Proceedings of the Nineteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2023)

SCENECRAFT: Automating Interactive Narrative Scene Generation
in Digital Games with Large Language Models

Vikram Kumaran, Jonathan Rowe, Bradford Mott, James Lester

North Carolina State University
{vkumara, jprowe, bwmott, lester } @ncsu.edu

Abstract

Creating engaging interactive story-based experiences dy-
namically responding to individual player choices poses sig-
nificant challenges for narrative-centered games. Recent ad-
vances in pre-trained large language models (LLMs) have
the potential to revolutionize procedural content generation
for narrative-centered games. Historically, interactive narra-
tive generation has specified pivotal events in the storyline,
often utilizing planning-based approaches toward achieving
narrative coherence and maintaining the story arc. However,
manual authorship is typically used to create detail and vari-
ety in non-player character (NPC) interaction to specify and
instantiate plot events. This paper proposes SCENECRAFT,
a narrative scene generation framework that automates NPC
interaction crucial to unfolding plot events. SCENECRAFT in-
terprets natural language instructions about scene objectives,
NPC traits, location, and narrative variations. It then employs
large language models to generate game scenes aligned with
authorial intent. It generates branching conversation paths
that adapt to player choices while adhering to the author’s
interaction goals. LLMs generate interaction scripts, seman-
tically extract character emotions and gestures to align with
the script, and convert dialogues into a game scripting lan-
guage. The generated script can then be played utilizing an
existing narrative-centered game framework. Through empir-
ical evaluation using automated and human assessments, we
demonstrate SCENECRAFT’s effectiveness in creating narra-
tive experiences based on creativity, adaptability, and align-
ment with intended author instructions.

Introduction

The challenge of generating compelling, and adaptable nar-
ratives has long been a crucial component of interactive nar-
rative design (Riedl and Bulitko 2013). While early research
in narrative generation primarily focused on creating coher-
ent sequences of events, this approach often fails to produce
captivating stories (Martin et al. 2018; Kreminski, Wardrip-
Fruin, and Mateas 2020; Ramirez and Bulitko 2014). In edu-
cational games, designers strive to support learning by high-
lighting relevant facts during gameplay, and making learn-
ing an intrinsic part of the story (Naul and Liu 2020). Ad-
ditionally, as players become more familiar with a game,

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

86

gameplay can become repetitive. Dynamic creation of sto-
ries around specific events becomes important for main-
taining player interest. Given these challenges, we propose
SCENECRAFT, a framework that leverages large language
models (LLMs) to transform high-level author descriptions
into playable episodes within a 3D virtual world, complete
with engaging non-player character dialogue, gesture, and
emotion. This approach simplifies how we create interac-
tive scenes featuring non-player characters (NPCs), thereby
streamlining scene authoring. SCENECRAFT is driven by
authorial intent (Riedl and Bulitko 2013) as a story sum-
mary that is transformed into a choose-your-own-adventure
style interaction that can play out in a 3D game environ-
ment. We use LLMs to generate narrative scenes for the out-
line provided by the author and semantically extract from the
generated narrative scene emotions and gestures to display
programmatically during NPC interactions.

Research in natural language processing (NLP) focus-
ing on story generation has surged in recent years, address-
ing various aspects, including content control, common-
sense knowledge use, understanding character actions, and
creativity (Alabdulkarim, Li, and Peng 2021). Recent ad-
vances in LLMs using transformer-based models have out-
performed many earlier models in generating short stories
and dialogues based on human-provided narrative outlines
(OpenAl 2023; Chowdhery et al. 2022; Bubeck et al. 2023).
In addition, LLMs have demonstrated remarkable profi-
ciency in tasks such as extracting semantic information, gen-
erating code based on abstract guidance, and identifying se-
mantic features like emotions when given directive prompts,
all without requiring specialized training (Liu et al. 2023). In
this paper, we leverage these specific capabilities of LLMs
to transform high-level outlines and instructions from an au-
thor into engaging and dynamic scripts for NPC interactions,
enriching the immersive experiences within digital games.

In a 3D narrative-centered game, the story progresses as
the player interacts with NPCs to advance the story arc.
Each interaction must be engaging and convey the neces-
sary information to the player to move the narrative for-
ward. We build an end-to-end framework that enables au-
thors to specify the topic of conversation, key issues to be ad-
dressed, NPCs’ background, NPCs’ appearance, scene loca-
tion, and potential story branching variations. From this in-
put, our framework generates the story and the correspond-

ing dialogues that align with the author’s vision using LLMs.
Then, we extract emotions and gestures for NPCs corre-
sponding to each exchange, translating them into a compre-
hensive custom game script encompassing dialogue, emo-
tions, gestures, and story branches. For our narrative rep-
resentation, we use an Ink-like scripting language. The Ink
(https://www.inklestudios.com/ink) dialogue script is read
by the StoryLoom engine (Mott et al. 2019), which can read
the Ink script and render it as a playable Unity game episode.
This script leverages existing game assets to produce an in-
teractive game episode that can be played in a 3D virtual
environment. The key contributions of SCENECRAFT narra-
tive generation framework are the following:

 Simplifies transforming author natural language instruc-
tions into playable 3D virtual game episodes without
manual intervention.

* Provides authors the ability to control the generated con-
tent by allowing authors to specify various aspects such
as scene objectives (i.e., topics and context), NPC back-
ground and appearance, scene location, and narrative
variations.

» Extracts emotions and gestures from generated story acts
to improve the realism of NPC interaction, enhancing
player engagement.

We demonstrate the effectiveness and strengths of
SCENECRAFT through automated assessments and hu-
man participant evaluations.

Related Work

Story-driven games have long been a subject of interest in
the interactive narrative community. A substantial body of
research is dedicated to creating captivating storylines and
immersive experiences for players in interactive narrative-
centered games with varying degrees of success (Riedl and
Bulitko 2013; Riedl and Young 2010; Kreminski et al. 2020;
Stefnisson and Thue 2018). Interactive narrative-centered
games are virtual environments that aim to make the player
an integral part of an immersive story, where they have
bounded control over how the narrative proceeds.

One way to balance player agency and narrative control
is to have an experience manager (Riedl and Bulitko 2013)
that revises the narrative as events unfold to maintain the
storyline. Researchers have conducted multiple studies to
explore how experience managers can accommodate player
actions while ensuring the achievement of authorial goals
by framing it as an automated planning problem (Ramirez
and Bulitko 2014; Riedl and Young 2010). By represent-
ing interactive narratives as story graphs (Riedl and Young
2006), with nodes representing world states and edges repre-
senting causal transitions, experience managers can actively
track the narrative’s progress in the graph toward the autho-
rial goals. Narrative control is sometimes accomplished by
pruning (Ware et al. 2022) and other similar operations on
the graph. We use dialogue graphs in our system to track
branched interaction. In our generated script, each node of
the graph represents a dialogue utterance between the player
and an NPC and edges link the nodes to the corresponding
response utterance by another character in the scene.

87

Instead of top-down control of the narrative, researchers
have also designed games where the virtual agents co-create
by suggesting or executing actions in the environment. In-
teractions between players and Al agents or NPCs move the
plot forward. One approach involves sifting the generated
storyline to identify compelling event patterns (Kreminski
et al. 2020). Meanwhile, another strategy employs the player
modifying NPC goals as a part of gameplay (Oliver and
Mateas 2021). The use of Al as a co-author has typically
been in the mode of making suggestions to assist authors by
presenting possible actions or new goals based on the cur-
rent narrative state (Stefnisson and Thue 2018; Akoury et al.
2020; Kreminski et al. 2022; Martin, Harrison, and Riedl
2016). Our framework takes a different approach by trans-
posing the interaction model where the author provides sum-
marized intent, and by using LLMs, we generate the scene
interaction scripts. In their work, Calderwood et al. (2022)
fine-tuned a large language model on a data set of Twine sto-
ries to create a mixed initiative platform for authoring for a
text-based story game. In their work, Lin and Riedl (2021)
utilized high-level author context using language models for
automated story generation, our work diverges by employ-
ing the high-level author-provided context to craft interac-
tive dialogues for individual scenes.

Advances in deep neural networks and language models
have driven significant progress in the related area of auto-
mated text-based story generation. In prior versions of these
language models, there was a significant challenge in ex-
erting control over the produced content, ensuring the nar-
rative coherence aligned with common sense, and develop-
ing compelling characters that exhibit consistent behaviors
(Alabdulkarim, Li, and Peng 2021). Several systems have
been built to provide the neural network with high-level plot
points or events. In these models, the neural network fills in
the narrative gaps between events to successfully generate
coherent and interesting stories (Rashkin et al. 2020; Yao
et al. 2019; Wang, Durrett, and Erk 2020). The problem of
automatically generating stories has also been broken down
into event generation, followed by event-to-sentence gener-
ation as a two-stage process to improve coherence and plau-
sibility of generated stories (Ammanabrolu et al. 2020). Re-
cent advances in pretrained LLMs have shown great promise
for use by professional writers as co-authors for screenplays
and scripts (Mirowski et al. 2023).

A key aspect of engaging interactive narrative experiences
is the dialogue with virtual characters, which reinforces in-
game events and propels the narrative forward. Al has been
typically used as a planner and suggester for the next event
or action in writing scripts for interactive narrative games
(Stefnisson and Thue 2018; Akoury et al. 2020; Kreminski
et al. 2022; Martin, Harrison, and Riedl 2016). Martin et
al. (2016) created an Al tool that aids storytelling in open
worlds through interactive author feedback based on a story
graph. Stefnisson and Thule (2018) offer “Mimisbrunnur”,
an Al-assisted tool where human authors maintain control
over the story but receive Al suggestions. Kreminski et al.
(2022) present “Loose Ends,” a game providing dynamic
storytelling prompts for authors. Despite the Al-driven high-
level input, the intricate dialogue and interaction predomi-

Author
Input

NPC Traits
Location

Scene Objectives
Narrative Variations

/ Emote and Gesture \\»‘
to Asset Mapper |
Dialogue Gesture
Recognition Prompt () —
R LLM
Dialogue Emotion
L Recognition Prompt

y
y

Unity & StoryLoom
=

Interactive
Dialogue

Interactive
Generator

Game
World Assets

Narrative
Script Assets

Emotions and
gesture in script to
game assets map

dialogue
variations

Dialogue

Generation
Instruction

Prompt

A

/ Branching Dialogue
| Graph Generator
Dialogue as Code €
Generation Prompt

LLM

Script to Game
Engine
(Ink dialogue scripts &
beat sheets)

4

Figure 1: The SCENECRAFT interactive narrative scene generation framework.

nantly originate from human authorship, as all tools focus
on supporting human-led story creation. Our research uti-
lizes LLMs to generate stimulating branching dialogues with
individual non-player characters (NPCs) within a high-level
scene context provided by authors, thereby flipping the usual
mode of co-authorship and addressing the gap for automat-
ing detailed interaction scenes in interactive narrative gener-
ation systems.

Recent LLMs, such as OpenAI’s GPT series, have show-
cased substantial generative potential. These LLMs have
also proven their capacity to follow instructions in prompts,
derive semantic understanding from natural language text,
and translate instructions into code (OpenAl 2023; Chowd-
hery et al. 2022; Liu et al. 2023; Bubeck et al. 2023), thus
providing a valuable tool for generating content. These ca-
pabilities of LLMs have been used for procedural content
generation (PCG) to create game levels by fine-tuning pre-
trained GPT-2 models on the ASCII representation of a puz-
zle game, Sokoban (Todd et al. 2023). However, these PCG
approaches only leverage a limited amount of the language
semantic knowledge captured by the LLMs as part of pre-
training.

Interactive Scene Generation Framework

The SCENECRAFT framework, shown in Figure 1, outlines
key components of a structured approach for creating en-
gaging virtual game episodes with NPC interactions derived
from author input through PCG and LLM. The framework
takes input from the authors on NPC traits, scene location,
scene objectives, and possible narrative variations. This in-
put is fed to an Interactive Dialogue Generator module,
which generates a dialogue script using prompt base instruc-
tions on an LLM (GPT 3.5). Emote and Gesture to Asset
Mapper takes this dialogue script and pairs the expressed
emotions and gestures with corresponding entities from our
game asset database. The Branching Dialogue Graph Gen-
erator module combines the dialogue script and any narra-
tive variations generated to craft a story graph. The Script
to Game Engine module translates the story graph, mapped

88

emotions, and gesture assets into an Ink-like scripting lan-
guage. The Ink dialogue script is read by the StoryLoom
engine and rendered as a playable Unity game episode. The
following sections provide additional details about various
framework modules.

Interactive Dialogue Generator

We discern the author’s intent by capturing four elements by
presenting an author intent workbook where the author en-
ters their choices. These elements encompass the character
(including their background) with whom the player inter-
acts, the setting or location of the interaction, the scenario,
the main topics under discussion, and the tone of the conver-
sation. The scene location and character are selected from a
given list based on the character and location assets we cur-
rently support in the game. The author can choose various
characters with different backgrounds. We currently sup-
port ten characters, including Kim (a female medical doc-
tor), Quentin (a male chef), and Sam (a young gentleman).
We currently support nine locations in a tropical island or
a hospital, including a beach, infirmary, diner, and more.
While the character and scene location is explicitly selected,
the author implicitly defines the interaction scenario, cen-
tral discussion topics, conversation tone, and desired out-
come through their natural language story prompts. Addi-
tionally, the authors can provide alternate prompts that the
generator uses to create alternate branched paths to the con-
versation. Unlike earlier mixed initiative author-Al interac-
tions (Stefnisson and Thue 2018; Akoury et al. 2020), where
Al offers suggestions and authors finalize the narrative, our
method inverts this dynamic by having authors provide sum-
mary guidance and utilizing large language models (LLMs)
to generate the dialogue.

The generator transforms authorial input into generated
interaction dialogues using a predefined prompt template to
facilitate the scene-generation process. This prompt instructs
the LLM to generate a one-act play set in the specified loca-
tion featuring the indicated character and discussing the des-
ignated topics. The prompt also directs the LLM to include

Disgusted

.
I

ChinPondeting HeadScratching

Figure 2: Examples of emote and gesture game assets.

Narrative Utterance

{“dialog”: “We have the
means to do it right here
in this lab.”,
“emotion”:“Determined” }

Emote & Gesture Map

{“emote”:“Happy”,
“scale”:0.7, “gesture’:
“HandHipEngaged” }

Table 1: Emote and gesture mapping from narrative script to
game assets.

descriptive details about emotions or gestures. The authors
are asked to give a story prompt and one or more alternate
story prompts. Using LLMs, the Interactive Dialogue Gener-
ator generates multiple dialogue variations for each prompt
with utterances, emotions, and gestures (Figure 6). These di-
alogue scripts are used as input for subsequent modules, dis-
cussed below.

The Interactive Dialogue Generator converts author inputs
into interactive dialogues and is a crucial component facili-
tating authorial control. We evaluate its ability to accomplish
this translation through automated and human testing.

Emote and Gesture to Asset Mapper

Each NPC utterance is associated with a specific emotion
and gesture from a library of Unity assets. This collection
consists of a set of emotions that game characters can ex-
press. The intensity of the emotion can be controlled by a
factor on a scale from O to 1. The prefabricated assets also
consist of typical gestures that characters use to emphasize
their statements. The concept of emotion and gesture build-
ing blocks has proven effective in creating realistic NPCs
in previous research (Thiebaux et al. 2008). In our library
of assets, we currently support six emotes (happy, sad, an-
gry, disgusted, surprised, and fearful) and approximately 39
gestures, such as HandsOnHips, ChinPondering, and Head-
Scratching. Figure 2 illustrates emotions and gestures in our
asset library. The gestures involve hand and body move-

89

ments that loop with a pause between loops. The emotions
are primarily expressed through facial expressions.

We employ LLMs as semantic encoders in a zero-shot
classification to map the emotes and gestures for each scene
utterance to the most suitable option in our asset library. This
mapping is based on the name and description of the asset.
The system defaults to a neutral emote, and no gesture is ap-
plied when the LLM is uncertain about the mapping. Conse-
quently, each utterance is assigned a corresponding emote
and gesture asset, which is presented along with the dia-
logue allowing for a realistic rendering of the NPC within
the game. Table 1 shows an example of mapping from the
scene script to assigned emotions and gestures. In this case,
the feeling of ‘determined’ is mapped to a gesture of Hand-
HipEngaged and an emotion of ‘Happy’ with an intensity
scale of 0.7. The third block of Figure 3 shows a character
Elise, displaying emote and gestures corresponding to being
upset over farm run-off affecting fish health in the river.

Branched Dialogue Graph Generator

The current generation of LLMs has been trained exten-
sively on computer programs. When prompted appropri-
ately, they have effectively translated natural language de-
scriptions into code in many prevalent programming lan-
guages (Chen et al. 2021). We use this capability to represent
the scene dialogue generated in the interactive dialogue gen-
erator as a Python object. The Python representation is a list
of utterances, where each utterance is a Python dictionary
with character, emotion, gesture, and dialogue content. The
emotion and gesture values in the story graph nodes are from
the interactive dialogue generator. We then map these values
to corresponding game assets with the help of the“Emote
and Gesture to Asset Mapper” discussed in the prior section.
Dialogue sequences as Python objects are produced individ-
ually for every story prompt and alternate prompt supplied
by the author. These multiple Python lists are combined to
form the story graph.

A typical representation of a branching narrative uses a
story graph representation (Riedl and Young 2006). The
scene is represented as a directed graph, with each dialog
utterance represented by a node and each arc corresponding
to the next utterance. A path through the graph represents
an unfolding conversation between the player and the NPC.
The nodes with multiple edges coming out of them indicate
a choice to control the progression of the conversation. Fig-
ure 4 shows an example of a branched dialogue graph. We
generate such a graph from the conversation variants gener-
ated by the Interactive Narrative Generator. All occurrences
of a character speaking a specific sentence in multiple vari-
ants are represented in a single node. The story graph is used
as the basis to generate the scene script for StoryLoom.

Script to Game Engine

We employ a rapid prototyping tool based on the StoryLoom
Architecture (Mott et al. 2019). This tool utilizes a text-
based representation of the interactive narrative to script in-
game interactions. The script-to-game engine relies on two
types of assets: game world assets and narrative script as-
sets. The game world assets are the building blocks phys-

(©)

The fish keep dying, and | think it's because of the waste runofffrom the
nearby fam.

®

Figure 3: Screenshots from game episodes generated by SCENECRAFT.

ically rendered in the game and correspond to entities the
player interacts with. Examples of game world assets are lo-
cations, characters, and props. Narrative assets consist of di-
alogue scripts and beat sheets that capture the interactions
between the player and the game world assets. The dialogue
scripts represent the conversations, narrations, and branch-
ing choices presented to the player. The beat sheet describes
the overall story and the key events and triggers when the
player reaches a location, interacts with a prop, or starts a
conversation with a character. A beat event or trigger rep-
resents a moment in the game narrative where something
changes in the story. The idea is that the player is allowed the
freedom to move around in the game, and when they inter-
act with one of the trigger points specified in the beat sheet
and if the conditions are met, an interaction is triggered. In
our StoryLoom, the beat sheet is a spreadsheet identifying
the character or prop that triggers a dialogue script, mapping
to the dialogue script, and some rules regarding the trigger.
Figure 5 represents a high-level architecture overview of the
script to the game engine. The narrative progression during
gameplay relies on dialogue scripts and beat sheets, which
serve as the core components of each narrative episode. In
StoryLoom, the creation of these scripts and beat sheets is a
product of two integrated elements: The first is the ‘Branch-
ing Dialogue Graph Generator’, which crafts a story graph to
map out potential dialogue paths. The second is the ‘Emote
and Gesture to Asset Mapper’, which scans the narrative and
identifies the necessary game assets (like characters’ emo-
tions or gestures) for each line of dialogue. Together, they
generate the StoryLoom dialogue scripts and beat sheets.

The dialogue is scripted using a language that extends
Ink (https://www.inklestudios.com/ink), a narrative script-
ing language for games. We have extensively modified the
Ink scripting language. Our modified Ink version preserves
its original capabilities for representing narrative dialogues
and branching narratives. Additionally, it allows us to ini-
tiate Unity game engine-specific actions such as spawn-
ing characters and props, controlling the camera, activat-
ing workbooks, adding conditional triggers on game objects,
and setting and modifying the game state, among other fea-
tures. The scene dialogue generated in the framework’s pre-
vious stages is converted into our custom Ink-like script and
beat sheet that can be played in the game engine. During
the conversion process, the scene location is established, and
all characters from the script are moved to their identified
spawn points, including both author-selected and auxiliary

90

characters introduced by the generated script. The location,
characters, emotes, and gestures are built on prefabricated
game world assets. The conversion process establishes the
beat sheet, initiating the conversation when the player ap-
proaches and interacts with the appropriate character. Fi-
nally, Ink script choice points and dialog path flow are set
up. The Ink script is set up such that when a player decides
on a conversation alternative, all the choices made by the
player are remembered in the game state, and the dialogue
responds to the choice as the conversation proceeds. The cor-
responding emote and gesture are triggered in the Ink script
just before an NPC renders a dialogue. Figure 3 shows a se-
quence of screenshots from the generated game episode.

SCENECRAFT Implementation

Given the author’s prompts, SCENECRAFT operates as fol-
lows. Figure 6(a) shows the author’s initial input context ob-
tained by the framework. It is based on the input provided by
the author through the author’s intent workbook. The cap-
tured details include information about all the NPC (non-
player) characters and the character played by the user, along
with information about the location, possible spawn points,
story prompt, and possible variants. The framework identi-
fies the spawn points and scene location as assets available
in the game. The details from the author’s intent are sub-
sequently used in LLM prompts that are used to generate a
scene script realized in the Unity game. Figure 6(b) shows
the prompts used in sequence to translate the author’s input
into the scene script.

SCENECRAFT translates the author’s input into a
dialogue-driven scene, including dialogue flows for all vari-
ants. It then converts the generated scene script into a Python
object that the subsequent framework modules can easily
consume. It also uses the LLM to identify specific emo-
tions and gestures corresponding to each dialogue. Figure
6(b) shows the emotion prompt; the gestures prompt is simi-
lar and not shown here due to space constraints. The LLM is
also used to address Python compilation with the generated
Python script object. As the output from the LLM is stochas-
tic, it may sometimes be necessary to run these requests to
the LLM multiple times to generate a valid Python script ob-
ject. The terms in curly brackets on the first prompt in Figure
6(b): {location}, {scene}, {non_player_job} are elements
captured as part of the author intent. In subsequent prompts,
the variable {script} is the script generated in the previ-
ous interaction with LLM, and variables like {emote list}

Scene: Clinic
Max: (looking sick) Hello.
v
 Dr Kim: (confidently) We have sent the test to the lab.

« 'Y

| Max: My stomach hurts. Max: I have sore throat and fever

v
Dr Kim: (calmly) Test results are
positive. You have salmonellosis.

Dr Kim: (calmly) !l'est results are
positive. You have Covid.

Dr Kim: (rcassurirvlgly) You well be
fine, but you need to quarantine, and
wear a mask..

Dr Kim: (reassurinvgly) You well be
fine, but you must avoid certain foods.
| Max: (nods) Yes doctor.
| Dr Kim: (empathetically) It’sv okay you’ll recover.
| Dr Kim: (sternly) Rcmcmbcrvto take your medicines

v
| Max: (smiles) Thank you doctor.

Figure 4: Example of a generated branched narrative graph.

are lists extracted from the Python objects created in earlier
prompts. The prompts are chained together to create a script
Python object.

The Python object is a list of dialogue elements. Each dia-
logue element in the script is a Python dictionary containing
the dialogue along with the identity of the character who de-
livers the dialogue, the emote representing the character’s
emotional state, and any physical gestures to display during
the dialogue. A script can have multiple variants resulting
in a collection of dialogue lists, one for each variant. The
Python object is converted to a story graph. The final step is
the creation of the game script, which is exported as a script
written for our extended Ink language. The initial sections
of the Ink script specify the location, spawn points, charac-
ters, and other details to identify all the necessary game el-
ements/assets to initialize. Each NPC with dialogues has an
Ink script file illustrating how different conversation paths
interact and how the user’s choices can impact the conversa-
tion unfolding. The custom extension to Ink is used to indi-
cate the emotions and gestures of characters at the appropri-
ate time. We use state variables to track the user-chosen path,
and these state variables determine how their conversation
branches and progresses in the scene. StoryLoom performs
several functions: it reads the script, interprets various com-
mands and narrative paths, and constructs the game scene.
The output is a playable game episode.

Evaluation

We assess the generated game episodes using automated
and human evaluation methods. There are inherent chal-
lenges associated with automatic evaluation for language
generative models for semantic understanding, coherence,
and cohesion of long passages, which necessitates including
human evaluation. For automated evaluation, we use three
high-level prompts and generate ten scene scripts for each
prompt using various paraphrasings. The automated evalua-
tions are conducted based on this generated dataset.

Automated Evaluation

We measure the creativity of our system by calculating the
ROUGE-L score between two generated scripts (Lin 2004).
ROUGE-L is a measurement that evaluates the similarity of

91

User Interface User Input
Narrative Director
Story State

World State

Beat Sheet Dialogues

Prop Location Character Character . Branching :
:) 5 7 . Narration o !
[l Triggers Triggers Interaction Dialogues Choices |

; World Resources :
| =n
; Narrative :

Script Assets

Game
World Assets

Figure 5: Architecture of script to game engine module.

sentence structures by identifying the longest sequence of
matching n-grams that occur in the same order. We compare
the ROUGE-L metric distribution when scripts are generated
from the same prompt versus those from different prompts.
Although we expect higher ROUGE-L scores for scripts de-
rived from the same prompt, we consider high variation in
the distribution of ROUGE-L values as a sign of novelty in
the generated script.

To assess alignment and adaptability to author input, we
convert the prompt and scripts into sentence embeddings us-
ing Sentence-BERT (Reimers and Gurevych 2019). We can
use the embedding to overcome the substantial size differ-
ences between prompts and generated scripts. Cosine simi-
larity is employed to measure the similarity between these
embeddings. We then plot the distribution of distances for
prompt-to-generated script and prompt-to-unrelated script.
Statistically distinct distributions will indicate that the gen-
erated scripts are aligned with their corresponding prompt.

Human Evaluation

Participants for this study were recruited through a purpo-
sive sampling method, utilizing the researcher’s established
professional and academic network. We recruited 9 partic-
ipants with a broad range of game development expertise
(ages 25 to 53) to use SCENECRAFT to generate scenes. The
participants consisted of two graduate students and one re-
search scientist. All three were familiar with video games.
Additionally, it consisted of one game software engineer
and two digital artists familiar with game development. Fi-
nally, we had one participant who was a math teacher, a soft-
ware engineer, and one who was a scientist in biological
sciences, all three with minimal exposure to video games.
Each participant engaged with SCENECRAFT during a 45
minute session. The session started with an introduction to
the framework along with an explanation of how to pro-
vide author intent for scene generation. Following the in-
troduction, the participant used the author’s intent work-
book to record their intent as discussed in an earlier section.
The participants waited for a few minutes as SCENECRAFT
generated the game episode before playing. Once the game
episode was generated, the participants played the episode
and then responded to five questions listed below on the

{"player": "Max", "non_player": "Elise", ()
"non_player_job": "a lab technician",
"location": {

"name": "island", "value": "CampCILI"

Script Generation Prompt

Write an interesting one act play about {script}. Set in a {location} {scene} with {player}(a young person) and
{non_player}({non_player job}). Include hand gestures and emotions for {non_player} in the script.

(b)

b Script Variant Prompt
"spawn": { "scene": "Beach",

"Max": "BeachWelcome",

Given a formatted play, {script} rewrite it with the change that, {variant}. Reuse dialogues.

"Elise": "BeachHut"

b . . Definition:

"story_prompt": "Elise believes the lake's

fish population is dying because of water
temp",

Oand 1
Examples:
"variants": ["Elise believes that the lake's
fish population is dying because of waste

runoff from a farm”],

"characters": ["Max", "Elise"]}

Task:

{emote_list}. emotions =

Emotion to Game Asset Mapping Prompt

The system only supports, Category: Neutral, Happy, Angry, Sad, Surprised, Disgusted, Fearful. Scale: can only be between

smiling, Category: Happy, Scale: 0.5; upset, Category: Sad, Scale: 0.8; nervously, Category: Fearful, Scale: 0.2

Write the following list of emotes into a python list of dictionary items, using the keys "emote",

category" and "scale":

Figure 6: (a) Structured author’s input used for all subsequent generations. (b) LLM prompts to generate scene scripts.

Likert scale from 1 to 7. The participants generate up to 2-3
game episodes with different prompts and record their scores
for the questions. Each participant’s score for each question
is average across all their game plays. The data presented is
the average of all the participants’ scores.

These questions are based on the User Experience Ques-
tionnaire (UEQ) (Schrepp, Hinderks, and Thomaschewski
2017), a validated quantitative tool to measure psychome-
tric properties of a product user experience. The question-
naire was created by usability experts in 2005. The UEQ has
multiple versions with different sets of questions. We have
used a subset of questions that apply to our specific scenario
and map to the six usability measures described by UEQ:
Attractiveness, Perspicuity, Efficiency, Dependability, Stim-
ulation, and Novelty.

* How would you rate the ease of generating new narra-
tives using the tool (Ease of Use)? From ‘Complicated’
to ‘Easy’. SCENECRAFT’s ultimate objective is to sim-
plify the process of scene generation. By assessing ease
of use, we can determine if SCENECRAFT successfully
lowers the barrier to entry and allows writers and de-
signers to generate narratives efficiently and intuitively.
This question addresses UEQ measure to gauge how easy
the framework is to learn and use (‘Perspicuity’) and if
the users can accomplish their tasks efficiently (‘Effi-
ciency’).

* How engaging and unexpected did you find the gener-
ated game (Creativity)? From ‘Dull’ to ‘Creative’. This
question evaluates SCENECRAFT’s ability for originality
and unexpectedness of the exchanges it creates. Based
on these scores, one can judge the extent to which
SCENECRAFT can break from conventional storytelling,
thereby creating unique player experiences. This ques-
tion validates that the framework fulfills the ‘Novelty’
criterion. It also addresses the fun aspect of the frame-
work (‘Stimulation’).

* To what extent did the interaction in the game accu-
rately represent and respond to your intent (Adaptabil-
ity)? From ‘Unsatisfactory’ to ‘Satisfactory’. As the au-
thors specify their intent at the beginning of the process
to initiate the generation of the scene, this question aims

92

to assess the control authors perceive when using the tool.
This question validates if the designer feels in control of
the interaction (‘Dependability’).

* How would you evaluate the game’s characters and sto-
ryline in terms of their believability, coherence, and
engagement (Dependability)? From ‘Not Interesting’
to ‘Interesting’. SCENECRAFT, as part of its genera-
tion, writes dialogues and renders emotion and gestures
to characters to match the feeling of what the NPC
says. This question aims to apprehend if this feature of
SCENECRAFT was successful. This question validates
that the effects of their suggestions are as reflected in the
generation as expected (‘Dependability’).

* Overall, how pleased are you with the game generated
by the tool (Satisfying)? From “Not Satisfied” to “Sat-
isfied”. This general metric offers a holistic view of
SCENECRAFT’s performance. A satisfying experience
suggests SCENECRAFT meets expectations across all as-
pects of scene generation. This question validates that the
overall impression of the product is positive (‘Attractive-
ness’).

Results and Discussion

We showcase the ability of our framework to generate novel
game interactions aligned with the author’s intent. In the fol-
lowing sections, we validate these capabilities through auto-
mated and human evaluation.

Creativity

As described above, we use the ROUGE-L score to measure
the similarity between generated scripts. ROUGE-L is par-
ticularly useful as it accounts for the longest common sub-
sequence between two texts. ROUGE-L is typically used to
compare a generated text to a reference text, but we use it to
compare two generated texts.

Figure 7 displays the number of pairs corresponding to
each ROUGE-L value, comparing scripts that were gener-
ated from identical prompts with those generated from un-
related prompts. Our analysis reveals that, as anticipated,
the ROUGE-L scores for generated script pairs originating

20 different prompt

same_prompt

N
(9]

Frequency
=

0.15 0.3

0.2 0.25
ROUGE-L

Figure 7: ROUGE-L distribution for generated scripts from
the same and unrelated prompts.

from the same prompt were higher than those for the base-
line, which consisted of script pairs from different prompts.
This outcome confirms that scripts generated from the same
prompts exhibit greater similarity than unrelated prompt
pairs. However, we observed an interesting phenomenon
where several generated scripts from the same prompt were
as dissimilar as unrelated prompt pairs, as evidenced by the
overlap in the ROUGE-L score distributions.

Additionally, we noted a significantly higher variance in
the ROUGE-L distribution for same-prompt script pairs,
with the variance being nearly twice that of the baseline
unrelated-script pair distribution. This finding suggests that
while the generation process tends to produce more similar
scripts when given the same prompt, it also generates a wide
range of scripts with varying degrees of similarity. This vari-
ability in similarity indicates that the script generation capa-
bilities show significant variability and novelty. We use hu-
man evaluation, discussed below, to confirm these findings.

Alignment with Author Intent

We evaluate the alignment between the author’s intent and
the generated script by examining the semantic similarity
between the prompt and its corresponding generated script.
Given the substantial word count discrepancy between the
prompts and their generated scripts, we chose sentence em-
bedding similarity over the ROUGE metric for evaluation.
We expect a prompt to be most aligned with the script it gen-
erated and less aligned with unrelated scripts. Figure 8 illus-
trates the distribution of cosine similarity scores, indicating
a statistically significant difference (p-value = 2.6e-62) in
similarity distribution between the prompt and its generated
script compared to an unrelated script.

To further investigate whether specific utterances within
the script matched the author’s intent, we evaluated the sim-
ilarity between the author’s input and individual sentences in
the script, selecting the maximally similar sentence among
them. Figure 9 displays the corresponding similarity distri-
butions, revealing a pattern of very high similarity (median
>0.7) between sentences in the prompt and those in its gen-
erated script. Interestingly, the baseline comparison with an
unrelated script exhibits a bimodal distribution. This type

93

5 different_prompt
same_prompt

Frequency
w

N

1 /

0.1 0.3 0.5 0.7
Cosine Similarity (prompt to script)

Figure 8: Cosine similarity between prompt string and gen-
erated script. Baseline (orange) corresponds to prompt string
compared with unrelated script.

of distribution may arise from the nature of the prompts
used to generate the evaluation scripts - specifically, two of
these prompts relate to sickness on the island (‘fishes falling
sick’ and ‘pandemic on the island’). These similarities in
theme could lead to overlapping sentences in scripts gener-
ated from these disparate prompts.

Our quantitative analysis clearly aligns the author’s intent
and the generated script. We corroborate these findings with
human evaluation.

Human Evaluation of SCENECRAFT

Human evaluators evaluated the ScreenCraft framework on
five questions corresponding to the following metrics: ‘Ease
of Use’, ‘Creative’, ‘Adaptable’, ‘Dependable’, and ‘Satisfy-
ing’. As described above, 9 participants assessed each met-
ric after generating game episodes based on 2-4 prompts.
As shown in Figure 10, SCENECRAFT received an average
score of 6.44 out of a maximum of 7 for ‘Ease of Use,
demonstrating that participants found the framework user-
friendly and straightforward for generating game episodes.
The standard deviation was 0.53, showing a small spread in
the scores ranging from 6 to 7. For the ‘Creative’ metric,
SCENECRAFT received a mean score of 5.76. Even though
the score is relatively high, there is still potential for im-
provement. The standard deviation was 0.80, implying a
more diverse range of opinions. Scores ranged from 5 to 7
for the SCENECRAFT adaptability metric, with an average
of 6.22, indicating the users’ confidence in the reliability
and stability of the framework. On the ‘Dependable’ met-
ric, SCENECRAFT scored a high average of 6.06, signify-
ing users found the characters believable, coherent, and en-
gaging. The standard deviation was 0.77, again indicating a
larger spread, with scores ranging from 5 to 7. Lastly, when
asked to evaluate if the overall experience was satisfactory
SCENECRAFT received a high mean score of 6.19, showing
that users were satisfied with their overall experience, except
for a single outlier of 4.5. The outlier score was for a case
where the participant gave unrelated prompts for the main
story and alternates. Overall, it was noted that participants
with more extensive game development experience tended

5 different prompt

same_prompt

N

Frequency
w

N

1 A

7

0.2 04 . 06 . 08
Maximum Cosine Similarity

Figure 9: Maximum cosine similarity between prompt string
and sentences in the generated script. Baseline (orange) cor-
responds to prompt string compared with unrelated script.

to give lower scores.

Users received the SCENECRAFT framework favorably,
particularly concerning ease of use, satisfaction, and adapt-
ability. The high scores for these metrics suggest that
SCENECRAFT effectively aids authors in transforming their
ideas into game episodes with minimal effort. While
SCENECRAFT received positive feedback on creativity and
character engagement, there is still room for improvement.
Single-sentence story prompts provided by participants were
possibly limiting the unique context required for LLMs to
showcase higher creativity. Future iterations should encour-
age participants to provide more elaborate prompts.

Limitations

We recognize that certain factors limit the complete realiza-
tion of our framework’s potential, and there are specific as-
pects we need to address. Our framework is built on publicly
available LLM implementations. As with most LLM work, it
will be important to investigate how LLM output aligns and
conforms to the ethical principles of the authors using the
framework. In this light, future studies should identify ways
to align these models’ output with standard ethical guide-
lines. Second, our proposed framework primarily targets au-
tomating individual scene creation within a larger narrative
structure. However, generating a coherent and compelling
narrative requires a high-level plot that binds these individ-
ual scenes together. Addressing this limitation will involve
integrating a narrative planner and experience manager to
drive the higher-level plot.

Conclusion

Authoring narrative-centered games that create engaging,
interactive story-based experiences that can respond to in-
dividual player choices has long been a central challenge
for intelligent narrative technologies. To address this chal-
lenge, we introduced SCENECRAFT, a narrative scene gen-
eration framework that leverages the capabilities of LLMs
to automate the generation of non-player character interac-
tions integral to unfolding plot events. By using LLMs to
extract semantic aspects of the generated script, the in-game
interaction reflects the author’s objective through dialogue

94

[

Likert Scale
N

n

s

45 .
EaseOfUse

Creative Adaptable Dependable Satisfying

Figure 10: Score distribution for each of the human evalua-
tion questions.

utterances, emotes, and gestures. SCENECRAFT delivers en-
gaging player experiences with branching interactions in a
3D virtual environment based on simple author instructions
within a few minutes.

Our empirical evaluation has demonstrated
SCENECRAFT’s effectiveness in creating engaging narrative
experiences that align with authorial intent. The evaluation
incorporated a two-pronged approach integrating automated
metrics and human assessment to appraise SCENECRAFT’s
capabilities. The automated evaluation using ROUGE-L
score and sentence similarity shows that SCENECRAFT
can generate diverse scripts while maintaining alignment
between the author’s intent and narrative episode. The effec-
tiveness of SCENECRAFT was also demonstrated through
human evaluation, where the system was favorably received,
particularly in terms of ease of use, adaptability, and user
satisfaction. These high scores indicate that SCENECRAFT
effectively aids authors in turning their ideas into playable
game episodes with minimal effort. The more moderate
scores in creativity suggest room for improvement, which
we hope to address in our future work. The empirical
results strongly support the potential of SCENECRAFT as
an effective tool for automating the generation of interactive
narratives in games.

In future work, it will be important to build on these find-
ings by investigating extensions to SCENECRAFT incorpo-
rating embodied conversational agents, generation of narra-
tive plots, and narrative events triggered by interactions with
NPCs in the game. LLMs have shown promise as zero-shot
planners (Huang et al. 2022), taking a zero-shot planning
approach to these problems holds considerable promise for
the future. Finally, it will be important to investigate integra-
tions of SCENECRAFT with narrative experience managers
to further enrich the narrative game design process in order
to create a broad range of player-adaptive narrative games.

Acknowledgments

This work is supported by the National Science Founda-
tion under award DRL-2112635. Any opinions, findings,
and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

References

Akoury, N.; Wang, S.; Whiting, J.; Hood, S.; Peng, N.; and
Iyyer, M. 2020. STORIUM: A Dataset and Evaluation Plat-
form for Machine-in-the-Loop Story Generation. In Pro-
ceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing, (EMNLP), 6470—6484.

Alabdulkarim, A.; Li, S.; and Peng, X. 2021. Automatic
Story Generation: Challenges and Attempts. In Proceedings
of the Third Workshop on Narrative Understanding, 72-83.
Virtual: Association for Computational Linguistics.

Ammanabrolu, P.; Tien, E.; Cheung, W.; Luo, Z.; Ma, W.;
Martin, L. J.; and Riedl, M. O. 2020. Story realization:
Expanding plot events into sentences. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34,
7375-7382.

Bubeck, S.; Chandrasekaran, V.; Eldan, R.; Gehrke, J.;
Horvitz, E.; Kamar, E.; Lee, P; Lee, Y. T.; Li, Y.; Lundberg,
S.; Nori, H.; Palangi, H.; Ribeiro, M. T.; and Zhang, Y. 2023.
Sparks of Artificial General Intelligence: Early experiments
with GPT-4. arXiv:2303.12712.

Calderwood, A.; Wardrip-Fruin, N.; and Mateas, M. 2022.
Spinning Coherent Interactive Fiction through Foundation
Model Prompts. In Proceedings of the 13th International
Conference on Computational Creativity, Bozen-Bolzano,
Italy, June 27 - July 1, 2022, 44-53. Association for Com-
putational Creativity (ACC).

Chen, M.; Tworek, J.; Jun, H.; Yuan, Q.; Pinto, H. P. d. O.;
Kaplan, J.; Edwards, H.; Burda, Y.; Joseph, N.; Brockman,
G.; etal. 2021. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374.

Chowdhery, A.; Narang, S.; Devlin, J.; Bosma, M.; Mishra,
G.; Roberts, A.; Barham, P.; Chung, H. W.; Sutton, C.;
Gehrmann, S.; et al. 2022. Palm: Scaling language modeling
with pathways. arXiv preprint arXiv:2204.02311.

Huang, W.; Abbeel, P.; Pathak, D.; and Mordatch, 1. 2022.
Language models as zero-shot planners: Extracting action-
able knowledge for embodied agents. In International Con-
ference on Machine Learning, 9118-9147. PMLR.

Kreminski, M.; Dickinson, M.; Mateas, M.; and Wardrip-
Fruin, N. 2020. Why Are We Like This?: The Al architec-
ture of a co-creative storytelling game. In Proceedings of the
15th International Conference on the Foundations of Digital
Games, 1-4.

Kreminski, M.; Dickinson, M.; Wardrip-Fruin, N.; and
Mateas, M. 2022. Loose Ends: a mixed-initiative creative
interface for playful storytelling. In Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment, volume 18, 120-128.

Kreminski, M.; Wardrip-Fruin, N.; and Mateas, M. 2020.
Toward Example-Driven Program Synthesis of Story Sifting
Patterns. In AIIDE Workshops.

Lin, C.-Y. 2004. ROUGE: A Package for Automatic Evalu-
ation of Summaries. In Text Summarization Branches Out,
74-81. Barcelona, Spain: Association for Computational
Linguistics.

95

Lin, Z.; and Riedl, M. O. 2021. Plug-and-blend: a frame-
work for plug-and-play controllable story generation with
sketches. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence and Interactive Digital Entertainment, vol-
ume 17, 58-65.

Liu, P.; Yuan, W.; Fu, J.; Jiang, Z.; Hayashi, H.; and Neubig,
G. 2023. Pre-train, prompt, and predict: A systematic survey
of prompting methods in natural language processing. ACM
Computing Surveys, 55(9): 1-35.

Martin, L.; Ammanabrolu, P.; Wang, X.; Hancock, W.;
Singh, S.; Harrison, B.; and Riedl, M. 2018. Event repre-
sentations for automated story generation with deep neural
nets. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32.

Martin, L. J.; Harrison, B.; and Riedl, M. O. 2016. Im-
provisational computational storytelling in open worlds. In
Interactive Storytelling: 9th International Conference on
Interactive Digital Storytelling, ICIDS 2016, Los Angeles,
CA, USA, November 15-18, 2016, Proceedings 9, 73-84.
Springer.

Mirowski, P.; Mathewson, K. W.; Pittman, J.; and Evans,
R. 2023. Co-Writing Screenplays and Theatre Scripts with
Language Models: Evaluation by Industry Professionals. In
Proceedings of the 2023 CHI Conference on Human Factors
in Computing Systems, 1-34.

Mott, B. W.; Taylor, R. G.; Lee, S. Y.; Rowe, J. P.; Saleh,
A.; Glazewski, K. D.; Hmelo-Silver, C. E.; and Lester, J. C.
2019. Designing and developing interactive narratives for
collaborative problem-based learning. In Interactive Story-
telling: 12th International Conference on Interactive Dig-
ital Storytelling, ICIDS 2019, Little Cottonwood Canyon,
UT, USA, November 19-22, 2019, Proceedings 12, 86—100.
Springer.

Naul, E.; and Liu, M. 2020. Why story matters: A review of
narrative in serious games. Journal of Educational Comput-
ing Research, 58(3): 687-707.

Oliver, E.; and Mateas, M. 2021. Crosston tavern: modulat-
ing autonomous characters behaviour through player-NPC
conversation. In Proceedings of the AAAI Conference on

Artificial Intelligence and Interactive Digital Entertainment,
volume 17, 179-186.

OpenAl. 2023. GPT-4 Technical Report. arXiv:2303.08774.

Ramirez, A.; and Bulitko, V. 2014. Automated planning and
player modeling for interactive storytelling. IEEE Transac-
tions on Computational Intelligence and Al in Games, 7(4):
375-386.

Rashkin, H.; Celikyilmaz, A.; Choi, Y.; and Gao, J. 2020.
PlotMachines: Outline-Conditioned Generation with Dy-
namic Plot State Tracking. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), 4274-4295.

Reimers, N.; and Gurevych, I. 2019. Sentence-BERT:
Sentence Embeddings using Siamese BERT-Networks. In
Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th Interna-

tional Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), 3982-3992.

Riedl, M. O.; and Bulitko, V. 2013. Interactive narrative: An
intelligent systems approach. Ai Magazine, 34(1): 67-67.

Riedl, M. O.; and Young, R. M. 2006. From linear story gen-
eration to branching story graphs. IEEE Computer Graphics
and Applications, 26(3): 23-31.

Riedl, M. O.; and Young, R. M. 2010. Narrative planning:
Balancing plot and character. Journal of Artificial Intelli-
gence Research, 39: 217-268.

Schrepp, M.; Hinderks, A.; and Thomaschewski, J. 2017.
Construction of a Benchmark for the User Experience Ques-
tionnaire (UEQ). International Journal of Interactive Mul-
timedia & Artificial Intelligence, 4(4).

Stefnisson, I.; and Thue, D. 2018. Mimisbrunnur: Al-
assisted authoring for interactive storytelling. In Proceed-
ings of the AAAI Conference on artificial Intelligence and
Interactive Digital entertainment, volume 14, 236-242.
Thiebaux, M.; Marsella, S.; Marshall, A. N.; and Kallmann,
M. 2008. Smartbody: Behavior realization for embodied
conversational agents. In Proceedings of the 7th interna-
tional joint conference on Autonomous agents and multia-
gent systems-Volume 1, 151-158.

Todd, G.; Earle, S.; Nasir, M. U.; Green, M. C.; and To-
gelius, J. 2023. Level Generation Through Large Language
Models. In Proceedings of the 18th International Confer-
ence on the Foundations of Digital Games, 1-8.

Wang, S.; Durrett, G.; and Erk, K. 2020. Narrative interpola-
tion for generating and understanding stories. arXiv preprint
arXiv:2008.07466.

Ware, S. G.; Garcia, E.; Fisher, M.; Shirvani, A.; and Farrell,
R. 2022. Multi-agent narrative experience management as
story graph pruning. IEEE Transactions on Games.

Yao, L.; Peng, N.; Weischedel, R.; Knight, K.; Zhao, D.; and
Yan, R. 2019. Plan-and-write: Towards better automatic sto-
rytelling. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 33, 7378-7385.

96

