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ABSTRACT

Keeping K-12 teachers engaged during students’ learning and prob-
lem solving in technology-enhanced, integrated problem-based
learning (PBL) has been shown to support deeper student involve-
ment, and, therefore, better success learning difficult science, com-
puting, and engineering concepts and practices. However, students’
learning processes and corresponding difficulties are not easily
noticed by teachers as students learn from these environments as
processes are captured through mouse clicks, drag and drop actions,
and other low-level activities. As such, teachers find it difficult to set
up meaningful interactions with students while also maintaining
the focus on student-centered learning. Little research has exam-
ined dashboard-supported responsive teaching practices for K-12
PBL. This study examined 8 teachers as they used a co-designed
teacher dashboard to assess and respond to students’ learning and
strategies during an integrated, PBL STEM curriculum. Teachers
completed a series of 5 “planning period simulations” leveraging the
dashboard and think-aloud protocols were implemented, supported
by semi-structured interview questions, to enable the teachers to
verbalize their thought and evaluation processes. Content analysis
and epistemic network analysis were conducted to analyze the sim-
ulations. Understanding how teachers use dashboards to support
evidence-based teaching practices during technology-enhanced
curricula is critical for improving teacher support and preparation.
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1 INTRODUCTION

Prior research has demonstrated the importance of teacher engage-
ment in students’ developing ideas and strategies to support their
STEM learning. In applications of student-centered learning ap-
proaches, such as problem-based learning (PBL), this engagement
poses challenges as teachers must interpret and respond to student
progress in ways that target learning and problem-solving needs
while also maintaining the intent of the learning design (e.g., not
always address a specific knowledge gap through direct instruc-
tion) [10]. Technology-enhanced approaches can mitigate these
challenges by visualizing student learning and problem-solving be-
haviors to support teachers using orchestration technologies such
as teacher dashboards [34]. However, little research has targeted
(1) dashboard-supported responsive teaching for K-12 PBL [43] and
(2) processes that middle school science teachers use to bridge the
noticing and understanding of Al-based instructional support with
the determination of an evidence-based pedagogical response [8].

Understanding how teachers use dashboards to support evidence-
based teaching practices during technology-enhanced curricula is
critical for improving teacher support and preparation and serves
as the context for this research. Through a systematic co-design pro-
cess with expert (prior experience with the learning environment)
and novice (no prior experience with the learning environment)
teachers, we have created the Responsive Instruction for STEM
Education (RISE) dashboard [22] to support the implementation of
a technology-enhanced, PBL curriculum known as Science Projects
Integrating Computing and Engineering (SPICE) [24]. The goals
of the RISE dashboard are to support teachers in: (1) noticing and
responding to students’ learning successes and opportunities (e.g.,
misunderstandings), (2) facilitating student integrated learning of
science, computational thinking (CT), and engineering across multi-
ple, linked representations, (3) aiding student-centered development
of productive problem-solving strategies, and (4) promoting stu-
dent communication and application of their developing integrated
knowledge through class and group discourse and problem solving.

In addition, prior research has emphasized the impact learn-
ing through multiple, linked representations [2, 24], productive
problem-solving strategies [48], and collaborative, open-ended prob-
lem solving [19, 23] have onlearning in our technology-enhanced,
PBL approach. However, more research must target the complex
task of translating what we know as scientists and researchers into
a language that classroom teachers can interpret and convert to
actionable information [46]. In this first step, we aim to evaluate
the strength of RISE in supporting teachers’ application of those
PBL pedagogical processes.

This study examined eight teachers’ use of a RISE to assess and
respond to students’ learning and strategies during SPICE. Teachers
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completed a series of 5 “Planning Period Simulations" leveraging the
dashboard. Think-aloud protocols were implemented, supported by
semi-structured interview questions, to enable the teachers to ver-
balize their thought and evaluation processes. Our analyses focus
on the research question: How do expert and novice teachers im-
plement responsive teaching to customize lesson plans using
RISE?. To answer this question, we first conduct statistical analysis
on the coding of expert and novice teachers’ simulation discourse to
identify the types of student work (e.g., performance scores, strate-
gies applied) teachers notice and how they respond (e.g., teacher
lectures, class discussions, group activities). Codes were developed
based on prior work in responsive teaching (c.f., [10, 30]). We then
conduct epistemic network analysis (ENA; 12) evaluating the tem-
poral discourse patterns expert and novice teacher implement as
they complete each planning period simulation. We compare the
networks and provide initial findings based on the results. Finally,
we provide researcher identified vignettes that examine teacher
differences based on the ENA findings.

In this paper, we first provide background on technology-supported
responsive teaching as well as an overview of research targeting
teachers usage of dashboards to support their practice. We then
describe our instructor-support technology known as the RISE dash-
board and outline the co-design procedures taken to systematically
design and develop this tool. Next, we provide our methods, includ-
ing the instructional context, our procedures for implementing the
planning period simulations, our participants, and the data collec-
tion and analyses processes. Next, we present our results and we
conclude with a discussion of the results, limitations of our work,
and future directions.

2 BACKGROUND AND RELATED WORK

This work targets the novel exploration of teachers’ responsive
teaching practices as they leverage a co-designed dashboard to eval-
uate student learning and problem solving, and develop evidence-
based lesson plan customizations as needed.

2.1 Responsive Teaching for PBL in Science

Science and math education reform has led to the promotion of fluid
classroom environments that allow for pedagogical adjustments
during instruction [40]. This pedagogical decision-making para-
digm leverages responsive teaching in which the teacher makes
in-the-moment pedagogical decisions based on what and how stu-
dents are thinking, assessed through what students are saying or
doing [6, 18].

This responsive approach is in contrast to traditional methods,
in which lesson plans are predetermined and direct students’ “flow
of thought” [18]. This predetermined, traditional approach lim-
its student opportunities to develop and assess their own ideas,
which is needed for inquiry learning [28] and open-ended learning
approaches that include learning-by-modeling [47] and learning-
by-design [7, 45], such as that targeted in this proposed research.

Attending and responding to the disciplinary substance of stu-
dent ideas is considered a core teaching practice in science, math,
and engineering [11, 29, 32, 36]. Responding to student ideas as
they unfold in class has proven to help students engage in sci-
ence practices [11, 18], focus student attention on the disciplinary
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substance of their thought [44], and improve students’ conceptual
understandings (e.g., 16, 37). This process is akin to formative feed-
back, providing students information to support adjustments in
their thinking, guide them towards the desired learning goals, and
improve knowledge development [39].

However, Van Es and Sherin note that successful applications
of responsive teaching requires teachers to develop new ways to
engage in and interpret classroom interactions [40]. The complex,
challenging practice of responding to student ideas requires that
teachers consider and evaluate copious amounts of classroom infor-
mation (e.g., student discourse, performance) as well as the intrinsic
and extrinsic constraints of the classroom environment (e.g., learn-
ing standards and objectives, time, assessment needs), and make
in-the-moment decisions on what and how to engage in their stu-
dents’ ideas [6, 40].

The complexity of this practice can be exacerbated during problem-
based learning due to:

(1) teachers’ limited background in computing and teaching

using technology [4],

the decreased visibility of student thinking, as it is now ap-

plied through mouse clicks and other user-interface inter-

actions and, therefore, not easily or readily apparent to the
teacher (an important feature of lesson design to support
teacher noticing; e.g., National Council of Teachers of Math-

ematics, 2014),

(3) problem-based learning is akin to open-ended learning, in
which students may implement a variety of problem-solving
approaches during solution construction [43, 48] that teach-
ers must grapple with and engage in, and

(4) software constraints or user-interface difficulties that may
impact teachers’ abilities to adequately respond to student
thinking or issues [43].

2

~

For instance, if applying an established framework such as the Tech-
nological Pedagogical Content Knowledge (TPACK) framework [31]
to the teaching of computational modeling in science, a teacher may
need to have knowledge in the science domain and in computing or
computational thinking (CT), in methods for supporting each stu-
dent as they learn and integrate each domain as well as in managing
and evaluating classroom progress, and they must have sufficient
comfort with and knowledge of the technology to implement and
engage in the curriculum with their class. Moreover, teachers must
understand how each component interrelates (e.g., in order to sup-
port a student as they debug a computational model, the teacher
must be able to use both their science and computing knowledge as
well as features of the technology to productively support). Finally,
while these environments support key processes highlighted in
state and national standards, these strategies are often not engaged
in by teachers during instruction [43]. This is particularly chal-
lenging for teaching through student-centered learning approaches
such as PBL, as teachers must interpret and respond to student
progress, represented through data visualizations on a dashboard,
in ways that target learning and problem-solving needs while also
maintaining the intent of the learning design [10].

These experiences motivate a deeper understanding of what
it means to notice student thinking during technology-enhanced,
problem-based learning and the processes teachers take in the
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transition from their interpretation of student learning and problem
solving to the creation of evidence-based pedagogical responses
supportive of the problem-based, student-centered learning design.

Learning analytics research has progressed significantly and has
led to the development of instructor support-technology proven ef-
fective for teaching with intelligent tutoring systems, collaborative
learning scripts, and much more. However, research on teachers’
usage of instructor-support technologies such as dashboards is still
scarce, especially for the implementation of problem-based learning
curricula [10] and for K-12 STEM classrooms [22].

A careful analysis of prior research representing dashboard-
supported responsive teaching results in the identification of key
research opportunities and directions involved in the understanding
of how teachers use dashboards, and how to support them. These
include (and illustrated in Figure 1):

(1) co-designing learning analytics and visualizations, includ-
ing how to best integrate teacher insight [46], improving
transparency in algorithm development [20], and supporting
teacher agency in data vizualization selection [1],

understanding teachers’ noticing processes as they interpret
what is presented via data visualizations such as dashboard,
including Campos et al’s recent work in which they devel-
oped a typology of responses to data visualizations [8], and
understand how resulting teacher interpretations of dash-
board visualization facilitate evidence-based pedagogical
actions, of which there is a dearth of research [8].

@

®)

To our knowledge, limited research exists that explores how
teachers notice, interpret, and develop evidence-based responses
to students learning and problem-solving strategies for a K-12 PBL
curriculum in science [22]. Moreover, there is a need to understand
how resulting teacher interpretations of dashboard visualization
facilitate evidence-based pedagogical actions [8]. Unfortunately,
not a lot of information can be found on the pedagogical actions
teachers take as a result of using instructor-support technology,
such as dashboards, especially for K-12 instruction. This research
provides novel findings on example pedagogical responses resulting
from the noticing, interpretation, and reasoning about student data
during a problem-based, middle school science curriculum.

Interpretation of Evidence-Based

Teacher Dashboard I-base

| Visualizations | Visualizations |

{ Co-Designed Learning Teacher Noticing & Teacher Negotiation &
Analytics & izati Reflection Response

Classroom

>

Pedagogical

Implementation Response

Figure 1: A dashboard-supported responsive teaching process,
adapted from [8].

3 CO-DESIGN OF RISE DASHBOARD

This research focuses on teachers’ responsive teaching practices
supported by a teacher dashboard for a problem-based learning
curriculum known as SPICE.
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3.1 Instructional Context: SPICE

SPICE supports teachers in the implementation of the SPICE Chal-
lenge [24]. The SPICE is a three-week, NGSS-aligned unit that
challenges students to redesign their schoolyard using different
surface materials to minimize the amount of water runoff after
a storm, while adhering to a series of design constraints. These
include the overall cost and accessibility, while providing for dif-
ferent functionalities for the schoolyard [24]. The problem-based
learning curriculum consists of five core units, illustrated in Figure
2. These units include: physical experiments, conceptual modeling,
paper-based computational thinking tasks, computational model-
ing of the water runoff phenomenon, and engineering design, in
which students use their computational models to redesign their
schoolyard. This learning context is authentic and relevant to stu-
dents facing similar problems (limited usability and pollution) in
their own schools, therefore, the SPICE is potentially engaging and
personally meaningful to the learners [24]. The SPICE targets NGSS
performance expectations for upper elementary and middle school
Earth science and engineering design curricula, emphasizing the
movement of surface water in a system after heavy rainfall and the
human impact of this runoff on the environment, and leverages
evidence-centered design [35] for the systematic creation of sum-
mative and formative assessments to evaluate student learning in
science, computing, and engineering.

Figure 2: The SPICE curriculum sequence.

We focus this paper on Planning Period Simulations that tar-
get students’ efforts to construct a model of a scientific process,
i.e., water runoff after a heavy rainfall. These curriculum lessons
offer unique perspectives on how teachers evaluate student data
as pedagogical planning requires the evaluation of items such as
how well students are translating their developing science knowl-
edge into computational form, understanding the multiple paths
students can take to successfully construct a computational model
in science, and identifying successes and opportunities students are
having in using difficult computational constructs such as condi-
tional logic. Moreover, in the Background we identified teachers’
limited background in computing as an issue for implementing such
problem-based learning approaches and this allows us to examine
ways in which the dashboard can help novice teachers.

3.2 Creating the RISE Dashboard

The dashboard leveraged in this work was created through a series
of co-design design sessions with expert and novice SPICE teachers.
In addition, the dashboard components were grounded in past work
on supporting teachers in the integration of scientific inquiry and
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PBL (e.g., [10, 34] and visualizing feedback at individual, group,
and class levels (e.g., [15], as well as providing teachers’ agency
in dashboard visualization selection [1] and supporting teachers’
sensemaking about classroom performance [8]. For a more detailed
presentation of our design process, please see [22].

As a first step, researchers used student data from prior imple-
mentations to increase our knowledge about how students learn
and problem solving during SPICE. This involved the systematic
analysis of student science, computing, and engineering learning as
demonstrated through summative and formative assessments, eval-
uating the impact of student learning over a sequence of multiple,
linked representations, and identifying key learning and problem-
solving strategies students use to construct computational models
and engineering design prototypes, based on their user actions
in the learning environment, that support their learning in each
domain [24].

Then researchers initiated the co-design sessions by first us-
ing low-fidelity prototypes (e.g., linked data visualizations) and
contrasting student artifacts as boundary objects to discuss, ne-
gotiate, and come to an understanding about what information
teachers need about their students so they may better help their
student during this student-centered, problem-based curriculum.
Feedback from these sessions were used to inform the creation
of the first high-fidelity prototype. In the second design sessions,
we integrated the use of the high-fidelity prototype into a pro-
fessional development workshop with SPICE teachers. As we re-
viewed the curriculum and discussed instructional strategies with
participating teachers, we used the dashboard as a tool to discuss
prior student performance on each lesson and assessment. Teachers
thought aloud, describing what they noticed, how they interpreted
the results, and possible actions they might take knowing this in-
formation. Researchers intervened and responded to questions as
necessary. Teachers also provided us with more specific recommen-
dations for user-interface adjustments (as opposed to abstract ideas
from the first session). The research team used results and feedback
from this session to create the RISE (Figure 3) dashboard, used for
the Planning Period Simulations.

[0 [ oo [ neeeo | oo [ e IO ] Simulation Changes

Explanation of Al [ESES
il oo -o]

Figure 3: RISE Dashboard

The RISE dashboard consists of three core student result pages:
the Story, the Strategies, and the Standards. The Story provides
an overview of the class performance based on key immediate, or
landing page, feedback recommended by teachers. This included
text-based feedback highlighting class successes and opportunities
using performance (items scored by pre-defined rubrics) and strate-
gies (productive and unproductive strategies pre-defined based on
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the impact on student learning results). Interactive data visualiza-
tions, such as the grouping of students based on strategies, with
additional performance-based results, could be accessed using in-
formation in the bottom right visualization shown in Figure 3. The
Strategies page provided a progression of student performance over
the course of the curriculum (e.g., up to the “day" simulated in each
planning period simulation) and the strategy group they currently
are identified with. Finally, the Standards provided a data table of all
students with their scores on each completed curriculum task and
identified strategy groups. All data visualizations in which artificial
intelligence was used to calculate or provide feedback included an
explanation of analysis done (for example, a modal pops-up with
the information when the blue button with an “i" is clicked).

The RISE dashboard is equipped with a Reflection Tool in which
teachers can add reflections as they reviewed the results (identified
as “Reflection Form" in Figure 3) and select categories for the type of
reflection. Submitted forms were populated on the Reflection page
based on the category selected (the page link is identified on the left-
side menu bar in Figure 3). In the Reflection page, teachers can re-
order and reorganize reflections as they see fit. Finally, teachers are
also provided a Response page. This page includes the current class
plan for the next class and tools to plan for any adjustments they
deem necessary based on student performance. Finally, teachers
are provided a number of curriculum resources, including learning
objectives and lesson plans relevant for the “day” to aid in their
evaluation process.

4 METHODS

4.1 Participants

Eight middle school STEM teachers (5 female, 3 male) participated
in the planning period simulations. The teachers were from varying
urban and rural locations, including Tennessee, Illinois, Virginia,
New York, Wyoming, and the US Virgin Islands. All teachers con-
sented to participate in the Vanderbilt University IRB-approved
study.

For this analysis, we divided the group based on their prior ex-
perience with computational modeling in science. Expert teachers
are defined as teachers (n=4) that had prior experience and training
integrating computational modeling into their science classrooms.
In this case, three of the teachers had previous training and class-
room experience with SPICE and one had prior classroom expe-
rience with our core computational modeling environment [23]
integrating similar curricula in physics and marine biology. Novice
teachers are defined as middle school teachers with no prior experi-
ence integrating computational modeling in science. Therefore, the
core difference between the teachers, for instance, related to the
TPACK framework, discussed above, is that expert teachers had:
(1) increased prior content knowledge in computational thinking
(training and implementation of computational modeling and block-
based programming), (2) increased pedagogical content knowledge
specific to supporting and orchestrating computational modeling
in science (e.g., prior experience supporting student difficulties and
successes, linking multiple domains or representations), and (3)
increased technology knowledge in terms of understanding of the
learning environment and its tools. However, all teachers had prior
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experience in the science domain and all had least 5 years of middle
school teaching experience.

4.2 Planning Period Simulation

We focus this paper on five Planning Period Simulations in which
teachers would enact five 15 minute “planning periods” by utilizing
the RISE dashboard to review and reflect on student, group, and
class performance and then develop evidence-based lesson plan
customizations for the “next” class day. These simulations were
inspired by the Teacher Moments research at MIT [3]. Student data
used for each simulation was pulled from prior SPICE implementa-
tions in an approach similar to the Replay Enactment protocol [20]
. Student data from the prior implementations were de-identified
and students were given gender-neutral names. The five simula-
tions were selected based on the average summative assessment
performances in science and CT (e.g., one simulation included a
class that had an above average pre-test performance in science,
but a below average pre-test performance in CT).

Each teacher first completed a 90-minute professional develop-
ment session led by the research team in which they learned about
the SPICE curriculum. For each simulation, a research team member
first described the class scenario, including the class performance on
the pretest and other class results prior to the simulation “day” (e.g.,
on the science conceptual models). Teachers then had 15 minutes
to complete the simulation exercise. Fifteen minutes was selected
based on an estimated class period time length of 60 minutes and
an average estimated class roster of 4 classes per teacher, therefore
15 minutes per planning period for each class.

Using a think-aloud protocol, teachers reviewed student results
and feedback provided on the RISE dashboard, interpreted what
they saw, and customized class lesson plans for the next day (as
they saw fit). Prior research has noted the benefits of think-aloud
protocols on tasks involving building interpretations [9], including
providing a low-entry barrier [8] and tracing users’ thinking [33].In
order to obtain verbalizations that accurately reflected the cognitive
processes teachers implemented during responsive teaching, we
refrained from providing detailed instructions or interpretation of
results. Instead, we utilized prompts such as “what possible actions
would you take with this group?" and answered questions about
technology that did not impact class evaluations (e.g., describing
how to use the reflection form). This approach is modeled after
Campos et al’s approach for evaluating teacher sensemaking [8].
This helped minimize issues concerning bias in data if researcher
support or feedback impact teachers’ responses [38].

Finally, researchers completed an observation sheet during the
simulations. The observation sheet consisted of a table for re-
searchers to identify (1) discussed idea (e.g., computational model
scores), (2) visualization targeted, when applicable (e.g., bar graph of
class performance), and (3) keywords used or links made (e.g., poor
initialization of science variables score during computational mod-
eling relating to prior science performance). These observations
were used to support our analysis approach, discussed below.

4.3 Data Collection and Analysis

All Planning Period Simulations were conducted virtually and
recorded using a video conferencing platform. In total, we had
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approximately 12 hours of video data, which we transcribed using
an online transcription service. For the purpose of this paper, we
segmented the transcripts into episodes of pedagogical reasoning
[21]. In this case an episode of pedagogical reasoning was initi-
ated when the researcher completed the opening statement about
the class scenario and ended when the teacher submitted their
customized lesson plan. These segments formed the base unit of
analysis to answer both research questions.

To conduct this analysis, we first divided the episodes of ped-
agogical reasoning into smaller excerpts related to idea units, in
which a single topic was discussed [27], in order to balance our
units of analysis. This resulted in 735 idea units. A coding scheme
(described in Table 1) targeting noticing and interpretations was de-
veloped by leveraging past work the analysis of responsive teaching
during video clubs [30] and teacher dashboard usage [10] and in-
corporating additional categories pertinent to our work, including
teachers’ discussion of problem-solving strategies.

We also developed a coding scheme to evaluate teacher discus-
sions on evidence-based response creation. To do so, we targeted
discourse that discussed the social level [14] of the activity (e.g.,
teacher lecture, class activity, group activity, or individual activity)
and the context of the response (e.g., is the response focused on
conceptual knowledge, problem-solving behaviors, linking multi-
ple representations, or technology issues). The codes for evidence-
based responses can be found in Table 2.

Researchers met to code idea units using these schemas together.
Differences were discussed and refinements were made to the cod-
ing scheme. The researchers then coded 20 percent of the idea units
and achieved good IRR agreement (k > 0.80). The researchers dis-
cussed differences and once they were resolved, the main author
coded the remaining idea units.

To answer our research question one, we utilized epistemic net-
work analysis (ENA) [12] to interpret how expert and novice teach-
ers interpret and respond to students science and CT knowledge
and problem-solving strategies as they construct their computa-
tional models. Recent code-and-count analytic approaches have
been criticized for ignoring temporal contexts of discourse, which is
particularly relevant to the understanding of the processes teachers
implement from using and understanding data visualizations of
student learning to enacting evidence-based pedagogical responses.
ENA has been shown to overcome this limitation and find temporal
relationships in data [12]. In education, ENA has been used to ana-
lyze collaborative problem-solving [25], how collaboration support
science knowledge construction [5], and understanding students’
assessment responses [26]. More recently, ENA has been used to
evaluate the impact of alerting dashboards for teachers on student
learning through science inquiry [13], and serves as the motivation
for our analytical approach.

These coded units were used to build the epistemic networks. The
epistemic networks (see Figure 5) were created using the ENA on-
line graphical interface (epistemicnetwork.org). Nodes represented
the codes from Tables 1 and 2. The lines (and strength of the lines)
represent the connections between nodes and the frequency of
co-occurrence. This allows us to evaluate temporal patterns in dis-
course and we evaluate differences in epistemic networks of expert
and novice teachers during the episodes of pedagogical reasoning
to answer the research question.
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Table 1: Coding Scheme for Teacher Dashboard Evaluations
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Table 2: Coding Scheme for Teacher Responses

5 RESULTS AND DISCUSSION

5.1 Teachers’ responsive teaching practices
using RISE

Following the data processing of the 8 teachers there were 453
idea units generated by the expert teachers and 278 idea units
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nology)

Code Definition (Teaching | Example Code Definition (Teaching | Example
Knowledge) Knowledge)

Curricular | Questions or comments | “How much instruction Teacher Teacher plans to add class | “Students are struggling

(CURR) focused on the teachers | do students get to com- Lecture lecture on a topic based | with initializing variables
own understanding of the | plete the first rule?” (LECT) on data (Domain-Specific | and so do I so Iwill add 5
ideas in the lesson (SPICE- Content; Pedagogical) minutes at the beginning
specific Pedagogical) of class to connect their

Descriptive | Discussed content-based | “OK so 12 students com- struggles to mine”

(DESC) information they obtained | pleted their model cor- Class Teacher plans to add |“I will have Taylor
from the dashboard (Peda- | rectly” Activity activity involving | present how they com-
gogical) (CLASS) the class as a whole | pleted the first rule and

Interpreting| Questions or comments | “Ok, it looks like they re- (Domain-Specific Content; | I will be sure to ask

Perfor- focused on the simula- | ally do not understand Pedagogical) questions or discuss how

mance tion students’ understand- | how to calculate total students can check if the

(N-PERF) | ing of the science, CT, engi- | runoff when rainfall is rule is correct”
neering concepts (Domain- | greater than” Group Teacher plans to add ac- | “I will group Divers and
Specific Content; Pedagogi- Activity tivity in which students | Strategist so that Divers
cal) (GROUP) | work in groups (Domain- | can see the importance of

Interpreting| Questions or comments fo- | “It looks like this class Specific Content; Pedagog- | testing materials”

Strate- cused on the classroom stu- | is really struggling ical)

gies  (N-| dents’ application of strate- | with testing materials” Individual | Teacher schedules indi- | “This student continues

STRAT) gies (PBL Content; Pedagog- | “There are a lot of Feedback | vidual student feedback | to struggle in science, so
ical; Technology) divers!” (IND) based on data (Domain- | I will set aside time as the

Integrating | Questions or comments fo- | “Another benefit of test- Specific Content; Pedagog- | class works to help them

Multiple, | cused on the sequencing | ing materials is that I ical; Technology) with their science knowl-

Linked of content and trajecto- | can help them relate it edge”

Domains | ries of student learning | to the science experi- Conceptual| Teacher response targets | “We will discuss the dif-

(N-MLR) (Domain-Specific Content; | ments we did." (CONC) domain-specific knowl- | ference between total ab-
SPICE-specific Pedagogical) edge (Domain-Specific | sorption and absorption

Regulative | Reflections on  the | “I love looking at bar Content) limit”

(REG) teacher’s pathways of | graphssoIwill go there Strategy | Teacher plans activity | “We will do the debug-
exploring the dashboard | first” (STRAT) | demonstrating produc- | ging tasks together and I
or strategies they used to tive testing strategies | will demonstrate the ben-
interpret the visualizations (Domain-Specific Content; | efits of testing different
(Pedagogical) PBL Content; Technology) | values of rainfall or ma-

Instructional Questions or comments fo- | “I'm not sure if the de- terials”

(INST) cused on the resources and | bugging task is in the Linking Teacher plans activity | “This class is going back
pedagogical moves used | right place” Multiple | that links multiple do- | outside to continue test-
to convey science, CT, or Domains | mains (Domain-Specific | ing different rainfall val-
engineering ideas (SPICE- (LMD) Content; SPICE-specific | ues, and then implement-
specific Pedagogical) Pedagogical) ing similar tests on the

Technology | Thoughts on how to ex- | “I'm looking for stu- computer!”

(TECH) plore the dashboard and to | dents that moved to Technology| Teacher response targets | “This student has not
look at different visualiza- | more productive strate- (TECH) the use of a technol- | changed any materials. I
tions, including recommen- | gies. It would be nice to ogy tool (e.g., clicking | will demonstrate how to
dations for dashboard ad- | highlight or color those on the design history ta- | tomorrow”
justments (Technology) changes” ble) (SPICE-specific Tech-

generated by the novice teachers. We argue it was partly due to
the nature of the idea units. For example, novice teachers had a
greater amount of Curricular codes, a median of 12 per simulation
by the novice teachers and 3 by the expert teachers, which include
questions or comments focused on teachers understanding of the
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curriculum. These idea units typically involved researcher response,
and, therefore, a higher number of researcher input during the
allotted 15 minute time.

Figure 4 illustrates the breakdown of noticing codes (labels iden-
tified in Table 1). As seen in the novice teacher pie chart on the
right, novice teachers spent almost half of their time discussing
the curriculum and the dashboard technology. Interestingly, both
expert and novice teachers had about the same number of idea
units targeting performance and student strategy interpretations
(in yellow and green in Figure 4). novice teachers had a median of
9.5 and expert teachers 9 segments targeting the interpretation of
student performance. In addition, novice teachers demonstrated
a median of 8 interpretations of student strategy usage while ex-
pert teachers had a median of 12 (we argue the higher amount
by the expert teachers is reflective of teachers’ experience with
testing strategies from prior classroom implementations). The key
difference between the groups in terms of noticing and interpret-
ing involved interpretations of the results from the perspective of
multiple-linked representations, with novice teachers not demon-
strating any such segments, while it was the focus of 7% of expert
teacher noticing. This is important as it connects to our dashboard
goal of supporting teachers in facilitating the integrated learning of
science, CT, and engineering through multiple, linked representa-
tions. While it did support expert teachers, more work needs to be
done to support novice teachers. In addition, these results impacted
teachers evidence-based response codes, as illustrated by the ENA
graphs in Figure 5.

Expert Teacher Group Novice Teacher Group

CURR

TECH TECH CURR

DESC
INST

INST N-PERF

REG DESC

N-STRAT

N-MLR N-STRAT N-PERF

Figure 4: Expert and novice teacher noticing results.

Following the coding of the pedagogical episodes, we ran epis-
temic network analysis to evaluate the links between idea units.
The highest three link probabilities for the novice group of teachers
were (1) class-level activity response and strategy response (0.36), (2)
class-level activity response and concept-targeting response (0.28),
and (3) individual student response and concept-targeting response
(0.26). The expert group’s highest link probabilities were (1) class-
level activity response and concept-targeting response (0.38), (2)
class-level activity response and multiple-linked representations-
targeting response (0.37), and (3) collaboration-level activity re-
sponse and strategy-targeting response. These results seem to indi-
cate a link between the role of interpreting student results on the
dashboard from the perspective of multiple-linked representations
and developing responses that support students in making those
links. In addition, it is interesting to note that expert SPICE teachers
were more likely to customize lesson plans to target strategy im-
provements using a collaboration approach (e.g., pairing students
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to compare debugging processes) and novice teachers were more
likely to rely on individual student responses when faced with con-
ceptual issues (e.g., speaking one-on-one to a student struggling to
initialize needed variables).

Cone
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_paJeacher

~_

“TeachgfLed
“Interp.Syfat LMD
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® interg¥Ptprp-Strat
/

Class. LMD

Inexperienced SPICE Teacher Experienced SPICE Teacher

Figure 5: ENA Graphs

Overall, these results demonstrate that teachers reflected on
the data and developed evidence-based responses at multiple so-
cial levels. In addition, both groups were able to develop peda-
gogical customizations that targeted both conceptual knowledge
improvements, and the development of problem-solving skills or
strategies using the dashboard. The results also demonstrate that
novice teachers tended to focus on their more general prior peda-
gogical and domain-specific knowledge to create evidence-based
responses, while expert teachers focused on their SPICE-specific
knowledge to support their response development. We hypothesize
that data visualizations or tools to aid in data visualizations, such as
those developed by van Leeuwen to support teachers interpretation
of collaborative learning results [42], may better support novice
teachers in their noticing and interpretation processes centered on
SPICE-specific needs, while expert teachers may benefit from the
presentation of more general, or higher-level, response options to
support deeper reflection and response negotiation.

5.2 Teacher Vignettes

One major limitation of this analysis approach, is we are not able
to see the processes that transition teachers from noticing and
interpreting to the development of those evidence-based responses
identified in these figures. To do so, two researchers identified
example teacher vignettes covering a key ENA result and practice
discussed previously: supporting students’ understanding across
multiple linked representations.

For example, a novice SPICE teacher was weighing different op-
tions for lesson customizations, including running another physical
science experiment, and said “I'm still thinking about the materials.
How to get them to transfer that original [engineering design] grid
you’'d set up to, you know, to that they have to have the different
values for the materials. Because it’s still more than half [that aren’t
testing].And that’s why I told you, I love to see the Data Summary. I
think those avert connections between the lab experiment [in science]
and the [computational] model. We make those implicitly as adults,
but I think it needs to be you know, it it needs to be more obvious for a
younger brain. Yeah. To connect the model to the real thing." In this ex-
ample the teacher recognized that as adults, we may automatically
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connect the SPICE computational modeling practices (e.g., testing
the computational model with different materials) to the material
experiments conducting in the previous SPICE unit; however, more
effort needs to be made to support students in deriving those links
because understanding these connections can be very useful during
the playground design task.

Similarly, an expert SPICE teacher was reasoning about why they
wanted to return to the multiple conceptual models students make
during the science unit in order to help them identify patterns in
the computational model representation. The teacher said, “That’s
that was my point about the multiple representations, because they’re
figuring out the patterning. But do they really know what that’s do-
ing? Realistic. What the actual [model is doing]. That it’s raining this
much, and this much runoff is this and as much as absorbed and all
that. So that’s where you’re doing something like where we’re having
to literally explain. So here’s what you coded. And here’s what it did.
Why did it do that? What actually dos that mean?" In this example,
the teacher reflects back on it being necessary to specifically ask stu-
dents about what a model represented or meant and that students
struggled with it. The use of multiple, linked representations here
is to help students make the connection between patterns identified
in the conceptual model to the computational model and, hopefully,
support their understanding of what the computational model rep-
resents. Moreover, although not explicitly discussed, these multiple
representations are also helping the transition from the conceptual
model (e.g., understanding the conservation principle in science)
to the construction of a computational model (which requires ad-
ditional thinking and application about specific CT concepts and
practices).

6 CONCLUSIONS AND FUTURE
IMPLICATIONS

This research presents a novel exploration into the processes teach-
ers take to notice and interpret learning analytics from a co-designed
dashboard and then reason and enact evidence-based pedagogical
adjustments through lesson plan customizations. In particular, this
research illuminates differences between expert and novice teach-
ers’ dashboard-supported responsive teaching practices as they
prepare to teach a problem-based learning curriculum.

Despite efforts to promote data-informed decision making in
the classroom, there is scarce research examining how teachers
utilize instructor-support technology such as teacher dashboards
[17]. This is exacerbated in the context of problem-based learning
designs, as teachers must not only understand complex data analy-
ses of students’ problem-solving behaviors, they must leverage that
information to design evidence-based pedagogical adjustments that
enact a student-centered approach to learning. Evaluating teachers
evaluation processes not only contributes to our understanding of
how data promotes changes in instruction [17], but it can:

e support the development of tools to aid in teachers’ notic-
ing by interpreting the complex learning analytics [41] that
target their background and experience (such as supporting
novice teachers understanding and confidence in the curricu-
lum and the impact of student results on students’ learning
trajectories, as seen in our work),
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e improve resources to support evidence-based responses (e.g.,
teachers anecdotally recommended a list of expert teachers
customizations based on similar class results as those in
the simulations to support response decision making in the
future),

e improve teacher training on responsive teaching for PBL
(e.g., in the future after novice teachers have completed their
simulations, they could be presented with examples of what
expert teachers did in the same situation and reflect on the
options), and

e improve visualization of feedback based on teachers’ peda-
gogical needs (e.g., supporting teacher and coach sensemak-
ing using data visualizations [8]).

In our work, although novice teachers utilized greater time on
better understanding the curriculum (as expected due to lack of
classroom implementation), all teachers (1) implemented responses
that targeted student-centered learning design, (2) interpreted and
evaluated student problem-solving strategies and integrated that
interpretation into classroom responses, and (3) created group ac-
tivities to support students communication about their developing
problem-solving skills and knowledge. We believe this demonstrates
the effectiveness of our dashboard in supporting both expert and
novice teachers plan for the integration of a problem-based learn-
ing curriculum. We believe future work should explore the use of
simulations such as these to increase teacher experience and com-
fort in dashboards that target not only performance, but students
behaviors and problem-solving strategies as they complete such a
complex curriculum.

We recognize limitations in our work. On the one hand, the low
participation number for this study resulted in analyses focused on
depth instead of breadth. Future work should increase the partic-
ipant cohort to validate if these results hold and to better ensure
that teacher preparation is inclusive and supports equity in future
problem-based learning applications. In addition, in terms of the
selection of classes for each simulation, we recognize a limitation
in the use of a high- vs low-performing dichotomy in the selection
of classes as that approach may not fully represent the nuances
learning and problem solving behaviors from a classroom context.
Future work in selecting data for simulations (and co-design) can
look into more nuanced approaches to evaluating classes, groups
within classes, and individual students. Finally, we aim to complete
a full, iterative dashboard cycle in which the participating teachers
will implement SPICE (supported by the accompanying RISE dash-
board) in their classrooms, and then researcher-teacher partners
will reflect on their simulation and classroom experiences.
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