and compatibility with user-modified code, the flexibil-
ity of parallelization across diverse platforms (traditional desktop,
cloud, and high performance computing), and a unified codebase
for running on graphics processing units or central processing units.

Il. QMC IMPLEMENTATION

There are many resources that offer thorough introductions
to real-space QMC methods.” '"*"*> Here, we will describe our
implementation of these methods in PyQMC.

A. Flexible wave functions

Wave functions are represented as Python objects in PyQMC.
The standard implementation is the multi-Slater Jastrow (MS]) wave
function, having the form

Y(R) = /O o, Dy(R, B), (1)
k

where R represents the positions of all the electrons, and «
(Jastrow), ¢ (determinant), and B (orbital) are variational para-
meters. Each determinant Dy = det{¢}(r;)} is constructed from a
different set of single-particle orbitals {¢,}, where r; is the position
of electron j. The two-body Jastrow,

J(Rsa) = > u(ryj,ris ), (2)

()1

is a function of all the electron—-electron (r,j) and electron-nucleus
(rir) distances, where u is a function describing the cusp condi-
tions and short-range correlation, defined in Ref. 44. These wave
functions are compatible with both open and twisted boundary
calculations.

The MSJ trial function allows for a compact representation of
the wave function by using fewer determinants to represent static
correlation and the Jastrow factor to represent the dynamical cor-
relation.* Figure 1 compares the number of determinants needed
with and without a Jastrow factor for a chain of six hydrogen atoms
with a lattice spacing of 3.0 bohrs, in the strongly correlated regime.
The variational Monte Carlo (VMC) calculation uses a two-body
Jastrow with electron-electron and electron-ion pair correlation.
Fixed-node diffusion Monte Carlo (DMC) can be interpreted as
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FIG. 1. Ground state energy of six-atom hydrogen chain at a spacing of 3 bohrs.
Because the nodal error is small, DMC performs well with only a single deter-
minant. VMC with a two-body Jastrow achieves a similar result with an order
of magnitude fewer determinants than the pure multi-determinant methods. This
figure is reproduced from Ref. 43.

using the best possible Jastrow factor, shifting the wave function
distribution without changing the nodal surface. Coupled cluster
singles and doubles (CCSD) in the V5Z basis is near the complete
basis set limit and is consistent with the DMC energy. Heat-bath
configuration interaction (HCI) approaches the CCSD value as the
determinant basis size increases. The pure determinant methods
require two orders of magnitude more determinants than the VMC
with a two-body Jastrow to converge.

In addition, we have implemented GeminalJastrow, the
three-body Jastrow proposed by Sorella et al*® Any number of
wave functions can be combined through the MultiplyWF and
AddWF objects, enabling the mixing and matching of wave function
forms. For efficiency, the Slater object includes a linear combina-
tion of determinants without the need for combining multiple wave
function objects. As a subject of active research, we expect additional
wave function forms to be added over time.

New wave functions are easily implemented in the PyQMC
framework. Any object that conforms to the wave function inter-
face can be used in all PyQMC methods. For example, other groups
have implemented neural network trial functions'” and used the
algorithm outlined in Sec. II D 1 to optimize the wave function
parameters. PyQMC’s testing framework makes it possible to quickly
check for bugs and ensure compatibility of new objects for seamless
integration.

B. Expectation values of arbitrary operators

An arbitrary operator O is evaluated on wave functions ® and
¥ as follows:

(©|O]¥)  [dRAR'®*(R)¥(R)O(R,R’) 3)
(@¥) ~ [ARO*(R)¥(R)
. /Y(R) /
) [dR® (R)\I/(R)/dR TR O(R,R) @
- [dR®*(R)¥(R)
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[ dR®*(R)¥(R) OL (R, ¥)
- [dR®*(R)¥(R)

)

where the highlighted term is the local evaluation of the operator O,

/Y(R")O(R,R)

OL(R W) = f R SR

(6)

In PyQMC, the integral over R is handled by the VMC algorithm,
where ¥ = ® = ¥7, and in the case of DMC, ¥ = ¥r is the trial
function while ® = ®@gy is the fixed-node projected wave function.
We define an accumulator as an object that evaluates O (R, V).

In this section, we summarize the accumulator objects imple-
mented in PyQMC.

1. Gradient operators

For semilocal operators, such as gradients, the expression in
Eq. (6) simplifies to

[O¥](R)
OL(R) = ———~, 7
L(R) ¥(R) )
In PyQMC, all wave function objects can compute & \y, VE,W, and

%, where V, refers to the gradient with respect to a single

electronic coordinate, and V, refers to the gradient with respect to
all variational parameters in the wave function.

2. Effective core potentials

PyQMC is compatible with semilocal effective core potentials
(ECPs; nonlocal in the angular part, but local in the radial part). ECP
evaluation is implemented asin QWalk"’ using the form described by
Mité$ et al.”® PyQMC automatically reads the ECPs from the PySCF
mole or cell object.

The nonlocal operator takes the form of Eq. (6). The ECP
operator H**(R,R") = ¥, Hia ¥ (R,R’) is a sum of independent
terms between electron e and atom a,

21+1

Hy (R.R') = 8(rea - rea)Z —u(rea)Pi(cosd),  (8)

where 7., is the distance between positions of electron e and atom g,
v, is a radial pseudopotential for angular momentum channel J, P; is
a Legendre polynomial, and 6’ is the angle between r., and r/,. The
angular integral for each (e, a) pair is evaluated using a randomly
oriented quadrature rule,

\Ij( R 4 ECP

\P(Réaﬂ)
deHEf"(RR)\P(R) N & o W)

4
(R,R") ¥(R)
where the auxiliary configurations R., are generated from R by
moving electron e about ion a by angles Q = (6, ¢) of the quadra-
ture grid and corresponding weights wq. All the quadrature rules
of octahedral and icosahedral symmetries listed by Mitd$ et al.*" are
implemented in PyQMC.

ARTICLE scitation.org/journalljcp

3. Reduced density matrices

All one-particle observables can be calculated from the
one-particle reduced density matrix (1-RDM), making it a use-
ful quantity to characterize many-body wave functions alongside
the energy. In PyQMC, the 1-RDM is represented in a basis of
single-particle orbitals ¢,(r) as

pij = (¥lcf %), ©)

where ler and ¢; are creation and annihilation operators for orbital
¢;» respectively. Since the reduced density matrices are completely
nonlocal, we perform an auxiliary random walk, sampling a
conditional probability P'(R’|R) and evaluating

¥(R)O(R.R)

HRP (RR) 1o

o) - < ) .
R'~P'(R'|R)

The 1-RDM is evaluated in QMC by averaging the quantity*®

o <iw*(R;>¢f(ra)¢;(ra)
PI= JNN\E Y (R)  pun(r))

Voo, OV

s ~ Paux

a=1

where R}, is generated from R by moving electron g, r, — r;, and
Pouc(T) = Xil¢,(r)[ is proportional to the one-particle distribution
used to sample the auxiliary coordinate r,. We use McMillan’s
method of using the same auxiliary coordinates r,, for every electron
a in the sum.*” The normalization factors

g0
Ni= (,,()) (12

are accumulated during the Monte Carlo run and are applied as a
post-processing step using the function normalize_obdm.
The two-particle reduced density matrix (2-RDM)

Pijkt = (‘I’|C}Lc£clcj|‘1’) (13)

can be used to calculate all two-body observables and is analogous
to the 1-RDM. Note that in some modules in PySCF and other
quantum chemistry codes, (‘I’|cjcjcltcl\‘1’) is evaluated instead. It is
relatively easy to translate between these two representations as

(¥|clclag¥) = (Y|c]cfa¥) - ou(Wlclal¥),  (14)
which is done by the PySCF function reorder_rdm. The 2-RDM is
evaluated in QMC as

Pt = Z\P(R:’zb) ¢7 (r) 7 (x})Pi(ra) i (1y)
MG YR paux(€5) paux (1})

, (15
>R~m2; (2
r;'\’Paux

PyQMC’s implementation can evaluate the RDMs on an arbitrary
basis.

PySCF routines can be applied directly to the 1-RDM computed
in DMC to compute and plot density or other one-body quanti-
ties (Fig. 2). Using PySCF’s built-in cubegen.density function
removes the need to write a new script for plotting.
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import numpy as np

import pyqmc.api as pyq
import pyscf.tools

mol, mf = pyq.recover_pyscf ("MnO.chk")
¢ rdml_dmc = pyq.read_mc_output (

7 "Mn0O_DMC.hdf5",

8 warmup=100,

9 reblock=20,

10 )

11 rdml_ccsd_t = np.load("MnO_CCSD(T) .npy")
12 ao_rdml_dmc = np.einsum(

13 "pi,ij,qj->pq",

14 mf .mo_coeff,

15 rdml_dmc - rdml_ccsd_t,

16 mf .mo_coeff.conj ()

17 )

15 dens_dmc = pyscf.tools.cubegen.density(
19 mol, "MnO_dmc.cube", ao_rdml_dmc

20 )

FIG. 2. The integration between PySCF and PyQMC makes it straightforward to
compare properties of wave functions between different high level methods. (a)
Electron density of the MnO molecule at bond length 1.6477 A for Hartree—Fock
and diffusion Monte Carlo referenced to CCSD(T) calculations. (b) The code used
to compute the DMC densities. For the entire code used to generate the plots, see
the supplementary material.

Computing RDMs on the same basis allows for seamless com-
parison between methods, i.e., by simply subtracting the matrices.
Different methods are commonly compared by their energies, a
single number. One- and two-particle density matrices capture more
of the state and offer a better comparison of properties; meth-
ods that result in the same energy may still produce states with

ARTICLE scitation.org/journalljcp

different densities. QMC computations of RDMs on a basis have an
added advantage in that the statistical noise is much smaller com-
pared to computing on a grid, resulting in smoother density plots.
The difference in densities between Hartree-Fock, DMC, and cou-
pled cluster singles and doubles with perturbative triples [CCSD(T)]
is shown in Fig. 2.

C. Bulk systems
Infinite solids are approximated by finite simulation cells with
twisted boundary conditions (TBCs),

"P(l‘l,.. S ¥ +L,.. .,l‘N) = eik.L

\I"(l'l,A..,l',',..A,I'N), (16)
where k is the twist; thus, the basis functions are eigenstates of a
translation operator. The one-particle part of the Hamiltonian com-
mutes with the translation of a single electron and, thus, can be
diagonalized using basis functions of definite twist. The total energy
per cell is obtained by averaging over all twists in the Brillouin
zone.”’ However, the Coulomb operator does not commute with the
translation operator of a single electron and, thus, causes the energy
eigenstates to, in general, be superpositions of twists.

In PyQMC, practical calculations are performed using a supercell
approximation, in which a simulation cell larger than the primitive
cell is chosen, and the Coulomb operator is truncated to remove
matrix elements between different twists. This truncation can be
partially corrected using the structure factor,”’ with an error propor-
tional to %, where N is the number of electrons in three dimensions.
Note that this correction should be performed after twist averaging
above.

PyQMC contains several features to facilitate extrapolation
to infinite system size. First, a PySCF mean-field calculation is
performed on the primitive cell. The k-points used in the mean-field
calculation determine which twists are available for a given super-
cell S. The available twists are obtained in PyQMC using the function
available_twist(cell, mf, and S), where cell and mf are
PySCF cell and mean-field objects. The code then automatically
generates the appropriate supercell objects from the primitive cell
mean-field object. By averaging over twist, one can remove the
kinetic energy finite size correction.’’ The small-k limit of the struc-
ture factor gives the approximate Coulomb finite size correction.’’
The structure factor is available as an accumulator in PyQMC.

D. Methods
1. Variational Monte Carlo (VMC)

The trial functions in Sec. II A can contain hundreds or
thousands of parameters. To approximate the ground state, the

parameters of the trial function are variationally optimized by
minimizing the VMC energy,

E[Y] = (Y|H|¥) = (H\P(R)> . (17)
R~|¥[?

¥(R)

The optimization algorithm is shown in Fig. 3. The gra-
dient of E[¥] is used to determine the updates to the para-
meters p during optimization. The gradient estimator %g
has infinite variance near the nodes of ¥, which is removed by

including the regularization factor of Ref. 52. Next, the para-
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1. Generate walkers R
2. Compute regularization factor®? f(R)

1 (R)
(a) d(R) < ﬁ\/%
(b) f(R)«+ 9d(R)? — 15d(R)* + 7d(R)°

3. Stochastic reconfiguration® >4

(a) Gy(R)

(b) E (R) N|R

(¢) G + (EL(R)Gy(R))g — (EL(R))g (G4 (R))g

(d) s,J - <" LA (R> — (G R)>R< R)>R
(e) u; + Zj py 1G9, (regularized gradient)

4. Line minimization using correlated sampling
(a) Select walkers R
(b) p < parameters of ¥
(c) for z in [-1, 0, 1, 2, 3], do
i. W, < replace p with p + zu

ii. B(x) = <H“T@ 2>R

(d) Eg « fit E(z) to cubic function
(€) Zmin < argmin, Eg(x)
(f) v, .

Yy
Vo

FIG. 3. Pseudo-code for the wave function optimization routine in PyQMC. The
three main parts of each step of the optimization algorithm: variance regularization
factor, stochastic reconfiguration, and line minimization.

OE
p

reconfiguration technique of Casula and Sorella.”””" Finally, the
magnitude is determined by the minimum energy along the update
direction. The parameters corresponding to the minimum are deter-
mined by a polynomial fit of correlated samples of the energy along
the line. The parameters are updated, and the process is repeated to
convergence.

For multi-Slater-Jastrow functions [Eq. (1)], PyQMC supports
optimization of «a (Jastrow), c¢ (determinant), and 8 (orbital)
parameters.

2. VMC for excited states

meter update direction is determined from % using the stochastic

A standard approach to computing excited states is to hold
orbital coefficients fixed from an excited mean-field determinant.>
To optimize excited-state orbitals, additional measures are required
to keep them from reverting to the orbitals of lower-energy
states. Methods, such as the state-averaged complete active space

self-consistent field (CASSCF) method’®”” or other state aver-
aged methods,”””""* allow orbital shapes to vary but require the
orbitals to be the same for all energy eigenstates. This require-
ment makes it easier to enforce the orthogonality of eigenstates but
severely limits the expressiveness of the wave functions.

In PyQMC’s implementation, excited states are kept orthogo-
nal to lower-energy states through an overlap penalty introduced
in Ref. 25, allowing orbital coefficients to be optimized for each
state independently. The objective function for the optimization is
given by

O] = (¥JiIY) + 5 (v as)

ARTICLE scitation.org/journalljcp

[EY®) RPN [
R I e B
where
¥ RY(R)
N"f‘( T ) 0

is the wave function overlap matrix and R is sampled from the
distribution p(R). Typically, p(R) o< 3 ;|¥;(R)[*.

To demonstrate the importance of orbital optimization for
excited states, we show optimizations of the ground and first
excited states of the CO molecule (Fig. 4) using a 400-determinant
multi-Slater-Jastrow ansatz, with and without optimizing orbitals.
The energy is shown at each iteration over the course of both
optimizations. Fixed-orbital wave functions yield an excitation
energy of 9.43(5) eV, compared with 6.68(5) eV from optimized-
orbital wave functions of the same form. Compared with the experi-
mentally determined vertical excitation energy 4.76 eV,! optimizing
orbitals results in a 60% improvement at the VMC level.

3. Diffusion Monte Carlo

Diffusion Monte Carlo (DMC) is implemented in PyQMC using
importance sampling and the fixed-node approximation. Samples
are drawn from the mixed distribution f(R) =|¥*(R)®¢(R)|,
where @y is the ground state, by stochastically applying a projection
operator P to a trial function ¥,

¥ (R)Do(R) = A}TQQ(T|R)(R|75¢]|‘I’>~ (1)

The time step 7 is a parameter that must be extrapolated to 7 — 0.
Positions and weights (R;,w;) are generated by the projection P;
at each Monte Carlo step. The fixed-node approximation is used
for real wave functions, rejecting moves R — R’ that change the
sign of the trial function ¥. For complex wave functions, the
fixed-phase approximation is used.®” Because the gradient of the
phase enters into the potential, no rejection based on the sign is
required.

Sampling the mixed distribution results in mixed-estimator
averages,

(¥|0])

(0) =~ ion)

, (22)

Excited state

e

Ground state

Orbitals
-21.2 —— Fixed
Optimized

-21.4

\

~21.6 { Wb st

Energy (Ha)

0 100 O 100
Iteration Iteration

FIG. 4. Optimization of a minimal multi-Slater-Jastrow wave function for the ground
and first excited states of a CO molecule, with and without optimizing the orbitals.
Better variational estimates are achieved for the excited state by optimizing the
orbitals.
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which are computed similarly to Eq. (3) as averages over walkers
with additional weights wj,
JdR' O(R,,R")¥*(R')
’ ¥*(R;)

. (23)
Ri~f(R)

Branching is performed every few steps to keep weights
balanced, replicating some walkers and removing others depending
on their weights. In PyQMC, the branching is implemented by the
stochastic comb method:* " walkers are resampled with probabil-
ity proportional to their weights, the total weight 3w is saved, and
the new weights are subsequently set equal to one. The expected con-
tribution from each walker is correct on average, and the resulting
population bias is small. This approach has the advantage of keeping
the number of walkers fixed, which simplifies efficient parallelization
on a fixed number of processors.

PyQMC employs two strategies proposed by Anderson and
Umrigar® to reduce time-step errors: modified weight updates and
modified T-moves® for nonlocal ECPs.

Ill. DIVERSE WORKFLOW SUPPORT
A. Integration with PySCF

In many QMC codes, converters from other packages make
up a large portion of the programming effort. PyQMC uses PySCF
objects directly to initialize calculations, eliminating the need for
converters. Mole and Cell objects define the Hamiltonian, including
geometry, number of electrons, basis set, and pseudopotentials. The
use of PySCF’s eval_gto() function to evaluate orbitals guaran-
tees compatibility with any basis set supported by PySCF. QMC trial
wave function determinants are generated from SCF objects, and
there is some compatibility with multireference methods, such as
complete active space (CAS), CASSCEF, and full CI without requiring
conversion steps.

1 from pyscf import gto, scf
> import pyqmc.api as pyq

1 mol = gto.M(

5 atom=f"Mn 0. 0. O0.; 0 O. 0. 1.6477",

6 basis="ccecp-ccpvtz",

7 ecp="ccecp",

8 spin=5,

9 )

10 mf = scf.UHF (mol)

11 mf.run()

12

13 # QMC

14 configs = pyq.initial_guess(mol, nconfig)

15 wf, to_opt = pyq.generate_wf (mol, mf)

16 pgrad_acc = pyq.gradient_generator (mol, wf,
to_opt)

17 wf, optimization_data = pyq.line_minimization
(wf, configs, pgrad_acc)

1s configs, dmc_data = pyq.rundmc (wf, configs)

FIG. 5. Single script execution of a QMC calculation from atomic positions to
QMC result. PySCF objects are used directly in PyQMC functions. No writing
intermediate results to disk is required.
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Tight coupling to PySCF enables easy use of analysis routines.
A common example is the calculation and plotting of density
differences discussed in Sec. II B 3 and shown in Fig. 2.

PyQMC allows for file-free computation—executing a full cal-
culation from atomic structure to QMC result without saving
any intermediate results (Fig. 5). Having all objects and data in
the workspace streamlines the prototyping of new algorithms and
workflows.

B. Monkey patching

PyQMC allows users to add modifications to a calculation
locally without changing the package directory, a practice known
as “monkey patching.” Although modifying the package directory
is certainly possible, it poses a barrier to users in our experience.
With PyQMC’s all-Python, modular structure, built-in routines are
compatible with objects defined outside the package directory, such
as customized wave function and accumulator objects for VMC
and DMC; built-in objects can be used in externally defined cus-
tomized methods as well. Figure 6 shows code outside of the package
defining an accumulator object that is used directly in PyQMC’s VMC
and DMC routines, in this case, to compute the dipole moment of

1 import numpy as np
2 import pygmc.api as pyq

5 class DipoleAccumulator:
6 def __init__(self):
7 pass

9 def __call__(self, configs, wf):
10 return {"electric_dipole": configs.
configs.sum(axis=1)}

12 def avg(self, configs, wf):

13 avg = {r

14 data = self (configs, wf)

15 for k, it in data.items():

16 avg[k] = np.mean(it, axis=0)
17 return avg

19 def shapes(self):

20 return {"electric_dipole": (3,)}
22 def keys(self):

23 return self.shapes () .keys ()

6 accumulators = {"extra_accumulators": dict(
dipole=DipoleAccumulator ())}

27 pyq . VMC (

28 "MnO_scf.hdfb",

29 "MnO_vmc_dipole.hdf5",

30 load_parameters="MnO_opt.hdf5",

31 accumulators=accumulators,

32 )

FIG. 6. User code can be injected into PyQMC's QMC routines. In this example,
we defined a class on the fly to compute the molecular dipole moment within the
script that performs the calculation.
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FIG. 7. User-defined code can be mixed and matched in multiple ways. Externally
defined accumulators are input directly into built-in VMC and DMC routines, as in

Fig. 6. Similarly, externally defined wave functions are simultaneously input directly
into VMC and DMC.

a molecule. Using custom accumulator objects is depicted in the
flowchart in Fig. 7.

As an example of the benefits of this platform, we contrast
the implementation of a new VMC algorithm between Python and
C++ (e.g., for sampling the sum of two wave functions in excited
state optimizations). In C++, the new algorithm would require
adding a file into the package, adding the file into the make system,
and recompiling the distribution. In Python, a customized VMC
is written, tested, and run at scale without the user modifying the
distributed package at all, as depicted in the flowchart in Fig. 7. It is
completely portable; the new algorithm file(s) can be shared, and it
will work for another user or machine. Developing new QMC meth-
ods and algorithms is often iterative, and by requiring fewer steps,
this Python implementation greatly reduces friction for users and
developers to explore new ideas.

IV. ACCELERATION STRATEGIES

PyQMC supports two acceleration strategies: parallel execution,
and the use of graphical processing units (GPUs). The strategies
work simultaneously: quantum Monte Carlo calculations can use
multiple GPUs across multiple computational resources. It is possi-
ble to parallelize on heterogeneous resources, in which some calcu-
lations are performed on central processing units (CPUs) and some
on GPUs.

A. Parallelization

PyQMC makes use of Python’s standard library futures objects
for parallelization. For compatibility with PyQMC, a futures object
need only implement the submit function, which distributes work
onto a remote process or server. By using futures objects, PyQMC
can transparently take advantage of many parallelization strate-
gies. The Python standard library concurrent . futures provides

ARTICLE scitation.org/journalljcp

on-node process-based parallelization. Other packages can be
installed and used with the code transparently; for example,
mpidpy®” ’" provides futures over the high performance computing
standard Message Passing Interface.”! Similarly, Dask’” provides a
futures-based interface using pilot processes that are very flexible,
allowing for remote execution on cloud-based resources. Any inter-
face for submitting tasks via futures objects, including custom user
code, can be used for running PyQMC in parallel.

PyQMC implements the well-known MapReduce paradigm for
parallel execution. A main process sends wave function objects to
workers, which perform Monte Carlo moves and accumulate data.
The workers then return the data to the main process. Because the
futures’ interface is used, the data can be sent using any backend
that supports that interface. To keep most of the computation in
NumPy functions (and thus executed in C/Fortran), it is impor-
tant that each process perform the calculation with a sufficient
number of walkers, which depends on the system size and can vary
from just a few walkers for a large system to 500 for a very small
system.

Quantum Monte Carlo methods are often termed
“embarrassingly parallel,” meaning that the computational time
decreases almost linearly as the number of processors increases.
Figure 8 shows the number of Monte Carlo steps executed per
second as a function of the number of nodes used for a VMC
calculation on a coronene molecule. The parallel efficiency on
64 Summit nodes (2688 cores) is above 99.9%. This scaling is
representative of what one should expect in optimization, DMC,
and excited state calculations (i.e., all types of calculations). Our
flexible parallel implementation, thus, does not seem to have any
disadvantage over more standard approaches using Message Passing
Interface (MPI).

B. Graphical processing unit acceleration

PyQMC runs on CPUs and GPUs using the same code paths.
GPU capability is implemented using the CuPy library,”* which is
used as a drop-in replacement for NumPy. Currently, wave function
evaluation and Ewald summation, which are computationally inten-
sive, run on GPU when available and return arrays on CPU. VMC,

juny

o
>
1

103 4

MC steps per second

10° 10!
Nnodes
FIG. 8. Parallel scaling of VMC on a coronene molecule, with the number of walk-

ers scaled proportionally to the number of cores. Calculations were run on Summit
and parallelized with Dask.?
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FIG. 9. GPU speedup (tcpu/teru) Vs the product of the number of electrons and
the number of walkers (amount of work) for a sequence of hydrocarbon molecules:
benzene (30 electrons), anthracene (66 electrons), coronene (108 electrons), ova-
lene (142 electrons), and hexabenzocoronene (186 electrons). Comparisons are
run on a single Summit node using 37 CPUs in both cases and six GPUs for the
GPU case. The calculations were parallelized using Dask. For a large enough
problem size, the GPU speedup depends only on the amount of work available.

DMC, and other algorithmic-level functions are coded entirely on
the CPU; implementing new algorithms does not require any extra
interfacing to make use of GPU resources.

Figure 9 shows the GPU speedup (ratio of CPU time
to GPU time) vs NyalkerNelee for a sequence of hydrocarbon
molecules: benzene (30 electrons), anthracene (66 electrons),
coronene (108 electrons), ovalene (142 electrons), and hexaben-
zocoronene (186 electrons). The calculations used correlation-
consistent effective core potentials and corresponding VDZ basis
sets for both H and C atoms from pseudopotentiallibrary.org.”*”
Each calculation was carried out on a single node of the Summit
supercomputer at Oak Ridge National Laboratory and parallelized
using Dask.”” For sufficiently large numbers of electrons (about
60-100), the speedup collapses onto a single line, which only
depends on Nyiker Nelec, approximately the amount of work given to
the GPU.

We believe that there could be improvements to the GPU
performance of the code by porting more of the code from the CPU
to the GPU. In particular, PyQMC uses PySCF’s functions to eval-
uate the atomic orbitals on the CPU. For the molecules shown in
Fig. 9, the atomic orbital evaluation takes up 15%-20% of the time,
meaning that the GPU speedup in these tests is limited to a maxi-
mum of five or six, even if it performed the work in zero time with
zero latency. In the future, we are, thus, targeting this bottleneck to
achieve better GPU speedups.

V. CONCLUSION

PyQMC is a production-level, feature-complete, and state-of-
the-art QMC implementation linked with PySCF. Because PyQMC is
implemented entirely in Python, it is extremely flexible and modular.
Similarly to PySCF for standard quantum chemistry methods, PyQMC
is aimed at both production level calculations and the development
of new methods. Just within our group and others, these features
have already led to new algorithmic developments.'””>***>’® PyQMC

ARTICLE scitation.org/journalljcp

is licensed under the MIT license’” "’ and is, thus, freely available
to download and modify. Other groups are free to build on the base
implementations laid out here.

Python’s high level of abstraction greatly reduces the human
time required to customize implementations and develop new ideas.
The library ecosystem is well-developed, including libraries for
scientific computing (NumPy®’ and SciPy®'), data I/O (h5py®),
parallelization (concurrent, MPI for Python,”’ and Dask’?), and
GPU execution (CuPy’”). PyQMC is written in such a way that almost
all computationally intensive tasks are actually executed in com-
piled C or Fortran code provided by one of those libraries so
that the performance is competitive with packages implemented
completely in compiled languages while code can be written at a high
level.

SUPPLEMENTARY MATERIAL

The supplementary material contains all the code used to
generate the MnO molecule density data shown in Fig. 2.
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