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1. Introduction

Estimating the risk measure of a complex system’s operational
performance in an uncertain environment is of great importance in
a wide spectrum of economic, engineering, financial, and health-
care applications. Stochastic simulations have long been used for
this purpose thanks to its ability to generate realizations of risk
factors from often times high-dimensional and complex probabil-
ity distribution models and then to evaluate the performance of
the system under the realized risk factors. When the performance
evaluation requires solving a simulation optimization problem, the
estimation of risk measures takes the form of a two-stage stochas-
tic simulation optimization, with the first stage generating risk fac-
tors and the second stage performing simulation optimization un-
der a realized set of risk factors.

One example is the estimation of the risk measure for a hos-
pital’s capability to handle arriving patients with life-threatening
conditions that require immediate treatment in either an intensive
care unit (ICU) or a coronary care unit (CCU). The risk measure
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is defined as the probability of a new patient being denied ad-
mission because there is no ICU/CCU bed available. Hospital bed
shortage is a widespread problem all over the world, especially in
China where the average bed utilization in hospitals reached 83.6%
in 2019 Bureau (2020a). In Shanghai, it has reached 93.6% in 2019
Bureau (2020b). In the context of the global COVID-19 pandemic,
the hospital bed shortage problem becomes ever more urgent and
a disturbingly large number of patients who need critical care are
being denied admissions.

One way to decrease the probability of denied admission is to
better utilize the limited number of hospital beds, such as a novel
decentralized admission control system with partial capacity shar-
ing studied empirically by Zhao, Yu, & Hu (2022) and then the-
oretically by Wang, Yu, & Hu (2021b) based on the operations of
the cardiac surgery department at a renowned general hospital in
China. However, designing the right admissions control system is
highly dependent on the specific operational conditions and of a
hospital and may not be easily adopted at a large scale. There is
also clearly a capacity limit beyond which no more benefit may be
generated.

A more generally applicable and salable approach is capacity
expansion, e.g., to add more beds and corresponding services and
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facilities. However, physical space and financial resources are lim-
ited. So any capacity expansion projects must be carefully planned
and justified, which may be done by the proposed estimation
method using two-stage simulation optimization. Suppose that a
hospital plans to add K beds to ICU and CCU together. As part of
the project approval process, the hospital management needs to
quantify the benefit of the expansion as measured by the proba-
bility of denied admissions. For simplicity, consider the case where
the overall arrival rate of patients remains steady but the propor-
tion of ICU/CCU patients vary. In the first-stage of the analysis, pa-
tient arrival profiles w are generated, which, for example, represent
the proportion of ICU patients among all arriving patients, denoted
by w. The number of beds to add to the ICU/CCU unit, denoted
by x, out of the total planned K new beds, will help determine
the probability of denied admission, denoted as Y (x; ). Given the
complexity of the patient flow in the hospital, a stochastic simu-
lation model is used to estimate Y (x; w). Once w is observed, the
hospital management wants to know the lowest probability of de-
nied admission that can be achieved with different bed allocations.
So the second-stage of the analysis is to determine the lowest de-
nied admissions probability Y*(w) by solving the following simula-
tion optimization problem (we use a maximization formulation for
the second stage simulation optimization problem in this paper):

(1)

where X (w) is the feasible decision space and the expectation is
taken with respect to the randomness in patient arrivals and treat-
ment processes once a patient is admitted. In this paper, we focus
on the case where the decision space is finite. In general, there
is no analytical expression for the objective function in problem
(1) and it needs to be estimated by taking the sample average of
multiple stochastic simulation replications on a decision x under
arrival profile w. Such a problem is known as simulation-based op-
timization, or simply simulation optimization (Chen & Lee, 2011;
Chen, Gao, Chen, & Shi, 2013; Hu, Fu, & Marcus, 2008; Xu et al.,
2016).

Given the uncertainty in the arrival profile w, the risk measure
is defined as the probability that the denied admission rate ex-
ceeds a pre-specified threshold «y:

P* =E,, [H{Y*(a))>a0}]v (2)
where T, is an indicator function. The expectation is taken with
respect to v, the probability measure of w. In this paper, we as-
sume that w'’s are generated from a finite scenario set. The estima-
tion of P* requires a two-stage procedure because samples of risk
factors w need to be first generated following v, and then Y*(w)
has to be estimated by solving a simulation optimization problem
(1). As to the best of our knowledge, such a two-stage risk measure
estimation with the inner level involving a simulation optimization
problem has been rarely studied in the literature, whereas there
are many important real world applications that require such an
approach, such as determining the resilience level of an infrastruc-
ture system (Miller-Hooks, Zhang, & Faturechi, 2012; Zhou et al.,
2021). In the healthcare setting, this two-stage risk measure esti-
mation may be easily cast into a variety of decision making con-
texts. For example, when certain types of medical resources, e.g.,
oxygen tanks, become scarce and have to be rationed among dif-
ferent departments, a two-stage risk measure estimation may be
conducted to answer questions such as the impact of varying de-
mands from different departments or the benefit of acquiring new
resources.

Simulation optimization is well-known to be computationally
challenging because simulations are often time-consuming to ex-
ecute and many replications of simulations have to be done to
control the accuracy of simulation estimates in the presence of
stochastic noise in simulation output data. This computational

Y*(w) = | max -Y(x; w)|,
xeX(w)
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challenge is further exacerbated in the proposed two-stage simula-
tion optimization approach because there are now many risk fac-
tor scenarios for each of which a simulation optimization problem
needs to be solved. In this paper, we refer to the first stage sim-
ulation where risk factor scenarios w are generated as outer level
simulation and the second stage where simulation optimizations
are conducted as inner level simulation.

In the past couple of decades, there has been a rapidly grow-
ing body of simulation optimization literature. For problems where
X(w) has a moderate number of solutions, Ranking & Selection
(R&S) methods can be applied (Branke, Chick, & Schmidt, 2007).
Widely used methods include the Optimal Computing Budget Al-
location (OCBA) type of algorithms (Chen, Lin, Yiicesan, & Chick,
2000; Chen, Yiicesan, Dai, & Chen, 2009; Gao, Chen, & Shi, 2017;
LaPorte, Branke, & Chen, 2012; 2015; Lee, Chew, & Manikam, 2006;
Li, Liu, Pedrielli, Lee, & Chew, 2017; Peng, Chen, Fu, & Hu, 2016;
Xiao, Lee, & Chen, 2015; Xiao, Lee, Morrice, Chen, & Hu, 2021;
Zhang et al., 2016), Bayesian methods (Groves & Branke, 2019;
Qu, Ryzhov, Fu, & Ding, 2015), and frequentist approaches such as
indifference-zone R&S algorithms (Kim & Nelson, 2001; Luo, Hong,
Nelson, & Wu, 2015; Nelson, Swann, Goldsman, & Song, 2001;
Teng, Lee, & Chew, 2010; Zhong, Liu, Luo, & Hong, 2021). When
X(w) is infinite or finite but too large for a direct application of
an R&S procedure, a search algorithm can be used to efficiently
search the decision space X(w) Chen et al. (2013); Gao & Chen
(2016). See Xu, Huang, Chen, & Lee (2015) for a comprehensive
overview of such algorithms. A new line of research in simulation
optimization literature is concerned with the selection of the opti-
mal decision X(w) upon the observation of w (Goodwin, Xu, Celik,
& Chen, 2022; Goodwin, Xu, Chen, & Celik, 2021; Pedrielli et al.,
2019; Thanos, Bastani, Celik, & Chen, 2015). Furthermore, Liu et al.
(2019) design algorithms to efficiently identify whether the per-
formance of the best decision exceeds a pre-specified threshold,
which is directly related to our second-stage problem. However,
these algorithms all focus on solving a single instance of simula-
tion optimization, either without an outer level risk factor scenario
w, or for a specific risk factor scenario w.

Recent works by Gao, Du, & Chen (2019); Li, Lam, Liang, & Peng
(2020); Shen, Hong, & Zhang (2021) on contextual R&S have a two-
stage structure, where the first-stage information is referred to as
covariates or contexts and the second stage is an R&S problem de-
pendent on the covariates or contexts. Unlike the estimation prob-
lem considered in this paper as given in Eq. (2), their focus is still
the selection of the best decision. Gao et al. (2019) and Li et al.
(2020) propose sampling schemes to maximize the expected prob-
ability of correct selection (PCS) or the worst-case PCS across a fi-
nite set of scenarios. In Shen et al. (2021), an indifference-zone R&S
algorithm is developed for efficiently solving problem (1) when
Y (x, w) is assumed to be a linear function of x. In comparison, our
objective is to efficiently estimate a risk measure defined as the
probability that the performance of the best decision on each sce-
nario exceeds a pre-specified threshold.

Two-level simulations, or nested simulations have also been
well studied in the simulation literature, often in the context of
risk measure estimation (Broadie, Du, & Moallemi, 2011; 2015;
Dang, Feng, & Hardy, 2019; Gordy & Juneja, 2010; Hong, Juneja,
& Liu, 2017; Lan, Nelson, & Staum, 2010; Liu & Staum, 2010; Sun,
Apley, & Staum, 2011; Vidyashankar & Xu, 2013; Zhu, Hale, &
Zhou, 2018). According to the formulation in Hong et al. (2017),
nested simulation is concerned with the estimation of a quan-
tity a = Ey, [g(E[Y|w])]- When g(-) is an indicator function, it es-
timates the probability for a system’s performance measure to ex-
ceed a given threshold. However, the inner simulation considered
in nested simulation literature does not need to perform simula-
tion optimization, and are instead just another layer of Monte Carlo
sampling as in the first stage. In Broadie et al. (2011), it was shown
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that a sequential approach to allocate simulation budget can lead
to a significant computational efficiency gain over algorithms that
assign the same number of simulation replications to each risk
scenario w. A similarly efficient sequential simulation budget al-
location approach is desirable for problem (2). However, the inner
level simulation considered in this paper is simulation optimiza-
tion, which fundamentally changes the nature of the problem and
requires new theoretical and algorithmic development. In Wang,
Xu, & Hu (2021a), problem (2) was decoupled and a nested sim-
ulation procedure similar to Broadie et al. (2011) was used to se-
lect a first stage scenario, and then OCBA was used to solve the
second-stage simulation optimization under the selected scenario.
This decoupling approach lacks a theoretical foundation and leads
to sub-optimal solution. As will be discussed in Section 3, the use
of OCBA in the second stage actually leads to wasted simulation
budget.

Another related research area is the recent work comput-
ing budget allocation in stochastic programming. Fei, Giilpinar,
& Branke (2019) considered the allocation of a fixed comput-
ing budget to a two-stage linear stochastic program. Xie, Yi, &
Zheng (2020) introduced the concept of stochastic programming
via simulation (SPvS) and proposed a procedure to solve two-
stage stochastic programming problems where the second-stage
response function requires simulation estimation, similar to our
setting here. Their goal is to optimize a first stage decision variable
whereas ours is to efficiently estimate a risk metric, e.g., the prob-
ability P* given in Eq. (2). The procedure developed in this paper
may be used to help improve the efficiency of an SPvS algorithm,
for example, to improve sampling allocation to improve the esti-
mation accuracy when the problem involves chance constraints.

The main contribution of this paper is a new sequential two-
stage simulation budget allocation procedure for efficient estima-
tion of the risk measure P* as given in (2) that requires two-stage
simulation optimization. The key idea is to estimate the impact
of an additional simulation allocated to a particular risk factor w
as measured by a quantity known as Revised Probability of Sign
Change (RPSC). The consistency of the algorithm is proved and its
numerical efficiency is demonstrated through benchmark test func-
tions and two case studies, one in a financial setting and the other
in a healthcare setting. Through a theoretical analysis of the pro-
cedure, we show that fully solving the second stage simulation op-
timization problem (1) not only hurts the computational efficiency
of the procedure, but, in fact, is unnecessary. Instead of trying to
solve the second stage simulation optimization problem (1) in its
entirety, the developed new procedure uses second-stage simula-
tion budget only to efficiently determine if the indicator function
inside the expectation of (2) is 1 or O for a particular scenario w,
which then leads to increased computational efficiency.

The rest of the paper is organized as follows. Section 2 for-
mulates the two-stage simulation optimization budget alloca-
tion problem. Section 3 develops the two-stage simulation bud-
get allocation procedure and presents an algorithmic implemen-
tation. Section 4 shows the consistency of the proposed algo-
rithm. Section 5 describes test problems and experimental re-
sults that demonstrate the efficiency of the proposed algorithm.
Section 6 concludes the paper.

2. Problem formulation

Let Q= {w;,i=1,...,n} denote the set of n first-stage sce-
narios and X(w;) = {x;;. j=1.....k;} be the set of k; decision al-
ternatives that can be taken under scenario w;. The subset Q* =
{w:Y*(w;) > ag,i=1,...,n} contains scenarios under which the
system’s performance under the best decision exceeds the pre-
specified threshold «g. Set n* = ||2*||. Then for the given 2, we
have P* = n*/n.
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Here, Y*(w;) needs to be determined via simulation optimiza-
tion. We generate m;; IID observations of Y;(x;; w;), [ =1,...,my;,
and use the sample mean of these m;; simulation observations,
?(x,-j; w;), to estimate the true system performance Y (x;;; w;),
which is subject to noise in stochastic simulation outputs. Then we
obtain the estimate

(3)

Y*(w) = max Y(xi:w),
(wy) jofax (xij: ;)

and then estimate n* by fi* = 3L, I,
mate P* by

P+ (@) =ap)” We can then esti-

~

~, n
P = 1* — Zi:l H{?*(wi)>a0} )

T n n )

One obvious and also widely used allocation scheme first
equally allocates second-stage simulation budget among all scenar-
ios, and then equally allocates the simulation budget among all de-
cisions for each scenario. While equal allocation offers a feasible
approach, it is clearly not an efficient way to use simulation bud-
get. To see this point, notice that when solving (2), if we know
a scenario w has performance Y*(w) that is significantly lower
or higher than «q, it is then no longer important to allocate fur-
ther simulation budget to this scenario. While intuitive, it requires
caution to reap this potential computational savings because one
must carefully quantify the uncertainty in Y*(w;). This is more
challenging than in a classical simulation estimator because it re-
quires solving the second stage simulation optimization problem
(1), which is subject to considerable stochastic error when simula-
tion budget is limited.

It is important to observe that while the second stage involves
a simulation optimization, we do not need to solve the simulation
optimization to the full extent, e.g., using a simulation optimiza-
tion algorithm like OCBA. To understand why this observation is
important, we consider a case where Y (x;1: @;) > Y (xp: ;) > og.
For the purpose of solving problem (2), we only need to make
sure that Y(x;;; ;) > g and thus can focus more on simulating
Xj1. However, OCBA would focus on if Y (x;ji; w;) > Y(x;5; w;) and
thus will keep allocating simulation to both x;; and x;,, and thus
potentially waste some simulation budget. We derive a new OCBA
method referred to as OCBA-2S for the two-stage problem (2). The
new procedure sequentially allocates to a chosen decision for a
scenario with the largest revised probability of sign change (RPSC),
which will be elaborated shortly.

3. A new computing budget allocation procedure for two-stage
simulation optimization

Intuitively, if there is one more simulation that can be done,
it should be allocated to a decision under a scenario that would
be most likely to cause a change in the estimate of P*. In Broadie
et al. (2011), a quantity referred to as Probability of a Sign Change
(PSC) was introduced to quantify the significance of collecting an
additional simulation observation from a decision alternative for
a particular scenario. PSC is conditional on the filtration up to the
current iteration and computed as follows. Given a decision x;; that
may be taken under scenario ;, we denote by Y’ (xij; w;) the new
simulation sample average with the additional simulation observa-
tion. Depending on whether the previous sample average }"(xij; ;)
exceeds o or not, PSCj; is given as follows:
P{Y,,(Xij:wi)faoW(xiﬁwi)>a0} if Y(Xij; wi) > Qo;

PSGj = (5)

(V' (xij:0p) >0 |Y (xij: ) <ero } if Y(xijf; ;) < do.

Based on this definition, if we simulate a decision x;; with a high
PSG;; value, the chance of a change in the sample estimate P*
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would also be high. In other words, there is still considerable vari-
ability associated with the simulation estimate of the performance
of decision x;; under scenario w;. With this observation, it seems
that a justifiable approach is to simulate the decision with the
highest PSC. However, considering that we only need to know if
Y*(w;) exceeds ag or not, it is not necessary to consider PSG;;’s.
For example, if we can make sure that there is at least one deci-
sion, which may not even be necessarily the optimal decision, with
a performance Y (x;;; @;) > o, then we do not need to allocate fur-
ther simulation budget to other decisions under w;. Therefore, we
introduce a new metric referred to as Revised-PSC (RPSC) to more
accurately measure the effect of an additional simulation sample.
A sequential allocation rule can then be introduced that allocates
the next simulation sample to a decision with the highest RPSC.
We now proceed to elaborate on the expression of RPSC and de-
rive the new sequential simulation budget allocation policy.

First, we derive the expression of PSC;;. Without loss of gener-
ality, we consider the case that ?(xij; w;) > og. If one more simu-
lation is done on x;;, the new sample mean is

1 myj+1
Y (xij; @) = P > Yixij )
Y I=1
1 m;i -
= — Yo 1 (Xii; w; — Y V(X ).
mij"f‘] m,,+l( ij 1)+ mij+1 ( ij 1)
Therefore, we have

PSC,‘j = P{}-’/(Xij; Cz),‘) < (Xo}
= P{Ym, 1 (Xij; 1) = Y (xij5 y)
< —my; (Y (Xij; 1) — ) — Y (Xij; i) + 010}

~ P{Ymij+1 (s i) — Y (Xijs o) < —myi|Y (xij; ;) — Olo|)}

< (1 )

In the above derivation, we invoke the assumption that m;; > 1
to obtain the approximation, i.e.,

m?

ij | 2
—I |V (xij: @) — g
ol

(6)

—mi (¥ (ij: ) — o) — (Y (xij: @y) — o) ~ —myj|¥ (x5 @07) — et |
The last inequality in (6) is a result of applying the one-sided
Chebyshev inequality, where cr,.? is the variance of the simulation
output of decision x;; under scenario w;.

A similar derivation for the case Y(x,-j;a),-) <agp leads to the
same upper bound for PSG;;:

)1.

We refer to this upper bound for PSC as the Approximate Probabil-
ity of Sign Change (APSC), which can be easily computed. To show
the efficiency of the approximation, we offer an alternative justi-
fication about it. If the simulation output drawn from a location-
scale family of distributions, e.g., if Ymij+l (xij; ;) is normally dis-
tributed, then we have

2
mij - 2

1+—= |Y(xij; w;) — a0|
o

PSG; < APSG;j = ( (7)

PSC; (8)
= P{Ym,-jn (xij: ;i) =Y (x;j: @;)

< —mi(Y (xij; 1) — otg) — Y (x5 @) + o } (9)
~ P{Ym,j+1 (Xijs i) — Y (i 01) < —my|Y (xij; ;) — 0lo|)} (10)
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oty

where ®(x) is the cumulative distribution function of the stan-

—my;|Y (xij; ;) — aol)
O'l'j

(11)

2
dard normal distribution. Notice that APSC;; = (1 + %lY(XU; w;) —
ij

agl?)1, therefore, maximizing the PSGjj according to (11) is equiv-
alent to maximizing APSG;;.

Next, we compute the RPSC for all second stage decisions Xx;;.
For notational simplicity, we let J; = {j e {1.2..... k}|Y (x;j: 0;) >
oo} and |J;| is the cardinality of the set J;. In addition, J;={j e
{1,2,...,k1}|)7(xij;wi) > og} is the estimate of J;. We also denote
by b; = argmax;c(y ..k, Y (%ij; @;) the index for the optimal deci-
sion under scenario w;, and the index for the estimated optimal
decision under scenario w; by Bi = argmaXxje(1 2.k} Y(x,-j; ;).

We divide scenarios into three categories based on the value of
fi], and calculate the RPSC for each decision accordingly.

o I
subject to change with the addition of one sample for each

decision, i.e. Y’ (xij; @;) > ag, which will change the estimate
of P*. We thus have

= 0: Because ?(xjj;wi) <aq for all x;j, H{\_/(XA-w,-)>tx0} is
ib; V=

-1
ml.zj _ 2
RPSG;; = APSG;j = 1+?|Y(X,-j;a)i)—ot0| ) (12)
2
il=1: In this case, we have Y(xig_; ;) > ag and
—~ 1

f/(x,-j;a),-) <og for j#b; If the additional simulation is
allocated to a decision j # b;, the updated }_”(xiE{;w,-) will
always be bigger than «, which means that the Zldditional
simulation will not change our estimate of P* unless it is
allocated to x;; . Therefore, RPSG;; is defined as:

1 m? }—/( ) 2\ ! if _’B
RPSC; = ( +<T§| Xij: i —0‘0|) ="
0 if j #b;.

(13)

e |il >1: There are multiple decisions Xjj satisfying

Y(xij;a)l-)>oz0. If the additional simulation is allocated
to a decision j ¢ Jj, ?’(x,.E,;a),v) will not change. In fact, to
i

cause a change in Lo - at least [f;] samples need
ib

)=}
1

to be allocated, with one to each of the |f;] decisions, and
these |f;] updated estimates need to be smaller than og. So
H{Y’(X@i:wibao} changes with a probability of ﬂjeﬁ APSG;;. To
facilitate the comparison of RPSC;;’s derived for the previous
two categories with jut one additional simulation sample
being allocated, we define RPSCs in this case as follows:

APSC;;

¥, APSCy if j el

if j ¢ J.

[1,.; APSG;

RPSC;;j = (14)

We need to point out that a weight computed from relative
APSG;; is not necessarily the best. We only need to make sure that
an additional simulation can be allocated to the most critical deci-
sions in J;, i.e. the decision has the highest APSG;. In fact, one could
adopt a weight computed from the logarithmic APSG;.

Based on the computed RPSG;, we propose OCBA-2S, a new
simulation budget allocation rule for the efficient estimation of P*.
OCBA-2S selects a scenario and a decision that has the largest RPSC
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to receive the next simulation:
(i*, j*) € argmax RPSG;;.
(.J)
Algorithm 1 presents the new OCBA-2S simulation budget al-

location rule that will be tested in the experiments reported in
Section 5.

(15)

Algorithm 1 (OCBA-2S simulation budget allocation).

INPUT:Q = {w;, i=1,...,n}, X(@;) ={x;j,j =1,... .k}, total sec-
ond stage simulation budget T, the number of initial simulation
replications mg.

INITIALIZE:
Perform mg simulation replications for x;;,i=1,....n, j=1,....k
and record Y (x;j; w;), [ =1, ..., mg; let m;; = my.

LOOP: WHILE Y}, Zﬂf":l m;; <T DO

UPDATE:
Estimate, Allocate and Simulate

1: Compute sample variance 65, sample mean Y(x,»j; w;), for all

i=1,....n,j=1,...,k;

: Calculate RPSG;; foralli=1,...,n,j
(12)-(14).

: Collect an additional simulation sample on scenario w; and
decision x;«j-, where (i*, j*) is given by (15), and set mj ;. «
END OF LOOP
Output:

Return P* = 3", H{?(X,-gi:wi)wo}/n'

1,....k; using equations

4. Analysis of algorithm

In this section, we analyze the asymptotic behavior of the algo-
rithm and show the consistency of the estimate. Since the second-
stage simulation is stochastic, there is an induced probability dis-
tribution over the set of all sample paths. We denote by P[-] and
E[-] the probability and expectation taken with respect to this dis-
tribution. The convergence of sequences of random events is to be
understood with respect to P. We also define 7; to be the o-field
generated by the set of sampled decisions up to iteration t and
their stochastic simulation output up to iteration t — 1, i.e., F; :=
o{x(1),y(1),....x(t —1),y(t — 1), x(t)}, where x(t) is the decision
simulated at in iteration t and y(t) is the corresponding simulation
output. We use m;;(t), ?mij(t) (xij; w;) and 6;;(m;;(t)) to denote the
number of generated samples, estimate sample mean and sample
variance under scenario w; by taking decision x;; in iteration t. In
addition, recall that J; = {j € {1.2,.... k}|Y (xjj: @;) > ap} and [J;] is
the cardinality of the set J;. To show that our estimate P* is consis-
tent, we first prove the following lemmas.

Lemma 4.1. For any scenario w;, if limg_, o, Z?"ﬂ m;;(T) = oo, then
(1):

(2):
(3):

if il =0, then for any j e {1.2,....k}, limr_ , m;j(T) = occ
w.p.1.;

lf Ul' = ], then fOr _]4< E]l', llmT_,OO ml-j* (T) =00 Wpl,

if il > 1, then there is at least one j € J;, s.t. limy_, o m;;(T) =
oo w.p.l.

Proof 4.1. First, we denote by A; the set of decisions receiv-
ing an infinite number of replications as T — oo, i.e., A;
{] € {1, 2,..., ki}| lll'nT‘>oo m,](t) = OO}, and B = {1, 2, ey kl} \Al To
prove the above three conclusions, it suffices to show that if A; €
{1,2,..., k;} \ Ji, then B; = ¢. Suppose B; is not empty, then for any
j €B;, we have limr_, , m;;(T) = M;; < co. In addition, there ex-
ists a sufficiently large Ty, s.t. V jeB;, T>T, mj(T)=M;. Let
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J = argmin;.g APSC;;(M;;). Noticing that limy_ Z’JL m;;(T) = oo
implies that A; is not empty. For any j € A;, according to the Strong
Law of Large Numbers (SLLN), Ymij(T) (xij; w;) converges to Y (x;j; ;)
and 6;;(m;;(T)) converges to o;; with probability one. Furthermore,

7llITl APSC,](TTI,](T))
= lim ]+ﬂ|y (s o) — a| —1_0
T o 6—3 (mij(T)) m;;(T) \&ij> Wi 0 =

w.p.1. Therefore, we can always find a sufficiently large T; (T, > Ty),
st.VT> Tz, APSC,](mU(T)) < APSC”*(MU) and Ymij(T) (X,’j; Ll),') < p.

Considering that limy_, o Z’;":] m;;(T) = oo, there exists a large T3
(T3 > max{T;, T,}) and in iteration T3, the simulation budget has to
be allocated to the decision x; with the largest RPSC;;(m;;(T3))
on scenario w;. Obviously, j* belongs to B;, which means that
m;p (13) = M;y + 1. This contradicts limr_, o my (T) = M;p.0

Lemma 4.1 shows that as T — oo the proposed OCBA-2S algo-
rithm allocates an infinite number of simulations to decisions that
help determine if Y*(w) > « or not for any scenario w. It should
be noted that this is different from requiring the number of sim-
ulations executed on each decision under a scenario to go to in-
finity as T — oc. Instead, only the decisions that help determine if
Y*(w) > ag or not need to be simulated infinitely many times. This
should be contrasted with using OCBA to solve the second-stage
simulation, which would drive the number of simulations allocated
to every decision to infinity in the limit in order to correctly iden-
tify x*(w). Inevitably, this leads to a great deal of waste on simu-
lation budget. The following proposition formally establishes this
property of OCBA-2S, which explains from one perspective why
OCBA-2S can significantly outperform PSC-OCBA as demonstrated
by our numerical examples in Section 5.

Proposition 4.2. For any scenario w; satisfying |;| >1 and je
{1, 2, ey kl} \],', l:fY(Xij; Cl),') < U, then llmT%m m,J(T) < o0 sz

Proof 4.2. We prove the conclusion by contradiction. Suppose
that there exists a j' e {1,2,....k}\Ji, st. limg_ o m;;(T) = co.
According to the SLLN, Ymij,(T)(x,-j/;a),-) converges to Y (x;j; ;)
(Y(xjj; ;) <p) w.p.l. Hence, there exists a large T, s.t

Yo, (ry(Xij; @;) <o holds for any T >T;. In addition, from
ij

Lemma 4.1, there exists a j* € J;, such that limy_ o m;j (T) = oo.
Furthermore, we can also find a sufficiently large T, > T;, such that
Ymij* (T) (X,‘j*; a)i) > U and RPSCU* (m,]* (T)) > 0 hold for any T> Tz.
It means that RPSC;j- (m;j- (T)) > RPSCjjr (m;;(T)) = 0 holds for any
T > T,. Therefore, according to the OCBA-2S algorithm, we have
limr_, o m;;(T) < oo, which leads to a contradiction.C]

Lemma 4.3. For any scenario w;, if limr_, o ZIJL m;;j(T) = oo, then

|

Proof 4.3. We first consider the scenario wj; satisfying Y*(w;) >

. According to Lemma 4.1 and the SLLN, there exist a jeJ;,

and Yp, (1) (Xif; w;) converges with probability one to Y(xl.j; ;)
ij

lim H{leb_(r)(xigi:w.‘)>l¥o} = ]I{Y*(wi)>010}} =1

T—o0

(Y(Xif w;j) > og). Hence, we have
P{ TILH; H{‘?"'isl, (00>} = Liy- (p)>ao) }
= P{TILH; Ymiéi(T)(Xif,i; ;) > 060}

> P{Tlifgloymif(r)(xif; w;) > 060} =1
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Next, we consider the other case with Y*(w;) < ap. According to
Lemma 4.1 and SLLN, for any je {1,2,...,k}, Y, mi; (T) (xij; w;) con-

verges to Y (x;j: ;) (Y (x;j: ;) < o) w1th probablllty one. There-
fore, we have

|

lim I

Tooo {V"‘iﬁ, (T)(x,.Ei:w,-)>ao} = H{Y*(wi)>ao}

{ lim Ym (T)(xlb Twp) < O(o}

-

Combining (1

ki

ﬂ im Ymi]_(T)(x,-j; w) <agl =1.
]=

6) and (17), Lemma 2 holds.J

Lemma 4.3 shows that we can correctly determine if the system
performance under any scenario exceeds the threshold or not as
long as we allocate enough second stage simulation budget to the
scenario.

Lemma 4.4. For any scenario w;, if limr_, o Z?; m;;(T) = oo, then
w.p.1.

Tllm . {max RPSG;j(m;;(T)) = (18)
—o00je{l,2,...,

Proof 4.4. We first consider a scenario w; satisfying |J;| =0, i.e.
Y*(w;) < ag. By Lemma 4.1 and the SLLN, for any j € {1,2 ki},
APSG;j(m;;(T)) converges to O with probability one. Further-
more, when T is sufficiently large, RPSC;;(m;;(T)) = APSG;j(m;;(T)).
Therefore, with probability one, we have

lim max RPSC,](m,](T)) =

T—o0 je{l,

.....

For the other case with [J;] >1, ie. Y*(w;) > o, accord-
ing to Lemma 4.1 and the SLLN, there exists a jeA;nJ;,
such that APSCl.j(mij(T)) converges to 0 with probability one,

and limT_,ooYmm(T)(xif; o) =Y (X5 ;) > otg, which means that

— U

Ym.f(r)(X,-Jﬁ w;j) > g always holds for a sufficiently large T. In ad-
ij

dition, for any jeA;, APSGj(m;;j(T)) also converges to 0 with
probability one. On the other hand, for any jeB;, we claim
that ?Mij(x,-j;w,-) < g holds. Otherwise, similar to the proof of
Lemma 4.1, we can also show that an additional simulation will be
allocated to some decision x;;, j € B;, and this will lead to a contra-
diction. Hence, the RPSG;;j(m;;)(T) for j e B; converges to 0 with
probability one. Therefore, limy_, maXjc(; 5. RPSC j(mi;(T)) =
0 also holds.J

Lemma 4.5. For any scenario w;, under the OCBA-2S algorithm pre-

sented in Algorithm 1,

oo w.p.l.

ki
fim, 2 my (™) =

Proof 4.5. We prove the conclusion by contradiction. Suppose that
the set

k; ki
C= {1 e{1,2, ...,n}|TanC}OZmU(T) = ZMU < oo}

j=1 j=1
is not empty. We can always find a large T, s.t
V ieC jE {],2,...,ki}, mu(T) :Mij holds. Let €=
MaXicc je(1.2....k) RPSC;j(M;;)  and  denote the  corresponding

scenario as wjp. From Lemma 4.4, we know that there exists
a sufficiently large T, with T, > T, such that V T>T, ie
{1.2.....n}, je{l.2.....k}, RPSGj(m;j(T)) <€ holds. Thus,
there exists a large T3 with T3 > T, such that in iteration Ts,
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the simulation budget has to be allocated to scenario w;, i.e.

Zf.":] m;(T3) = Zl;":] M;«j + 1, which leads to a contradiction.CJ
Lemma 4.5 ensure that the proposed OCBA-2S algorithm allo-

cates enough budget to each scenario when there is a sufficiently

large total budget T. Now we are ready to present the main result
on the consistency of OCBA-2S.

Theorem 4.6. The OCBA-2S algorithm presented in Algorithm 1 is
strongly consistent, that is,
lim P* = p*

P(T%o ) ~1.

Proof 4.6. The result follows from Lemma 4.3 and Lemma 4.5:

P)
n

=P Th_?c}c Z {Y,,l (T,(x,b ;)>ao} ZH{Y* (wp)>0o}
i=1

n
P(Z (#Ln;
i=1

T—o0

(19)

P( lim P =
T—o0

H{?’"iﬁ.w)(xil?i:wi)>0fo} - H{Y*(wi)>ﬂtu}) = 0)

H{Ym (T)(x o) >} H{Y*(wi)>010}>> =1

P} =10

Therefore, we have P{limy_, ., P*

5. Numerical experiments

We evaluate the performance of the new OCBA-2S procedure
via comparisons with five other procedures in numerical experi-
ments. The first procedure is equal allocation (EA), which equally
allocates the simulation budget to every decision and every sce-
nario. Therefore, we have under EA m;; =T/ >, k; for all i and
j. The second procedure equally allocates simulation budget to all
scenarios, but then uses the well-known OCBA method to deter-
mine the allocation among the decisions within each scenario. So
this procedure is referred to as EA-OCBA in the following. The
third procedure equally allocates simulation budget to all scenar-
ios, but then uses the method from Liu et al. (2019) which aims
to correctly identify whether the performance under the best deci-
sion exceeds a threshold. We refer to it as the EA-NkOCBA proce-
dure. The fourth procedure is the algorithm proposed in Gao et al.
(2019), which we refer to as cOCBA (covariate OCBA). cOCBA aims
to maximize the PCS for all second stage problems across all co-
variate values (scenarios). The fifth procedure is the algorithm pro-
posed in Wang et al. (2021a). We refer to it as the PSC-OCBA pro-
cedure because it first selects a scenario using PSC and then uses
OCBA to select the decision to simulate.

For each of the five algorithms tested here, we present the es-
timation bias achieved by an allocation policy as a function of the
number of simulation samples allocated. Because of the random-
ness in simulation samples, we conducted each experiment 1000
times using different random number seeds, and take the average
of the bias recorded in these 1000 experiments as an estimate of
the allocation policy’s bias.

5.1. Experiment 1: A benchmark test function

We first test the performance of different procedures on a
benchmark test function given below:



T. Wang, J. Xu, J.-Q. Hu et al.

0.25
L 2 EA
—#— EA-OCBA
ool T —— EA-NKOCBA
’ - —+—cOCBA
—*— PSC-OCBA
OCBA-2S
8015
Ke}
2
®©
£
$1 0.1

0.05

Total Number of Simulation Runs x10°

0.3

European Journal of Operational Research 305 (2023) 1355-1365

—#*—EA-OCBA
—~v— EA-NKOCBA

AN —+—cOCBA
0z —%—PSC-OCBA
<\ OCBA-2S
3
g
Q
T 0.15
£
@
L
0.1
0.05

Total Number of Simulation Runs

Fig. 1. Estimation bias as a function of the total number of simulation samples for P* = 0.9 (left) and P* = 0.1 (right) for test function (20).

) = P j-1 11
Y (s 00) = 045+ oo — +U<—2,2),

ief{l1,2,...,500}, je{1,2,...,20}. (20)

This function is based on a benchmark test function first
reported in Shen et al. (2021). In our experiment, we gen-
erated 500 scenarios and set Y*(w;) €[0.45+ 1/5000,0.45 +
2/5000, ...,0.55]. Each scenario has twenty decision alternatives,
with x;; being the best, i.e., Y*(w;) =Y (Xj;; @;). For other deci-
sions x;j, j =2,3,...,20, we set Y(x;j; ;) =Y (Xj1: ;) — (j—1)/5.
A simulation noise following a uniform distribution U(—%, %) is
added each time a simulation observation is collected. In each ex-
periment, every procedure conducted an initial simulation sam-
pling with my = 10 on all decisions for every scenario. A total of
300,000 was then expended following the allocation determined
by the procedure. At the end of each simulation, we computed the
bias of the estimate P* returned by each of the six procedures be-
ing tested. We repeated this experiment independently 1000 times
and recorded the average bias. Fig. 1 below plots the estimation
bias as a function of the total number of simulation samples allo-
cated for two threshold values g = 0.46 and «y = 0.54, which are
the 10% and 90% quantiles of Y*(w). So the probabilities we want
to estimate are P* = 0.9 and P* = 0.1, respectively.

As can be seen from Fig. 1, in general, OCBA-2S clearly outper-
forms EA, EA-OCBA, EA-NKOCBA, cOCBA and PSC-OCBA. For exam-
ple, Fig. 1 shows that for P* = 0.1, after exhausting the total sim-
ulation budget of 300,000 simulations, EA, EA-OCBA, EA-NKOCBA,
cOCBA and PSC-OCBA reduced the estimation bias to 0.132, 0.029,
0.014, 0.049 and 0.017, all of which are much larger than a bias
of 0.007 achieved by OCBA-2S. Another way to understand the
computational efficiency gain of OCBA-2S is to examine the speed-
up factor, which is calculated as the ratio of the total simulation
budget to the number of simulations used by OCBA-2S to reach
the same level of bias achieved by the other policy after all sim-
ulation budget was expended. For example, EA achieved a bias
of 0.132 with 300,000 simulations. In comparison, OCBA-2S only
used about 10,000 simulations. Thus the speed-up factor is 30. The
speed-up factors of OCBA-2S vs. EA-OCBA, EA-NKOCBA, cOCBA and
PSC-OCBA are 4.3, 2.5, 7.5 and 3.0, respectively. We have similar
observations for P* = 0.9.

We also make the following observations on the performance
of various algorithms tested. First, cOCBA performs very differently
in the two cases for P* = 0.1 and P* = 0.9 as can be very clearly
seen in Fig. 1. To understand why this happens, we first consider a
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scenario w with Y*(w) < «g. We argue it would require much less
simulation effort to correctly determine if Y*(w) exceeds « than
for a scenario with Y*(w) > . To see this point, consider a sub-
optimal decision X # X*(w). If X is incorrectly selected as the best
decision because simulation noise makes Y (X*(w); w) < Y (X; w),
we know Y (X; w) < Y*(w) < «g, and thus it would likely take less
simulation effort to determine Y (X; ®) < ctg. In other words, an
incorrect selection of the best decision could more easily lead to
a correct estimation of the indicator function in Eq. (2). In con-
trast, when only the best decision’s response exceeds the thresh-
old, e.g., only Y*(w) > o, incorrect selection of the best decision
would very likely lead to an incorrect estimate of the indicator
function in Eq. (2), and thus more simulation budget would be
needed for such scenarios. In the case with P* = 0.1, there are 450
scenarios with Y*(w) < ag and thus would actually need much less
simulation effort to correctly determine if Y*(w) < g or not. How-
ever, because cOCBA maximizes the PCS for all scenarios, cOCBA
wastes much budget on these 450 scenarios, which hurts its effi-
ciency. However, in the case P* = 0.9, there are 450 scenarios with
Y*(w) > ag. For these scenarios, maximizing PCS directly helps
with determining if Y*(w) > «g. Therefore, cOCBA performs much
better in this case.

We also notice that although EA-NKOCBA specializes in deter-
mining whether Y*(w) > g for each w in the second stage, it is
still dominated by OCBA-2S because EA-NKOCBA does not consider
budget allocation across scenarios. Finally, we notice in the case of
P* = 0.9, when the simulation budget is relative small, cOCBA out-
performs OCBA-2S. As will be seen in Fig. 2 with increased sim-
ulation noise variance, the lead of cOCBA grows even larger. This
makes us believe that the cause is the sensitivity of OCBA-2S to
the quantity RPCS;;, which is computed using sample statistics and
is thus susceptible to simulation noise, especially in the early stage
of the algorithm.

Because all algorithms except EA use sample statistics to se-
quentially determine allocation, we also test their sensitivities to
simulation noise by making the noise follow a uniform distribu-
tion U(—3. 3), which has a variance 25 times of that in the pre-
vious set of experiments. Results are shown in Fig. 2. In general,
OCBA-2S outperforms the other five methods as long as the to-
tal budget is not too limited. For the case P* = 0.9, as discussed
previously, cOCBA’s allocation aims to ensure high values of PCS
across all scenarios, which leads to more favorable outcomes. The
high noise makes this benefit even more noticeable here and thus
cOCBA maintains the lead over OCBA-2S until there is a reasonably
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Fig. 2. Estimation bias as a function of the total number of simulation samples for P*

large budget. As the expended simulation budget increases, OCBA-
2S again outperforms all other five methods.

5.2. Experiment 2: Risk analysis of a put option portfolio

The test problem in Experiment 2 is a put option example from
Broadie et al. (2011). Specifically, we assume that the portfolio con-
sists of three long position in a single put option. We are inter-
ested in computing the probability of a loss by taking the worst
decision. We consider loss thresholds corresponding to 10% loss
probabilities. The underlying asset follows a geometric Brownian
motion with an initial price of Sy = 100. The drift of this pro-
cess under the real-world distribution used in the outer stage of
simulation is u = 8%. The annualized volatility is o = 20%. The
risk-free rate is r = 3%. The strike of the put option is K =95,
and the maturity is T = 0.25 years (i.e., three months). The risk
horizon is 7 =1/52 years (i.e., one week). With these parame-
ters, the initial value of the put is Xy = 1.699 given by the Black-
Scholes formula. Denote by S:(w) the underlying asset price at
the risk horizon t. This random variable is generated according
to Sy (w) & Soe(“*"z/z)”“ﬁ‘”, where the real-valued risk factor w
is a discrete random variable with equal probability. We assume
that at the risk horizon t, the invester have a chance to sell j
(j €{0,1,2,3}) of his options. In addition, we assume the differ-
ence between the theoretical and real price of a single option is
constant, i.e.

X () = X;(w) = X{ (@)
— E[e™"" " max (K — Sy (@, W), 0) | 0] = ao.

which means that investors are all positive about the put option.
Therefore, the portfolio loss at the risk horizon 7 on scenario w
and decision j is given by

L(w, j) = 3Xo — 3E[e”" """ max (K - Sr(w, W), 0) | @] - jao.

where the expectation is taken over the random variable W, which
is an independently distributed standard normal, and Sy (w, W) is
given by

Sr(w, W) 2 S ()e(r-o"2) -0+ T=TW,

Note that, given a fixed value of w and a standard normal W,
the random variable St (w, W) is distributed according to the risk-
neutral distribution of underlying asset price at the option matu-
rity T, conditional on asset price S; (w) at the risk horizon . Given
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0.9 (left) and P* = 0.1 (right) under high variance.

an outer scenario w; and decision j, each inner loss sample takes
the form

Zj1=3Xo — 37" max (K =St (@i, W), 0) — jao,

where W;; is an independent standard normal random variable. It
is not difficult to see that the loss L(w, j*) (j* = 0) by taking worst
decision is strictly increasing in the risk factor w. Hence, the prob-
ability of a loss exceeding a threshold g can be computed accord-
ing to o =P(L > o) = P(w > w*), where w* is the unique solu-
tion to L(w*) = ag. We conduct Experiment 2 using a total com-
puting budget of 250,000 simulation samples and assume there
are 500 scenarios. To be consistent with the example in Broadie
et al. (2011), we let w<[1.2816 — 82 ... 1.2816 — ;. 1.2816 —
4. 12816 + ;. 1.2816 + 2, ..., 1.2816 + 2] and choose the val-
ues 0.859 for the loss threshold ¢, corresponding to w of 1.2816
and loss probabilities P* of 10%. In addition, we also repeat this
whole procedure 1000 times and then calculate the estimation bias
obtained from these 1000 independent macro replications for each
method. We also provide 10 initial runs for each decision among
all scenarios (mg = 10) for all the four methods.

Fig. 3 plots the simulation results. OCBA-2S clearly outperforms
EA, EA-OCBA, EA-NKOCBA, cOCBA and PSC-OCBA. Specifically, af-
ter exhausting the total simulation budget of 250,000 simulations,
EA, EA-OCBA, EA-NKOCBA, cOCBA and PSC-OCBA reduced the esti-
mation bias to 0.0025, 0.0016, 0.0013, 0.0086 and 0.0012 respec-
tively. In contrast, OCBA-2S reduced the bias to 0.0004. On the
other hand, OCBA-2S used about 14,000, 32,000, 44,000, 2000 and
50,000 simulation budget to achieve the same bias by EA, EA-
OCBA, EA-NKOCBA, cOCBA and PSC-OCBA, respectively. That is to
say, OCBA-2S achieved a speed-up factor of more than 18, 8, 5,
125 and 5 over EA, EA-OCBA, EA-NKOCBA, cOCBA and PSC-OCBA,
respectively.

5.3. Experiment 3: Resource allocation in a healthcare system

The test problem in Experiment 3 studies the resource alloca-
tion problem in a critical care facility depicted in Fig. 4. This test
case was first introduced in Schruben & Margolin (1978) and then
widely by other researchers, for example Ng & Chick (2006) and
Xie, Nelson, & Barton (2014). We use the expected number of pa-
tients per month that are denied a bed as the system’s perfor-
mance. It is a function of the number of beds in the intensive
care unit (ICU), coronary care unit (CCU), and intermediate care
units. Patients arrive according to a Poisson process and are routed
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Fig. 3. Estimation bias as a function of the total number of simulation samples in
experiment 2.
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through the system depending upon their specific health condi-
tion. Specifically, we assume the patients are placed to ICU and
CCU with probability p; and 1 — p;, respectively. In addition, af-
ter a period of treatment, a patient in ICU can exit the system
or transferred to intermediate care units with probability p, and
1 — p,, respectively. A patient in CCU can exit the system or trans-
ferred to intermediate care units with probability p; and 1 — ps,
respectively. The patient flows through the facility is depicted in
Fig. 4.

We fix ten parameters of nine different sources of randomness:
the patient arrival process (Poisson arrivals, mean day), ICU stay
duration (lognormal mean and standard deviation), lognormal ser-
vice times at the intermediate ICU (with mean and standard devi-
ation), intermediate CCU (with mean and standard deviation), and
CCU processes (with mean and standard deviation). The number of
beds in ICU, CCU and intermediate care units are 4, 2 and 5, re-
spectively.

We regard different probabilities p = (pq. py. p3) as different
scenarios in the system. We consider 8 possible values for pq, p,
and ps3: pp € {0.55,0.60,...,0.90}, p, € {0.10,0.15,...,0.45}, and
p3 €{0.10, 0.15, ..., 0.45}. So together are 83 = 512 scenarios. In each
scenario, we need to decide how to allocate two additional beds to
ICU, CCU or intermediate care units, which gives a total of 6 fea-
sible decisions in each scenario. Because of the complexity of the
problem, we do not know the true system performance in each
scenario and instead use a stochastic simulation model to estimate
it. For the purpose of benchmarking, we generated 5000 simula-
tion samples for each of the 6 decisions in each of the 512 scenar-
ios and take the sample means as a reasonably accurate estimate
for the true system performance. We set the threshold oy = 2.086,
which corresponds to P* = 0.1. We set a total computing budget of
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307,200 simulation samples. We again conducted mgy = 10 initial
runs for each decision for all four allocation policies.

Fig. 5 plots the simulation results. OCBA-2S again clearly
outperformed EA, EA-OCBA, EA-NKOCBA, cOCBA and PSC-OCBA.
Specifically, after exhausting the total simulation budget of 307,200
simulations, EA, EA-OCBA, EA-NKOCBA, cOCBA and PSC-OCBA re-
duced the estimation bias to 0.0032, 0.0030, 0.0025, 0.0034 and
0.0016, respectively. In contrast, OCBA-2S reduced the bias to
0.0014. On the other hand, OCBA-2S used about 3000, 6000,
15,000, 3000 and 206,000 simulation budget to achieve the same
bias by EA, EA-OCBA, EA-NkKOCBA, cOCBA and PSC-OCBA, respec-
tively. That is to say, OCBA-2S achieved a speed-up factor of more
than 102, 51, 20, 102 and 1.5 over EA, EA-OCBA, EA-NKOCBA,
cOCBA and PSC-OCBA, respectively.

6. Conclusions

In this paper, we propose the OCBA-2S simulation budget allo-
cation policy for the efficient estimation of a risk measure that re-
quires solving a two-stage simulation optimization problem. OCBA-
2S is built upon a new metric known as RPSC, and uses it to guide
a sequential allocation of simulation budget to first-stage scenar-
ios and then second stage decisions. The consistency of OCBA-2S
is proved and its computational efficiency is demonstrated using
three sets of test problems in comparison with three other simu-
lation budget allocation policies. As to the best of our knowledge,
this paper makes a first step towards the development of a rigor-
ous and efficient simulation budget allocation procedure for esti-
mation of a risk measure that requires a solving two-stage simula-
tion optimization problems.

There are multiple venues for us to expand research on this
topic. This paper is concerned with the estimation of a risk proba-
bility. We plan to extend the procedure to cover other widely used
risk measures such as value-at-risk (VaR) and conditional value-
at-risk (CVaR). In this paper, we consider problems where the sce-
nario space is finite, and we focus on the allocation of second-stage
simulation to a finite number of decisions under each scenario. An
important direction to pursue in the future is when the scenario
space is infinite, either countably infinite or continuous, how one
should balance the sampling of the scenario space and the second
stage decision space. Without sampling enough scenarios, the ac-
curacy of the estimate would certainly be poor. However, sampling
too many scenarios would also hurt the estimate’s accuracy be-
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cause there would not be enough simulation budget to estimate
Y*(w). We believe that combining the basic principle of OCBA-
2S method and some good criterion of balancing the sampling of
the first-stage scenario space and the second stage decision space,
there is a good chance of designing more generally applicable al-
gorithms. Another potentially fruitful venue for research is the de-
velopment of two-stage simulation budget allocation for the new
problem known as two-stage SPvS (Xie et al, 2020). For exam-
ple, such procedures can be used to efficiently estimate chance
constraints in two-stage SPvS. Finally, it is also possible to extend
this work for general two-stage simulation optimization problems
where the simulation evaluation of a solution requires a two-stage
simulation. We are not aware of any work in this direction. The
closest paper is by Zhu, Xu, Chen, Lee, & Hu (2016), who studied
for classical simulation optimization how to balance the number of
solutions generated by a random search algorithm and the number
of simulation replications for each sampled solution. The develop-
ment of an efficient two-stage simulation optimization computing
budget allocation procedure may help solve important problems
such as optimal infrastructure investment to maximize the sys-
tem’s resilience against natural hazards Miller-Hooks et al. (2012).
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