Feature-Oriented Cache Designs

Justin Deters* and Ron K. Cytron
j.deters@wustl.edu®,justin@simplerose.com”,cytron@wustl.edu
SimpleRose* and Washington University
St. Louis, Missouri, USA

ABSTRACT

We propose a novel methodology for designing and implementing
caches. Instead of a monolithic specification of all features, we
compose features to arrive at a desired implementation.

To achieve this goal, we leverage programming language types
and finite-state machine states as hooks for feature specification and
deployment. Our approach accommodates immediate integration
of cache components and their variations, as each feature is woven
automatically into a base implementation.

We designed and implemented such a cache using the RISC-V-mini
implementation, presenting resource usage for 10 distinct endpoints
across both the instruction and data caches.

1 INTRODUCTION

In their 2018 Turing award lecture [12], John Hennessey and David
Patterson advocated for the adoption of the RISC-V architecture by
industry and research. Experiment metrics (e.g., instruction counts,
cycles per instruction) published using RISC-V can be more mean-
ingfully compared because they are based on a common instruction
set. The design of the RISC-V ISA allows for omission of features
not needed, resulting in smaller footprint for embedded systems.
Ideas developed in research can more easily be adopted by industry
when both use a common architecture. These are all arguments in
favor of the adoption of RISC-V.

While these goals are certainly attractive, it is nonetheless a
daunting task to modify a characterization of RISC-V to add, mod-
ify, or remove features. A large number of implementations of
RISC-V currently exist [22]. Each is generally a separate characteri-
zation intended to support applications of interest. The following
implementations are of the greatest relevance to our work:

e RISC-V-mini [16] is a 3-stage pipelined implementation of
32-bit RISC-V processor.

e Rocket Chip [3] is a robust implementation of 64-bit RISC-V
using a 5-stage pipeline.

o BOOM [6] is an out-of-order execution implementation of
RISC-V that shares some of the same libraries of Rocket Chip.

From the RISC-V-mini to BOOM, these implementations add fea-
tures to create an increasingly sophisticated implementation of
RISC-V, yet most hardware features are unique to each characteri-
zation.

In our approach, features are defined so that they can be woven
into an implementation (a base characterization along with fea-
tures already chosen and deployed) using well-defined type and
state information. A feature-oriented approach does not come for
free and it requires the following development discipline. A base
implementation and its features must contain sufficient types and
states so that other features can use those as hooks for deployment.
Newly conceived features may require refactoring both the base

implementation and affected features, to provide necessary hooks
for a new feature’s deployment. Continual refactoring is seen as an
advantage in the software world, as it raises the abstraction level of
a project and tends to clarify logic and purpose of code. We provide
examples of such refactoring in Section 4.3.

Section 2 describes work upon which our ideas and implemen-
tation are based. Our contributions in this paper are as follows:
Section 3 describes how we use aspects to modify finite-state ma-
chines (FSMs), borrowing from software aspect-oriented languages.
Section 3.2 describes a library we have written for Chisel in Scala
that supports straightforward specification of features that modify
FSM behavior. Section 4 describes our feature-oriented cache char-
acterization. We provide examples of features, the advice needed to
realize the features, and pictures of the cache’s FSM before and after
feature inclusion. The caches we generate using this approach have
been deployed and tested in RISC-V-mini. Section 5 describes our
experiments and results that show the savings in area for various
endpoints in the cache-design feature space.

We show in this paper that our approach allows cache features
that we have written to be easily incorporated into RISC-V-mini.
Furthermore, our methodology should allow and encourage others
similarly to develop features and implementations that compete
with or augment what we have accomplished. We aspire to create
a marketplace for publishing and using all manner of cache-design
features.

2 PRIOR WORK

Chisel, Scala, FIRRTL. Most hardware designs, including caches,
are specified using hardware characterization languages such as Ver-
ilog [4] or VHDL [5]. While those languages offer some abstraction
in the form of parameters and restrictive loops, they lack high-level
concepts such as classes, traits, and types that allow cleaner and
more robust specifications of software systems.

Hardware generation languages like Chisel, on the other hand,
allow the designer to write a program whose execution generates
a design. Chisel, based on Scala, has abstractions such as types,
classes, and traits that allow a richer specification of a cache.

Transformations of the hardware design, for example to weave
in features of interest, can be accomplished at the Scala level (using
Scala meta) or FIRRTL level (using tree operations on Chisel’s
intermediate form). While, we chose to target Chisel due to its
maturity and level of adoption, this technique could be suited for
other hardware generation languages as well. For example, our
tools could be directly used with SpinalHDL [1] as a Scala based
language.

Aspect-Oriented Programming. Large software systems are sub-
ject to the “tyranny of the dominant decomposition” in that the
objects and methods that form the nouns and verbs of the system

are those that are most prominent in the design. Such systems, how-
ever, often have cross-cutting concerns. For example, the logging of
class and method activity can require action at each method’s call
and return. Aspect-oriented programming (AOP) [15] allows the
specification of join-points to model method calls and returns, along
with advice that specifies what should be done at those points of
execution. A general specification of a set of join-points is called a
pointcut. Aspect] [21] is a robust implementation of an AOP using
Java.

For our work, AOP provides the approach we need to modify-
ing finite-state machines, such as the one controlling a cache, to
incorporate features as desired. Internally, the cache’s operation
is governed by a finite-state machine. Features are woven into the
design as modifications of the finite-state machine (a base specifi-
cation along with other features of interest).

Feature-oriented Programming in Software Systems. Our approach
to cache design is influenced by the success of this idea in the soft-
ware world. For example, a CORBA event channel [7] offers many
features in a complete implementation, but a given application
may need only a few of those features. Using an aspect-oriented
approach, features were incorporated as desired, yielding implemen-
tations whose footprint and delay are affected only by necessary
features [13]. That work shows that by omitting unnecessary fea-
tures, implementations can be generated that take much less area
(code) and that have significantly better performance (latency) than
the full-featured, monolithic version. That work used the aspect
compiler Aspect] [21] and a code base for an event channel and its
features written in Java [11].

3 FEATURE-ORIENTED FINITE STATE
MACHINES

FSMs serve as the basis of control for many components of an
architecture implementation, including cache control and multi-
cache coherence, bus arbitration, and network protocols. We first
describe generally how aspects can transform such machines to
implement features of interest. We then describe a library we have
implemented in Scala/Chisel to simplify expression of aspects for
FSMs. When run as a Chisel program, the resulting FSMs synthesize
Verilog with the features of interest.

3.1 Finite-State Machine Aspects

We follow [19] in the treatment of aspects for FSMs. Essentially,
a state is like a method and a transition between states is like a
method call. We next describe the specific formulation of aspects
for FSMs.

As an example to show the advantages of an AOP approach for
cache designs, consider the inclusion of a write-back feature for
a cache. The feature requires modification of the cache design in
multiple places:

o Each cache line must contain a dirty bit.

e A line’s dirty bit must be set if the program modifies any
byte in that line.

e When a line is replaced, the dirty bit must be consulted
to determine if the line needs to be written to the backing
storage.

Justin Deters* and Ron K. Cytron

Without an AOP approach, the FSM is modified by hand in various
portions of its specification to realize the above behaviors. If subse-
quently a write-through approach is desired, the write-back logic
must be edited out and the write-through logic deployed. This is
an error-prone and tedious activity. With an AOP approach, the
designer can easily change from write-back to write-through by
simply selecting the desired feature for inclusion. For write-back,
the above FSM modifications are expressed together in a single
feature, whose inclusion affects the FSM appropriately as described
above. The elements of the feature are:

o A pointcut specifies where in the FSM changes should occur.
The pointcut then yields a set of states.

e Join-points, which are specific states or transitions in the
FSM, at which modifications to the FSM occur.

e Advice in the form of FSM modifications is applied.

3.1.1 Pointcuts. Pointcuts denote a set of states or a set of transi-
tions in an FSM, typically conditioned on some predicate p. Evalu-
ated at run-time when a design is generated, p can be any Boolean-
valued function that selects items of interest, typically based on
types, traits, or values of instance variables.

State pointcuts are analogous to a set of function bodies in a
program. Just as a function body is unique within a program, each
state join-point within the pointcut will also be unique. Pointcuts
that specify transitions on tokens are analogous to a set of function
calls. Unlike function bodies, calls to a given function may appear
multiple times within a program. This is also true for a token within
a FSM. Thus, the resulting pointcut will contain all the transitions
where the predicate p was satisfied.

3.1.2 Advice. Continuing the analogy, an FSM is essentially a set
of function bodies (states) where function calls (transitions) occur
at the end of each body. For our purposes, advice is inserted into
the execution flow of an FSM to implement a given feature. The
advice affects the actions performed before, during, or after a state,
including modification of transitions to target new or other states.

We consider the usual forms of around, before, and after advice
(cf- Aspect] [21]). Around advice takes the join-point and replaces
it with something else. States replace states and transitions replace
transitions. Before and after advice come in the form of token-state
or state-token pairs in order to add a new path through the FSM.
Figure 1a shows the effect of different types of advice on a simple
FSM. Before advice (q3, e) on q1 takes all paths into q1 and directs
them into g3, on e the machine transitions to q1. The reverse is
true for after advice (e, q3) on q1. All paths leaving q1 now leave q3
and the transition from q1 to q3 takes place on e. Similarly, before
advice (e, q3) on a places e going into q3 and a out of q3. The reverse
is true for after advice (q3, €) on a. In each of these cases, e can be
the empty string A if the behavior of the FSM should change but
not require additional input to do so.

3.2 Software Library

We have incorporated all of the above mechanics into a software
library. Because we targeted Chisel for hardware generation, this
library is also built in Scala (https://github.com/wustl-frisc/foam).
As is, it can be dropped into any Chisel hardware generator to con-
struct and generate hardware FSMs. The software library contains

Feature-Oriented Cache Designs

Base
\@>

Before g1

a b
@ e : °-
c d
After q1 a b
@-0 ‘ e.
c d
Before a € a b
“ “ @
c d
After a a € b
c d
(a) Examples of before and after advice on
a small FSM.

(=)

¢ d

(b) The Read FSM

sReadCache

refillFinish

(c) The FSM that combines Read,
Write, and Acknowledge Idle.

Figure 1: Example FSMs.

a set of base classes, FSM, state, and token that can be arbitrarily
extended by hardware designers to suit their applications.

3.2.1 Writing Aspects for Finite-State Machines. We have modeled
the programming interface using the well established aspect lan-
guage for Java, Aspect] [21]. This provides a familiar interface for
aspect practitioners. No new syntax is needed to implement our
library; everything is specified using ordinary Scala/Chisel.

Pointcuts. Figure 2 demonstrates the creation of a pointcut from
our implementation. Here, the predicate is written using a Scala
match statement. The Pointcutter will iterate over all the states
in the FSM and add them to the pointcut if the predicate evaluates
to true. A predicate can be written as any arbitrary Scala code as
long as it follows the interface of consuming a state (or token) and
returns true if it satisfies the properties defined in the predicate.
The result of this example would create a pointcut of states where
the type of the state is WriteWaitState. This the state in cache
where it waits for acknowledgement from the backing store in the
AXI protocol.

val waitPointcut Pointcutter[State, WriteWaitState](
nfa.states,
state => state match {

case s: WriteWaitState => true

case _ => false

Figure 2: A pointcut from our implementation.

Advice. Figure 3 shows the construction of advice using the
AfterState class. Any arbitrary Scala code can be executed inside
the advice body as long as it returns advice. StateJoinpoint pro-
vides reflexive access to the join-point as well as its context. In this

advice, in the match statement, we test to see a transition already
exists coming out of the state using the join-point context. If we do
not do this, the advice would apply again. The result of this advice
would be to insert a new ack edge between every WriteWaitState
and the Idle state. This transition represents the completion of the
write transaction. Once the the cache receives acknowledgement
from the backing store, it returns to the idle state to wait for another
transaction.

AfterState[WriteWaitState]l(waitPointcut, nfa) ((
thisJoinpoint: StateJoinpoint[WriteWaitState],
thisNFA: NFA) => {
thisJoinpoint.out match {

case Some(t) => (None, thisNFA)
case => (Some(WriteFSM.ack,
), thisNFA)
3

ReadFSM.sIdle

9

Figure 3: Advice using the pointcut from Figure 2 from our
implementation.

3.2.2 Hardware Generation. Our software library uses Chisel con-
structs to generate hardware FSMs. These are the exact same hard-
ware constructs that Chisel uses under the hood to generate their
hard-coded FSMs. Before generation, end users associate each state
and token with a string ID. Then, each state is given a conditional
block and the transitions placed inside with their own conditional
blocks. The end user is returned a handle to the FSM. The handle
has one wire associated with each state. This signal is asserted
when the state becomes active. The handle also has one assignable
wire for each token. When this signal is asserted and it is associated
with current active state, the transition occurs.

In Figure 4 we show how an FSM handle is used. Since the FSM
interacts with the outside world via a handle, the implementation of

what happens when a state is asserted is completely decoupled from
the FSM itself. This is extremely useful from a feature-orientation
standpoint. New implementation information can be added as fea-
tures are added. As long as the FSM’s handle remains in scope and
a module barrier is not crossed, the signals in the handle can be
used anywhere.

1 when(fsmHandle ("sReadCache")) {
when(hit) {
io.resp.valid := true.B

}

50}

, fsmHandle("readFinish") := l!io.req.valid && hit

Figure 4: Using an FSM handle in our software library.

4 FEATURE-ORIENTED CACHE

We next use our AOP FSM library to create a feature-oriented
cache design. We present the base machine in terms of the hooks it
exposes for features, and then we define features using those hooks.
While the result is presented in its final form here, the process is
one of refactoring and evolution as new features are included.

4.1 Feature Decomposition

The stateful nature of the cache requires feature decomposition
across both the internal hardware and the FSM that controls it.
However, the instruction and data cache designs are not mutually
exclusive. They both share the same base design for both the FSM
and the cache overall. All endpoints for either cache are the result
of applying features to the same base designs. All our designs are
built for the RISC-V-mini processor [16].

4.1.1 Finite-State Machine. We have divided the FSM’s mecha-
nisms into five separate features.

e Read provides all the functionality for a read-only cache.

e Write provides the functionality to write to memory. This
is an abstract feature. By itself it does not have enough
to complete cache transactions. One of the two following
features must also be included.

o Acknowledge Idle returns the cache back to the idle state
after the backing store acknowledges a write.

o Acknowledge Read returns the cache back to the read
state after the backing store acknowledges a write.

e Dirty Accounting provides the necessary transitions for
a write-back cache.

The evolution of our FSM is shown in Figures 1b and 1c. Note, we
reuse the Read feature all of our FSMs without any modification.
Furthermore, the FSM in Figure 1c and the write-back FSM! largely
share the same structures. They share all the same states and nearly
all the same transitions. Our feature-oriented approach to FSMs
allows us to take the FSM in Figure 1c suitable for write-through and
simply add new edges to make it suitable for write-back. In practice,
we have found that extending this design was relatively easy using
our tool, taking only about an hour. Since the generator itself calls

1Omitted due to space constriants.

Justin Deters* and Ron K. Cytron

into our software library, all of our FSM features are subsumed into
our hardware generator features (discussed in Section 4.2.1).

4.2 Compositional Correctness

Currently, neither of our tools check for compositional correctness.
Even in Aspect] [9] it is possible to write to aspects which their
composition results in infinite execution of the program. These
tools, for instance, would allow the end user to apply the features
for both a direct-mapped cache and fully-associative cache at the
same time. Bluespec [2] accomplishes compositional correctness
through the guarded atomic actions. This approach focuses on how
the circuit functions, rather than what hardware is being included.
Compositional correctness for our tools, however, is beyond the
scope of this paper and is left for future work.

4.2.1 Hardware Generator. Below are the 9 separate hardware gen-
eration features for our cache. In all cases, the cache implements
the AXI [18] interface for communication with the backing store
and follows the request-response interface already present in the
RISC-V-mini datapath.

To show the extensibility of our feature-oriented approach we
have also included an esoteric Dusty [10, 17] feature, an idea pro-
posed to reduce unnecessary write-backs, particularly for reference
counts. When the cache is about to write a dirty line back to mem-
ory, a dusty cache will first consult a secondary “image” of the line
to see if the line has actually changed since it was first brought into
cache. This is useful for fetched values that change temporarily but
return soon to their originally fetched value.

e Base System provides the structure to which all other
features can be applied.

e HasBufferBookeeping enables just enough bookkeeping
to hold one buffered memory transaction.

o HasMiddleAllocate builds out the internal memory for
the cache and allows cache lines to be allocated.

e HasWriteStub stubs off the write channel for read-only
memory.

e HasWriteFSM introduces the write FSM with both the
write and Acknowledge Idle features applied.

o HasSimpleWrite provides the hardware necessary to write
to memory.

e HasInvalidOnWrite invalidates the buffer or cache line if
the tag matches.

e HasMiddleUpdate allows the internal memory of the
cache to be updated by writes from the datapath.

e Dirty Accounting modifies the FSM with both the Ac-
knowledge Read and Dirty Accounting features. As well
as providing all the hardware necessary for handling dirty
cache lines.

e Dusty creates a second internal memory for the cache that
acts as an image of main memory. A cache line is only
considered dirty if the internal memory and image of the
line are not equal.

4.2.2 Endpoints. As stated earlier, our features combine to form
endpoints for both an instruction and data cache. Endpoints for
both the instruction and data caches can exist in the same system
at the same time (how this is achieved is discussed in Section 4.3).

Feature-Oriented Cache Designs

This means that our cache system can realize 10 separate overall
endpoints, two choices for instruction cache and five choices for
the data cache. Figure 5 lists all of the endpoints for the instruction
and data caches, as well as the features combined to achieve each
of them.

The Read-Channel and Write-Channel endpoints implement
the hardware necessary for memory transactions as well as a small
buffer for use with the AXI interface. In all other cases our generator
creates a direct mapped cache with 256 sets and 16 byte cache lines.
Set-associative and fully-associative caches are embraced well by
our approach, but they are beyond the scope of the experiments in
this paper.

Endpoint Features

Read-Channel ~ HasWriteStub, HasBufferBookeeping

Read-Only HasWriteStub, HasMiddleAllocate

Write-Channel HasWriteFSM, HasSimpleWrite, HasBufferBookeeping, HasInvalidOnWrite

WriteBypass HasWriteFSM, HasSimpleWrite, HasMiddleAllocate, HasInvalidOnWrite

WriteThrough HasWriteFSM, F impleWrite, HasMiddleAllocate, F iddleUpdate

WriteBack HasWriteFSM, F impleWrite, HasMiddleAllocate, F iddleUpdate, Dirty Accounting
Dusty HasWriteFSM, HasSimpleWrite, HasMiddleAllocate, HasMiddleUpdate, Dirty Accounting, Dusty

Figure 5: Endpoints for the Instruction and Data Caches.

4.3 Feature Implementation

Our implementation combines Chisel, our library, and another
aspect-oriented tool, Faust [8] that inserts code into Scala programs
via abstract-syntax tree modification. We use Faust to apply all of
our features automatically to the RISC-V-mini codebase. As such,
since Faust directly modifies Scala code, there are no restrictions
on what features and where we can apply them, as long as they are
written in legal Chisel code.

By taking a feature-oriented approach we were able to achieve
a high level code leverage and design reuse between features. On
average each feature is only 43 lines of generation code. Our largest
feature, Dirty Accounting is just 104 lines of code. This feature, by
itself, adds all the necessary hardware to build a write-back cache
out of a write-through cache.

4.3.1 Hardware Generation Through Types. Rather than tying the
structure of the hardware generator code to the hardware hier-
archy, we propose separating hardware into types with specific
generation tasks. Our base Cache class is responsible for creating
and initializing the hardware needed for optional cache features.

We have further subdivided the cache into a “frontend” and
“backend” with classes backing each of these. These two classes are
responsible for generating the hardware needed for communication
with the datapath and backing store respectively. In the future, if the
design moved away from AXI to a different protocol, the backend
could be swapped out for a different class that has the same interface,
with appropriate chances to the FSM and IO for the module.

Hardware generation types give us a way to optionally generate
hardware through class methods. Instead of writing one implemen-
tation for a read-only cache and another for a read-write, we can
call different methods to generate the read and write components
separately while still sharing the same overall design. In addition,
the hardware design my easily be extend by adding new hardware
generation methods or overriding old ones.

Critically, hardware as types creates “hooks” for us to grab onto,
to modify the abstract syntax trees with Faust. Withing our gen-
erator, the instruction cache and data cache are subtypes of Cache.
We direct Faust to modify the cache of a specific type with the de-
sired features. This enables us to easily create endpoints modifying
both caches without having to worry about cross contamination of
features between the two.

4.3.2 Features as Traits. Traits in Scala function similarly to Java
interfaces. Unlike Java, Scala traits support multiple inheritance
and Scala code can be called from within a trait. RISC-V-mini,
Rocket Chip, and BOOM all have traits that implement some func-
tionality. However, our approach differs significantly in that we
package whole features into traits. Thus, to add a feature to a design,
the type can just be extended with the trait containing the feature.

Consider the HasMiddleAllocate feature in Figure 6. By ex-
tending the InstructionCache with HasMiddleUpdate instead
of HasBufferBookeeping the read-channel is transformed into
a read-only cache. By combining this with our type encapsula-
tion technique (Section 4.3.1), zero hand rewriting of the design is
required to make this extensive change.

Since Faust modifies the abstract syntax tree of the hardware
generator, creating different endpoints only requires instructing
Faust to extend the cache classes with different traits. All of our
endpoints except for WriteBack and Dusty are created this way.

4.3.3 Inserting Hardware into Traits. Sometimes, there are features
that cannot be succinctly captured in a single trait, but instead
crosscut the hardware generator. To implement a Write-Back cache,
new features must be added to the FSM, hardware must be created
for storing the dirty bit and transmitting that information, as well
as crating or changing conditions for cache updates and memory
transactions.

In this instance, we heavily utilize the aspectual nature of Faust.
The majority of the implementation of Dirty Accounting is writ-
ten as an aspect in Faust. However, Dirty Accounting requires
more than just the extension of traits with new traits. We use Faust’s
ability to weave new code into the hardware generator to modify
and extend the designs contained in traits. HasMiddleUpdate is
modified to hold the dirty bits, as well as connect with the new
mechanisms in the FSM for write-back. HasWriteFSM receives
new features to account for dirty cache lines and writing back to
memory. HasSimpleWrite is updated with new conditions for
writing to memory. Conveniently, this can all be contained in one
selectable aspect within Faust.

This is further exemplified by the Dusty feature. The whole
implementation of Dusty is captured in a single aspect within
Faust. Figure 7 shows the relatively small amount of work needed
to implement Dusty. First, once again utilizing the type isolation
technique (Section 4.3.1), we create our reference image of memory
by instantiating another Middleend class. Then, we provide advice
around the dirty signal to judge a cache line dirty only if it does
not equal what exists in the reference image of memory.

5 PERFORMANCE AND AREA

We have taken our feature-oriented designs all the way up through
simulation and synthesis. The hardware generator is implemented

trait HasMiddleAllocate extends Cache {
val middle = new Middleend(fsmHandle, p, address, tag
, index, valids)
val (oldTag, readData) = middle.read(buffer,
nextAddress, offset, Some(hit), Some(cpu))
middle.allocate(Cat(mainMem.r.bits.data, Cat(buffer.
init.reverse)), readDone)

Figure 6: HasMiddleAllocate feature.

class Dusty extends Aspect {
Before ("HasMiddleUpdate", "dirty", "Bool") {
val dusty = new Middleend(fsmHandle, p, address, tag,

index, valids)
val (_, dustyData) = dusty.read(buffer, nextAddress,
offset)

dusty.allocate(Cat(mainMem.r.bits.data, Cat(buffer.
init.reverse)), readDone)

}

Around ("HasMiddleUpdate", "dirty", "Bool") {
proceed() && (dustyData =/= readData)

3
}
Figure 7: Dusty feature in Faust.
Read-Channel
benchmark Write-Channel ~ Write Bypass ~ Write Through ~ Write Back
median 3.59 3.11 3.11 3.02
multiply 2.81 2.78 2.78 2.77
gsort 3.48 3.38 3.19 3.00
towers 3.78 3.69 3.36 2.46
vvadd 3.71 3.07 3.07 3.00
Average CPI 3.47 3.21 3.10 2.85
Read Only
benchmark Write-Channel =~ Write Bypass ~ Write Through ~ Write Back
median 241 1.93 1.93 1.87
multiply 1.37 1.33 133 1.33
qsort 2.11 2.01 1.83 1.64
towers 2.84 2.76 2.42 1.61
vvadd 2.64 2.00 2.00 1.93
Average CPI 2.27 2.01 1.90 1.68

Figure 8: Cycles per instruction for each RISC-V benchmark,
by endpoint.

Endpoints LUTs (normalized)
readChannel-writeChannel 1.00
readChannel-writeBypass 1.25
readChannel-writeThrough 1.35
readChannel-writeBack 1.52
readChannel-dusty 1.57
readOnly-writeChannel 1.25
readOnly-writeBypass 1.49
readOnly-writeThrough 1.56
readOnly-writeBack 1.76
readOnly-dusty 1.81

Figure 9: The area in LUTs of the endpoints.

in Chisel 3.5.1. All designs were emitted as Verilog. We simulated the
large benchmarks from the RISC-V tests repository [14] using Veri-
lator 4.214 [20]. Designs were synthesized for an xc7a100tcsg324-1

Justin Deters* and Ron K. Cytron

FPGA using Vivado 2022.1 at 50 MHz with the Vivado synthesis de-
faults. Figure 8 shows the cycles per instruction for each benchmark
with the average CPI of all the benchmarks displayed at the bottom.
Figure 9 shows the synthesized area of the whole synthesized chip
design in LUTs.

The smallest endpoint, readChannel-writeChannel takes only
55.2% of the area of our largest endpoint, readOnly-dusty, which
reduces CPI by 47.5%. By feature-orienting our design, we have
enabled a fine grain of design space exploration. We can see the CPI
drop nearly linearly as more features are added to the design. Coarse
grained analysis is not lost in this technique either. Comparing the
two instruction cache endpoint groups we see that the addition of
an instruction cache has an average decrease in CPI of 1.19 cycles
and an average increase in LUTs of 438.

While this result is not surprising, adding an instruction cache
should improve performance at the cost of increasing design area,
we speculate that this technique can help to quickly identify the
properties of new designs and save designers time. For instance,
the readOnly-writeChanel has a lower CPI than any of the read-
Channel endpoints and takes less area than all of them except
readChannel-writeChannel. This analysis tells us going down
the path of more advanced data cache features is not worth the
area cost if there is no data cache. Again, this is not surprising, but
we posit that there are other opportunities in hardware designs for
this sort of analysis.

A feature-oriented approach can help hardware designers better
balance trade-offs while maintaining high levels of design reuse.
Without the need to start hardware designs from scratch, designers
can accomplish quicker prototyping while maintaining a high level
of analysis and code reuse.

6 CONCLUSION

We have presented a new methodology for authoring cache designs.
In place of a monolithic design, capabilities and implementation
choices for the cache are captured as aspectual features, which are
woven into a base design to obtain an implementation. The result
is a more structured code base, with features authored separately
from the base implementation. We have described a library we have
authored in support of writing and weaving aspects into Chisel
hardware designs. We have presented results of using this approach
to generate various cache-design endpoints.

With this approach, caches with specific feature choices, many
more than the ones we have presented here, can be generated as
quickly as features can be chosen, with Verilog produced (quickly,
in seconds) as the output of executing the resulting Chisel program.
That Verilog characterization can then undergo synthesis using
typical toolchains.

ACKNOWLEDGEMENTS

We would like to acknowledge SimpleRose for seeing the value
of this work and continuing to fund the main author after the
publication of this paper.

REFERENCES

[1] Sallar Ahmadi-Pour, Vladimir Herdt, and Rolf Drechsler. 2022. The MicroRV32
framework: An accessible and configurable open source RISC-V cross-level

Feature-Oriented Cache Designs

[2

=

(3

=

[10]

platform for education and research. Journal of Systems Architecture 133 (2022),
102757. https://doi.org/10.1016/j.sysarc.2022.102757

Arvind. 2013. Bluespec and Haskell. In Proceedings of the 1st Annual Workshop
on Functional Programming Concepts in Domain-Specific Languages (Boston,
Massachusetts, USA) (FPCDSL ’13). Association for Computing Machinery, New
York, NY, USA, 1-2. https://doi.org/10.1145/2505351.2508149

Krste Asanovi¢, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-
colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraele-
vitz, Sagar Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup Lee,
Eric Love, Martin Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert
Ou, David A. Patterson, Brian Richards, Colin Schmidt, Stephen Twigg, Huy
Vo, and Andrew Waterman. 2016. The Rocket Chip Generator. Technical Re-
port UCB/EECS-2016-17. EECS Department, University of California, Berkeley.
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17 html

IEEE Standards Association et al. 2006. IEEE standard for Verilog hardware
description language (IEEE 1364-2005). http://standards. ieee. org/ (2006).
Jean-Michel Berge. 1992. VHDL Designer’s Reference. Kluwer Academic Publish-
ers, USA.

Christopher Celio, David A. Patterson, and Krste Asanovi¢. 2015. The Berkeley
Out-of-Order Machine (BOOM): An Industry-Competitive, Synthesizable, Parame-
terized RISC-V Processor. Technical Report UCB/EECS-2015-167. EECS Depart-
ment, University of California, Berkeley. http://wwwz2.eecs.berkeley.edu/Pubs/
TechRpts/2015/EECS-2015-167. html

X. Defago, P. Felber, and R. Guerraoui. 1997. Reliable CORBA Event Channels.
Technical Report 97/229. Departement d’Informatique, EPFL.

Justin Deters and Ron K. Cytron. 2021. Performance Counter Design Variation in
Rocket Chip via Feature-Oriented Programming. In Fifth Workshop on Computer
Architecture Research with RISC-V (CARRV 2021).

Eclipse Foundation. 2022. Aspect]. https://www.eclipse.org/aspectj/

Scott Friedman, Praveen Krishnamurthy, Roger Chamberlain, Ron K. Cytron, and
Jason E. Fritts. 2005. Dusty Caches for Reference Counting Garbage Collection.
In Proc. of Workshop on Memory Performance: Dealing with Applications, Systems
and Architecture.

[11

(12]

(13]

e
S

™
=

James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley, Daniel Smith,
and Gavin Bierman. 2022. The Java Language Specification Java SE 19 Edition.
Technical Report. Oracle. https://docs.oracle.com/javase/specs/jls/se19/html/
index.html

John Hennessy and David Patterson. 2018. John Hennessy and David Patterson
Deliver Turing Lecture at ISCA 2018. https://www.acm.org/hennessy-patterson-
turing-lecture.

Frank Hunleth and Ron K. Cytron. 2002. Footprint and feature management using
aspect-oriented programming techniques. In Proceedings of the joint conference
on Languages, compilers and tools for embedded systems (Berlin, Germany). ACM
Press, 38-45. https://doi.org/doi.acm.org/10.1145/513829.513838

RISC-V International. 2022. riscv-tests. https://github.com/riscv-software-src/
riscv-tests.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. 1997. Aspect-
Oriented Programming. Proceedings of ECOOP 97 (1997).

Donggyu Kim. 2022. riscv-mini. https://github.com/ucb-bar/riscv-mini.
Praveen Krishnamurthy, Roger D. Chamberlain, Ron K. Cytron, and Jason E
Fritts. 2006. Evaluating Dusty Caches on General Workloads. In Proceedings
of the Fifth Annual Workshop on Duplicating, Deconstructing, and Debunking.
Boston, Massachussetts.

ARM Limited. 2021. AMBA AXI and ACE Protocol Specification. Technical Report.
ARM Limited.

Roy Rgnmo, Ragnhild Kobro Runde, and Birger Moller-Pedersen. 2013. Conflu-
ence of aspects for sequence diagrams. Software & Systems Modeling 12 (2013),
729-824.

Wilson Snyder. 2004. Verilator and systemperl. In North American SystemC Users’
Group, Design Automation Conference.

The Aspect] Organization. 2001. Aspect-Oriented Programming for Java. www.
aspectj.org.

Wikipedia. 2022. Existing RISC-V Implementations. https://en.wikipedia.org/
wiki/RISC- V#Existing

https://doi.org/10.1016/j.sysarc.2022.102757
https://doi.org/10.1145/2505351.2508149
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-167.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-167.html
https://www.eclipse.org/aspectj/
https://docs.oracle.com/javase/specs/jls/se19/html/index.html
https://docs.oracle.com/javase/specs/jls/se19/html/index.html
https://www.acm.org/hennessy-patterson-turing-lecture
https://www.acm.org/hennessy-patterson-turing-lecture
https://doi.org/doi.acm.org/10.1145/513829.513838
https://github.com/riscv-software-src/riscv-tests
https://github.com/riscv-software-src/riscv-tests
https://github.com/ucb-bar/riscv-mini
www.aspectj.org
www.aspectj.org
https://en.wikipedia.org/wiki/RISC-V#Existing
https://en.wikipedia.org/wiki/RISC-V#Existing

	Abstract
	1 Introduction
	2 Prior Work
	3 Feature-Oriented Finite State Machines
	3.1 Finite-State Machine Aspects
	3.2 Software Library

	4 Feature-Oriented Cache
	4.1 Feature Decomposition
	4.2 Compositional Correctness
	4.3 Feature Implementation

	5 Performance and Area
	6 Conclusion
	References

