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a b s t r a c t 

This paper is concerned with the efficient estimation of the risk measure of a system where the esti- 

mation requires solving a two-stage simulation optimization problem. The first stage samples risk factors 

that specify a second stage simulation optimization problem. The second stage solves a simulation opti- 

mization problem and outputs the best performance of the system under the realized risk factors, which 

are then aggregated across all first stage samples to produce an estimate of the risk measure. Applica- 

tions of such an estimation scheme arise frequently in important industries such as financial, healthcare, 

logistics, and manufacturing. Because a large number of first stage samples are typically needed, each 

of which requires solving a computationally expensive simulation optimization problem, the two-stage 

simulation optimization approach faces a major computational efficiency challenge. In response to this 

challenge, this paper proposes a sequential simulation budget allocation procedure that determines the 

allocation of simulation budget based on a score known as revised probability of sign change for each de- 

cision under each scenario. The consistency of the proposed procedure is proved and the computational 

efficiency gain of the proposed is demonstrated using both benchmark test functions and two test cases 

in the context of financial portfolio risk estimation and healthcare system resilience estimation. 

© 2022 Elsevier B.V. All rights reserved. 

1. Introduction 

Estimating the risk measure of a complex system’s operational 

performance in an uncertain environment is of great importance in 

a wide spectrum of economic, engineering, financial, and health- 

care applications. Stochastic simulations have long been used for 

this purpose thanks to its ability to generate realizations of risk 

factors from often times high-dimensional and complex probabil- 

ity distribution models and then to evaluate the performance of 

the system under the realized risk factors. When the performance 

evaluation requires solving a simulation optimization problem, the 

estimation of risk measures takes the form of a two-stage stochas- 

tic simulation optimization, with the first stage generating risk fac- 

tors and the second stage performing simulation optimization un- 

der a realized set of risk factors. 

One example is the estimation of the risk measure for a hos- 

pital’s capability to handle arriving patients with life-threatening 

conditions that require immediate treatment in either an intensive 

care unit (ICU) or a coronary care unit (CCU). The risk measure 
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is defined as the probability of a new patient being denied ad- 

mission because there is no ICU/CCU bed available. Hospital bed 

shortage is a widespread problem all over the world, especially in 

China where the average bed utilization in hospitals reached 83 . 6% 

in 2019 Bureau (2020a) . In Shanghai, it has reached 93 . 6% in 2019 

Bureau (2020b) . In the context of the global COVID-19 pandemic, 

the hospital bed shortage problem becomes ever more urgent and 

a disturbingly large number of patients who need critical care are 

being denied admissions. 

One way to decrease the probability of denied admission is to 

better utilize the limited number of hospital beds, such as a novel 

decentralized admission control system with partial capacity shar- 

ing studied empirically by Zhao, Yu, & Hu (2022) and then the- 

oretically by Wang, Yu, & Hu (2021b) based on the operations of 

the cardiac surgery department at a renowned general hospital in 

China. However, designing the right admissions control system is 

highly dependent on the specific operational conditions and of a 

hospital and may not be easily adopted at a large scale. There is 

also clearly a capacity limit beyond which no more benefit may be 

generated. 

A more generally applicable and salable approach is capacity 

expansion, e.g., to add more beds and corresponding services and 

https://doi.org/10.1016/j.ejor.2022.06.028 
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facilities. However, physical space and financial resources are lim- 

ited. So any capacity expansion projects must be carefully planned 

and justified, which may be done by the proposed estimation 

method using two-stage simulation optimization. Suppose that a 

hospital plans to add K beds to ICU and CCU together. As part of 

the project approval process, the hospital management needs to 

quantify the benefit of the expansion as measured by the proba- 

bility of denied admissions. For simplicity, consider the case where 

the overall arrival rate of patients remains steady but the propor- 

tion of ICU/CCU patients vary. In the first-stage of the analysis, pa- 

tient arrival profiles ω are generated, which, for example, represent 

the proportion of ICU patients among all arriving patients, denoted 

by ω. The number of beds to add to the ICU/CCU unit, denoted 

by x , out of the total planned K new beds, will help determine 

the probability of denied admission, denoted as Y (x ;ω) . Given the 

complexity of the patient flow in the hospital, a stochastic simu- 

lation model is used to estimate Y (x ;ω) . Once ω is observed, the 

hospital management wants to know the lowest probability of de- 

nied admission that can be achieved with different bed allocations. 

So the second-stage of the analysis is to determine the lowest de- 

nied admissions probability Y ∗(ω) by solving the following simula- 

tion optimization problem (we use a maximization formulation for 

the second stage simulation optimization problem in this paper): 

Y ∗(ω) = | max 
x ∈ X(ω) 

−Y (x ;ω) | , (1) 

where X(ω) is the feasible decision space and the expectation is 

taken with respect to the randomness in patient arrivals and treat- 

ment processes once a patient is admitted. In this paper, we focus 

on the case where the decision space is finite. In general, there 

is no analytical expression for the objective function in problem 

(1) and it needs to be estimated by taking the sample average of 

multiple stochastic simulation replications on a decision x under 

arrival profile ω. Such a problem is known as simulation-based op- 

timization, or simply simulation optimization ( Chen & Lee, 2011; 

Chen, Gao, Chen, & Shi, 2013; Hu, Fu, & Marcus, 2008; Xu et al., 

2016 ). 

Given the uncertainty in the arrival profile ω, the risk measure 

is defined as the probability that the denied admission rate ex- 

ceeds a pre-specified threshold α0 : 

P ∗ = E νω 

[
I { Y ∗(ω) >α0 } 

]
, (2) 

where I { ·} is an indicator function. The expectation is taken with 

respect to νω , the probability measure of ω. In this paper, we as- 

sume that ω’s are generated from a finite scenario set. The estima- 

tion of P ∗ requires a two-stage procedure because samples of risk 

factors ω need to be first generated following νω and then Y 
∗(ω) 

has to be estimated by solving a simulation optimization problem 

(1) . As to the best of our knowledge, such a two-stage risk measure 

estimation with the inner level involving a simulation optimization 

problem has been rarely studied in the literature, whereas there 

are many important real world applications that require such an 

approach, such as determining the resilience level of an infrastruc- 

ture system ( Miller-Hooks, Zhang, & Faturechi, 2012; Zhou et al., 

2021 ). In the healthcare setting, this two-stage risk measure esti- 

mation may be easily cast into a variety of decision making con- 

texts. For example, when certain types of medical resources, e.g., 

oxygen tanks, become scarce and have to be rationed among dif- 

ferent departments, a two-stage risk measure estimation may be 

conducted to answer questions such as the impact of varying de- 

mands from different departments or the benefit of acquiring new 

resources. 

Simulation optimization is well-known to be computationally 

challenging because simulations are often time-consuming to ex- 

ecute and many replications of simulations have to be done to 

control the accuracy of simulation estimates in the presence of 

stochastic noise in simulation output data. This computational 

challenge is further exacerbated in the proposed two-stage simula- 

tion optimization approach because there are now many risk fac- 

tor scenarios for each of which a simulation optimization problem 

needs to be solved. In this paper, we refer to the first stage sim- 

ulation where risk factor scenarios ω are generated as outer level 

simulation and the second stage where simulation optimizations 

are conducted as inner level simulation. 

In the past couple of decades, there has been a rapidly grow- 

ing body of simulation optimization literature. For problems where 

X(ω) has a moderate number of solutions, Ranking & Selection 

(R&S) methods can be applied ( Branke, Chick, & Schmidt, 2007 ). 

Widely used methods include the Optimal Computing Budget Al- 

location (OCBA) type of algorithms ( Chen, Lin, Yücesan, & Chick, 

20 0 0; Chen, Yücesan, Dai, & Chen, 2009; Gao, Chen, & Shi, 2017; 

LaPorte, Branke, & Chen, 2012; 2015; Lee, Chew, & Manikam, 2006; 

Li, Liu, Pedrielli, Lee, & Chew, 2017; Peng, Chen, Fu, & Hu, 2016; 

Xiao, Lee, & Chen, 2015; Xiao, Lee, Morrice, Chen, & Hu, 2021; 

Zhang et al., 2016 ), Bayesian methods ( Groves & Branke, 2019; 

Qu, Ryzhov, Fu, & Ding, 2015 ), and frequentist approaches such as 

indifference-zone R&S algorithms ( Kim & Nelson, 2001; Luo, Hong, 

Nelson, & Wu, 2015; Nelson, Swann, Goldsman, & Song, 2001; 

Teng, Lee, & Chew, 2010; Zhong, Liu, Luo, & Hong, 2021 ). When 

X(ω) is infinite or finite but too large for a direct application of 

an R&S procedure, a search algorithm can be used to efficiently 

search the decision space X(ω) Chen et al. (2013) ; Gao & Chen 

(2016) . See Xu, Huang, Chen, & Lee (2015) for a comprehensive 

overview of such algorithms. A new line of research in simulation 

optimization literature is concerned with the selection of the opti- 

mal decision X(ω) upon the observation of ω ( Goodwin, Xu, Celik, 

& Chen, 2022; Goodwin, Xu, Chen, & Celik, 2021; Pedrielli et al., 

2019; Thanos, Bastani, Celik, & Chen, 2015 ). Furthermore, Liu et al. 

(2019) design algorithms to efficiently identify whether the per- 

formance of the best decision exceeds a pre-specified threshold, 

which is directly related to our second-stage problem. However, 

these algorithms all focus on solving a single instance of simula- 

tion optimization, either without an outer level risk factor scenario 

ω, or for a specific risk factor scenario ω. 

Recent works by Gao, Du, & Chen (2019) ; Li, Lam, Liang, & Peng 

(2020) ; Shen, Hong, & Zhang (2021) on contextual R&S have a two- 

stage structure, where the first-stage information is referred to as 

covariates or contexts and the second stage is an R&S problem de- 

pendent on the covariates or contexts. Unlike the estimation prob- 

lem considered in this paper as given in Eq. (2) , their focus is still 

the selection of the best decision. Gao et al. (2019) and Li et al. 

(2020) propose sampling schemes to maximize the expected prob- 

ability of correct selection ( P CS) or the worst-case P CS across a fi- 

nite set of scenarios. In Shen et al. (2021) , an indifference-zone R&S 

algorithm is developed for efficiently solving problem (1) when 

Y (x, ω) is assumed to be a linear function of x . In comparison, our 

objective is to efficiently estimate a risk measure defined as the 

probability that the performance of the best decision on each sce- 

nario exceeds a pre-specified threshold. 

Two-level simulations, or nested simulations have also been 

well studied in the simulation literature, often in the context of 

risk measure estimation ( Broadie, Du, & Moallemi, 2011; 2015; 

Dang, Feng, & Hardy, 2019; Gordy & Juneja, 2010; Hong, Juneja, 

& Liu, 2017; Lan, Nelson, & Staum, 2010; Liu & Staum, 2010; Sun, 

Apley, & Staum, 2011; Vidyashankar & Xu, 2013; Zhu, Hale, & 

Zhou, 2018 ). According to the formulation in Hong et al. (2017) , 

nested simulation is concerned with the estimation of a quan- 

tity α = E νω [ g ( E [ Y | ω ] ) ] . When g(·) is an indicator function, it es- 
timates the probability for a system’s performance measure to ex- 

ceed a given threshold. However, the inner simulation considered 

in nested simulation literature does not need to perform simula- 

tion optimization, and are instead just another layer of Monte Carlo 

sampling as in the first stage. In Broadie et al. (2011) , it was shown 
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that a sequential approach to allocate simulation budget can lead 

to a significant computational efficiency gain over algorithms that 

assign the same number of simulation replications to each risk 

scenario ω. A similarly efficient sequential simulation budget al- 

location approach is desirable for problem (2) . However, the inner 

level simulation considered in this paper is simulation optimiza- 

tion, which fundamentally changes the nature of the problem and 

requires new theoretical and algorithmic development. In Wang, 

Xu, & Hu (2021a) , problem (2) was decoupled and a nested sim- 

ulation procedure similar to Broadie et al. (2011) was used to se- 

lect a first stage scenario, and then OCBA was used to solve the 

second-stage simulation optimization under the selected scenario. 

This decoupling approach lacks a theoretical foundation and leads 

to sub-optimal solution. As will be discussed in Section 3 , the use 

of OCBA in the second stage actually leads to wasted simulation 

budget. 

Another related research area is the recent work comput- 

ing budget allocation in stochastic programming. Fei, Gülpınar, 

& Branke (2019) considered the allocation of a fixed comput- 

ing budget to a two-stage linear stochastic program. Xie, Yi, & 

Zheng (2020) introduced the concept of stochastic programming 

via simulation (SPvS) and proposed a procedure to solve two- 

stage stochastic programming problems where the second-stage 

response function requires simulation estimation, similar to our 

setting here. Their goal is to optimize a first stage decision variable 

whereas ours is to efficiently estimate a risk metric, e.g., the prob- 

ability P ∗ given in Eq. (2) . The procedure developed in this paper 

may be used to help improve the efficiency of an SPvS algorithm, 

for example, to improve sampling allocation to improve the esti- 

mation accuracy when the problem involves chance constraints. 

The main contribution of this paper is a new sequential two- 

stage simulation budget allocation procedure for efficient estima- 

tion of the risk measure P ∗ as given in (2) that requires two-stage 

simulation optimization. The key idea is to estimate the impact 

of an additional simulation allocated to a particular risk factor ω
as measured by a quantity known as Revised Probability of Sign 

Change (RPSC). The consistency of the algorithm is proved and its 

numerical efficiency is demonstrated through benchmark test func- 

tions and two case studies, one in a financial setting and the other 

in a healthcare setting. Through a theoretical analysis of the pro- 

cedure, we show that fully solving the second stage simulation op- 

timization problem (1) not only hurts the computational efficiency 

of the procedure, but, in fact, is unnecessary. Instead of trying to 

solve the second stage simulation optimization problem (1) in its 

entirety, the developed new procedure uses second-stage simula- 

tion budget only to efficiently determine if the indicator function 

inside the expectation of (2) is 1 or 0 for a particular scenario ω, 

which then leads to increased computational efficiency. 

The rest of the paper is organized as follows. Section 2 for- 

mulates the two-stage simulation optimization budget alloca- 

tion problem. Section 3 develops the two-stage simulation bud- 

get allocation procedure and presents an algorithmic implemen- 

tation. Section 4 shows the consistency of the proposed algo- 

rithm. Section 5 describes test problems and experimental re- 

sults that demonstrate the efficiency of the proposed algorithm. 

Section 6 concludes the paper. 

2. Problem formulation 

Let � = { ω i , i = 1 , . . . , n } denote the set of n first-stage sce- 
narios and X(ω i ) = { x i j , j = 1 , . . . , k i } be the set of k i decision al- 
ternatives that can be taken under scenario ω i . The subset �

∗ = 

{ ω : Y ∗(ω i ) > α0 , i = 1 , . . . , n } contains scenarios under which the 

system’s performance under the best decision exceeds the pre- 

specified threshold α0 . Set n 
∗ = || �∗|| . Then for the given �, we 

have P ∗ = n ∗/n . 

Here, Y ∗(ω i ) needs to be determined via simulation optimiza- 

tion. We generate m i j IID observations of Y l (x i j ;ω i ) , l = 1 , . . . , m i j , 

and use the sample mean of these m i j simulation observations, 

Ȳ (x i j ;ω i ) , to estimate the true system performance Y (x i j ;ω i ) , 

which is subject to noise in stochastic simulation outputs. Then we 

obtain the estimate 

̂ Y ∗(ω i ) = max 
j∈{ 1 , 2 , ... ,k i } 

Ȳ (x i j ;ω i ) , (3) 

and then estimate n ∗ by ˆ n ∗ = 
∑ n 

i =1 I { ̂  Y ∗(ω i ) >α0 } . We can then esti- 

mate P ∗ by 

̂ P ∗ = 
̂ n ∗

n 
= 

∑ n 
i =1 I { ̂  Y ∗(ω i ) >α0 } 

n 
. (4) 

One obvious and also widely used allocation scheme first 

equally allocates second-stage simulation budget among all scenar- 

ios, and then equally allocates the simulation budget among all de- 

cisions for each scenario. While equal allocation offers a feasible 

approach, it is clearly not an efficient way to use simulation bud- 

get. To see this point, notice that when solving (2) , if we know 

a scenario ω has performance Y ∗(ω) that is significantly lower 

or higher than α0 , it is then no longer important to allocate fur- 

ther simulation budget to this scenario. While intuitive, it requires 

caution to reap this potential computational savings because one 

must carefully quantify the uncertainty in ̂ Y ∗(ω i ) . This is more 

challenging than in a classical simulation estimator because it re- 

quires solving the second stage simulation optimization problem 

(1) , which is subject to considerable stochastic error when simula- 

tion budget is limited. 

It is important to observe that while the second stage involves 

a simulation optimization, we do not need to solve the simulation 

optimization to the full extent, e.g., using a simulation optimiza- 

tion algorithm like OCBA. To understand why this observation is 

important, we consider a case where Ȳ (x i 1 ;ω i ) > Ȳ (x i 2 ;ω i ) > α0 . 

For the purpose of solving problem (2) , we only need to make 

sure that Y (x i 1 ;ω i ) > α0 and thus can focus more on simulating 

x i 1 . However, OCBA would focus on if Y (x i 1 ;ω i ) > Y (x i 2 ;ω i ) and 

thus will keep allocating simulation to both x i 1 and x i 2 , and thus 

potentially waste some simulation budget. We derive a new OCBA 

method referred to as OCBA-2S for the two-stage problem (2) . The 

new procedure sequentially allocates to a chosen decision for a 

scenario with the largest revised probability of sign change ( RP SC), 

which will be elaborated shortly. 

3. A new computing budget allocation procedure for two-stage 

simulation optimization 

Intuitively, if there is one more simulation that can be done, 

it should be allocated to a decision under a scenario that would 

be most likely to cause a change in the estimate of P ∗. In Broadie 

et al. (2011) , a quantity referred to as Probability of a Sign Change 

(PSC) was introduced to quantify the significance of collecting an 

additional simulation observation from a decision alternative for 

a particular scenario. PSC is conditional on the filtration up to the 

current iteration and computed as follows. Given a decision x i j that 

may be taken under scenario ω i , we denote by Ȳ ′ (x i j ;ω i ) the new 

simulation sample average with the additional simulation observa- 

tion. Depending on whether the previous sample average Ȳ (x i j ;ω i ) 

exceeds α0 or not, P SC i j is given as follows: 

P SC i j = 

{ 

P { ̄Y ′ (x i j ;ω i ) ≤α0 | ̄Y (x i j ;ω i ) >α0 } if Ȳ (x i j ;ω i ) > α0 ; 

P { ̄Y ′ (x i j ;ω i ) >α0 | ̄Y (x i j ;ω i ) ≤α0 } if Ȳ (x i j i ;ω i ) ≤ α0 . 
(5) 

Based on this definition, if we simulate a decision x i j with a high 

P SC i j value, the chance of a change in the sample estimate ̂ P ∗
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would also be high. In other words, there is still considerable vari- 

ability associated with the simulation estimate of the performance 

of decision x i j under scenario ω i . With this observation, it seems 

that a justifiable approach is to simulate the decision with the 

highest PSC. However, considering that we only need to know if 

Y ∗(ω i ) exceeds α0 or not, it is not necessary to consider P SC i j ’s. 

For example, if we can make sure that there is at least one deci- 

sion, which may not even be necessarily the optimal decision, with 

a performance Y (x i j ;ω i ) > α0 , then we do not need to allocate fur- 

ther simulation budget to other decisions under ω i . Therefore, we 

introduce a new metric referred to as Revised-PSC (RPSC) to more 

accurately measure the effect of an additional simulation sample. 

A sequential allocation rule can then be introduced that allocates 

the next simulation sample to a decision with the highest RPSC. 

We now proceed to elaborate on the expression of RPSC and de- 

rive the new sequential simulation budget allocation policy. 

First, we derive the expression of P SC i j . Without loss of gener- 

ality, we consider the case that Ȳ (x i j ;ω i ) > α0 . If one more simu- 

lation is done on x i j , the new sample mean is 

Ȳ ′ (x i j ;ω i ) = 
1 

m i j + 1 

m i j +1 ∑ 

l=1 

Y l (x i j ;ω i ) 

= 
1 

m i j + 1 
Y m i j +1 (x i j ;ω i ) + 

m i j 

m i j + 1 
Ȳ (x i j ;ω i ) . 

Therefore, we have 

P SC i j = P { ̄Y ′ (x i j ;ω i ) ≤ α0 } 
= P 

{
Y m i j +1 (x i j ;ω i ) − Y (x i j ;ω i ) 

≤ −m i j ( ̄Y (x i j ;ω i ) − α0 ) − Y (x i j ;ω i ) + α0 

}

≈ P 
{
Y m i j +1 (x i j ;ω i ) − Y (x i j ;ω i ) ≤ −m i j | ̄Y (x i j ;ω i ) − α0 | ) 

}

≤
(
1 + 

m 2 
i j 

σ 2 
i j 

∣∣Ȳ (x i j ;ω i ) − α0 

∣∣2 
)−1 

. (6) 

In the above derivation, we invoke the assumption that m i j ≫ 1 

to obtain the approximation, i.e., 

−m i j 

(
Ȳ (x i j ;ω i ) − α0 

)
−

(
Y (x i j ;ω i ) − α0 

)
≈ −m i j 

∣∣Ȳ (x i j ;ω i ) − α0 

∣∣. 
The last inequality in (6) is a result of applying the one-sided 

Chebyshev inequality, where σ 2 
i j is the variance of the simulation 

output of decision x i j under scenario ω i . 

A similar derivation for the case Ȳ (x i j ;ω i ) ≤ α0 leads to the 

same upper bound for P SC i j : 

P SC i j ≤ AP SC i j = 

(
1 + 

m 2 
i j 

σ 2 
i j 

∣∣Ȳ (x i j ;ω i ) − α0 

∣∣2 
)−1 

. (7) 

We refer to this upper bound for PSC as the Approximate Probabil- 

ity of Sign Change (APSC), which can be easily computed. To show 

the efficiency of the approximation, we offer an alternative justi- 

fication about it. If the simulation output drawn from a location- 

scale family of distributions, e.g., if Y m i j +1 (x i j ;ω i ) is normally dis- 

tributed, then we have 

P SC i j (8) 

= P 
{
Y m i j +1 (x i j ;ω i ) − Y (x i j ;ω i ) 

≤ −m i j ( ̄Y (x i j ;ω i ) − α0 ) − Y (x i j ;ω i ) + α0 

}
(9) 

≈ P 
{
Y m i j +1 (x i j ;ω i ) − Y (x i j ;ω i ) ≤ −m i j | ̄Y (x i j ;ω i ) − α0 | ) 

}
(10) 

= �

(
−m i j | ̄Y (x i j ;ω i ) − α0 | ) 

σi j 

)
(11) 

where �(x ) is the cumulative distribution function of the stan- 

dard normal distribution. Notice that AP SC i j = (1 + 
m 2 

i j 
σ 2 
i j 
| ̄Y (x i j ;ω i ) −

α0 | 2 ) −1 , therefore, maximizing the P SC i j according to (11) is equiv- 

alent to maximizing AP SC i j . 

Next, we compute the RPSC for all second stage decisions x i j . 

For notational simplicity, we let J i = { j ∈ { 1 , 2 , . . . , k i }| Y (x i j ;ω i ) > 

α0 } and | J i | is the cardinality of the set J i . In addition, ˆ J i = { j ∈ 

{ 1 , 2 , . . . , k i }| ̄Y (x i j ;ω i ) > α0 } is the estimate of J i . We also denote 

by b i = arg max j∈{ 1 , 2 , ... ,k i } Y (x i j ;ω i ) the index for the optimal deci- 

sion under scenario ω i , and the index for the estimated optimal 

decision under scenario ω i by ˆ b i = arg max j∈{ 1 , 2 , ... ,k i } Ȳ (x i j ;ω i ) . 

We divide scenarios into three categories based on the value of 

| ̂  J i | , and calculate the RPSC for each decision accordingly. 

• | ̂  J i | = 0 : Because Ȳ (x i j ;ω i ) < α0 for all x i j , I { ̄Y (x 
i ̂ b i 

;ω i ) ≥α0 } is 

subject to change with the addition of one sample for each 

decision, i.e. Ȳ ′ (x i j ;ω i ) > α0 , which will change the estimate 

of P ∗. We thus have 

RP SC i j = AP SC i j = 

(
1 + 

m 2 
i j 

σ 2 
i j 

∣∣Ȳ (x i j ;ω i ) − α0 

∣∣2 
)−1 

. (12) 

• | ̂  J i | = 1 : In this case, we have Ȳ (x 
i ̂ b i 

;ω i ) > α0 and 

Ȳ (x i j ;ω i ) ≤ α0 for j 	 = ̂  b i . If the additional simulation is 

allocated to a decision j 	 = ̂  b i , the updated Ȳ 
′ (x 

i ̂ b ′ 
i 
;ω i ) will 

always be bigger than α0 , which means that the additional 

simulation will not change our estimate of P ∗ unless it is 

allocated to x 
i ̂ b i 
. Therefore, RP SC i j is defined as: 

RP SC i j = 

{ (
1 + 

m 2 
i j 

σ 2 
i j 

∣∣Ȳ (x i j ;ω i ) − α0 

∣∣2 
)−1 

if j = ̂  b i ; 

0 if j 	 = ̂  b i . 

(13) 

• | ̂  J i | > 1 : There are multiple decisions x i j satisfying 

Ȳ (x i j ;ω i ) > α0 . If the additional simulation is allocated 

to a decision j / ∈ ˆ J i , Ȳ 
′ (x 

i ̂ b ′ 
i 
;ω i ) will not change. In fact, to 

cause a change in I { ̄Y (x 
i ̂ b i 

;ω i ) >α0 } , at least | ̂  J i | samples need 

to be allocated, with one to each of the | ̂  J i | decisions, and 
these | ̂  J i | updated estimates need to be smaller than α0 . So 

I { ̄Y (x 
i ̂ b i 

;ω i ) >α0 } changes with a probability of 
∏ 

j∈ ̂ J i 
AP SC i j . To 

facilitate the comparison of RP SC i j ’s derived for the previous 

two categories with jut one additional simulation sample 

being allocated, we define RPSCs in this case as follows: 

RP SC i j = 

{ 
APSC i j ∑ 
j∈ ̂ J i 

APSC i j 

∏ 

j∈ ̂ J i 
AP SC i j if j ∈ ˆ J i ; 

0 if j / ∈ ˆ J i . 
(14) 

We need to point out that a weight computed from relative 

AP SC i j is not necessarily the best. We only need to make sure that 

an additional simulation can be allocated to the most critical deci- 

sions in J i , i.e. the decision has the highest AP SC i j . In fact, one could 

adopt a weight computed from the logarithmic AP SC i j . 

Based on the computed RP SC i j , we propose OCBA-2S, a new 

simulation budget allocation rule for the efficient estimation of P ∗. 

OCBA-2S selects a scenario and a decision that has the largest RPSC 
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to receive the next simulation: 

(i ∗, j ∗) ∈ arg max 
(i, j) 

RP SC i j . (15) 

Algorithm 1 presents the new OCBA-2S simulation budget al- 

location rule that will be tested in the experiments reported in 

Section 5 . 

Algorithm 1 (OCBA-2S simulation budget allocation). 

INPUT: � = { ω i , i = 1 , . . . , n } , X(ω i ) = { x i j , j = 1 , . . . , k i } , total sec- 
ond stage simulation budget T , the number of initial simulation 

replications m 0 . 

INITIALIZE: 

Perform m 0 simulation replications for x i j , i = 1 , . . . , n , j = 1 , . . . , k i 
and record Y l (x i j ;ω i ) , l = 1 , . . . , m 0 ; let m i j = m 0 . 

LOOP: WHILE 
∑ n 

i =1 

∑ k i 
j=1 

m i j < T DO 

UPDATE: 

Estimate, Allocate and Simulate 

1: Compute sample variance ˆ σ 2 
i j , sample mean Ȳ (x i j ;ω i ) , for all 

i = 1 , . . . , n , j = 1 , . . . , k i ; 

2: Calculate RP SC i j for all i = 1 , . . . , n , j = 1 , . . . , k i using equations 

(12)–(14). 

3: Collect an additional simulation sample on scenario ω i ∗ and 

decision x i ∗ j ∗ , where (i ∗, j ∗) is given by (15), and set m i ∗ j ∗ ← 

m i ∗ j ∗ + 1 . 

END OF LOOP 

Output: 

Return ̂ P ∗ = 
∑ n 

i =1 I { ̄Y (x 
i ̂ b i 

;ω i ) >α0 } /n . 

4. Analysis of algorithm 

In this section, we analyze the asymptotic behavior of the algo- 

rithm and show the consistency of the estimate. Since the second- 

stage simulation is stochastic, there is an induced probability dis- 

tribution over the set of all sample paths. We denote by P [ ·] and 
E[ ·] the probability and expectation taken with respect to this dis- 

tribution. The convergence of sequences of random events is to be 

understood with respect to P . We also define F t to be the σ -field 

generated by the set of sampled decisions up to iteration t and 

their stochastic simulation output up to iteration t − 1 , i.e., F t := 

σ { x (1) , y (1) , . . . , x (t − 1) , y (t − 1) , x (t) } , where x (t) is the decision 

simulated at in iteration t and y (t) is the corresponding simulation 

output. We use m i j (t) , Ȳ m i j (t) 
(x i j ;ω i ) and ˆ σi j (m i j (t)) to denote the 

number of generated samples, estimate sample mean and sample 

variance under scenario ω i by taking decision x i j in iteration t . In 

addition, recall that J i = { j ∈ { 1 , 2 , . . . , k i }| Y (x i j ;ω i ) > α0 } and | J i | is 
the cardinality of the set J i . To show that our estimate ̂ P ∗ is consis- 

tent, we first prove the following lemmas. 

Lemma 4.1. For any scenario ω i , if lim T →∞ 
∑ k i 

j=1 
m i j (T ) = ∞ , then 

(1): if | J i | = 0 , then for any j ∈ { 1 , 2 , . . . , k i } , lim T →∞ m i j (T ) = ∞ 

w.p.1.; 

(2): if | J i | = 1 , then for j ∗ ∈ J i , lim T →∞ m i j ∗ (T ) = ∞ w.p.1; 

(3): if | J i | > 1 , then there is at least one j ∈ J i , s.t. lim T →∞ m i j (T ) = 

∞ w.p.1. 

Proof 4.1. First, we denote by A i the set of decisions receiv- 

ing an infinite number of replications as T → ∞ , i.e., A i = 

{ j ∈ { 1 , 2 , . . . , k i }| lim T →∞ m i j (t) = ∞} , and B = { 1 , 2 , . . . , k i } \ A i . To 
prove the above three conclusions, it suffices to show that if A i ⊆
{ 1 , 2 , . . . , k i } \ J i , then B i = ∅ . Suppose B i is not empty, then for any 

j ∈ B i , we have lim T →∞ m i j (T ) = M i j < ∞ . In addition, there ex- 

ists a sufficiently large T 1 , s.t. ∀ j ∈ B i , T > T 1 , m i j (T ) = M i j . Let 

ˆ j = arg min j∈ B i AP SC i j (M i j ) . Noticing that lim T →∞ 
∑ k i 

j=1 
m i j (T ) = ∞ 

implies that A i is not empty. For any j ∈ A i , according to the Strong 

Law of Large Numbers (SLLN), Ȳ m i j (T ) 
(x i j ;ω i ) converges to Y (x i j ;ω i ) 

and ˆ σi j (m i j (T )) converges to σi j with probability one. Furthermore, 

lim 
T →∞ 

AP SC i j (m i j (T )) 

= lim 
T →∞ 

(
1 + 

m 2 
i j (T ) 

ˆ σ 2 
i j 
(m i j (T )) 

| ̄Y m i j (T ) (x i j ;ω i ) − α0 | 
)−1 

= 0 

w.p.1. Therefore, we can always find a sufficiently large T 2 ( T 2 > T 1 ), 

s.t. ∀ T > T 2 , AP SC i j (m i j (T )) < AP SC 
i ̂ j 
(M i j ) and Ȳ m i j (T ) 

(x i j ;ω i ) ≤ α0 . 

Considering that lim T →∞ 
∑ k i 

j=1 
m i j (T ) = ∞ , there exists a large T 3 

( T 3 > max { T 1 , T 2 } ) and in iteration T 3 , the simulation budget has to 

be allocated to the decision x i j ′ with the largest RP SC i j (m i j (T 3 )) 

on scenario ω i . Obviously, j ′ belongs to B i , which means that 

m i j ′ (T 3 ) = M i j ′ + 1 . This contradicts lim T →∞ m i j ′ (T ) = M i j ′ . �

Lemma 4.1 shows that as T → ∞ the proposed OCBA-2S algo- 

rithm allocates an infinite number of simulations to decisions that 

help determine if Y ∗(ω) > α0 or not for any scenario ω. It should 

be noted that this is different from requiring the number of sim- 

ulations executed on each decision under a scenario to go to in- 

finity as T → ∞ . Instead, only the decisions that help determine if 

Y ∗(ω) > α0 or not need to be simulated infinitely many times. This 

should be contrasted with using OCBA to solve the second-stage 

simulation, which would drive the number of simulations allocated 

to every decision to infinity in the limit in order to correctly iden- 

tify x ∗(ω) . Inevitably, this leads to a great deal of waste on simu- 

lation budget. The following proposition formally establishes this 

property of OCBA-2S, which explains from one perspective why 

OCBA-2S can significantly outperform PSC-OCBA as demonstrated 

by our numerical examples in Section 5 . 

Proposition 4.2. For any scenario ω i satisfying | J i | > 1 and j ∈ 

{ 1 , 2 , . . . , k i } \ J i , if Y (x i j ;ω i ) < α0 , then lim T →∞ m i j (T ) < ∞ w.p.1. 

Proof 4.2. We prove the conclusion by contradiction. Suppose 

that there exists a j ′ ∈ { 1 , 2 , . . . , k i } \ J i , s.t. lim T →∞ m i j ′ (T ) = ∞ . 

According to the SLLN, Ȳ m 
i j ′ (T ) 

(x i j ′ ;ω i ) converges to Y (x i j ′ ;ω i ) 

( Y (x i j ′ ;ω i ) < α0 ) w.p.1. Hence, there exists a large T 1 , s.t. 

Ȳ m 
i j ′ (T ) 

(x i j ′ ;ω i ) < α0 holds for any T ≥ T 1 . In addition, from 

Lemma 4.1 , there exists a j ∗ ∈ J i , such that lim T →∞ m i j ∗ (T ) = ∞ . 

Furthermore, we can also find a sufficiently large T 2 ≥ T 1 , such that 

Ȳ m i j ∗ (T ) (x i j ∗ ;ω i ) > α0 and RP SC i j ∗ (m i j ∗ (T )) > 0 hold for any T ≥ T 2 . 

It means that RP SC i j ∗ (m i j ∗ (T )) > RP SC i j ′ (m i j ′ (T )) = 0 holds for any 

T ≥ T 2 . Therefore, according to the OCBA-2S algorithm, we have 

lim T →∞ m i j (T ) < ∞ , which leads to a contradiction. �

Lemma 4.3. For any scenario ω i , if lim T →∞ 
∑ k i 

j=1 
m i j (T ) = ∞ , then 

P 

{
lim 
T →∞ 

I { ̄Y m 
i ̂ b i 

(T ) (x i ̂ b i 
;ω i ) >α0 } = I { Y ∗(ω i ) >α0 } 

}
= 1 . 

Proof 4.3. We first consider the scenario ω i satisfying Y 
∗(ω i ) > 

α0 . According to Lemma 4.1 and the SLLN, there exist a ˆ j ∈ J i , 

and Ȳ m 
i ̂ j (T ) 

(x 
i ̂ j 
;ω i ) converges with probability one to Y (x 

i ̂ j 
;ω i ) 

( Y (x 
i ̂ j 
;ω i ) > α0 ). Hence, we have 

P 

{
lim 
T →∞ 

I { ̄Y m 
i ̂ b i 

(T ) (x i ̂ b i 
;ω i ) >α0 } = I { Y ∗(ω i ) >α0 } 

}

= P 

{ 

lim 
T →∞ 

Ȳ m 
i ̂ b i 

(T ) (x i ̂ b i 
;ω i ) > α0 

} 

≥ P 

{ 

lim 
T →∞ 

Ȳ m 
i ̂ j (T ) 

(x 
i ̂ j 
;ω i ) > α0 

} 

= 1 . (16) 
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Next, we consider the other case with Y ∗(ω i ) ≤ α0 . According to 

Lemma 4.1 and SLLN, for any j ∈ { 1 , 2 , . . . , k i } , Ȳ m i j (T ) 
(x i j ;ω i ) con- 

verges to Y (x i j ;ω i ) ( Y (x i j ;ω i ) ≤ α0 ) with probability one. There- 

fore, we have 

P 

{
lim 
T →∞ 

I { ̄Y m 
i ̂ b i 

(T ) (x i ̂ b i 
;ω i ) >α0 } = I { Y ∗(ω i ) >α0 } 

}

= P 

{ 

lim 
T →∞ 

Ȳ m 
i ̂ b i 

(T ) (x i ̂ b i 
;ω i ) ≤ α0 

} 

= P 

{ 
k i ⋂ 

j=1 

lim 
T →∞ 

Ȳ m i j (T ) (x i j ;ω i ) ≤ α0 

} 

= 1 . (17) 

Combining (16) and (17) , Lemma 2 holds. �

Lemma 4.3 shows that we can correctly determine if the system 

performance under any scenario exceeds the threshold or not as 

long as we allocate enough second stage simulation budget to the 

scenario. 

Lemma 4.4. For any scenario ω i , if lim T →∞ 
∑ k i 

j=1 
m i j (T ) = ∞ , then 

w.p.1. 

lim 
T →∞ 

max 
j∈{ 1 , 2 , ... ,k i } 

RP SC i j (m i j (T )) = 0 . (18) 

Proof 4.4. We first consider a scenario ω i satisfying | J i | = 0 , i.e. 

Y ∗(ω i ) ≤ α0 . By Lemma 4.1 and the SLLN, for any j ∈ { 1 , 2 , . . . , k i } , 
AP SC i j (m i j (T )) converges to 0 with probability one. Further- 

more, when T is sufficiently large, RP SC i j (m i j (T )) = AP SC i j (m i j (T )) . 

Therefore, with probability one, we have 

lim 
T →∞ 

max 
j∈{ 1 , 2 , ... ,k i } 

RP SC i j (m i j (T )) = 0 . 

For the other case with | J i | ≥ 1 , i.e. Y ∗(ω i ) > α0 , accord- 

ing to Lemma 4.1 and the SLLN, there exists a ˆ j ∈ A i ∩ J i , 

such that AP SC 
i ̂ j 
(m 

i ̂ j 
(T )) converges to 0 with probability one, 

and lim T →∞ Ȳ m 
i ̂ j (T ) 

(x 
i ̂ j 
;ω i ) = Y (x 

i ̂ j 
;ω i ) > α0 , which means that 

Ȳ m 
i ̂ j (T ) 

(x 
i ̂ j 
;ω i ) > α0 always holds for a sufficiently large T . In ad- 

dition, for any j ∈ A i , AP SC i j (m i j (T )) also converges to 0 with 

probability one. On the other hand, for any j ∈ B i , we claim 

that Ȳ M i j 
(x i j ;ω i ) ≤ α0 holds. Otherwise, similar to the proof of 

Lemma 4.1 , we can also show that an additional simulation will be 

allocated to some decision x i j , j ∈ B i , and this will lead to a contra- 

diction. Hence, the RP SC i j (m i j )(T ) for j ∈ B i converges to 0 with 

probability one. Therefore, lim T →∞ max j∈{ 1 , 2 , ... ,k i } RP SC i j (m i j (T )) = 

0 also holds. �

Lemma 4.5. For any scenario ω i , under the OCBA-2S algorithm pre- 

sented in Algorithm 1 , 

lim 
T →∞ 

k i ∑ 

j=1 

m i j (T ) = ∞ w.p. 1 . 

Proof 4.5. We prove the conclusion by contradiction. Suppose that 

the set 

C = 

{ 

i ∈ { 1 , 2 , . . . , n }| lim 
T →∞ 

k i ∑ 

j=1 

m i j (T ) = 

k i ∑ 

j=1 

M i j < ∞ 

} 

is not empty. We can always find a large T 1 , s.t. 

∀ i ∈ C, j ∈ { 1 , 2 , . . . , k i } , m i j (T ) = M i j holds. Let ǫ = 

max i ∈ C, j∈{ 1 , 2 , ... ,k i } RP SC i j (M i j ) and denote the corresponding 

scenario as ω i ∗ . From Lemma 4.4 , we know that there exists 

a sufficiently large T 2 with T 2 > T 1 , such that ∀ T > T 2 , i ∈ 

{ 1 , 2 , . . . , n } , j ∈ { 1 , 2 , . . . , k i } , RP SC i j (m i j (T )) < ǫ holds. Thus, 

there exists a large T 3 with T 3 > T 2 , such that in iteration T 3 , 

the simulation budget has to be allocated to scenario ω i ∗ , i.e. ∑ k i 
j=1 

m i ∗ j (T 3 ) = 
∑ k i 

j=1 
M i ∗ j + 1 , which leads to a contradiction. �

Lemma 4.5 ensure that the proposed OCBA-2S algorithm allo- 

cates enough budget to each scenario when there is a sufficiently 

large total budget T . Now we are ready to present the main result 

on the consistency of OCBA-2S. 

Theorem 4.6. The OCBA-2S algorithm presented in Algorithm 1 is 

strongly consistent, that is, 

P 

(
lim 
T →∞ 

ˆ P ∗ = P ∗
)

= 1 . (19) 

Proof 4.6. The result follows from Lemma 4.3 and Lemma 4.5 : 

P 

(
lim 
T →∞ 

ˆ P ∗ = P ∗
)

= P 

( 

lim 
T →∞ 

n ∑ 

i =1 

I { ̄Y m 
i ̂ b i 

(T ) (x i ̂ b i 
;ω i ) >α0 } = 

n ∑ 

i =1 

I { Y ∗(ω i ) >α0 } 

) 

= P 

( 
n ∑ 

i =1 

(
lim 
T →∞ 

I { ̄Y m 
i ̂ b i 

(T ) (x i ̂ b i 
;ω i ) >α0 } − I { Y ∗(ω i ) >α0 } 

)
= 0 

) 

≥ P 

( 
n ⋂ 

i =1 

(
lim 
T →∞ 

I { ̄Y m 
i ̂ b i 

(T ) (x i ̂ b i 
;ω i ) >α0 } = I { Y ∗(ω i ) >α0 } 

)) 

= 1 . 

Therefore, we have P { lim T →∞ 
ˆ P ∗ = P ∗} = 1 . �

5. Numerical experiments 

We evaluate the performance of the new OCBA-2S procedure 

via comparisons with five other procedures in numerical experi- 

ments. The first procedure is equal allocation (EA), which equally 

allocates the simulation budget to every decision and every sce- 

nario. Therefore, we have under EA m i j = T / 
∑ n 

i =1 k i for all i and 

j. The second procedure equally allocates simulation budget to all 

scenarios, but then uses the well-known OCBA method to deter- 

mine the allocation among the decisions within each scenario. So 

this procedure is referred to as EA-OCBA in the following. The 

third procedure equally allocates simulation budget to all scenar- 

ios, but then uses the method from Liu et al. (2019) which aims 

to correctly identify whether the performance under the best deci- 

sion exceeds a threshold. We refer to it as the EA-NkOCBA proce- 

dure. The fourth procedure is the algorithm proposed in Gao et al. 

(2019) , which we refer to as cOCBA (covariate OCBA). cOCBA aims 

to maximize the PCS for all second stage problems across all co- 

variate values (scenarios). The fifth procedure is the algorithm pro- 

posed in Wang et al. (2021a) . We refer to it as the PSC-OCBA pro- 

cedure because it first selects a scenario using P SC and then uses 

OCBA to select the decision to simulate. 

For each of the five algorithms tested here, we present the es- 

timation bias achieved by an allocation policy as a function of the 

number of simulation samples allocated. Because of the random- 

ness in simulation samples, we conducted each experiment 10 0 0 

times using different random number seeds, and take the average 

of the bias recorded in these 10 0 0 experiments as an estimate of 

the allocation policy’s bias. 

5.1. Experiment 1: A benchmark test function 

We first test the performance of different procedures on a 

benchmark test function given below: 
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Fig. 1. Estimation bias as a function of the total number of simulation samples for P ∗ = 0 . 9 (left) and P ∗ = 0 . 1 (right) for test function (20) . 

Y (x i j ;ω i ) = 0 . 45 + 
i 

50 0 0 
−

j − 1 

5 
+ U 

(
−
1 

2 
, 
1 

2 

)
, 

i ∈ { 1 , 2 , . . . , 500 } , j ∈ { 1 , 2 , . . . , 20 } . (20) 

This function is based on a benchmark test function first 

reported in Shen et al. (2021) . In our experiment, we gen- 

erated 500 scenarios and set Y ∗(ω i ) ∈ [0 . 45 + 1 / 50 0 0 , 0 . 45 + 

2 / 50 0 0 , . . . , 0 . 55] . Each scenario has twenty decision alternatives, 

with x i 1 being the best, i.e., Y 
∗(ω i ) = Y (x i 1 ;ω i ) . For other deci- 

sions x i j , j = 2 , 3 , . . . , 20 , we set Y (x i j ;ω i ) = Y (x i 1 ;ω i ) − ( j − 1) / 5 . 

A simulation noise following a uniform distribution U(− 1 
2 , 

1 
2 ) is 

added each time a simulation observation is collected. In each ex- 

periment, every procedure conducted an initial simulation sam- 

pling with m 0 = 10 on all decisions for every scenario. A total of 

30 0,0 0 0 was then expended following the allocation determined 

by the procedure. At the end of each simulation, we computed the 

bias of the estimate ̂ P ∗ returned by each of the six procedures be- 

ing tested. We repeated this experiment independently 10 0 0 times 

and recorded the average bias. Fig. 1 below plots the estimation 

bias as a function of the total number of simulation samples allo- 

cated for two threshold values α0 = 0 . 46 and α0 = 0 . 54 , which are 

the 10% and 90% quantiles of Y ∗(ω) . So the probabilities we want 

to estimate are P ∗ = 0 . 9 and P ∗ = 0 . 1 , respectively. 

As can be seen from Fig. 1 , in general, OCBA-2S clearly outper- 

forms EA , EA-OCBA , EA-NkOCBA , cOCBA and PSC-OCBA . For exam- 

ple, Fig. 1 shows that for P ∗ = 0 . 1 , after exhausting the total sim- 

ulation budget of 30 0,0 0 0 simulations, EA , EA-OCBA , EA-NkOCBA , 

cOCBA and PSC-OCBA reduced the estimation bias to 0.132, 0.029, 

0.014, 0.049 and 0.017, all of which are much larger than a bias 

of 0.007 achieved by OCBA-2S. Another way to understand the 

computational efficiency gain of OCBA-2S is to examine the speed- 

up factor , which is calculated as the ratio of the total simulation 

budget to the number of simulations used by OCBA-2S to reach 

the same level of bias achieved by the other policy after all sim- 

ulation budget was expended. For example, EA achieved a bias 

of 0.132 with 30 0,0 0 0 simulations. In comparison, OCBA-2S only 

used about 10,0 0 0 simulations. Thus the speed-up factor is 30. The 

speed-up factors of OCBA-2S vs. EA-OCBA, EA-NkOCBA, cOCBA and 

PSC-OCBA are 4.3, 2.5, 7.5 and 3.0, respectively. We have similar 

observations for P ∗ = 0 . 9 . 

We also make the following observations on the performance 

of various algorithms tested. First, cOCBA performs very differently 

in the two cases for P ∗ = 0 . 1 and P ∗ = 0 . 9 as can be very clearly 

seen in Fig. 1 . To understand why this happens, we first consider a 

scenario ω with Y ∗(ω) < α0 . We argue it would require much less 

simulation effort to correctly determine if Y ∗(ω) exceeds α0 than 

for a scenario with Y ∗(ω) > α0 . To see this point, consider a sub- 

optimal decision X 	 = X ∗(ω) . If X is incorrectly selected as the best 

decision because simulation noise makes Ȳ (X ∗(ω ) ;ω ) < Ȳ (X;ω) , 

we know Y (X;ω) < Y ∗(ω) < α0 , and thus it would likely take less 

simulation effort to determine Y (X;ω) < α0 . In other words, an 

incorrect selection of the best decision could more easily lead to 

a correct estimation of the indicator function in Eq. (2) . In con- 

trast, when only the best decision’s response exceeds the thresh- 

old, e.g., only Y ∗(ω) > α0 , incorrect selection of the best decision 

would very likely lead to an incorrect estimate of the indicator 

function in Eq. (2) , and thus more simulation budget would be 

needed for such scenarios. In the case with P ∗ = 0 . 1 , there are 450 

scenarios with Y ∗(ω) < α0 and thus would actually need much less 

simulation effort to correctly determine if Y ∗(ω) < α0 or not. How- 

ever, because cOCBA maximizes the PCS for all scenarios, cOCBA 

wastes much budget on these 450 scenarios, which hurts its effi- 

ciency. However, in the case P ∗ = 0 . 9 , there are 450 scenarios with 

Y ∗(ω) > α0 . For these scenarios, maximizing PCS directly helps 

with determining if Y ∗(ω) > α0 . Therefore, cOCBA performs much 

better in this case. 

We also notice that although EA-NkOCBA specializes in deter- 

mining whether Y ∗(ω) > α0 for each ω in the second stage, it is 

still dominated by OCBA-2S because EA-NkOCBA does not consider 

budget allocation across scenarios. Finally, we notice in the case of 

P ∗ = 0 . 9 , when the simulation budget is relative small, cOCBA out- 

performs OCBA-2S. As will be seen in Fig. 2 with increased sim- 

ulation noise variance, the lead of cOCBA grows even larger. This 

makes us believe that the cause is the sensitivity of OCBA-2S to 

the quantity RP CS i j , which is computed using sample statistics and 

is thus susceptible to simulation noise, especially in the early stage 

of the algorithm. 

Because all algorithms except EA use sample statistics to se- 

quentially determine allocation, we also test their sensitivities to 

simulation noise by making the noise follow a uniform distribu- 

tion U(− 5 
2 , 

5 
2 ) , which has a variance 25 times of that in the pre- 

vious set of experiments. Results are shown in Fig. 2 . In general, 

OCBA-2S outperforms the other five methods as long as the to- 

tal budget is not too limited. For the case P ∗ = 0 . 9 , as discussed 

previously, cOCBA’s allocation aims to ensure high values of PCS 

across all scenarios, which leads to more favorable outcomes. The 

high noise makes this benefit even more noticeable here and thus 

cOCBA maintains the lead over OCBA-2S until there is a reasonably 
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Fig. 2. Estimation bias as a function of the total number of simulation samples for P ∗ = 0 . 9 (left) and P ∗ = 0 . 1 (right) under high variance. 

large budget. As the expended simulation budget increases, OCBA- 

2S again outperforms all other five methods. 

5.2. Experiment 2: Risk analysis of a put option portfolio 

The test problem in Experiment 2 is a put option example from 

Broadie et al. (2011) . Specifically, we assume that the portfolio con- 

sists of three long position in a single put option. We are inter- 

ested in computing the probability of a loss by taking the worst 

decision. We consider loss thresholds corresponding to 10% loss 

probabilities. The underlying asset follows a geometric Brownian 

motion with an initial price of S 0 = 100 . The drift of this pro- 

cess under the real-world distribution used in the outer stage of 

simulation is μ = 8% . The annualized volatility is σ = 20% . The 

risk-free rate is r = 3% . The strike of the put option is K = 95 , 

and the maturity is T = 0 . 25 years (i.e., three months). The risk 

horizon is τ = 1 / 52 years (i.e., one week). With these parame- 

ters, the initial value of the put is X 0 = 1 . 699 given by the Black–

Scholes formula. Denote by S τ (ω) the underlying asset price at 

the risk horizon τ . This random variable is generated according 

to S τ (ω) � S 0 e 
( μ−σ 2 / 2 ) τ+ σ

√ 
τω , where the real-valued risk factor ω

is a discrete random variable with equal probability. We assume 

that at the risk horizon τ , the invester have a chance to sell j
( j ∈ { 0 , 1 , 2 , 3 } ) of his options. In addition, we assume the differ- 

ence between the theoretical and real price of a single option is 

constant, i.e. 

X r τ (ω) − X t τ (ω) = X r τ (ω) 

− E 
[
e −r(T −τ ) max ( K − S T (ω, W ) , 0 ) | ω 

]
≡ a 0 , 

which means that investors are all positive about the put option. 

Therefore, the portfolio loss at the risk horizon τ on scenario ω
and decision j is given by 

L (ω, j) = 3 X 0 − 3 E 
[
e −r(T −τ ) max ( K − S T (ω, W ) , 0 ) | ω 

]
− ja 0 , 

where the expectation is taken over the random variable W , which 

is an independently distributed standard normal, and S T (ω, W ) is 

given by 

S T (ω, W ) � S τ (ω) e ( r−σ 2 / 2 ) (T −τ )+ σ
√ 
T −τW . 

Note that, given a fixed value of ω and a standard normal W , 

the random variable S T (ω, W ) is distributed according to the risk- 

neutral distribution of underlying asset price at the option matu- 

rity T , conditional on asset price S τ (ω) at the risk horizon τ . Given 

an outer scenario ω i and decision j, each inner loss sample takes 

the form 

̂ Z i, j,l = 3 X 0 − 3 e −r(T −τ ) max 
(
K − S T 

(
ω i , W i,l 

)
, 0 

)
− ja 0 , 

where W i,l is an independent standard normal random variable. It 

is not difficult to see that the loss L (ω, j ∗) ( j ∗ = 0 ) by taking worst 

decision is strictly increasing in the risk factor ω. Hence, the prob- 

ability of a loss exceeding a threshold α0 can be computed accord- 

ing to α = P(L ≥ α0 ) = P ( ω ≥ ω ∗) , where ω ∗ is the unique solu- 

tion to L (ω ∗) = α0 . We conduct Experiment 2 using a total com- 

puting budget of 250,0 0 0 simulation samples and assume there 

are 500 scenarios. To be consistent with the example in Broadie 

et al. (2011) , we let ω ∈ [1 . 2816 − 899 
50 , . . . , 1 . 2816 −

3 
50 , 1 . 2816 −

1 
50 , 1 . 2816 + 

1 
50 , 1 . 2816 + 

3 
50 , . . . , 1 . 2816 + 

99 
50 ] and choose the val- 

ues 0.859 for the loss threshold α0 , corresponding to ω of 1.2816 

and loss probabilities P ∗ of 10% . In addition, we also repeat this 

whole procedure 10 0 0 times and then calculate the estimation bias 

obtained from these 10 0 0 independent macro replications for each 

method. We also provide 10 initial runs for each decision among 

all scenarios ( m 0 = 10 ) for all the four methods. 

Fig. 3 plots the simulation results. OCBA-2S clearly outperforms 

EA , EA-OCBA , EA-NkOCBA , cOCBA and PSC-OCBA. Specifically, af- 

ter exhausting the total simulation budget of 250,0 0 0 simulations, 

EA , EA-OCBA , EA-NkOCBA , cOCBA and PSC-OCBA reduced the esti- 

mation bias to 0.0 025, 0.0 016, 0.0 013, 0.0 086 and 0.0 012 respec- 

tively. In contrast, OCBA-2S reduced the bias to 0.0 0 04. On the 

other hand, OCBA-2S used about 14,0 0 0, 32,0 0 0, 44,0 0 0, 20 0 0 and 

50,0 0 0 simulation budget to achieve the same bias by EA, EA- 

OCBA, EA-NkOCBA, cOCBA and PSC-OCBA, respectively. That is to 

say, OCBA-2S achieved a speed-up factor of more than 18, 8, 5, 

125 and 5 over EA, EA-OCBA, EA-NkOCBA, cOCBA and PSC-OCBA, 

respectively. 

5.3. Experiment 3: Resource allocation in a healthcare system 

The test problem in Experiment 3 studies the resource alloca- 

tion problem in a critical care facility depicted in Fig. 4 . This test 

case was first introduced in Schruben & Margolin (1978) and then 

widely by other researchers, for example Ng & Chick (2006) and 

Xie, Nelson, & Barton (2014) . We use the expected number of pa- 

tients per month that are denied a bed as the system’s perfor- 

mance. It is a function of the number of beds in the intensive 

care unit (ICU), coronary care unit (CCU), and intermediate care 

units. Patients arrive according to a Poisson process and are routed 
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Fig. 3. Estimation bias as a function of the total number of simulation samples in 

experiment 2. 

Fig. 4. Patient flows through different units of a critical care facility. 

through the system depending upon their specific health condi- 

tion. Specifically, we assume the patients are placed to ICU and 

CCU with probability p 1 and 1 − p 1 , respectively. In addition, af- 

ter a period of treatment, a patient in ICU can exit the system 

or transferred to intermediate care units with probability p 2 and 

1 − p 2 , respectively. A patient in CCU can exit the system or trans- 

ferred to intermediate care units with probability p 3 and 1 − p 3 , 

respectively. The patient flows through the facility is depicted in 

Fig. 4 . 

We fix ten parameters of nine different sources of randomness: 

the patient arrival process (Poisson arrivals, mean day), ICU stay 

duration (lognormal mean and standard deviation), lognormal ser- 

vice times at the intermediate ICU (with mean and standard devi- 

ation), intermediate CCU (with mean and standard deviation), and 

CCU processes (with mean and standard deviation). The number of 

beds in ICU, CCU and intermediate care units are 4, 2 and 5, re- 

spectively. 

We regard different probabilities p = (p 1 , p 2 , p 3 ) as different 

scenarios in the system. We consider 8 possible values for p 1 , p 2 
and p 3 : p 1 ∈ { 0 . 55 , 0 . 60 , . . . , 0 . 90 } , p 2 ∈ { 0 . 10 , 0 . 15 , . . . , 0 . 45 } , and 
p 3 ∈ {0.10, 0.15, ..., 0.45}. So together are 8 3 = 512 scenarios. In each 

scenario, we need to decide how to allocate two additional beds to 

ICU, CCU or intermediate care units, which gives a total of 6 fea- 

sible decisions in each scenario. Because of the complexity of the 

problem, we do not know the true system performance in each 

scenario and instead use a stochastic simulation model to estimate 

it. For the purpose of benchmarking, we generated 50 0 0 simula- 

tion samples for each of the 6 decisions in each of the 512 scenar- 

ios and take the sample means as a reasonably accurate estimate 

for the true system performance. We set the threshold α0 = 2 . 086 , 

which corresponds to P ∗ = 0 . 1 . We set a total computing budget of 

Fig. 5. Experiment 3: α0 = 2 . 086 , 90% Quantile. 

307,200 simulation samples. We again conducted m 0 = 10 initial 

runs for each decision for all four allocation policies. 

Fig. 5 plots the simulation results. OCBA-2S again clearly 

outperformed EA , EA-OCBA , EA-NkOCBA , cOCBA and PSC-OCBA. 

Specifically, after exhausting the total simulation budget of 307,200 

simulations, EA , EA-OCBA , EA-NkOCBA , cOCBA and PSC-OCBA re- 

duced the estimation bias to 0.0 032, 0.0 030, 0.0 025, 0.0 034 and 

0.0016, respectively. In contrast, OCBA-2S reduced the bias to 

0.0014. On the other hand, OCBA-2S used about 3000, 6000, 

15,0 0 0, 30 0 0 and 206,0 0 0 simulation budget to achieve the same 

bias by EA, EA-OCBA, EA-NkOCBA, cOCBA and PSC-OCBA, respec- 

tively. That is to say, OCBA-2S achieved a speed-up factor of more 

than 102, 51, 20, 102 and 1.5 over EA, EA-OCBA, EA-NkOCBA, 

cOCBA and PSC-OCBA, respectively. 

6. Conclusions 

In this paper, we propose the OCBA-2S simulation budget allo- 

cation policy for the efficient estimation of a risk measure that re- 

quires solving a two-stage simulation optimization problem. OCBA- 

2S is built upon a new metric known as RPSC, and uses it to guide 

a sequential allocation of simulation budget to first-stage scenar- 

ios and then second stage decisions. The consistency of OCBA-2S 

is proved and its computational efficiency is demonstrated using 

three sets of test problems in comparison with three other simu- 

lation budget allocation policies. As to the best of our knowledge, 

this paper makes a first step towards the development of a rigor- 

ous and efficient simulation budget allocation procedure for esti- 

mation of a risk measure that requires a solving two-stage simula- 

tion optimization problems. 

There are multiple venues for us to expand research on this 

topic. This paper is concerned with the estimation of a risk proba- 

bility. We plan to extend the procedure to cover other widely used 

risk measures such as value-at-risk (VaR) and conditional value- 

at-risk (CVaR). In this paper, we consider problems where the sce- 

nario space is finite, and we focus on the allocation of second-stage 

simulation to a finite number of decisions under each scenario. An 

important direction to pursue in the future is when the scenario 

space is infinite, either countably infinite or continuous, how one 

should balance the sampling of the scenario space and the second 

stage decision space. Without sampling enough scenarios, the ac- 

curacy of the estimate would certainly be poor. However, sampling 

too many scenarios would also hurt the estimate’s accuracy be- 
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cause there would not be enough simulation budget to estimate 

Y ∗(ω) . We believe that combining the basic principle of OCBA- 

2S method and some good criterion of balancing the sampling of 

the first-stage scenario space and the second stage decision space, 

there is a good chance of designing more generally applicable al- 

gorithms. Another potentially fruitful venue for research is the de- 

velopment of two-stage simulation budget allocation for the new 

problem known as two-stage SPvS ( Xie et al., 2020 ). For exam- 

ple, such procedures can be used to efficiently estimate chance 

constraints in two-stage SPvS. Finally, it is also possible to extend 

this work for general two-stage simulation optimization problems 

where the simulation evaluation of a solution requires a two-stage 

simulation. We are not aware of any work in this direction. The 

closest paper is by Zhu, Xu, Chen, Lee, & Hu (2016) , who studied 

for classical simulation optimization how to balance the number of 

solutions generated by a random search algorithm and the number 

of simulation replications for each sampled solution. The develop- 

ment of an efficient two-stage simulation optimization computing 

budget allocation procedure may help solve important problems 

such as optimal infrastructure investment to maximize the sys- 

tem’s resilience against natural hazards Miller-Hooks et al. (2012) . 
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