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Abstract— This paper addresses the robustness problem of
visual-inertial state estimation for underwater operations. Un-
derwater robots operating in a challenging environment are
required to know their pose at all times. All vision-based
localization schemes are prone to failure due to poor visibility
conditions, color loss, and lack of features. The proposed
approach utilizes a model of the robot’s kinematics together
with proprioceptive sensors to maintain the pose estimate
during visual-inertial odometry (VIO) failures. Furthermore,
the trajectories from successful VIO and the ones from the
model-driven odometry are integrated in a coherent set that
maintains a consistent pose at all times. Health-monitoring
tracks the VIO process ensuring timely switches between the
two estimators. Finally, loop closure is implemented on the
overall trajectory. The resulting framework is a robust estima-
tor switching between model-based and visual-inertial odometry
(SM/VIO). Experimental results from numerous deployments of
the Aqua2 vehicle demonstrate the robustness of our approach
over coral reefs and a shipwreck.

[. INTRODUCTION

This paper proposes a novel framework for solving the
robustness problem of state estimation underwater. Central to
any autonomous operation is the ability of the robot to know
where it is with respect to the environment, a task described
under the general term of state estimation. Over the years
many different approaches have been proposed; however,
state estimation underwater is a challenging problem that
still remains open. Vision provides rich semantic informa-
tion and through place recognition results in loop closures.
Unfortunately, as demonstrated in recent work on comparing
numerous open-source packages of visual and visual/inertial
state estimation [1], [2], in an underwater environment there
are frequent failures for a variety of reasons. In contrast to
above water scenarios, GPS-based localization is impossible.
In addition to the traditional difficulties of vision-based
localization, the underwater environment is prone to rapid
changes in lighting conditions, limited visibility, and loss of
contrast and color information with depth. Light scattering
from suspended plankton and other matter causes ‘“snow
effects” and blurring, while the incident angle at which light
rays hit the surface of the water can change the visibility
at different times of the day [3]. Finally, as light travels
at increasing depths, different parts of its spectrum are
absorbed; red is the first color that is seen as black, and
eventually orange, yellow, green, and blue follow [4], [5]. In
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Fig. 1: Aqua2 AUV navigating over the Stavronikita ship-
wreck, Barbados. The front cameras are only seeing blue
water when approaching the side of the wreck.

addition to all the above underwater specific challenges, an
unknown environment often presents areas where there are
no visible landmarks. For example, in Fig. 1 an Aqua2 [6]
Autonomous Underwater Vehicle (AUV) mapping the deck
of a shipwreck reaches the starboard side where the front
cameras see only empty water with no features.

Visual inertial odometry (VIO) has been used for state
estimation in a multitude of environments such as indoor,
outdoor and even gained some traction in harsh environments
such as underwater [7]. While most VIO research often
focuses on improving accuracy, robustness is as critical
for autonomous operations. If VIO fails during deployment
the results could be catastrophic leading to vehicle loss.
From our early investigations [1], [2], many vision-based
approaches diverge, or outright fail, sometimes at random;
however, deploying a vehicle underwater in autonomous
mode requires that it will return to base, or a collection point,
during every deployment. It is very important for AUVs to
be able to keep track of their pose; even with diminished
accuracy; over the whole operation. We propose switching
between VIO and a model-based estimator addressing the
accuracy and robustness of state estimation by identifying
failure modes, generating robust predictors for estimator
divergence/failure, always producing a pose estimate.

The core of the proposed approach is a robust switch-
ing estimator framework, which always provides a realistic
estimate reflecting the true state of the vehicle. First of
all the health of VIO [8], [9] is monitored by tracking
the number of features detected, their spatial distribution,
their quality, and their temporal continuity. By utilizing the
measures described above when an estimator starts diverging,
before complete failure, an alternative estimator is introduced
based on sensor inputs robust to underwater environment
changes. For example, there is a model-based estimator [10],
[11] used for controlling the Aqua2 vehicles combining the
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inertial and water depth signals together with the flipper
configuration and velocity [12], [13]; when the visual/inertial
input deteriorates, the proposed system switches to the
model-based estimator until the visual/inertial estimates are
valid again. The choice of switching-based loosely coupled
fusion of odometry estimates ensures flexibility in choosing
both the VIO and the conservative estimator in a modular
fashion. The two estimators switch back and forth based
on the health status of the VIO estimator. Finally, a loop-
closure framework ensures the consistent improvement of
the combined estimator. Our main contribution is a robust
switching-based state estimation framework termed Robust
Switching Model-based/Visual Inertial Odometry (SM/VIO)
capable of keeping track of an AUV even when VIO fails.
This allows the AUV to carry out underlying tasks such
as path planning, coverage, and performing motion patterns
maintaining a steady pose and relocalize when visiting
previous areas. Extensive experiments over different terrains
validate the contribution of the proposed robust switching es-
timator framework in maintaining a realistic pose of the AUV
at all times. In contrast, state-of-the-art VIO algorithms [7],
[14]-[17] result in a much higher error or even complete
failure.

II. RELATED WORK

In recent years a plethora of open source packages ad-
dressing the problem of vision-based state estimation has
appeared [8], [9], [16], [18]-[26]. Quattrini Li et al. [1] com-
pared several packages on a variety of datasets to measure the
performance in different environments. Extending the above
comparison with a focus on the underwater domain, Joshi et
al. [2] investigated the performance of VIO packages. The
above comparisons demonstrated that many packages require
special motions [19], or only work for a limited number of
images [27], [28], or are strictly offline [29]. Furthermore, in-
termittent failures were observed, the most common explana-
tion being the random nature of the RANSAC technique [30]
utilized by most of them. The underwater state estimation
approach SVIn2 by Rahman e al. [7] demonstrated improved
accuracy and robustness; however, it did not provide any
assurances for uninterrupted estimates, which is the focus of
this paper.

Utilizing an AUV to explore an underwater environment
has gained popularity over the years. Sonar and stereo esti-
mation for object modeling has been proposed in [31], [32].
Nornes et al. [33] acquired stereo images utilizing an ROV
off the coast of Trondheim Harbour, Norway. In [34] a deep-
water ROV is adopted to map, survey, sample, and excavate
a shipwreck area. Sedlazeck et al. [35], reconstructed a ship-
wreck in 3D by pre-processing images collected by an ROV
and applying a Structure from Motion based algorithm. The
images used for testing such an algorithm contained some
structure and a lot of background, where only water was
visible. Submerged structures were reconstructed in 3D [36].
Finally, recent work by Nisar et al. [37] proposed the use
of a model-based estimator to calculate external forces in
addition to the pose of aerial vehicles, ignoring failure modes

of VIO. In all previous work, when the state estimation failed
there was no recovery. In contrast, the proposed approach
of SM/VIO for underwater environments addresses the VIO
failure and the AUV can continue operations until reaching
another feature-rich area.

The use of switching estimators (also called observers)
has not been applied in many mobile robotics applications
and not, to our knowledge, to an AUV. Liu [38] presented a
generic approach for non-linear systems. Suzuki et al. [39]
utilized a switching observer to model ground properties
together with the robot’s kinematics. Manderson et al. [40]
utilized a model estimator in conjunction with Direct Sparse
Odometry [41] without monitoring the health, switching
estimators, and merging the two trajectories into one.

III. THE PROPOSED SYSTEM

a) Overview: The proposed approach (SM/VIO) uti-
lizes a model-based estimator termed primitive estimator
(PE), utilizing the water depth sensor, the IMU, and the
motor commands to propagate the state of the AUV forward
when the visual-inertial estimator fails; see Fig. 3(a) for
an estimate from PE. It is worth noting that the AUV is
using the same model to navigate, as such the PE estimate
of the lawnmower pattern in Fig. 3(a) follows the exact
pattern, however, does not correspond to the actual trajectory
which was affected by external forces (e.g. water current).
When VIO is consistent it is the preferred estimator having
higher accuracy due to the exteroceptive sensors (vision and
acoustic). Key to the proposed approach is a health monitor
process that tracks the performance of VIO over time and
informs a decision for switching between VIO and PE; see
Fig. 3(c) for the switching estimator trajectory, where the
switch points are marked green. When the VIO restarts
tracking successfully, the health monitor informs the switch
from the PE to the VIO. Throughout this process a consistent
pose is maintained. More specifically, when the VIO fails, the
PE is initialized with the last accurate pose from VIO, and
when the VIO restarts the last pose of PE is utilized. Finally,
during VIO controlled operations, loop closure is performed,
also optimizing the PE produced trajectories; the complete
framework is outlined in Fig. 2. Following the approach of
Joshi et al. [42], the stable 3D features are tracked and their
position is updated after every loop closure, thus resulting
into a consistent point cloud. Next we discuss the individual
components of SM/VIO.

The target vehicle is the Aqua2 AUV [6], an amphibious
hexapod robot. Underwater, Aqua2 utilizes the motion from
six flippers, each actuated independently by an electric
motor. The robot’s pose is described using the vector x =
(wp?, wdl|, wp! = [z,y, 2] represents the position of
the robot in the world frame, and wq? = [quw, qz Gy, ]
is the quaternion representing the robot’s attitude. Aqua2
vehicles are equipped with three cameras, an IMU, and a
water pressure sensor.

b) Primitive Estimator: The primitive estimator main-
tains a local copy of the robot’s pose [Wp?7 Wq?], which is
updated at a rate of 100 Hz. The IMU provides an absolute
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Fig. 2: Overview of the switching estimator.

measurement of y-q7 . The velocity of the robot is estimated
by the forward speed command v, and the heave (up/down)
command v, sent to the Aqua2 during field trails. These
commands are used by Aqua2 to perform motion primitives
and control the flipper motion. Since the same commands
are used for Aqua2 control and PE predictions, the resulting
PE trajectories will look perfectly aligned with the desired
motion primitives; this is a drawback of just using PE
prediction. At each time step ¢, the position is updated by

WPr 41 = wPr T wRy [V, 0, U,tz}TAtt,t—H 1

where Ry is the rotation matrix corresponding to wq;-.
Because the water pressure sensor provides an absolute
measurement of depth, this measurement is used instead of
the above estimate for z. Moreover, the forward velocity
estimates are correct only up to scale depending on external
forces (e.g. ocean currents) and acceleration measurements
error accumulation. Hence, before integrating the PE trajec-
tory into the robust switching estimator, we scale the PE
trajectory using the scaling factor between the PE and the
VIO trajectory, as explained later.

¢) SVIn2 Review: We use a VIO system that fuses
information from visual, inertial, water pressure (depth), and
acoustic (sonar) sensors presented in Rahman er al. [7]-
[9], termed SVIn2. More specifically, SVIn2 estimates the
state of the robot by minimizing a joint estimate of the
reprojection error and the IMU error, with the addition of
the sonar error and the water depth error. SVIn2 performs
non-linear optimization on sliding-window keyframes using
the reprojection error and the IMU error term formulation
similar to Leutenegger et al. [14]. The depth error term can
be calculated as the difference between the AUV’s position
along the z direction and the water depth measurement
provided by a pressure sensor.

Loop-closing and relocalization is achieved using the
binary bag-of-words place recognition module DBoW?2 [43].
The loop closure module maintains a pose graph with odom-
etry edges between successive keyframes and a loop-closure
odometry edge is added between the current keyframe and
a loop closure candidate when they have enough descriptor
matches and pass PnP RANSAC-based geometric verifica-
tion. For a complete description, please refer to [7].

d) Health Monitoring: As described in earlier stud-
ies [1], [2], estimators often diverge or outright fail even

in conditions where they were working before; intermittent
failures are much more challenging in the field. Robustness
measures and divergence predictors are crucial in detecting
imminent failures. To monitor the health of the vision-based
state estimator, we employ the following criteria hierarchi-
cally; the most important criterion is checked first. The
VIO health is evaluated based on the following conditions
hierarchically and considered untrustworthy based on:

1) Keyframe detection. If a keyframe has not been de-
tected after k f_wait_time seconds the VIO has failed.
The only exception is when the system is stationary
(zero velocity).

2) The number of triangulated 3D keypoints that have
feature detections in the current keyframe is less than
a specified threshold, min_kps. We found that min_kps
between 10-20 worked well.

3) The number of feature detections per quadrant, in the
current keyframe, is less than a specified threshold,
min_kps_per_quadrant. To account for situations where
there are high number of features detected robustly
in a small area; see Fig. 3(e-f) where the bottom
two quadrants contain all the features. The quadrant
criterion is applied only if the total number of feature
detections is less than 10 x min_kps_per_quadrant.

4) The ratio of new keypoints to the total keypoints is
more than 0.75. The newly triangulated points are
those that were not observable previously.

5) The ratio of keypoints with feature detector response
less than the average feature detector response in
the current keyframe to the total keypoints is more
than 0.85. The choice of a high threshold for the
ratio is motivated by the fact that hierarchically more
important criteria have already been satisfied. Hence,
this criterion has less importance overall.

Please note, the choice of the above parameters is flexible.
For instance, the minimum number of tracked keypoints
should be higher than the minimum number of points re-
quired for relative camera pose estimation using epipolar
geometry. Thus, these parameters should only be taken as
reference. During our experiments, we found out that chang-
ing the parameters slightly does not change the performance
of the switching estimator greatly and the parameters where
selected through experimental verification.

e) Integration of SVIn2 and Primitive Estimator
results: Utilizing the framework described in Rahman et
al. [8], [9] the graph SLAM formulation, based on the
Ceres package [44], is augmented to consider estimates
from multiple observers thus maintaining the history of the
estimates and enabling loop closures.

We denote the poses SVIn2 and PE as wT,, and w T,
respectively, representing them as homogeneous 4 x 4 trans-
formation matrices. The goal of the integration process is
to provide a robust switching estimator pose T, which
matches T, locally when SVIn2 is properly running, and
matches 1T, locally when SVIn2 is reporting failure. To
find the scaling factor between SVIn2 and PE, we compute
the ratio of the two trajectory lengths when both estimators
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Fig. 3: First row, an overview example: (a) Trajectory according to the primitive estimator; PE believes the AUV performed
a near perfect lawnmower pattern. (b) Trajectory according to SVIn2 [9]; due to tracking loss the VIO is way off the actual
wreck. (c) Trajectory resulting from the proposed method; the switching estimator utilized the robust parts of VIO (in red)
switching to PE when tracking was lost (in blue). The stable 3D features detected are plotted as grey points. Second row,
characteristic images of the shipwreck: (d) the AUV is over the wreck seeing the deck; (e) the AUV is approaching the side
of the wreck, still able to localize, but the number of features decreases; (f) the AUV is at the edge of the wreck seeing

mostly blue water and the estimator switches from VIO to PE.

are tracking well. More specifically, we compute the relative
distance travelled as estimated by PE and SVIn2 between
successive keyframes at time ¢ and ¢ 4+ 1 and compute the
scaling factor s as:

5= Z ||WR;v1,t(WP3v,t+1 - WPsv,t)”
Z ||WR;r1,t(WPpnt+1 - WPpr,t)”

The scaling factor keeps updating over time whenever
SVIn2 is tracking, to account for any changes in external
factors. For the sake of convenience, we assume that the
PE pose w Ty, is appropriately scaled by the scaling factor,
s, to match the SVIn2 scale. Initially, when SVIn2 starts
tracking, wTs, is equivalent to ' T,,. When SVIn2 fails,
we keep track of robust estimator pose 1y T¢. and primitive
estimator pose WT;’; at switching time, st. When PE is
working normally, we compute the relative displacement of
the current PE pose with respect to PE pose at the time of
switching by WTZE1 ‘wTpe. This local displacement is then
applied to the robust estimator pose using Eq. 3 while making
sure that the robust estimator pose tracks the PE pose locally
during this time.

@)

. st st™1
wTho = WTro ’ WTpe ! WTPC

3)

It should be noted that 1/ T% - WT;’;_1
until SVIn2 starts tracking again.

remains constant

Similarly, when switching from the primitive estimator
back to SVIn2, the robust estimator tracks the local displace-
ment from SVIn2 using Eq. 4 with 1y T%! remaining constant
until next switch to PE occurs.

“

We make sure that the robust estimator tracks PE locally
when SVIn2 fails and tracks SVIn2 again when it recovers
as VIO is the preferred estimator maintaining robust uninter-
rupted pose estimate. As SVIn2 is capable of maintaining an
accurate estimate in the presence of brief failures of visual
tracking by relying on inertial data, it is not desirable to
switch between SVIn2 and PE back and forth frequently, as
this introduces additional noise. To reduce frequent switching
between estimators, we wait for a small number of successive
tracking failures to switch from SVIn2 to PE and vice-versa.

T — Tst TSt_l T
Whro - — Wiy " Wlgy W lsvy

When the VIO frontend can not detect or track enough
keypoints to initialize a new keyframe, no keyframe infor-
mation is generated. In this case, we wait for the specified
time (set as a parameter) if we do not receive any keyframe
information from SVIn2 for kf_wait_time (generally set
between 1 to 3 secs), we switch to the primitive estimator.
Furthermore, we need to introduce these keyframes into the
pose graph differently than regular keyframes as they only
contain the odometry information from PE. These keyframes
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Fig. 4: Three environments where the AUV was deployed (Barbados): (a) over a shipwreck performing a lawnmower pattern;
(b) over a mixed sand and coral area performing multiple squares; (c) over a coral reef performing a lawnmower pattern.

cannot be used for loop closure as they do not possess the
keyframe image, features, and the 3D keypoints (used for
geometric verification using PnP RANSAC) associated with
them. It is worth noting that even if the SVIn2 health status
is bad, we can use the keyframes originated from SVIn2 for
loop closure.

IV. EXPERIMENTS

a) Datasets: The Aqua2 AUV has been deployed in
a variety of challenging environments including shipwrecks,
see Fig. 4(a); areas with sand and coral heads, see Fig. 4(b);
and coral reefs, see Fig. 4(c). During each deployment,
Aqua2 performs predefined trajectory patterns while using
the odometry information from the PE. We have tested our
approach on the following datasets:

« lawnmower over shipwreck: The Aqua2 AUV per-
forming a lawnmower pattern over the Stavronikita
shipwreck, Barbados. During operations around ship-
wrecks, a common challenge is the lack of features
when the wreck is out of the field of view; for example,
while mapping the superstructure, the AUV can move
over the side of the wreck (see Fig. 3(e-f)), thus facing
the open water with no reference. Since VIO is not
able to track while facing open water, the AUV’s pose
cannot be estimated correctly without using the PE. We
obtain the ground truth trajectory for the section with
the shipwreck in view by using COLMAP [45], scale
enforced using the rig constraints.

« squares over coral reef: The Aqua2 AUV performed
square patterns over an area with sand and coral heads,
Barbados; see Fig. 4(b). During operations over coral
reefs, drop-offs present similar conditions as wrecks,
where the vehicle is facing blue water or a sandy
patch. In addition, patches of sand present feature-
impoverished areas where VIO fails.

o lawnmower over coral reef: The Aqua2 performed
a lawnmower pattern over a coral reef, Barbados; see
Fig. 4(c). During operations, the VIO was able to
track successfully the whole trajectory. This dataset
was later artificially degraded to simulate loss of vi-
sual tracking. Utilizing the consistent track produced
by VIO as ground truth, a quantitative study of the
switching estimator is presented. It’s worth mentioning
that COLMAP was not able to register images during

strips with fast rotation; hence not used for ground truth.

b) Trajectory Estimation: Trajectories were produced
with PE, SVIn2, and the proposed SM/VIO estimators.
Figure 5 presents the resulting trajectories for the three
datasets. In all cases the PE trajectory (blue dash-dotted
line) accurately traced the requested pattern as the primitive
estimator was also used to guide the robot. The VIO (SVIn2)
(red dash-dotted line) diverged when visual tracking failed.
Finally the proposed estimator SM/VIO (solid red and blue
line with green diamonds marking the switching of estima-
tors) tracked consistently the pose of the AUV.

The shipwreck lawnmower dataset presents a very chal-
lenging scenario, the AUV swims over the deck, VIO tracks
consistently the feature-rich clutter (Fig. 3(d)), then the AUV
approaches the sides of the wreck, the number of features
is reduced (Fig. 3(e)) until it goes over the side (Fig. 3(f))
and faces blue water. As the detected features are drastically
reduced the VIO continues forward, moving further away
from the true position. It is worth noting that several loop
closures kept the VIO estimate close enough to the wreck
structure but in the wrong area. The proposed framework
switched to the PE upon loss of visual tracking as can
be seen from the green diamond signifying the switch in
Fig. 5(a). COLMAP was able to register images in sections
with shipwreck in view.

In the reef_square dataset the AUV performed three
squares over an area with some coral heads and a large
sandy patch. As can be seen from Fig. 4(b) and Fig. 5(b)
only one side of the square contains enough features for
VIO tracking; however, these features enabled repeated loop
closures. The primitive estimator over estimated the forward
velocity producing squares much larger than the actual
trajectory. The VIO upon loss of visual tracking failed (red
dash-dotted line). SM/VIO produced accurate trajectories
utilizing the loop closures. The top side of the square, where
VIO was operational produced consistent trajectories across
all squares. The last dataset is discussed next, presenting a
quantitative evaluation of the SM/VIO estimator.

¢) Quantitative Analysis: The third dataset (lawn-
mower over a coral reef) produced VIO results without any
loss of tracking, albeit without any loop closures. The visual
input was artificially degraded (Gaussian blur with kernel
size 21 and standard deviation 11 was introduced on selected
images) randomly in order to generate controlled failures for
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the VIO. Fig. 5(c) presents such a scenario of three failures
of 30 seconds each. For this study, these failures lasted
for varying duration and a different number was introduced
each time. More specifically, as can be seen in Table I, we
introduced one, three, and five failures, in a trajectory of 314
seconds with a total length of 108.13 meters as estimated by
the successful SVIn2 estimator. Each scenario was run five
times, the average Root Mean Square Error (RMSE) and
standard deviation are reported. One failure of 60 seconds
was introduced resulting in average RMSE of 3.2 meters.
Three failures for 15, 30, and 45 seconds were introduced,
resulting on average around 3 meters. Finally, five failures of
20 seconds were introduced resulting on average of RMSE
4.37 meters. It is worth noting that in all cases the pure VIO
estimates diverged rapidly upon loss of visual tracking; see
Fig. 5(c) red dash-dotted line.

TABLE I: Quantitative analysis of robust switching estimator
based on root mean squared translation error. The table shows
mean and standard deviation of error over 5 runs.

dataset length mean rmse s.d.

(in meters)  (in meters)  (in meters)
reef_Imw_1_60 108.13 3.21 0.47
reef_Imw_3_15 108.13 321 0.61
reef_Imw_3_30 108.13 3.01 0.58
reef_Imw_3_45 108.13 3.56 0.32
reef_Imw_5_20 108.13 4.37 0.90

d) Comparison with other VIO packages: The ship-
wreck_lawnmower dataset was used to compare with well
known VIO packages [9], [14]-[16]. The ground truth is ob-
tained using COLMAP [45] which was able to track images
with shipwreck in view as it does not require continuous
tracking. We compared the performance of various VIO
algorithms with COLMAP baseline using root mean squared
average translation error (ATE) metric after se3 alignment.
As can be seen in II, the proposed estimator maintained a
pose estimate and exhibited the least RMSE, in contrast other

(b)
Fig. 5: Resulting trajectories from three datasets. Each plot presents the PE trajectory, the SVIn2 trajectory, and the proposed
robust switching estimator (solid line with red the parts of VIO and blue the PE contributions, switching points are marked by
green points), approximate ground truth in (a) and (c) is plotted as a solid black line: (a) Stavronikita shipwreck, lawnmower
pattern. (b) Mixed sand and coral area, multiple squares. Please note that as the SVIn2 trajectory lost track it moved far away.
(c) Coral reef, lawnmower pattern. This dataset has no loop closures, however, SVIn2 maintained track over the complete
trajectory. The visual data were artificially degraded at random occasions to trigger the switch to PE.

@(m)

©

algorithms deviated after losing track. OpenVINS [16] was
not able to recover after losing track when the shipwreck is
out of view and has a very high error. It is worth noting that
all the VIO algorithms lose track when the robot approaches
the side of the wreck facing blue water.

TABLE II: Performance of popular open-source VIO pack-
ages on the wreck dataset. The root mean squared ATE
compared to COLMAP trajectory after se3 alignment.

VIO Algorithm Time to first Recovery? = RMSE
track loss (in sec) (in m)
OpenVINS [16] 23.7 No X
OKVIS [14] 23.4 Partial 5.199
VINS-Fusion [15] 23.6 Partial 53.189
SVIn2 [9] 23.4 Yes 1.438
SM/VIO N/A Yes 1.295

V. CONCLUSION

The presented estimator robustly tracked an AUV even
when traveling through blue water or over a featureless sandy
patch. The proposed system uses an Aqua2 vehicle [6] and
the SVIn2 [9] VIO approach; however, any AUV with a
well-understood motion model can be utilized together with
any accurate VIO package. Recent deep learning based
inertial odometry approaches [46]-[48] can also serve as
a conservative alternative estimator. An evaluation of visual
features for the underwater domain [49]-[51] will contribute
additional information to the VIO health monitor.

Future use of the proposed approach will be to combine
it with coral classification algorithms [52], [53] in order
to extract accurate coral counts over trajectories [54] and
models of the underlying reef geometry, and for mapping
underwater structures [55]. We are currently working on
extending the Aqua2 vehicle operations inside underwater
caves. The challenging lighting conditions in conjunction
with the extreme environment require the localization abili-
ties of the vehicle to be robust even when one of the sensors
fails temporarily.
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