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completed a series of 5 “Planning Period Simulations" leveraging the
dashboard. Think-aloud protocols were implemented, supported by
semi-structured interview questions, to enable the teachers to ver-
balize their thought and evaluation processes. Our analyses focus
on the research question:Howdo expert and novice teachers im-

plement responsive teaching to customize lesson plans using

RISE?. To answer this question, we �rst conduct statistical analysis
on the coding of expert and novice teachers’ simulation discourse to
identify the types of student work (e.g., performance scores, strate-
gies applied) teachers notice and how they respond (e.g., teacher
lectures, class discussions, group activities). Codes were developed
based on prior work in responsive teaching (c.f., [10, 30]). We then
conduct epistemic network analysis (ENA; 12) evaluating the tem-
poral discourse patterns expert and novice teacher implement as
they complete each planning period simulation. We compare the
networks and provide initial �ndings based on the results. Finally,
we provide researcher identi�ed vignettes that examine teacher
di�erences based on the ENA �ndings.

In this paper, we �rst provide background on technology-supported
responsive teaching as well as an overview of research targeting
teachers usage of dashboards to support their practice. We then
describe our instructor-support technology known as the RISE dash-
board and outline the co-design procedures taken to systematically
design and develop this tool. Next, we provide our methods, includ-
ing the instructional context, our procedures for implementing the
planning period simulations, our participants, and the data collec-
tion and analyses processes. Next, we present our results and we
conclude with a discussion of the results, limitations of our work,
and future directions.

2 BACKGROUND AND RELATED WORK

This work targets the novel exploration of teachers’ responsive
teaching practices as they leverage a co-designed dashboard to eval-
uate student learning and problem solving, and develop evidence-
based lesson plan customizations as needed.

2.1 Responsive Teaching for PBL in Science

Science and math education reform has led to the promotion of �uid
classroom environments that allow for pedagogical adjustments
during instruction [40]. This pedagogical decision-making para-
digm leverages responsive teaching in which the teacher makes
in-the-moment pedagogical decisions based on what and how stu-
dents are thinking, assessed through what students are saying or
doing [6, 18].

This responsive approach is in contrast to traditional methods,
in which lesson plans are predetermined and direct students’ “�ow
of thought” [18]. This predetermined, traditional approach lim-
its student opportunities to develop and assess their own ideas,
which is needed for inquiry learning [28] and open-ended learning
approaches that include learning-by-modeling [47] and learning-
by-design [7, 45], such as that targeted in this proposed research.

Attending and responding to the disciplinary substance of stu-
dent ideas is considered a core teaching practice in science, math,
and engineering [11, 29, 32, 36]. Responding to student ideas as
they unfold in class has proven to help students engage in sci-
ence practices [11, 18], focus student attention on the disciplinary

substance of their thought [44], and improve students’ conceptual
understandings (e.g., 16, 37). This process is akin to formative feed-
back, providing students information to support adjustments in
their thinking, guide them towards the desired learning goals, and
improve knowledge development [39].

However, Van Es and Sherin note that successful applications
of responsive teaching requires teachers to develop new ways to
engage in and interpret classroom interactions [40]. The complex,
challenging practice of responding to student ideas requires that
teachers consider and evaluate copious amounts of classroom infor-
mation (e.g., student discourse, performance) as well as the intrinsic
and extrinsic constraints of the classroom environment (e.g., learn-
ing standards and objectives, time, assessment needs), and make
in-the-moment decisions on what and how to engage in their stu-
dents’ ideas [6, 40].

The complexity of this practice can be exacerbated during problem-
based learning due to:

(1) teachers’ limited background in computing and teaching
using technology [4],

(2) the decreased visibility of student thinking, as it is now ap-
plied through mouse clicks and other user-interface inter-
actions and, therefore, not easily or readily apparent to the
teacher (an important feature of lesson design to support
teacher noticing; e.g., National Council of Teachers of Math-
ematics, 2014),

(3) problem-based learning is akin to open-ended learning, in
which students may implement a variety of problem-solving
approaches during solution construction [43, 48] that teach-
ers must grapple with and engage in, and

(4) software constraints or user-interface di�culties that may
impact teachers’ abilities to adequately respond to student
thinking or issues [43].

For instance, if applying an established framework such as the Tech-
nological Pedagogical Content Knowledge (TPACK) framework [31]
to the teaching of computational modeling in science, a teacher may
need to have knowledge in the science domain and in computing or
computational thinking (CT), in methods for supporting each stu-
dent as they learn and integrate each domain as well as in managing
and evaluating classroom progress, and they must have su�cient
comfort with and knowledge of the technology to implement and
engage in the curriculum with their class. Moreover, teachers must
understand how each component interrelates (e.g., in order to sup-
port a student as they debug a computational model, the teacher
must be able to use both their science and computing knowledge as
well as features of the technology to productively support). Finally,
while these environments support key processes highlighted in
state and national standards, these strategies are often not engaged
in by teachers during instruction [43]. This is particularly chal-
lenging for teaching through student-centered learning approaches
such as PBL, as teachers must interpret and respond to student
progress, represented through data visualizations on a dashboard,
in ways that target learning and problem-solving needs while also
maintaining the intent of the learning design [10].

These experiences motivate a deeper understanding of what
it means to notice student thinking during technology-enhanced,
problem-based learning and the processes teachers take in the
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transition from their interpretation of student learning and problem
solving to the creation of evidence-based pedagogical responses
supportive of the problem-based, student-centered learning design.

Learning analytics research has progressed signi�cantly and has
led to the development of instructor support-technology proven ef-
fective for teaching with intelligent tutoring systems, collaborative
learning scripts, and much more. However, research on teachers’
usage of instructor-support technologies such as dashboards is still
scarce, especially for the implementation of problem-based learning
curricula [10] and for K-12 STEM classrooms [22].

A careful analysis of prior research representing dashboard-
supported responsive teaching results in the identi�cation of key
research opportunities and directions involved in the understanding
of how teachers use dashboards, and how to support them. These
include (and illustrated in Figure 1):

(1) co-designing learning analytics and visualizations, includ-
ing how to best integrate teacher insight [46], improving
transparency in algorithm development [20], and supporting
teacher agency in data vizualization selection [1],

(2) understanding teachers’ noticing processes as they interpret
what is presented via data visualizations such as dashboard,
including Campos et al.’s recent work in which they devel-
oped a typology of responses to data visualizations [8], and

(3) understand how resulting teacher interpretations of dash-
board visualization facilitate evidence-based pedagogical
actions, of which there is a dearth of research [8].

To our knowledge, limited research exists that explores how
teachers notice, interpret, and develop evidence-based responses
to students learning and problem-solving strategies for a K-12 PBL
curriculum in science [22]. Moreover, there is a need to understand
how resulting teacher interpretations of dashboard visualization
facilitate evidence-based pedagogical actions [8]. Unfortunately,
not a lot of information can be found on the pedagogical actions
teachers take as a result of using instructor-support technology,
such as dashboards, especially for K-12 instruction. This research
provides novel �ndings on example pedagogical responses resulting
from the noticing, interpretation, and reasoning about student data
during a problem-based, middle school science curriculum.

Figure 1: A dashboard-supported responsive teaching process,

adapted from [8].

3 CO-DESIGN OF RISE DASHBOARD

This research focuses on teachers’ responsive teaching practices
supported by a teacher dashboard for a problem-based learning
curriculum known as SPICE.

3.1 Instructional Context: SPICE

SPICE supports teachers in the implementation of the SPICE Chal-
lenge [24]. The SPICE is a three-week, NGSS-aligned unit that
challenges students to redesign their schoolyard using di�erent
surface materials to minimize the amount of water runo� after
a storm, while adhering to a series of design constraints. These
include the overall cost and accessibility, while providing for dif-
ferent functionalities for the schoolyard [24]. The problem-based
learning curriculum consists of �ve core units, illustrated in Figure
2. These units include: physical experiments, conceptual modeling,
paper-based computational thinking tasks, computational model-
ing of the water runo� phenomenon, and engineering design, in
which students use their computational models to redesign their
schoolyard. This learning context is authentic and relevant to stu-
dents facing similar problems (limited usability and pollution) in
their own schools, therefore, the SPICE is potentially engaging and
personally meaningful to the learners [24]. The SPICE targets NGSS
performance expectations for upper elementary and middle school
Earth science and engineering design curricula, emphasizing the
movement of surface water in a system after heavy rainfall and the
human impact of this runo� on the environment, and leverages
evidence-centered design [35] for the systematic creation of sum-
mative and formative assessments to evaluate student learning in
science, computing, and engineering.

Figure 2: The SPICE curriculum sequence.

We focus this paper on Planning Period Simulations that tar-
get students’ e�orts to construct a model of a scienti�c process,
i.e., water runo� after a heavy rainfall. These curriculum lessons
o�er unique perspectives on how teachers evaluate student data
as pedagogical planning requires the evaluation of items such as
how well students are translating their developing science knowl-
edge into computational form, understanding the multiple paths
students can take to successfully construct a computational model
in science, and identifying successes and opportunities students are
having in using di�cult computational constructs such as condi-
tional logic. Moreover, in the Background we identi�ed teachers’
limited background in computing as an issue for implementing such
problem-based learning approaches and this allows us to examine
ways in which the dashboard can help novice teachers.

3.2 Creating the RISE Dashboard

The dashboard leveraged in this work was created through a series
of co-design design sessions with expert and novice SPICE teachers.
In addition, the dashboard components were grounded in past work
on supporting teachers in the integration of scienti�c inquiry and
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experience in the science domain and all had least 5 years of middle
school teaching experience.

4.2 Planning Period Simulation

We focus this paper on �ve Planning Period Simulations in which
teachers would enact �ve 15 minute “planning periods” by utilizing
the RISE dashboard to review and re�ect on student, group, and
class performance and then develop evidence-based lesson plan
customizations for the “next” class day. These simulations were
inspired by the Teacher Moments research at MIT [3]. Student data
used for each simulation was pulled from prior SPICE implementa-
tions in an approach similar to the Replay Enactment protocol [20]
. Student data from the prior implementations were de-identi�ed
and students were given gender-neutral names. The �ve simula-
tions were selected based on the average summative assessment
performances in science and CT (e.g., one simulation included a
class that had an above average pre-test performance in science,
but a below average pre-test performance in CT).

Each teacher �rst completed a 90-minute professional develop-
ment session led by the research team in which they learned about
the SPICE curriculum. For each simulation, a research teammember
�rst described the class scenario, including the class performance on
the pretest and other class results prior to the simulation “day” (e.g.,
on the science conceptual models). Teachers then had 15 minutes
to complete the simulation exercise. Fifteen minutes was selected
based on an estimated class period time length of 60 minutes and
an average estimated class roster of 4 classes per teacher, therefore
15 minutes per planning period for each class.

Using a think-aloud protocol, teachers reviewed student results
and feedback provided on the RISE dashboard, interpreted what
they saw, and customized class lesson plans for the next day (as
they saw �t). Prior research has noted the bene�ts of think-aloud
protocols on tasks involving building interpretations [9], including
providing a low-entry barrier [8] and tracing users’ thinking [33]. In
order to obtain verbalizations that accurately re�ected the cognitive
processes teachers implemented during responsive teaching, we
refrained from providing detailed instructions or interpretation of
results. Instead, we utilized prompts such as “what possible actions
would you take with this group?" and answered questions about
technology that did not impact class evaluations (e.g., describing
how to use the re�ection form). This approach is modeled after
Campos et al.’s approach for evaluating teacher sensemaking [8].
This helped minimize issues concerning bias in data if researcher
support or feedback impact teachers’ responses [38].

Finally, researchers completed an observation sheet during the
simulations. The observation sheet consisted of a table for re-
searchers to identify (1) discussed idea (e.g., computational model
scores), (2) visualization targeted, when applicable (e.g., bar graph of
class performance), and (3) keywords used or links made (e.g., poor
initialization of science variables score during computational mod-
eling relating to prior science performance). These observations
were used to support our analysis approach, discussed below.

4.3 Data Collection and Analysis

All Planning Period Simulations were conducted virtually and
recorded using a video conferencing platform. In total, we had

approximately 12 hours of video data, which we transcribed using
an online transcription service. For the purpose of this paper, we
segmented the transcripts into episodes of pedagogical reasoning
[21]. In this case an episode of pedagogical reasoning was initi-
ated when the researcher completed the opening statement about
the class scenario and ended when the teacher submitted their
customized lesson plan. These segments formed the base unit of
analysis to answer both research questions.

To conduct this analysis, we �rst divided the episodes of ped-
agogical reasoning into smaller excerpts related to idea units, in
which a single topic was discussed [27], in order to balance our
units of analysis. This resulted in 735 idea units. A coding scheme
(described in Table 1) targeting noticing and interpretations was de-
veloped by leveraging past work the analysis of responsive teaching
during video clubs [30] and teacher dashboard usage [10] and in-
corporating additional categories pertinent to our work, including
teachers’ discussion of problem-solving strategies.

We also developed a coding scheme to evaluate teacher discus-
sions on evidence-based response creation. To do so, we targeted
discourse that discussed the social level [14] of the activity (e.g.,
teacher lecture, class activity, group activity, or individual activity)
and the context of the response (e.g., is the response focused on
conceptual knowledge, problem-solving behaviors, linking multi-
ple representations, or technology issues). The codes for evidence-
based responses can be found in Table 2.

Researchers met to code idea units using these schemas together.
Di�erences were discussed and re�nements were made to the cod-
ing scheme. The researchers then coded 20 percent of the idea units
and achieved good IRR agreement (k > 0.80). The researchers dis-
cussed di�erences and once they were resolved, the main author
coded the remaining idea units.

To answer our research question one, we utilized epistemic net-
work analysis (ENA) [12] to interpret how expert and novice teach-
ers interpret and respond to students science and CT knowledge
and problem-solving strategies as they construct their computa-
tional models. Recent code-and-count analytic approaches have
been criticized for ignoring temporal contexts of discourse, which is
particularly relevant to the understanding of the processes teachers
implement from using and understanding data visualizations of
student learning to enacting evidence-based pedagogical responses.
ENA has been shown to overcome this limitation and �nd temporal
relationships in data [12]. In education, ENA has been used to ana-
lyze collaborative problem-solving [25], how collaboration support
science knowledge construction [5], and understanding students’
assessment responses [26]. More recently, ENA has been used to
evaluate the impact of alerting dashboards for teachers on student
learning through science inquiry [13], and serves as the motivation
for our analytical approach.

These coded units were used to build the epistemic networks. The
epistemic networks (see Figure 5) were created using the ENA on-
line graphical interface (epistemicnetwork.org). Nodes represented
the codes from Tables 1 and 2. The lines (and strength of the lines)
represent the connections between nodes and the frequency of
co-occurrence. This allows us to evaluate temporal patterns in dis-
course and we evaluate di�erences in epistemic networks of expert
and novice teachers during the episodes of pedagogical reasoning
to answer the research question.
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Table 1: Coding Scheme for Teacher Dashboard Evaluations

Code De�nition (Teaching

Knowledge)

Example

Curricular
(CURR)

Questions or comments
focused on the teachers
own understanding of the
ideas in the lesson (SPICE-

speci�c Pedagogical)

“How much instruction
do students get to com-
plete the �rst rule?”

Descriptive
(DESC)

Discussed content-based
information they obtained
from the dashboard (Peda-

gogical)

“OK so 12 students com-
pleted their model cor-
rectly.”

Interpreting
Perfor-
mance
(N-PERF)

Questions or comments
focused on the simula-
tion students’ understand-
ing of the science, CT, engi-
neering concepts (Domain-

Speci�c Content; Pedagogi-

cal)

“Ok, it looks like they re-
ally do not understand
how to calculate total
runo� when rainfall is
greater than”

Interpreting
Strate-
gies (N-
STRAT)

Questions or comments fo-
cused on the classroom stu-
dents’ application of strate-
gies (PBL Content; Pedagog-
ical; Technology)

“It looks like this class
is really struggling
with testing materials”
“There are a lot of
divers!”

Integrating
Multiple,
Linked
Domains
(N-MLR)

Questions or comments fo-
cused on the sequencing
of content and trajecto-
ries of student learning
(Domain-Speci�c Content;

SPICE-speci�c Pedagogical)

“Another bene�t of test-
ing materials is that I
can help them relate it
to the science experi-
ments we did."

Regulative
(REG)

Re�ections on the
teacher’s pathways of
exploring the dashboard
or strategies they used to
interpret the visualizations
(Pedagogical)

“I love looking at bar
graphs so I will go there
�rst”

Instructional
(INST)

Questions or comments fo-
cused on the resources and
pedagogical moves used
to convey science, CT, or
engineering ideas (SPICE-
speci�c Pedagogical)

“I’m not sure if the de-
bugging task is in the
right place.”

Technology
(TECH)

Thoughts on how to ex-
plore the dashboard and to
look at di�erent visualiza-
tions, including recommen-
dations for dashboard ad-
justments (Technology)

“I’m looking for stu-
dents that moved to
more productive strate-
gies. It would be nice to
highlight or color those
changes.”

5 RESULTS AND DISCUSSION

5.1 Teachers’ responsive teaching practices

using RISE

Following the data processing of the 8 teachers there were 453
idea units generated by the expert teachers and 278 idea units

Table 2: Coding Scheme for Teacher Responses

Code De�nition (Teaching

Knowledge)

Example

Teacher
Lecture
(LECT)

Teacher plans to add class
lecture on a topic based
on data (Domain-Speci�c

Content; Pedagogical)

“Students are struggling
with initializing variables
and so do I so I will add 5
minutes at the beginning
of class to connect their
struggles to mine.”

Class
Activity
(CLASS)

Teacher plans to add
activity involving
the class as a whole
(Domain-Speci�c Content;

Pedagogical)

“I will have Taylor
present how they com-
pleted the �rst rule and
I will be sure to ask
questions or discuss how
students can check if the
rule is correct”

Group
Activity
(GROUP)

Teacher plans to add ac-
tivity in which students
work in groups (Domain-

Speci�c Content; Pedagog-

ical)

“I will group Divers and
Strategist so that Divers
can see the importance of
testing materials”

Individual
Feedback
(IND)

Teacher schedules indi-
vidual student feedback
based on data (Domain-

Speci�c Content; Pedagog-

ical; Technology)

“This student continues
to struggle in science, so
I will set aside time as the
class works to help them
with their science knowl-
edge”

Conceptual
(CONC)

Teacher response targets
domain-speci�c knowl-
edge (Domain-Speci�c

Content)

“We will discuss the dif-
ference between total ab-
sorption and absorption
limit”

Strategy
(STRAT)

Teacher plans activity
demonstrating produc-
tive testing strategies
(Domain-Speci�c Content;

PBL Content; Technology)

“We will do the debug-
ging tasks together and I
will demonstrate the ben-
e�ts of testing di�erent
values of rainfall or ma-
terials”

Linking
Multiple
Domains
(LMD)

Teacher plans activity
that links multiple do-
mains (Domain-Speci�c
Content; SPICE-speci�c
Pedagogical)

“This class is going back
outside to continue test-
ing di�erent rainfall val-
ues, and then implement-
ing similar tests on the
computer!”

Technology
(TECH)

Teacher response targets
the use of a technol-
ogy tool (e.g., clicking
on the design history ta-
ble) (SPICE-speci�c Tech-
nology)

“This student has not
changed any materials. I
will demonstrate how to
tomorrow”

generated by the novice teachers. We argue it was partly due to
the nature of the idea units. For example, novice teachers had a
greater amount of Curricular codes, a median of 12 per simulation
by the novice teachers and 3 by the expert teachers, which include
questions or comments focused on teachers understanding of the
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connect the SPICE computational modeling practices (e.g., testing
the computational model with di�erent materials) to the material
experiments conducting in the previous SPICE unit; however, more
e�ort needs to be made to support students in deriving those links
because understanding these connections can be very useful during
the playground design task.

Similarly, an expert SPICE teacher was reasoning about why they
wanted to return to the multiple conceptual models students make
during the science unit in order to help them identify patterns in
the computational model representation. The teacher said, “That’s
that was my point about the multiple representations, because they’re

�guring out the patterning. But do they really know what that’s do-

ing? Realistic. What the actual [model is doing]. That it’s raining this

much, and this much runo� is this and as much as absorbed and all

that. So that’s where you’re doing something like where we’re having

to literally explain. So here’s what you coded. And here’s what it did.

Why did it do that? What actually dos that mean?" In this example,
the teacher re�ects back on it being necessary to speci�cally ask stu-
dents about what a model represented or meant and that students
struggled with it. The use of multiple, linked representations here
is to help students make the connection between patterns identi�ed
in the conceptual model to the computational model and, hopefully,
support their understanding of what the computational model rep-
resents. Moreover, although not explicitly discussed, these multiple
representations are also helping the transition from the conceptual
model (e.g., understanding the conservation principle in science)
to the construction of a computational model (which requires ad-
ditional thinking and application about speci�c CT concepts and
practices).

6 CONCLUSIONS AND FUTURE

IMPLICATIONS

This research presents a novel exploration into the processes teach-
ers take to notice and interpret learning analytics from a co-designed
dashboard and then reason and enact evidence-based pedagogical
adjustments through lesson plan customizations. In particular, this
research illuminates di�erences between expert and novice teach-
ers’ dashboard-supported responsive teaching practices as they
prepare to teach a problem-based learning curriculum.

Despite e�orts to promote data-informed decision making in
the classroom, there is scarce research examining how teachers
utilize instructor-support technology such as teacher dashboards
[17]. This is exacerbated in the context of problem-based learning
designs, as teachers must not only understand complex data analy-
ses of students’ problem-solving behaviors, they must leverage that
information to design evidence-based pedagogical adjustments that
enact a student-centered approach to learning. Evaluating teachers
evaluation processes not only contributes to our understanding of
how data promotes changes in instruction [17], but it can:

• support the development of tools to aid in teachers’ notic-
ing by interpreting the complex learning analytics [41] that
target their background and experience (such as supporting
novice teachers understanding and con�dence in the curricu-
lum and the impact of student results on students’ learning
trajectories, as seen in our work),

• improve resources to support evidence-based responses (e.g.,
teachers anecdotally recommended a list of expert teachers
customizations based on similar class results as those in
the simulations to support response decision making in the
future),

• improve teacher training on responsive teaching for PBL
(e.g., in the future after novice teachers have completed their
simulations, they could be presented with examples of what
expert teachers did in the same situation and re�ect on the
options), and

• improve visualization of feedback based on teachers’ peda-
gogical needs (e.g., supporting teacher and coach sensemak-
ing using data visualizations [8]).

In our work, although novice teachers utilized greater time on
better understanding the curriculum (as expected due to lack of
classroom implementation), all teachers (1) implemented responses
that targeted student-centered learning design, (2) interpreted and
evaluated student problem-solving strategies and integrated that
interpretation into classroom responses, and (3) created group ac-
tivities to support students communication about their developing
problem-solving skills and knowledge.We believe this demonstrates
the e�ectiveness of our dashboard in supporting both expert and
novice teachers plan for the integration of a problem-based learn-
ing curriculum. We believe future work should explore the use of
simulations such as these to increase teacher experience and com-
fort in dashboards that target not only performance, but students
behaviors and problem-solving strategies as they complete such a
complex curriculum.

We recognize limitations in our work. On the one hand, the low
participation number for this study resulted in analyses focused on
depth instead of breadth. Future work should increase the partic-
ipant cohort to validate if these results hold and to better ensure
that teacher preparation is inclusive and supports equity in future
problem-based learning applications. In addition, in terms of the
selection of classes for each simulation, we recognize a limitation
in the use of a high- vs low-performing dichotomy in the selection
of classes as that approach may not fully represent the nuances
learning and problem solving behaviors from a classroom context.
Future work in selecting data for simulations (and co-design) can
look into more nuanced approaches to evaluating classes, groups
within classes, and individual students. Finally, we aim to complete
a full, iterative dashboard cycle in which the participating teachers
will implement SPICE (supported by the accompanying RISE dash-
board) in their classrooms, and then researcher-teacher partners
will re�ect on their simulation and classroom experiences.
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