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ABSTRACT 4 

Kinetic modeling of microbial reactions is a common tool for addressing the central 5 

environmental questions of our time, from contaminant remediation to the global carbon cycle. 6 

This review presents an overview of trait-based frameworks for modeling the kinetics of 7 

microbial reactions, with an emphasis on environmental application. I first highlight two key 8 

model assumptions: the simplification of microbial communities as ensembles of microbial 9 

functional groups and the description of microbial metabolism at a coarse-grained level with 10 

three metabolic reactions – catabolic reaction, biomass synthesis, and maintenance. Next, I aim 11 

to establish a connection between microbial rate laws and the mechanisms of metabolic reactions. 12 

For metabolic reactions limited by single substrates, the widely used rate law is the Monod 13 

equation. However, in cases where substrates are solids or nonaqueous phase liquids (NAPLs), 14 

the Contois equation and the Best equation may offer better alternatives. In microbial 15 

metabolisms limited by multiple nutrients simultaneously, two competing rate laws exist: the 16 

multiplicative rate law and Liebig’s law of the minimum. Then I present two strategies for 17 

extending the modeling framework developed for laboratory cultures to natural environments. 18 

One strategy follows the multiplicative rate law and incorporates dimensionless functions to 19 

account for pH, temperature, salinity, cell density, and other environmental conditions. The other 20 

strategy focuses on the physiology of natural microbes, explicitly considering dormancy, 21 

biomass decay, and physiological acclimation. After that, I highlight recent improvements 22 

enabled by the application of molecular biology tools, ranging from functional gene-based 23 

models to metabolic models. Finally, I discuss the inherent limitations of trait-based modeling 24 

frameworks and their implications for model development and evaluation, including the gap 25 

between functional groups represented in silico and microbial communities found in natural 26 

environments, as well as the requirement of internal consistency in microbial parameter sets.  27 
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1. INTRODUCTION 28 

Microbial kinetics is a subfield of microbiology that studies the rates of microbial 29 

metabolisms – including the rates of chemical reactions catalyzed by microbes and microbial 30 

growth (Jannasch and Egli, 1993; Jin et al., 2013; Kovárová-Kovar and Egli, 1998; Panikov, 31 

1995). It has become a backbone of conceptual and modeling frameworks across disciplines, 32 

from food and nutrition science (Whiting, 1995), to water quality (Reichert et al., 2001), 33 

wastewater treatment (Wanner, 2021), and to contaminant remediation and biogeochemical 34 

element cycling (Fennel et al., 2022; Li, 2019; Seigneur et al., 2019). As a research topic of 35 

microbiology, microbial kinetics had a humble beginning, developed by a handful of scientists 36 

fascinated with patterns of microbial growth. Among the pioneers, the most influential is Jacques 37 

Monod, a French biochemist who discovered that microbial growth rates vary hyperbolically 38 

with the concentrations of limiting nutrients (Monod, 1942, 1949). He captured the hyperbolic 39 

relationship with a rate law akin to the adsorption isotherm equation or the Michaelis-Menten 40 

equation. This rate law, named after him, made possible for the first time the prediction of 41 

microbial population dynamics without prior knowledge of population sizes (Panikov, 1995). 42 

Monod also left behind an often-cited but now obsolete statement that “the study of the growth of 43 

bacterial cultures does not constitute a specialized subject or branch of research: it is the basic 44 

method of Microbiology” (Monod, 1949).  45 

Accompanying the great expansion of microbial kinetics is a paradigm shift in our view 46 

of microbes and the technological revolution in microbiological research. Before World War II, 47 

most microbiologists were preoccupied with obtaining pure cultures and solving problems 48 

related to human life − curing for human diseases and improving food production and processing 49 

(Bonnet et al., 2020). At their dispense included optical microscopes and classical culture-50 

dependent tools, such as liquid culturing media and agar plates (Vitorino and Bessa, 2017). After 51 

World War II, microbiological tools have gone through a series of innovations and upgrades, 52 

including the invention of polymerase-chain reaction (PCR) and16S rDNA clone library 53 

construction in the 1970s and, more recently, high-throughput next generation sequencing 54 

methods (Garner et al., 2021; Vitorino and Bessa, 2017). These culture-independent tools opened 55 

the opportunity of directly interrogating microorganisms in situ, including their genes and 56 

expressions, and metabolic activities and ecological functions. Without the need for pure culture, 57 
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they avoided the bias of culture-dependent methods, and revolutionized and broadened the scope 58 

of both pure and applied microbiology, including environmental microbiology and 59 

geomicrobiology that study microbes and their activities in natural environments. Today, we 60 

accept that microbes are the Earth’s hardest-working chemical engineers and a key driver of 61 

global element cycling (Falkowski et al., 2008; Finlay et al., 2020). They are widespread in the 62 

environment, from the atmosphere to deep crust, and their biomass constitutes approximately one 63 

fifth of the total biomass (Bar-On et al., 2018; Flemming and Wuertz, 2019). They display vast 64 

genomic and trophic diversities, and their metabolisms shape the chemistry of the environment 65 

by catalyzing redox reactions, mineral precipitation and dissolution, and other chemical reactions 66 

(Soong et al., 2020; Zinger et al., 2012).  67 

Understanding and forecasting the geochemical and environmental significance of 68 

microorganisms require quantitative tools, such as kinetic models of microbial reactions. These 69 

models simulate not only the chemical fluxes driven by microbial metabolisms but also the sizes 70 

of microbial populations. They lay their foundation on the kinetic modeling framework of 71 

chemical reactions, which itself builds on the fundamental principles of mass conservation, 72 

thermodynamics, and chemical kinetics (Bebernes and Eberly, 2013; Bethke, 2022; Higham, 73 

2008). For a reacting mixture of chemical compounds, its kinetic model is formulated as a 74 

mathematical problem of a group of ordinary differential equations (ODEs), constrained by the 75 

equation of state and other thermodynamic relationships. Each ODE uses time as the independent 76 

variable to describe the concentration balance of a chemical compound, and is constructed on the 77 

basis of the stoichiometric equations and the rate laws of chemical reactions. Stoichiometric 78 

equations express reaction products as the proportional combinations of reactants, while rate 79 

laws are analytic expressions that relate reaction rates to temperature, chemical concentrations, 80 

and other macroscopic parameters. 81 

Modeling microbial reactions in natural environments has been the subject of significant 82 

interest among geochemists, biologists, and environmental engineers, and a number of review 83 

articles, book chapters, and special issues of journals have appeared over the last decade or so 84 

(Arndt et al., 2013; Bethke, 2022; Calderer et al., 2010; Chambon et al., 2013; Fennel et al., 2022; 85 

Geng et al., 2022; Jeong et al., 2019; Meile and Scheibe, 2019; Paraska et al., 2014; Perez-Garcia 86 

et al., 2016; Song et al., 2014; Sookhak et al., 2019; Tan et al., 2021; Thullner and Regnier, 87 
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2019). Here our intention is to present the theory of microbial reaction modeling in a systematic 88 

and coherent way. We first start with the concept of microbial functional groups and the 89 

framework of microbial reaction modeling, clarifying the necessary assumptions and 90 

simplifications of microbial communities and metabolisms in natural environments. Next, we 91 

focus on microbial rate laws and demonstrate the mechanistic link between microbial rate laws 92 

and metabolic reactions. Then we discuss the strategies that work to extend the modeling 93 

framework for laboratory cultures to natural environments. Afterwards, we highlight recent 94 

model improvements enabled by molecular biology tools. Finally, we emphasize the biases of 95 

microbial kinetic modeling and the challenges and limitations associated with its application to 96 

natural environments.  97 

While the framework for modeling microbial kinetics is general, we illustrate the 98 

framework by focusing on chemotrophs – microbes that utilize chemical compounds as their 99 

energy sources. Also, given the large number of microbial rate laws, we limit the rate laws and 100 

modifications to those that capture microbial physiology and the growth conditions of the 101 

environment (see table 1), rather than providing an exhaustive historical chronology. By taking 102 

this approach, we acknowledge that certain important models and applications might be 103 

overlooked. Nonetheless, our aim is to underscore the key assumptions and limitations of 104 

microbial kinetic models, as well as showcase modeling strategies that have proved effective in 105 

natural systems. These topics and discussions hold relevance to today’s endeavors that seek to 106 

improve microbial reaction modeling by incorporating insights from cutting-edge tools of 107 

chemical analysis and molecular biology.  108 

2. MODELING FRAMEWORK 109 

Microbial kinetic models are a special type of chemical reaction models that treat 110 

microorganisms as autocatalysts – catalysts that reproduce themselves by catalyzing chemical 111 

reactions. They are constructed on the basis of the kinetic modeling framework for abiotic 112 

multicomponent reacting mixtures (Bebernes and Eberly, 2013; Bethke, 2022; Higham, 2008), 113 

and by applying simplifications and assumptions related to microbial communities and their 114 

metabolisms.  115 
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2.1. Microbial Functional Group 116 

Models are simplifications of reality. Compared to other microbiological models, such as 117 

stoichiometric and kinetic metabolic models that focus on enzymes and agent-based models that 118 

focus on individual cells (Foster et al., 2021; Nagarajan et al., 2022; Orth et al., 2010), microbial 119 

kinetic models for environmental applications adopt two unique simplifications – one addresses 120 

microbial diversity and the other is about microbial metabolism (fig 1). The two simplifications 121 

strike a balance between the complexity arising from microbial diversity and the practical 122 

applicability enabled by a relatively simple modeling framework and its straightforward 123 

deployment. 124 

The first simplification is the application of functional groups as the basic unit of 125 

microorganisms. From the lens of functional ecology, a functional group is a cohort of microbial 126 

cells defined by their functional traits – microbial characteristics that affect the growth and 127 

survival of microorganisms (Flynn et al., 2015; Nock et al., 2016; Violle et al., 2007). 128 

Accordingly, a microbial community can be simplified as a collection of different functional 129 

groups. By default, microbial kinetic models do not explicitly consider biochemical, structural, 130 

or morphological traits, but only focus on functional traits that directly modulate the rates of 131 

microbial reactions – for example, metabolic rates at very high and very low nutrient 132 

concentrations, and the efficiency of microbial metabolism. In addition, microbial kinetic models 133 

neglect trait differences between microbial cells of the same group, or trophic relationships and 134 

interactions within the same group. Instead, cells of the same functional group share the same 135 

functional trait values, respond in similar fashions to environmental perturbations, and play 136 

similar roles in ecosystem functioning and biogeochemical processes (Gitay and Noble, 1997). 137 

With these assumptions, a functional group can be quantified with a single state variable – the 138 

biomass concentration CX (g·kg−1), the mass of living cells belonging to a functional group per 139 

kg water (Bachmann et al., 2016; Bölter, 1994; Murphy et al., 2007).  140 

Microbial communities have also been analyzed with identity-based approaches, such as 141 

16S rRNA-based phylogenetic characterization and taxonomic classification (Nkongolo and 142 

Narendrula-Kotha, 2020). The focus on functional traits, not phylogeny or taxonomy, is 143 

supported by the consensus that the composition of functional groups serves as a mechanistic 144 

link between microbial diversity and ecosystem functioning (Crowther et al., 2019; McGill et al., 145 
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2006). This focus has led to the widespread use of the term "trait-based microbial models" to 146 

highlight the central role of functional traits in formulating microbial kinetic models. 147 

The second simplification pertains to the description of microbial metabolism. Microbial 148 

kinetic models treat each functional group as a single reacting component, and describe its 149 

metabolism at a coarse-grained level without accounting for the details of metabolic pathways or 150 

regulations. Specifically, microbial kinetic models concentrate on three fundamental metabolic 151 

reactions – catabolic reaction, biomass synthesis, and maintenance (fig 2A). Catabolic reactions 152 

harvest the energy available in the environment by making ATPs, biomass synthesis reactions 153 

utilize ATPs to produce new biomass from essential nutrients, such as carbon, nitrogen, 154 

phosphorus, and trace elements, in the environments, and biomass maintenance reactions 155 

consume ATPs to sustain the integrity and functionality of cellular components as well as to 156 

ensure the viability and survival of microbial cells (Hoehler and Jørgensen, 2013; van Bodegom, 157 

2007). Other metabolic processes, such as co-metabolism and detoxification, are not explicitly 158 

considered. The three metabolic reactions are governed by the principle of energy balance,   159 

 P,C P,X P,MJ J J= + , (1) 160 

that is, the flux JP,C of ATP production by catabolism is balanced by the fluxes of ATP 161 

consumption by biomass synthesis (JP,X) and by maintenance (JP,X) (Pirt, 1965). This principle 162 

ensures the overall consistency and reliability of microbial metabolic rates within the model. 163 

Following the standard framework of chemical reaction modeling, the description of a 164 

metabolic reaction splits into three prongs: the stoichiometric equation and the rate law of the 165 

metabolic reaction, and the functional traits (or microbial parameters) required by the rate law. 166 

The three prongs describe metabolic reactions from different perspectives and with different 167 

emphases: 168 

• Stoichiometric equations list the substrates and products of metabolic reactions, and make 169 

possible the modeling of the chemical interactions between microbes and the environment – 170 

the environment supports microbes by supplying nutrients (e.g., energy and element sources) 171 

and, in return, microbes alter ambient environments by consuming nutrients and releasing 172 

waste products. These equations also define the ratios of the nutrient and product fluxes 173 
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driven by microbial metabolisms, and ensure that microbial kinetic models honor the 174 

principles of mass conservation and charge balance.  175 

• Microbial rate laws express metabolic reaction rates in terms of macroscopic parameters, 176 

such as pH, temperature, and the concentrations of biomass, nutrients, metabolic products, 177 

and chemical inhibitors. They provide a theoretical basis to compute chemical fluxes through 178 

microbial biomass and the rates of microbial growth and how the chemical fluxes and growth 179 

rates respond to the changes in the physicochemical conditions of the environment. 180 

• Functional traits are represented in microbiological models as rate law parameters, including 181 

stoichiometric and kinetic parameters. Stoichiometric parameters quantify the efficiency of 182 

microbial metabolism, and include the yields of ATPs and biomass per unit nutrient. Kinetic 183 

parameters define microbial reaction rates at extreme nutrient concentrations, such as very 184 

high and very low concentrations, and include rate constants, half-saturation constants, and 185 

nutrient affinities (i.e., the ratios of rate constants to half-saturation constants) (Healey, 1980; 186 

Kovárová-Kovar and Egli, 1998; Law and Button, 1977).  187 

The three prongs enable us to describe microbial functional groups as auto-catalysts with a 188 

minimum set of stoichiometric equations and rate laws, thereby keeping modeling tasks in check. 189 

In this way, microbial kinetic models are robust enough to capture the essential features of 190 

microbial metabolisms yet generic enough to be applicable to diverse microorganisms in both 191 

engineered systems and natural environments. 192 

2.2. Stoichiometric Equation and Reaction Rate 193 

In line with standard practices in chemical kinetics, metabolic reactions and their rates are 194 

defined in terms of stoichiometric reaction equations. Catabolic reactions synthesize ATPs by 195 

consuming extracellular energy sources. Their stoichiometric equations can be constructed 196 

according to the principles of mass balance and charge balance. For example, respiration 197 

reactions couple redox reactions in the environment to ATP synthesis in the cytoplasm and can 198 

be represented as   199 

 D A D A
D A D A

D D D Aν ν ν ν+ −
+ −

+ −+ +∑ ∑ ∑ ∑ , (2) 200 

where D and D+ are the electron donor and its oxidized form, respectively, and A and A˗ are the 201 

electron acceptor and its reduced form, respectively, and νD and others are stoichiometric 202 
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coefficients. Following the common practice in chemical kinetics, catabolic reaction rate rC 203 

(mol·kg−1·s−1) is defined as 204 

 D A D+ A
C

D A D A

1 1 1 1 dCdC dC dCr
dt dt dt dtν ν ν ν

−

+ −

= − = − = = . (3) 205 

Here CD and others are molal (M) concentrations. The double arrow in equation 2 emphasizes 206 

that chemical reactions proceed forward and backward at the same time. For this reason, 207 

catabolic rates  208 

 C C+ Cr r r −= −  (4) 209 

represent the differences between the forward (rC+) and backward rates (rC−) of the reactions. For 210 

reactions far away from thermodynamic equilibrium, such as aerobic respiration and nitrate 211 

reduction, their backward rates can be safely neglected and their net rates can be approximated as 212 

the forward rates.  213 

Biomass synthesis produces biomass from extracellular sources of carbon, nitrogen, and 214 

other elements. Constructing a stoichiometric equation for biomass synthesis can be challenging,  215 

particularly when the elemental composition of biomass is unknown, or when more than one 216 

chemical compound serves as the source of carbon, nitrogen, or other elements. In these cases, as 217 

an approximation, we can apply a generic chemical formula of biomass, for example, C5H7O2N 218 

(Hoover and Porges, 1952), and assume that acetate (CH3COO−) and ammonium ( 4NH+ ) serve as 219 

the sources of carbon and nitrogen, respectively. Under these assumptions, the stoichiometric 220 

equation of biomass synthesis is 221 

 3 4 5 7 2 22.5CH COO NH 1.5H C H O N + 3H O− + ++ + → .  (5) 222 

Where other sources of carbon and nitrogen are available, or if a different biomass chemical 223 

formula is assumed, results similar to equation 5 can be derived by following the principles of 224 

mass and charge balance (Geider and Roche, 2002; Jin and Bethke, 2007; Popovic, 2019). The 225 

rate rX (g⋅kg−1⋅s−1) of biomass synthesis is the rate at which biomass synthesis raises biomass 226 

concentration CX, 227 

 X
X

dCr
dt

= . (6) 228 
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Accordingly, the rate at which nutrient N is consumed by biomass synthesis is 229 

 N N
X

M

dC r
dt W

ν
= − . (7)  230 

Here CN is nutrient concentration (M), νN is the stoichiometric coefficient of nutrient N in 231 

equation 5, and WM is the molecular weight calculated from the biomass chemical formula.  232 

Maintenance summarizes the metabolic pathways that preserve the integrity and 233 

functions of cellular components and structures. No stoichiometric equation is available to 234 

describe biomass maintenance in terms of extracellular nutrients and metabolic products. The 235 

rate rM (g⋅kg−1⋅s−1) of biomass maintenance is expressed as the rate at which biomass 236 

concentration is decreased by the maintenance pathways, 237 

 X
M

dCr
dt

= − . (8) 238 

This definition is consistent with the view that maintenance metabolism consumes ATPs, but 239 

does not yield new biomass – if maintenance did not occur, its ATP flux would be available to 240 

biomass synthesis, increasing biomass concentrations.  241 

In addition to maintenance metabolisms, other processes, such as transition to dormancy, 242 

cell lysis and death, and predation by higher microorganisms, also contribute to lowering 243 

biomass concentrations (Moger-Reischer and Lennon, 2019; Pérez et al., 2016). However, the 244 

contributions of the individual processes to biomass loss are technically difficult to pinpoint. For 245 

this reason, biomass decay has been used as a collective term to summarize all the processes that 246 

work together to lower biomass concentrations (Van Loosdrecht and Henze, 1999). Biomass 247 

decay rate rD  248 

 D D,i
i

r r=∑ , (9) 249 

is the sum of the rates of biomass maintenance, cell lysis, predation, and others (rDi).  250 

Related to biomass synthesis and decay is microbial growth, a macroscopic phenomenon 251 

defined as the apparent increase in microbial biomass or cell number over time. In microbiology, 252 

growth is commonly characterized with specific growth rate µ (s−1), the instantaneous relative 253 

rate of biomass increase, 254 
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 X

X

1 dC
C dt

µ = . (10) 255 

Following the principle of mass conservation,   256 

 ( )X D
X

1 r r
C

µ = − . (11) 257 

In other words, specific growth rate reflects the balance between the rates of biomass synthesis 258 

and decay per unit biomass (fig 3A).  259 

2.3. Mass Conservation Equation 260 

For a system of m number of functional groups and n number of chemical compounds, its 261 

state is defined by the concentrations of chemical compounds and functional groups. For an 262 

isothermal system, its state is captured by applying the principle of mass conservation to each 263 

chemical compound and functional group and by accounting for the rates of catabolic reactions, 264 

biomass synthesis, and biomass decay of functional groups (eqs 3, 6, and 9). The results are a 265 

system of coupled equations, commonly summarized with a matrix equation and a vector 266 

equation. The matrix equation accounts for the chemical fluxes driven by metabolisms,  267 

 JA = SC×RC + 
M

1
W SX×RX, (12) 268 

where JA is a column vector of size n, its element JAi is the production flux of chemical Ai, the 269 

net rate at which Ai is produced (or consumed, if negative) per kg water (M⋅s−1), RC and RX are 270 

two vectors of size m, their elements rC,j and rX,j are the rates of catabolic reaction (M⋅s−1) and 271 

biomass synthesis (g⋅kg−1⋅s−1) of group j, respectively, SC and SX are the stoichiometric matrices 272 

of size m×n, their element SC,ij and SX,ij are the stoichiometric coefficient of Ai in the catabolic 273 

reaction and biomass synthesis reaction of group j, respectively, and can be constructed from the 274 

stoichiometric equations for catabolic and biomass synthesis reactions, respectively.  275 

The vector equation describes microbial growth, 276 

 JX = RX − RD. (13) 277 

Here JX is a column vector of size m and its element JX,j is the growth rate of group j, RX is a 278 

vector whose element rX,j is the rate of biomass synthesis of group j, and RD is a vector whose 279 

element rD,j is the decay rate of group j (see equation 11). For a non-isothermal system, an 280 
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additional equation for temperature (or energy) is required. 281 

2.4. Frameworks in Common Use 282 

The trait-based modeling framework uses biomass concentration CX as a state variable, 283 

and describes microbial metabolism at the coarse-grained level with catabolic reaction, biomass 284 

synthesis, and maintenance. The framework presented above is general and simplifies to the 285 

various frameworks in common use today: 286 

First, the biomass-explicit modeling framework takes a simplified form by assuming that 287 

biomass synthesis and catabolism are tightly coupled (Fang et al., 2009; Li et al., 2009; Yabusaki 288 

et al., 2007). Under this assumption, biomass yield per unit of energy substrate stays constant, 289 

the entire metabolism can be described with a single stoichiometric equation that combines 290 

equation 2 and 5. With this unified equation, a single rate expression is sufficient to calculate the 291 

chemical fluxes and growth rates of microorganisms.    292 

The general modeling framework reduces to the biomass-explicit catabolism-focused 293 

framework by assuming that biomass synthesis and catabolism are tightly coupled and by 294 

neglecting the nutrient consumption by biomass synthesis (Jin et al., 2013; Rittmann et al., 1980; 295 

Schäfer et al., 1998; Sykes et al., 1982; Talin et al., 2003; Thullner et al., 2005; Yabusaki et al., 296 

2011). In this case, microbial growth rate is calculated according to equation 13, but the nutrient 297 

consumption by biomass synthesis is not considered (i.e., the second term on the right side of 298 

equation 12 is set to 0). Where a nutrient participates in both catabolism and biomass synthesis, 299 

such simplification tends to underestimate the flux of nutrient consumption.   300 

The modeling framework further reduces to the biomass-implicit catabolism-focused 301 

framework by assuming that biomass concentrations remain constant. In this case, biomass 302 

synthesis and decay are neglected (i.e., eq 13 is not considered), and microbes are no longer 303 

described as autocatalysts. This framework has found wide application in sediment diagenesis 304 

modeling (Berner, 1980; Boudreau, 1996; Dale et al., 2008; Soetaert et al., 1996; Wang and Van 305 

Cappellen, 1996), as well as to some extent in groundwater reactive transport modeling, where 306 

biomass concentration or other growth-related information is not a primary concern (Hunter et al., 307 

1998). 308 
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3. RATE LAWS FOR LABORATORY APPLICATIONS 309 

Rate laws are the workhorses of chemical kinetics, providing robust tools not only for 310 

computing reaction rates but also for dissecting reaction mechanisms (Masel, 2001). In microbial 311 

kinetics, most rate law applications have focused on rate calculations. Here we illustrate the link 312 

between microbial rate laws and metabolic mechanisms by first focusing on the rate laws for 313 

microbial metabolisms limited by a single nutrient and then the rate laws for metabolisms limited 314 

by more than one nutrient.    315 

3.1. Rate Laws of Single Limiting Nutrients 316 

Monod (1942, 1949) developed the first microbial rate law, an empirical equation for 317 

microbial growth limited by a nutrient dissolved in solution. Other rate expressions have also 318 

been proposed, but they rarely gained much traction (Panikov, 1995). However, at least two of 319 

these rate expressions should deserve more attention. One is the Contois equation that describes 320 

an inverse relationship between specific growth rate and biomass concentration originally 321 

observed in a glucose-fed Aerobacter aerogenes culture (Contois, 1959). This equation has 322 

found widespread applications in microbial degradation of particulate organic matter (POC) 323 

(Chen and Hashimoto, 1980; Hemsi et al., 2010). Its alternative forms have also been applied to 324 

microbial reduction of ferric minerals (Hacherl et al., 2003; Roden, 2006).  325 

The other rate expression is the Best equation (Best, 1955). This equation has been 326 

derived in theory for a special type of interaction between microbial cells and substrates of poor 327 

solubility or strong hydrophobicity, such as minerals or nonaqueous phase liquids (NAPLs). In 328 

these cases, microbes do not directly react with solids or NAPLs, but only utilize their dissolved 329 

forms. Taking as an example polycyclic aromatic hydrocarbons (PAHs), microbes can utilize 330 

naphthalene and phenanthrene dissolved in water, but cannot directly consume PAHs (Volkering 331 

et al., 1992). To sustain metabolism, the dissolution of PAHs into bulk solution is required. 332 

Interestingly, both the Contois and the Best equations relate specific growth rate to the 333 

concentration ratio of substrate to biomass, and despite their apparent difference, the Best 334 

equation can be approximated with the Contois equation.     335 
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3.1.1. Monod equation 336 

The original Monod equation consists of a single-term hyperbolic function of nutrient 337 

concentration (Monod, 1942, 1949), and was later amended to account for biomass maintenance  338 

(Herbert, 1958; Pirt, 1965). The revised Monod equation in its commonly used form is   339 

 max C DF kµ µ= ⋅ − , (14) 340 

where µmax is the maximum specific growth rate, FC is a dimensionless factor of nutrient 341 

concentration, and kD is the specific rate of biomass decay (s−1). The revised equation assumes 342 

that the rate of biomass decay is proportional to biomass concentration, with the proportionality 343 

constant denoted as kD. From the perspective of mass conservation (see eq 11), the first term in 344 

equation 14 gives the specific rate of biomass synthesis.  345 

The concentration factor FC,  346 

 N
C

N M

CF
C K

=
+

, (15) 347 

is a relatively simple hyperbolic function that describes saturation-type kinetics. Here CN is the 348 

concentration of nutrient N, and KM is the half-saturation constant. Concentration factor FC 349 

quantifies the limitation by nutrient N – the extent to which the nutrient lowers growth rate 350 

below its maximum value (fig 4A). Where the factor is close to 0, specific growth rate µ stays 351 

near 0, and growth is limited significantly by the nutrient. Where the factor is close to unity, 352 

variations in nutrient concentration do not change the rate much, and the nutrient limitation can 353 

be safely neglected. 354 

Monod (1942, 1949) also discovered that the biomass yield YX/N per unit of nutrient (N) 355 

can be treated as a constant (g⋅mol−1). This yield coefficient relates the rate rX of biomass 356 

synthesis to the rate rN of nutrient consumption, i.e., 357 

 X
X/N

N

rY
r

= . (16) 358 

It provides a basis to recast the Monod equation in terms of nutrient consumption. A special case 359 

occurs where microbial metabolism is limited by a substrate consumed by catabolism (or an 360 

energy source) and biomass synthesis rate is limited by the supply flux of ATP. Under these 361 

conditions, combining equation 14 and 16 gives the rate law for catabolic reaction, i.e., 362 
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 C C,max X Nr k C F= . (17) 363 

Here kC,max is the rate constant (mol⋅g−1⋅s−1) or the maximum rate of catabolic reaction per unit 364 

biomass, 365 

 max
C,max

S X/S

k
Y
µ
ν

= . (18) 366 

Here νS is the stoichiometric coefficient of the energy substrate in catabolic reaction (eq 2), and 367 

YX/S is the biomass yield per unit energy substrate.  368 

Despite its empirical nature and relatively simple form, the Monod equation does bear a 369 

limited connection with metabolic mechanism (Jin et al., 2022). A metabolic reaction consumes 370 

nutrients dissolved in solution in a series of steps (fig 5A). First, nutrients diffuse from the bulk 371 

solution to the cell surface, and are then taken up into the cytoplasm and consumed by enzymes 372 

along metabolic pathways. For microbial cells suspended in solution, nutrient diffusion does not 373 

limit the progress of overall metabolism (Smith et al., 2014). Instead, metabolic rates are 374 

determined by one or more enzymes. Therefore, metabolic reactions can be described as cell-375 

controlled metabolic reactions to highlight that it is the enzymes within cells that control 376 

metabolic rates (table 2). However, the extents of the rate limitation by different enzymes are not 377 

fixed, but dependent on nutrient concentrations in the bulk solution. Where nutrient 378 

concentrations are relatively small, the enzymes that participate in nutrient uptake dominate the 379 

rate control, and can be considered as rate-limiting enzymes. At relatively large nutrient 380 

concentrations, other enzymes become rate limiting. The Monod equation accounts for the rate-381 

limiting enzymes at very low nutrient concentrations with the ratio of µmax to KM or the ratio of 382 

kC,max to KM,  383 

 C,max
aff

M

k
k

K
= . (19) 384 

This parameter ratio is commonly termed as nutrient affinity or affinity constant kaff (Healey, 385 

1980; Law and Button, 1977). The Monod equation also accounts for the rate-limiting enzymes 386 

at very high nutrient concentrations with kC,max (or µmax). These results support previous 387 

laboratory observations that the Monod equation provides reasonable approximations to 388 

microbial growth. The results also suggest that typical hyperbolic relationships between growth 389 
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rates and nutrient concentrations reflect the shift in rate-limiting enzyme between very high and 390 

very low nutrient concentrations, not the rate-substrate relationships of individual enzymes.  391 

A related equation, the Michaelis-Menten equation, has also been widely applied to 392 

microbial reaction modeling (Dugdale, 1967; Dugdale, 2018). While both equations use the same 393 

hyperbolic function, they differ in their physical significance and the specific systems they are 394 

applied to. The Michaelis-Menten equation was derived in theory for biochemical reactions 395 

catalyzed by enzymes; its mechanistic basis involves the formation of an enzyme-substrate 396 

complex and its subsequent conversion to products (Cornish-Bowden, 2013). The Monod 397 

equation was constructed empirically for microbial growth and reflects the emergent property of 398 

the entire network of metabolic enzymes. Therefore, to clearly specify the subject of the 399 

modeling and the underlying principles, the hyperbolic equation applied to enzyme-catalyzed 400 

reactions, such as the enzymatic uptake of nutrients from the environment into the cytoplasm and 401 

the extracellular hydrolysis of organic matter, should be referred to as the Michaelis-Menten 402 

equation. Conversely, for metabolic reactions catalyzed by a series of enzymes, such as 403 

respiration and fermentation, the equation should be referred to as the Monod equation.  404 

3.1.2. Contois equation  405 

The Contois equation has been applied to microbial oxidation of particulate organic 406 

matter and reduction of ferric minerals. In both cases, microbes interact with solid-phase 407 

substrates via various mechanisms, including direct contact, ligands, and electron carriers (fig 408 

5B). For example, to utilize particulate organic matter, microbes first synthesize and release 409 

extracellular enzymes (or exoenzymes) (Wang and Li, 2014; Wu et al., 2021). The exoenzymes 410 

attack the surface of particulate organic carbon (POC) and hydrolyze organic carbon to 411 

oligomers and monomers of amino acids, nucleic acids, sugars, and lipids, which are then taken 412 

up by microbial cells. To reduce ferric minerals, microbes transfer electrons from the cell surface 413 

to the mineral surface via electrically conductive filamentous pili or surface proteins, by 414 

dissolving ferric minerals with ligands and then reducing aqueous ligand-Fe(III) complex, and by 415 

employing electron carriers, such as quinone-bearing humic substances (Shi et al., 2016; Weber 416 

et al., 2006). To differentiate these reactions from cell-controlled metabolic reactions (table 2), 417 

we follow the common practice in chemical kinetics and describe metabolic reactions involving 418 

solid surfaces as surface-controlled reactions (Masel, 2001). 419 
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Organic matter degradation. The kinetics of organic matter degradation has been studied under 420 

two extreme conditions by two disciplines, highly concentrated bioreactors by wastewater 421 

engineers and sediments of low abundance by biogeochemists. From wastewater treatment 422 

studies (Bhattacharya and Khai, 1987; Chen and Hashimoto, 1980; Ghaly and Echiegu, 1993; 423 

Hemsi et al., 2010; Vavilin et al., 1996; Vavilin et al., 1997), an emerging consensus is that 424 

specific growth rate varies with the concentration ratio QN/X of organic matter to biomass, 425 

 N
N/X

X

CQ
C

= , (20) 426 

and that the variation follows the Contois equation, an equation that uses the same hyperbolic 427 

function in the Monod equation (Contois, 1959). Here CN is the concentration of organic matter. 428 

The Contois equation calculates specific growth rate according to equation 14 and with the 429 

concentration function FC, 430 

 N/X
C

N/X M

QF
Q K

=
′+

,  (21) 431 

where the MK ′  is the biomass-specific half-saturation constant. Figure 4B takes microbial 432 

degradation of fragmented walnut shells as an example and illustrates how the concentration 433 

factor varies with the concentration ratio QN/X.    434 

In comparison, the kinetic studies of sedimentary organic matter suggest that the rate rOM 435 

of organic matter degradation follows the G model,  436 

 OM OM Nr k C= ⋅ , (22) 437 

where kOM is the rate constant (s−1) and is believed to reflect the reactivity of organic matter 438 

(Berner, 1964). The G model represents a special case of the Contois equation, where the 439 

concentration ratio QN/X is far less than the specific half-saturation constant, i.e., QN/X  MK ′ . 440 

Under this condition, the specific rate constant kOM becomes the affinity constant for organic 441 

matter, or the ratio of the rate constant to the biomass-specific half-saturation constant, 442 

 C,max
OM

M

k
k

K
=

′
. (23) 443 
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Equation 23 suggests that the rate constant kOM reflects not only the reactivity of organic matter 444 

but also the kinetic properties of microorganisms. In many applications, the multi-G model is 445 

required (Westrich and Berner, 1984). This model separates organic matter into different groups 446 

according to their specific rate constants, which can be indicative of the different affinity 447 

constants exhibited by microbes utilizing these organic matter groups.  448 

Ferric mineral reduction. Ferric iron respiring microbes utilize ferric minerals as electron 449 

acceptors. Hacherl et al. (2003) recognized that during microbial iron reduction, electrons are 450 

transferred to the reactive surface sites of ferric minerals, and suggested to use the concentrations 451 

of bioavailable surface sites, instead of ferric minerals, to evaluate the rates of iron reduction. 452 

They also proposed a rate expression to relate iron reduction rate to the concentration ratio of 453 

biomass to surface sites. The same equation was used by Roden (2006) to describe the kinetics of 454 

iron reduction, and applied in modeling microbial iron reduction in natural environments (Bethke 455 

et al., 2008; Jin and Roden, 2011; Johannesson et al., 2019). This rate expression can be recast as 456 

the Contois equation (eqs 17 and 21). Figure 4C takes nanocrystalline goethite as an example and 457 

shows how the factor (eq 21) varies with concentration ratio QSS/X of bioavailable surface sites to 458 

biomass.  459 

The Contois equation differs from the Monod equation in that the hyperbolic function is 460 

expressed in terms of the concentration ratio QN/X of nutrient to biomass. This difference arises 461 

from the fact that solid-phase compounds cannot be directly taken up by microbes from the 462 

environment into the cytoplasm, and their utilization requires metabolic strategies different from 463 

those for aqueous substrate consumption. Wang and Li (2014) noted that during the degradation 464 

of POC, colonies develop on the surface of POC, and derived the Contois equation by 465 

accounting for the coverage of POC’s surface by microbial cells, and by assuming that microbes 466 

attached to the surface of POC grow exponentially and that the growth of suspended microbes 467 

can be neglected. Likewise, according to the mechanisms of ferric iron reduction (Shi et al., 2016; 468 

Weber et al., 2006), we can derive the Contois equation by assuming that the electron transfer 469 

between cell and mineral surfaces are at quasi-steady state (see Supplementary Information). 470 

These derivations suggest a trade-off between biomass concentration and the surface area of 471 

solid-phase substrates. At a given concentration of solid-phase substrates, increases in biomass 472 
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concentration increase the rate, but diminish the solid-phase substrate available to individual 473 

cells, which in turn decreases the rate.  474 

3.1.3. Best equation 475 

 The Best equation has been derived in theory by considering two reaction steps, the 476 

dissolution of minerals (or NAPLs) followed by microbial uptake and consumption (fig 5C) 477 

(Bosma et al., 1997; Koch, 2005; Sanford and Crawford, 2000; Wick et al., 2001). By assuming 478 

that the two steps are at quasi-steady state, e.g., the dissolution flux and the consumption flux 479 

equal each other (Bosma et al., 1997), the rate of metabolic reaction follows the Best equation 480 

(Best, 1955). Alternatively, a kinetic model can be built to explicitly simulate the two processes 481 

according to the rate laws of mineral dissolution and the Monod equation. However, where the 482 

concentrations of dissolved nutrients are too low or technically difficult to analyze, it might be 483 

desirable to directly relate metabolic rates to the concentrations of solids (or NAPLs). To 484 

highlight the requirement of the dissolution reaction, we follow the classification of chemical 485 

reactions and describe these metabolic reactions as mass transfer-controlled reactions (table 2). 486 

Similar to the Contois equation, the Best equation also recognizes that the determinant of 487 

specific growth rate is not simply nutrient concentration CN, but the concentration ratio QN/X of 488 

nutrient to biomass (eq 20) (see Supplementary Information). It replaces the concentration factor 489 

in equation 14 and 17 with   490 

 ( )
( )

N/X N/X
C 2

N/X

1 1 41 1
2 1 1

Q QF
Q

α β αβ

α β

 + + ⋅ ⋅ = − − 
+ + ⋅    

. (24) 491 

Here α and β are two parameters. α is the ratio of the equilibrium concentration Ceq – the 492 

concentration at which the nutrient dissolution reaction is at equilibrium – to the half-saturation 493 

constant KM, i.e., α = Ceq/KM. Parameter β is the ratio of the kinetic coefficient of dissolution to 494 

the affinity constant of metabolism (eq 19), 495 

 diss

aff

k
k

β = .  (25) 496 

Here kdiss is the dissolution rate per unit solid or NAPL (see Supplementary Information). Factor 497 

α measures the relative strength of a solid (or NAPL) in supporting metabolism, whereas factor β 498 

compares the kinetic constants of the dissolution reaction to those of microbial metabolism. 499 
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Similar to the Contois equation, the Best equation (eqs 14 and 24) also predicts a 500 

hyperbolic relationship. Figure 4D takes as an example microbial degradation of α-501 

hexachlorocyclohexane (α-HCH) and shows, according to the Best equation, how the rate varies 502 

with the concentration ratio QN/X weighted with factor β. In evaluating equation 24, we take the 503 

equilibrium concentration Ceq of α-HCH at 25 oC at 7.3 mg⋅L−1 (Richardson and Miller, 1960), 504 

and the half-saturation constant KM at 8.5 mg⋅L−1 (Bachmann et al., 1988). Where the weighted 505 

concentration ratios are relatively large, metabolic rates are limited by microbial metabolism. 506 

Under this condition, the concentration factor approaches a maximum value (FC,max) that is 507 

dependent on the equilibrium concentration and the half-saturation constant (see Supplementary 508 

Information), 509 

 eq
C,max

eq M

C
F

C K
=

+
.  (26) 510 

Substituting the above values of Ceq and KM, the maximum concentration factor is 0.46. This 511 

example FC,max value highlights the limitation of mass transfer on microbial kinetics – if α-HCH 512 

completely dissolves in growth media, the FC,max value should be unity.  513 

Where the weighted concentration ratios approach 0, metabolic rates are determined by 514 

the dissolution rates of minerals and NAPLs. Under this condition, the concentration factor 515 

becomes a linear function of the concentration ratio, 516 

 diss eq
C,min N/C

C

k C
F Q

k
= ⋅ , (27) 517 

and metabolic rates vary linearly with nutrient concentrations,  518 

  C dis eq Nr k C C= . (28) 519 

The hyperbolic relationships defined by the Best equation (eqs 14 and 24) and the 520 

Contois equation (eqs 14 and 21) resemble each other. To illustrate this point, we approximate 521 

the concentration factor FC defined by the Best equation with the concentration factor defined by 522 

the Contois equation, 523 

 N/X
C C,max

N/X M

QF F
Q K
β

β
⋅

≈
′⋅ +

.  (29) 524 
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In the example of microbial degradation of α-HCH, the biomass-specific half-saturation constant 525 

is about 0.4, and the difference between the two equations are too close to show in figure 4D. 526 

3.2. Rate Laws of Multi Limiting Nutrients 527 

Where metabolic reactions are controlled by more than one nutrient, two strategies have 528 

been applied to compute reaction rates. One strategy is based on the multiplicative rate law, and 529 

the other is according to Liebig’s law of the minimum (Zinn et al., 2004).  530 

3.2.1. Respiration 531 

A respiration reaction synthesizes ATPs by transferring electrons from an electron donor 532 

to an acceptor. The most common rate law for  respiration rate rR is the multiplicative or the dual 533 

Monod equation (Bungay III, 1968; Humphrey, 1974). This equation accounts for the 534 

concentrations of the electron donor and acceptor simultaneously,   535 

 R max X D Ar k C F F= , (30) 536 

where FD and FA are the concentration factors of the electron donor and acceptor, respectively. 537 

In addition, Liebig’s law of the minimum has also been applied,  538 

 ( )R max X D Amin ,r k C F F= ⋅ . (31) 539 

This equation postulates that respiration rate is determined by the concentration of either the 540 

electron donor or the acceptor, whichever places a stronger limitation (Ryder and Sinclair, 1972; 541 

Williamson and McCarty, 1976).  542 

3.2.2. Growth  543 

Both the multiplicative rate law and Liebig’s law of the minimum have also been applied 544 

to microbial growth. MeGee et al. (1972) constructed the first multiplicative rate law to simulate 545 

the growth of Lactobacillus casei limited by glucose and riboflavin. According to their rate law, 546 

specific growth rate of L. casei is 547 

 max S N DF F kµ µ= − . (32) 548 

where FS and FN are the concentration factors for glucose and riboflavin, respectively. 549 

Alternatively, the specific growth rate may follow Liebig’s law of the minimum, 550 

 ( )max S N Dmin ,F F kµ µ= − . (33) 551 



21 
 

This rate law assumes that growth rate is determined either by an energy substrate (i.e., glucose) 552 

or by an essential nutrient (i.e., riboflavin) (Bader, 1978; Droop, 1974; Sykes, 1973).  553 

3.2.3. Chemical inhibition 554 

Chemical inhibition is a common phenomenon of microbial metabolism. A typical 555 

example includes nutrients of high concentrations, which act as a double-edged sword. Taking 556 

methanogens as an example, their metabolism is supported by acetate, ammonium, methanol, 557 

sulfide, and other nutrients. On one hand, relatively high nutrient concentrations raise growth 558 

rates. On the other hand, high concentrations also inhibit the growth, and the extent of the 559 

inhibition depends on both methanogen species and physicochemical conditions, such as pH and 560 

temperature (Chen et al., 2014; Fukuzaki et al., 1990). Methanogen metabolism is also inhibited 561 

by other chemical inhibitors, including structural analogs of coenzyme M, short- to long-chain 562 

fatty acids, ethylene and acetylene, halogenated aliphatic hydrocarbons (e.g., chloroform, 563 

fluoroacetate, and methyl fluoride), and by the presence of alternative electron acceptors (Liu et 564 

al., 2011).  565 

To account for chemical inhibition, numerous empirical functions have been proposed to 566 

amend microbial rate laws (Mulchandani and Luong, 1989). One of the earliest examples came 567 

from Boon and Laudelout (1962). They assumed that the nitrite inhibition on aerobic nitrite 568 

oxidation of Nitrobacter winogradskyi follows a pattern similar to non-competitive inhibition 569 

observed in enzyme reactions, and quantified the significance of the inhibition by using a 570 

dimensionless inhibition factor FI,  571 

 I
I

I I

KF
K C

=
+

.  (34) 572 

Here KI is the inhibition constant (M), and CI is the concentration of inhibitor (fig 6A).  573 

3.3. Thermodynamic Consistency 574 

Rigorous rate laws must honor the principles of thermodynamics – a requirement so 575 

called “thermodynamic consistency” (Boudart, 1976). This requirement can be met by amending 576 

rate laws with the thermodynamic potential factor FT,  577 

 T 1 exp fF
RTχ

 
= − − 

 
 (35) 578 
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where f is the thermodynamic drive (J⋅mol−1), χ is the average stoichiometric number, and can be 579 

approximated as the number of times the rate-determining step occurs per metabolic reaction, R 580 

is the gas constant (8.3145 J⋅mol−1⋅K−1), and Tk is temperature in Kelvin. 581 

Thermodynamic drives for metabolic reactions depend on whether ATPs are synthesized 582 

or consumed. For example, catabolic reactions couple redox reactions to ATP synthesis, and 583 

their thermodynamic drives are the differences between the energies available in the environment 584 

and the energies saved by ATP synthesis,   585 

 A P Pf G Y G= ∆ − ⋅∆  (36) 586 

Here available energies ∆GA are calculated as the negative of Gibbs free energies of chemical 587 

reactions, ∆GP is the phosphorylation energy – the energy consumed by ATP synthesis from 588 

ADP and phosphate in the cytoplasm, about 45 kJ×(mol ATP)- 1, YP is the number of ATPs 589 

synthesized per respiration or fermentation reaction (Jin and Bethke, 2003; 2005). Figure 6B 590 

shows, according to equation 35, how the thermodynamic factor varies with the thermodynamic 591 

drive. 592 

The thermodynamic potential factor in equation 35 and 36 represents a general 593 

description of the relationship between the thermodynamics and kinetics of microbial reactions, 594 

and can be simplified to other models of the thermodynamic control under different conditions 595 

(Jin and Bethke, 2005). For example, the model of Hoh and Cord-Ruwisch (1996) is best applied 596 

to microbial reactions that do not conserve energy. The models of Fennell and Gossett (1998) 597 

and Liu et al. (2001) are developed primarily for metabolic reactions with a stoichiometric 598 

number χrd of 1 per reaction. The model of LaRowe et al. (2012) draws an analogy from Fermi-599 

Dirac statistics in quantum systems, and predicts that, where chemical reactions are at 600 

thermodynamic equilibrium, reaction rates are not zero, but instead have finite and positive 601 

values. This prediction contradicts the principle of detailed balance, where at equilibrium, the 602 

forward and backward rates precisely compensate for each other, resulting in net rates of zero.  603 

3.4. Generic Rate Laws 604 

Rate laws of microbial metabolisms have been summarized in two generic equations (Jin 605 

et al., 2013; Zwietering et al., 1992). One is the rate law for microbial respiration, 606 
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 ( )R C,max X I T D A,r k C F F f F F= ⋅ ⋅ ⋅ ⋅ , (37) 607 

where f( ) is the multiplicative (e.g., eq 30) or the minimum function (e.g., eq 31). The other is 608 

for biomass synthesis, and is either the multiplicative rate law (e.g., eq 32),  609 

 
iX X,P N

i

r r F= ⋅∏ , (38) 610 

or Liebig’s law of the minimum (e.g., eq 33), 611 

 ( )1 2X X,P max X N max X Nmin , , ,r r C F C Fµ µ=  . (39) 612 

Here rX,P is the rate of ATP-dependent biomass synthesis, or the rate where biomass synthesis is 613 

limited by the availability of energy sources only, and 
1NF  and 

2NF are the concentration factors 614 

of nutrient N1 and N2, respectively. According to equation 16,  615 

 X,P S X/S Rr Y rν= . (40) 616 

The concentration factors, i.e., FD, FA, 
1NF  and others, may take different forms, depending on 617 

whether nutrients are dissolved in solution (eq 15) or occur as solids and NAPLs (eqs. 21 and 24). 618 

From the rate of biomass synthesis, specific growth rate is calculated according to equation 11. 619 

Where microbial metabolism is limited either by electron donor D or by acceptor A, equation 37 620 

reduces to equation 17 and, at the same time, equation 38 and 39 converge and specific growth 621 

rate is calculated according to equation 14.  622 

The generic rate laws (eqs 37, 38, and 39) have been applied with two distinct approaches. 623 

One approach centers around respiration, and first determines respiration rate by evaluating the 624 

rate law of respiration (eq 37). The respiration rate is then applied to assess the rate law of 625 

biomass synthesis (eq 38 or 39). The other approach emphasizes biomass synthesis, and first 626 

calculates the rate of ATP-dependent biomass synthesis by combining equation 37 with 40. The 627 

rate rX,P is then applied to evaluate the rate of microbial growth (eq 11 and 38 or eq 11 and 39) 628 

and to calculate respiration rate by rearranging equation 40. Both approaches yield identical 629 

results.  630 



24 
 

4. EXTENDING TO NATURAL ENVIRONMENTS 631 

Applying the trait-based modeling framework to natural environments necessitates 632 

modifications to the fundamental model assumptions related to microbial communities, 633 

metabolic reactions, and the rate laws of microbial kinetics (figs 2 and 3, and table 1). Natural 634 

environments are home to microbial communities that experience a broad range of growth 635 

conditions, including variations in pH, temperature, and nutrient concentrations. Additionally, in 636 

most natural environments, microbial activities are generally low, and a substantial portion of 637 

microbial cells remain dormant (Wang et al., 2014; Wörmer et al., 2019). In contrast, the trait-638 

based framework was initially developed from the observations of laboratory experiments. These 639 

experiments typically take place in controlled environments that are uniform and rich in nutrients, 640 

and optimized for microbial growth in terms of physicochemical conditions. Furthermore, 641 

laboratory studies often focus on the exponential growth phase, during which most microbial 642 

cells display high metabolic activity. Consequently, modeling microbial processes in natural 643 

environments should account for the physiology of natural microbes as well as the specific 644 

growth conditions of the environment. Here we focus on the modifications that account for 645 

dormancy, biomass decay, physiological acclimation, and environmental conditions.  646 

Microbial kinetics in natural environments is also subject to a multitude of additional 647 

factors, including microbial interactions and the intricate nature of the physicochemical 648 

conditions. Microbes interact with both other microbes and their surroundings via various 649 

mechanisms, such as physiochemical alterations, exchange of metabolites, signaling, biofilm 650 

formation, and chemotaxis, among others (Dong et al., 2022; Hibbing et al., 2010). The 651 

complexity of the ambient environment is exemplified by spatial heterogeneity and temporal 652 

fluctuations in physicochemical conditions (Nguyen et al., 2020; Nunan et al., 2020). In principle, 653 

incorporating these factors can be achieved by assembling relevant functional groups into a 654 

microbial reaction model and by coupling microbial reaction modeling to geochemical modeling 655 

and to reactive transport modeling (Bethke, 2022; Gharasoo et al., 2012). However, delving into 656 

a detailed exploration of this topic extends beyond the scope of the current discussion. 657 

4.1. Dormancy 658 

To apply the trait-based modeling framework to natural environments, it is essential to 659 

divide a functional group into subgroups in order to explicitly consider the different 660 
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physiological states of microbial cells, including actively proliferating cells and the different 661 

stages of dormancy (Hunt, 1977; Stevenson, 1977). This treatment allows a functional group to 662 

have two types of biomass – one for actively growing cells and the other for dormant cells (fig 663 

3B). This treatment is supported by two observations. Firstly, dormant cells constitute a 664 

significant proportion of microbial cells in diverse environments, such as soils, marine sediments, 665 

and other natural settings (Wang et al., 2014; Wörmer et al., 2019). Secondly, while dormant 666 

cells do not actively grow, it is important to note that dormancy does not imply inactivity (fig 667 

2C). Dormant cells may engage in limited metabolic processes, albeit at rates significantly lower 668 

than those of actively growing cells (Hoehler and Jørgensen, 2013; Lever et al., 2015; Price and 669 

Sowers, 2004; Reeve et al., 1984).  670 

In theory, to accurately simulate the three physiological states of natural microbes, at 671 

least three subgroups are required. These subgroups encompass an actively growing subgroup, a 672 

dormant subgroup primarily focused on biomass maintenance, and another dormant subgroup 673 

dedicated to the repair of damaged cellular components and structures (Price and Sowers, 2004). 674 

Transitions between the subgroups occur, with the transition rates assumed to be proportional to 675 

biomass concentrations. Several factors influence these transition rates, including 676 

physicochemical conditions and physiological states. The latter can be quantified by the 677 

difference in energy flux between catabolism and maintenance or the growth rate relative to the 678 

maximum growth rate (Ayati, 2012; Bradley et al., 2019; Konopka, 1999; Wang et al., 2014). 679 

4.2. Biomass Decay 680 

Modeling microbial metabolisms in natural environments requires the consideration of 681 

chemical fluxes driven by biomass decay, including those of biomass maintenance and cell lysis 682 

(Bradley et al., 2018; Hoehler and Jørgensen, 2013; Liang et al., 2019). Although these fluxes in 683 

laboratory nutrient-enriched bioreactors may not reach the same magnitude as those of catabolic 684 

reactions and biomass synthesis, they hold significant importance in natural environments.  685 

For instance, in natural environments, cell death and subsequent lysis and fragmentation 686 

of microbial cells release cellular components into the surroundings, producing so-called 687 

necromass (fig 3) (Kästner et al., 2021; Liang et al., 2019). Microbial necromass represents a 688 

distinct pool of natural organic matter, accounting for up to 80% of organic carbon in soils. It 689 

serves as a unique exogenous nutrient for microbial metabolism, contributing to cryptic growth − 690 
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the growth enabled by utilizing cellular components released through cell lysis (Banks and 691 

Bryers, 1990; Koch, 1959; Ryan, 1959). Microbial necromass differs from other forms of 692 

organic matter, such as plant residuals, in terms of degradation kinetics and interactions with 693 

minerals (Cotrufo et al., 2013; Fan et al., 2021; Wang et al., 2020a).  694 

Maintenance pathways consume ATPs, which are supplied by catabolism that utilizes 695 

two different types of energy sources, exogenous (or external) and endogenous substrates (figs 696 

2B and C) (Beeftink et al., 1990; Marr et al., 1963; Schulze and Lipe, 1964). Endogenous 697 

substrates encompass various cellular components, such as poly-β-hydroxybutyrate and other 698 

energy-storage compounds, proteins, lipids, RNA, and more (Dawes and Ribbons, 1964; Herbert, 699 

1958; Porges et al., 1953). The consumption of endogenous substrates for ATP production can 700 

be viewed as a special reaction – endogenous catabolic reaction. This particular reaction 701 

decreases biomass concentrations and produces CO2, and other waste products (Roslev and King, 702 

1995). To emphasize the sources of energy substrates, catabolic reactions using extracellular 703 

substrates can be referred to as exogenous catabolic reactions. While microbial maintenance in 704 

nutrient-rich bioreactors is powered primarily by exogenous substrates, the consumption of 705 

endogenous substrates becomes significant in oligotrophic environments, such as pristine 706 

aquifers, marine sediments, and other (Kjelleberg et al., 1987).  707 

Simulating endogenous catabolic reaction and microbial necromass production requires 708 

amending trait-based microbial reaction models with respective stoichiometric reaction equations 709 

and rate expressions. When formulating the rate expressions for these fluxes, a common 710 

assumption is that they are directly proportional to biomass concentrations (Fan et al., 2021). 711 

Other factors, such as temperature, pH, salinity, and viral abundance, also influence these 712 

processes (Shimoda et al., 2002; Wang et al., 2020b). These fluxes are governed by the principle 713 

of energy balance (fig 2B and C). In particular, the energy fluxes of actively growing subgroups 714 

must honor 715 

 P,ex P,in P,X P,MJ J J J+ = + . (41) 716 

Here JP,ex and JP,in are the ATP fluxes of exogenous and endogenous catabolic reactions, 717 

respectively. For dormant subgroups, equation 41simplifies to    718 

 P,ex P,in P,MJ J J+ = , (42) 719 
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because the energy flux of biomass synthesis reduces to 0.   720 

4.3. Environmental Conditions   721 

To account for the physicochemical and biological conditions present in natural 722 

environments, an intuitive strategy is to follow the multiplicative rate expression (eq 30) by 723 

amending the rate laws for laboratory cultures (eqs 37 and 38) with additional dimensionless 724 

functions. These functions are designed to capture the specific environmental conditions of 725 

interest (Zwietering et al., 1992), and examples include those for temperature, pH, water activity, 726 

and biomass concentrations.  727 

4.3.1. pH and temperature 728 

Microbial catabolism and biomass synthesis respond to pH and temperature variations by 729 

following bell- or triangle-shaped curves characterized by a set of three parameters, the 730 

minimum, optimal, and maximum pHs and temperatures. At pHs and temperatures below the 731 

minimum or above the maximum values, microbial metabolism pauses. Between the minimum 732 

and optimal values, temperature and pH increases raise microbial catabolic and growth rates. 733 

Between the optimal and maximum values, the increases lower microbial rates. A 734 

commonly-used model to describe the bell-shaped temperature response of catabolism and 735 

biomass synthesis is the empirical cardinal temperature model (Rosso et al., 1993). According to 736 

this model, the dimensionless factor FTMP for temperature is  737 

 
2

max min
TMP

opt min opt min opt opt max opt min

( )( )max 0, 
( ) ( )( ) ( )( 2 )

T T T TF
T T T T T T T T T T T

 − − =  
 − − − − − + −   

.  (43) 738 

Here Tmin, Topt, and Tmax are the minimum, optimal, and maximum temperatures of microbial 739 

reactions. Likewise, the cardinal pH model is, 740 

 max min
pH 2

min max opt

(pH pH )(pH pH )max 0, 
(pH pH )(pH pH ) (pH pH )

F
 − − =  − − − −  

,  (44) 741 

where pHmin, pHopt, and pHmax are the minimum, optimal, and maximum pHs (Rosso et al., 1995). 742 

Figure 7A and B show, according to the cardinal models, how the temperature factor FTMP of 743 

mesophilic microbes varies with temperature and how the pH factor FpH of neutrophiles varies 744 

with pH.  745 
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In comparison, current experimental evidence suggests that the temperature response of 746 

biomass maintenance might be monotonic, and can be described with the Arrhenius equation 747 

(Price and Sowers, 2004; Tijhuis et al., 1993). Specific maintenance rate kM is calculated 748 

according to  749 

 a,M
M M

K

exp
E

k A
RT

 
= ⋅  

 
, (45) 750 

where AM is the pre-exponential factor, and Ea,M is the apparent activation energy. Figure 8 751 

shows, according to equation 45 and on the basis of the data compiled by Price and Sowers 752 

(2004), how specific maintenance rate varies with temperature. For every 10 oC increase in 753 

temperature, the specific maintenance rate increases about an order of magnitude, which 754 

confirms a rule-of-thumb view about the different specific maintenance rates in laboratory 755 

bioreactors and natural environments (Schmidt, 1992).  756 

4.3.2. Salinity and water activity 757 

Salinity, the total ion concentration in a solution (Williams and Sherwood, 1994), is a 758 

primary factor that controls the diversity, composition, and function of natural microbial 759 

communities (Yang et al., 2016; Zhang et al., 2021). Salinity determines turgor pressure, the 760 

difference in hydrostatic pressure between the cytoplasm and the ambient environment, which in 761 

turn determines microbial growth rates (Rojas and Huang, 2018). In the food and pharmaceutical 762 

industry, the effect of salinity has been approached within the context of water activity (aw), a 763 

solution property that quantifies the amount of “free” unbound water molecules available for 764 

chemical reactions and microbial metabolisms (Daniel et al., 2004; Troller and Christian, 1978). 765 

Water activity is measured experimentally as the ratio between the fugacity of water vapor of a 766 

solution and the fugacity of pure water at the same temperature and pressure. In theory, water 767 

activity is calculated from molar water concentration, stoichiometric ionic strength, and the 768 

osmotic coefficient and can be taken as the effective water content expressed in terms of water 769 

mole fraction (Cazier and Gekas, 2001; Stokes and Robinson, 1948).  770 

Similar to microbial kinetic responses to pH and temperature, microbial response to 771 

salinity follows bell- or triangle-shaped curves (Stevenson et al., 2015). A cardinal water activity 772 

model can also be constructed with three cardinal parameters, the minimum, optimal, and 773 

maximum water activities (Peleg, 2022). For non-halophiles and many halotolerant microbes, 774 
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their optimal water activity stays close to unity, and their growth rates appear to decrease linearly 775 

with decreasing water activity (Emborg and Dalgaard, 2008; McMeekin et al., 1987). In these 776 

cases, the factor FW of water activity can be described with a simple linear function (McMeekin 777 

et al., 1987; Zwietering et al., 1992), 778 

 w w,min
W

w,min

max 0, 
1

a a
F

a
 − =  −  

,  (46) 779 

where aw,min is the minimum water activity required by microbial metabolism. This parameter is 780 

not a constant, but varies with both microbial strains and the physiochemical conditions of the 781 

environment, including temperature (Santos et al., 1994). Figure 7C shows how the factor of 782 

Staphylococcus xylosus varies with water activity (McMeekin et al., 1987). 783 

4.3.3. Biomass concentration  784 

The Monod equation assumes that biomass-specific rates of catabolism and growth are 785 

independent of biomass concentrations. This assumption assumes unlimited resources and does 786 

not account for the limitations on the total biomass that can be sustained by the environment. 787 

Also, the assumption contradicts quorum sensing – cell-to-cell communication via the production 788 

and release of signal molecules (Fuqua et al., 1994). Quorum sensing enables microbes to 789 

regulate their gene expression and to adjust their phenotypic traits in accordance with the 790 

biomass concentration in the ambient environment (Abisado et al., 2018; Swift et al., 2001).  791 

Following the classical Verhulst-Pearl logistic equation (Peleg and Corradini, 2011), a 792 

simple approach to relate cell-specific rate to biomass concentration is to amend microbial rate 793 

laws with the following biomass capacity function (Wu et al., 2022), 794 

 X
X

X,max

1 CF
C

= − . (47) 795 

Here CX,max is carrying capacity, the maximum biomass concentration that can be supported by 796 

an environment (Chapman and Byron, 2018). According to this factor (fig 7D), relatively low 797 

biomass concentrations have negligible effect on microbial kinetics, but increases in biomass 798 

concentrations slow down microbial reactions. Other approaches, such as the inhibition function, 799 

have also been proposed to account for biomass concentration (Hilau et al., 2022).  800 
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Carrying capacity is determined by a suite of environmental and biological factors, and 801 

therefore its inclusion in the biomass factor brings additional benefits. For example, by including 802 

the biomass factor, we can constrain microbial growth with environmental factors, such as space 803 

and surface area, and hydrodynamics. Furthermore, the biomass factor keeps simulated biomass 804 

concentrations in check (Wu et al., 2022). This is especially important for simulating the 805 

metabolic reactions of a functional group within a community. Without this factor, the biomass 806 

concentration of a functional group is determined by nutrient fluxes into the environment, and 807 

therefore may exceed the carrying capacity of the environment.   808 

4.4. Physiological Acclimation 809 

Applying the trait-based modeling framework to natural environments requires the 810 

kinetic and stoichiometric parameters of natural microbes. These parameters have been analyzed 811 

for laboratory cultures, but only to a very limited extent in natural environments (Jin et al., 2013; 812 

Pallud and Van Cappellen, 2006). For example, Wu et al. (2022) compiled the trait parameters 813 

for acetoclastic methanogenesis – a process responsible for ~70% of methane bioproduction in 814 

terrestrial environments (Conrad, 1999). Despite the global significance of the process, only two 815 

studies have directly determined half-saturation constants in natural systems, and the analysis of 816 

rate constants and biomass yield coefficients still needs to be carried out.  817 

Most microbial parameters obtained with laboratory experiments are not directly 818 

applicable to natural environments. Current available data suggest that microbial parameters, 819 

including rate constants, half-saturation constants, and biomass yield coefficients, are not 820 

constants, but dependent on culture history and physicochemical conditions of the environment 821 

(Ferenci, 1999; Grady et al., 1996; Kovárová-Kovar and Egli, 1998). The variation in trait values, 822 

or phenotypic plasticity, highlights a fundamental difference between regular catalysts and 823 

microorganisms. While the catalysts in chemical processes are fairly stable, microorganisms are 824 

capable of acclimating to their ambient environment (Aksnes and Cao, 2011; Flynn et al., 2015; 825 

Merchant and Helmann, 2012). Here acclimation refers to reversible modification of phenotypic 826 

traits, including microbial kinetic and stoichiometric parameters, in response to changes in 827 

temperature, pH, resource availability, and other environmental conditions.  828 

Physiological acclimation provides a theoretical basis to extrapolate 829 

laboratory-determined trait values to natural environments. The extrapolation is based on the 830 
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optimality assumption that through natural selection only organisms whose physiological traits 831 

are optimally adjusted according to the conditions of the ambient environment could survive and 832 

reproduce in continual competition for resources (Smith et al., 2011). By building optimization-833 

based models of acclimation, we can constrain the plasticity of microbial parameters as a 834 

function of environmental conditions (fig 9). The optimization models focus on two functional 835 

traits and assume that the two traits are determined by the allocation of limited cellular resources, 836 

such as proteins, ribosomes, and other macromolecules. Allocating more resources to one trait 837 

limits the resources available to the other trait, leading to the trade-off between the two traits. 838 

These models have been built for the kinetics of nutrient uptake and microbial catabolism, and 839 

the thermodynamic efficiency of microbial metabolism.  840 

4.4.1. Nutrient uptake  841 

Pahlow (2005) and Smith and Yamanaka (2007) developed a model of optimal nutrient 842 

uptake. In their model, nutrient uptake flux JN is maximized by taking nutrient affinity and 843 

maximum uptake flux as control variables. Nutrient affinity defines the slope at which uptake 844 

fluxes increase with very low nutrient concentrations, and maximum uptake flux defines the flux 845 

where nutrient concentrations are very large. According to their results (Smith et al., 2015), by 846 

acclimating to nutrient concentration CN in the ambient environment, microbes change their 847 

Michaelis constant KN,a of nutrient uptake according to 848 

 max,N max ,N
N,a N

max,N max,N

2
J J

K C
α α

= + . (48) 849 

Here Jmax,N and αmax,N are the potential maximum values of maximum uptake flux and nutrient 850 

affinity, respectively.  851 

From the acclimation-dependent Michaelis constant KN,a, nutrient uptake flux JN can be 852 

calculated from the Michaelis-Menten equation, i.e., 853 

 N
N max,N

N N,a

CJ J
C K

=
+

. (49) 854 

By assuming that biomass synthesis rate is determined by nutrient uptake flux, we can calculate 855 

specific growth rate according to equation 11, that is   856 
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 X/N N DY J kµ = − . (50) 857 

Figure 10 applies the optimal nutrient uptake model (eq 48 to 50) to nitrate consumption by 858 

phytoplankton, and shows how the Michaelis constant, nitrate uptake flux, and specific growth 859 

rate vary with nitrate concentration in the ambient environment.  860 

The optimal uptake model (eq 48 to 50) is most effective in environments with low 861 

nutrient concentrations. This limitation arises from the assumption that nutrient uptake is the 862 

rate-determining step. While this assumption is generally valid when nutrient concentrations are 863 

close to 0, the rate-determining steps of microbial metabolisms are not fixed, but shift to other 864 

enzymes in environments with relatively large nutrient concentrations (Jin et al., 2022).   865 

4.4.2. Catabolic reaction 866 

Wu et al. (2022) constructed an acclimation model for microbial catabolism limited by a 867 

single energy substrate. Their model assumes that catabolic rates are limited by substrate uptake 868 

at very low substrate concentrations and by a different reaction at very high concentrations. Their 869 

model further assumes that microbes maximize their catabolic rates by optimizing the partition 870 

of cellular resources between the two rate-determining steps.  871 

The model of Wu et al. (2022) relates the kinetic parameters of a microbe in natural 872 

environments to the parameter values of laboratory cultures. Specifically, the half-saturation 873 

constant KM,a of natural microbes depends on the half-saturation constant KM,o of laboratory 874 

cultures according to  875 

 M,a M,oK Kβ= ⋅ . (51) 876 

Here β  is the ratio of substrate concentration CS,a in the environment to the concentration CS,o in 877 

laboratory bioreactors,  878 

 S,a

S,o

C
C

β = . (52) 879 

The rate constant ka of natural microbes is 880 

 S,o M,o
a o

S,o M,a

C K
k k

C K
+

=
+

, (53) 881 

where ko is the rate constant of laboratory cultures.  882 
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Wu et al. (2022) applied the model and explored how ambient acetate concentrations may 883 

affect the kinetic parameters of acetoclastic methanogenesis. According to their results, 884 

compared to those of laboratory cultures, the rate constants and the half-saturation constants of 885 

methanogens acclimating to the environment of a few µM acetate can be one order of magnitude 886 

smaller (fig 11A and B). These results help explain the dominance of Methanosaeta over 887 

Methanosarcina at <0.1 mM acetate. Without acclimation, the methanogenesis rates of 888 

Methanosarcina, calculated with the Monod equation, would stay close to those of Methanosaeta 889 

at < 1 mM acetate (fig 11C). Accordingly, Methanosarcina and Methanosaeta would co-exist in 890 

environments of <1 mM acetate, a prediction that contradicts field observations that 891 

Methanosaeta dominates low-acetate environments. By accounting for acclimation, 892 

Methanosaeta obtains larger methanogenesis rates at <0.1 mM acetate, which confers to 893 

competitive advantage against Methanosarcina. 894 

4.4.3. Metabolic efficiency 895 

Wu et al. (2022) developed a model of maximum ATP flux to predict the thermodynamic 896 

efficiency of microbial catabolism. This model maximizes the flux of ATP synthesis by trading-897 

off the rate against the ATP yield of catabolism. At a given available energy, increases in the 898 

ATP yield raise the rate of ATP production, but lower the thermodynamic drive and hence the 899 

catabolic rate, which in turn lowers the rate of ATP production. The optimal yield of ATP, 900 

expressed in mol ATP synthesized per mol nutrient, varies with the energy ∆GA available in the 901 

environment (see eq 36), and the variation can be approximated according to  902 

 P,op AY Gβα= ⋅∆ . (54) 903 

For microbial reactions that have an average stoichiometric number of 2 per reaction, exponent β 904 

is estimated at 1.1 and coefficient α is about 4.2×10−6 mol1.1⋅J−1.1 (fig 12A). From the optimized 905 

ATP yield, we can calculate the optimal biomass yield YX,op as the product of the ATP yield and 906 

biomass yield per ATP, 907 

 X,op X/P AY Y Gβα= ⋅ ⋅∆ , (55) 908 

where YX/P is the biomass yield per ATP, which is about 5 g⋅mol−1 for anaerobic respiration (Jin, 909 

2012). 910 
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The maximum ATP flux model predicts that ATP and biomass yields increase with 911 

available energy (fig 12A and B), which is consistent with the paradigm that where more energy 912 

is available, more energy is conserved (Jin, 2012). The efficiency of microbial energy 913 

conservation can be calculated as the percentage of saved energy per available energy (Roels, 914 

1983). Where available energy is low, the thermodynamic efficiency is also small, close to 50%. 915 

Increases in available energy raise the efficiency. For aerobic respiration, the efficiency can 916 

reach ~85% (fig 12C).      917 

The relationship between biomass yield and the available energy has been a long-918 

standing question in microbiology and biotechnology. Various methods have been proposed to 919 

estimate biomass yield, including the ATP-based method (Kleerebezem and Van Loosdrecht, 920 

2010), Gibbs energy dissipation method (Heijnen and Dijken, 1992), thermodynamic electron 921 

equivalents model (McCarty, 2007), and Gibbs Energy Dynamic Yield Method (Smeaton and 922 

Van Cappellen, 2018). Compared to these methods, the maximum ATP flux method accounts for 923 

the tradeoff between the rate and yield of microbial catabolism, requires minimum information 924 

about metabolic pathways, and provides a straightforward estimation directly from a commonly 925 

analyzed chemical parameter – the energy available in the environment. 926 

5. MOLECULAR BIOLOGY-ENABLED MODEL IMPROVEMENTS 927 

Recent advancements in molecular biology have made available a wide range of low‐cost 928 

high-throughput cultivation-independent tools and techniques for studying natural microbes. 929 

These tools have been applied to characterize and quantify various biological molecules, from 930 

phylogenetic markers (or ribosomal rRNA genes), functional genes, and their products 931 

(ribosomal RNA, mRNA transcripts, and proteins), to the complete sets of DNA (or genome), 932 

mRNA, proteins, and metabolites in a microbial cell or population (i.e., genomics, 933 

transcriptomics, proteomics, and metabolomics, respectively) and in a microbial community (i.e., 934 

meta-omics). Their applications informed the construction and applications of microbial kinetic 935 

models, and inspired a multitude of novel strategies that integrate molecular data into the 936 

simulation of microbial reactions, including functional gene-based modeling, pathway-specific 937 

kinetic modeling, and genome-scale stoichiometric metabolic modeling (Störiko et al., 2021). 938 
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5.1. Functional Gene-based Model  939 

A functional gene is a portion of DNA that codes for a polypeptide chain or other gene 940 

product. Functional genes in natural environments can be directly detected and quantified with 941 

gene and metagenomic sequencing. The first functional gene-based model came from Reed et al. 942 

(2014). They replaced functional groups with functional genes and built a model of nitrogen 943 

cycling in the Arabian Sea oxygen minimum zone (OMZ) with eight functional genes, including 944 

the ammonia monooxygenase gene and the hydrazine oxidoreductase gene. This approach links 945 

microbes in silico to those in the environment, and makes possible model validation by 946 

comparing gene abundances to field observations. 947 

Using functional genes as surrogates for microbial functional groups builds on the 948 

following considerations. First, microbes are grouped into functional groups according to their 949 

metabolic reactions. Metabolic reactions are catalyzed with enzymes coded by functional genes. 950 

Therefore, microbes can also be grouped according to their functional genes. Taking the 951 

functional group of methanogens as an example, this group is conventionally constructed with 952 

microbes capable of producing methane. Because all methanogens carry the methyl-coenzyme M 953 

reductase (or mcr) gene, this group can also be represented with the mcr gene. Second, DNA is a 954 

stable biomolecule and its nucleotide sequence does not change significantly in response to 955 

short-term external environmental changes. By linking gene productions to catabolic reactions 956 

and by applying the principle of mass balance, the net rate of gene production can be calculated 957 

on the basis of concentration balance principle according to 958 

 G C
S G/S D,G

G G

1 dC rY k
C dt C

ν⋅ = − . (56) 959 

where CG is the gene copy number per kg water, YG/S is the yield of gene copy number per 960 

energy substrate S, and kD,G is the specific rate of gene decay. Combining equation 37 with 56961 

gives the framework of the functional gene-based model that replaces biomass concentration CX 962 

with functional gene concentration CG as a state variable.  963 

Louca et al. (2016) expanded the functional gene approach by numerically tracking the 964 

concentrations of mRNA and enzymes, and simulated microbial reactions associated with the 965 

cycling of nitrogen and sulfur in an oceanic oxygen minimum zone. They expressed the 966 

production rates of mRNAs and enzymes in terms of the rates of catabolic reactions, and 967 
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simulated the concentrations of the two macromolecules on the basis of concentration balance. 968 

By doing so, their modeling framework integrates metagenomic, metatranscriptomic and 969 

metaproteomic datasets into the simulation.  970 

The functional gene approach uses a single gene to represent microbes, and hence 971 

requires that a gene be unequivocally associated with only one chemical reaction. This 972 

requirement is problematic. First, functional genes may be involved in more than one reaction. 973 

For example, the dissimilatory sulfite reductase gene (dsr) has been applied as a diagnostic tool 974 

for microbial sulfate reduction, but this gene also participates in microbial sulfur oxidation 975 

(Ghosh and Dam, 2009). Likewise, the mcr gene is required for both methanogenesis and 976 

anaerobic methane oxidation. In these cases, the functional-gene approach is best applied to 977 

environments where biogeochemical cycling is truncated. For example, where methanogens are 978 

producing methane, anaerobic methane oxidation is negligible.   979 

Second, more than one gene is required to describe microbial respiration. A typical 980 

example would be methanogenesis. By using the mcr gene alone, we would not be able to 981 

simulate hydrogenotrophic and acetoclastic methanogenesis at the same time. We would also fail 982 

in accounting for the competition between Methanosarcina and Methanosaeta, the two genera 983 

capable of acetoclastic methanogenesis. Therefore, the functional-gene approach is best applied 984 

to environments where microbial respiration of an electron acceptor is powered primarily by a 985 

single electron donor and driven by a single functional group.   986 

Finally, the functional gene approach is not applicable to the fermentation of organic 987 

matter to H2, short-chain fatty acids, alcohols, and other simple organic compounds, 988 

dissimilatory reduction of ferric iron, or other microbial processes, whose functional genes have 989 

yet to be identified. To simulate organic matter degradation to carbon dioxide and methane with 990 

the functional gene approach, previous studies combined organic matter fermentation with the 991 

respiration of sulfate and other electron acceptors into single reactions, and simulated the 992 

progress of the reactions on the basis of the functional genes of respiration pathways (Louca et 993 

al., 2016; Reed et al., 2014). While this approach of lumping together organic matter 994 

fermentation and respiration is popular among many biogeochemists, it assumes that the rates of 995 

organic matter degradation are limited by the reduction of electron acceptors, which contradicts 996 

the consensus that organic matter degradation is limited by the step of organic matter hydrolysis 997 
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or fermentation (Wu et al., 2021). To avoid this assumption, we propose to simulate organic 998 

matter degradation to inorganic carbon by combining the trait-based framework for organic 999 

matter fermentation with the functional gene framework for respiration.  1000 

5.2. Metabolic Models 1001 

Metabolic models are mathematical representations of individual biochemical pathways 1002 

or at genome scale the entire metabolic pathways of organisms (Dahal et al., 2020; Embree et al., 1003 

2015). They are commonly simulated with stoichiometric and kinetic methods. Stoichiometric 1004 

modeling searches for the chemical fluxes through metabolic networks on the basis of the mass 1005 

balance principle and the optimality principle. Kinetic modeling traces the progress of individual 1006 

biochemical reactions within a metabolic network and therefore network fluxes by combining the 1007 

principle of mass balance with enzyme kinetics.  1008 

5.2.1. Genome-scale stoichiometric model 1009 

Genome-scale stoichiometric metabolic models are built by applying the mass balance 1010 

principle to metabolic fluxes. For a metabolic network of m number of reactions and n number of 1011 

metabolites, its metabolic fluxes are related to the rates of biochemical reactions according to   1012 

 J = S×R, (57) 1013 

where J is a column vector of size n, its element Ji is the flux of metabolite, net rate at which 1014 

metabolite Ai is produced (or consumed, if negative) per unit biomass, R is a vector of size m, its 1015 

element rj is the rate of biochemical reaction j per unit biomass, S is a stoichiometric matrix of 1016 

size m×n, its element Sij is the stoichiometric coefficient of Ai in the reaction of enzyme j, and 1017 

can be constructed from genomic information and related literature data (Orth et al., 2010). To 1018 

link the metabolic network to biomass synthesis, a hypothetical reaction is included in the 1019 

network to describe the production of one gram of biomass dry weight from a stoichiometric 1020 

combination of nucleic acids, proteins, carbohydrates, and other macromolecules.  1021 

Stoichiometric modeling solves rate vector R by assuming that microbial metabolism is 1022 

at steady state. Under this assumption, metabolic fluxes, except those of nutrient uptake, waste 1023 

product excretion, and biomass synthesis, stay at zero. Because there are more metabolites 1024 

(hence metabolite fluxes) than there are reactions (i.e., m < n), the solution for the rate vector is 1025 

underdetermined.  1026 
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A common approach to uniquely determine the vector R is flux balance analysis (FBA) 1027 

(Feist and Palsson, 2008; Heirendt et al., 2019). FBA formulates the underdetermined vector R 1028 

as an optimization problem by imposing an objective upon metabolic networks, and by 1029 

accounting for maximum and minimum values on metabolite fluxes J and enzyme rates R. An 1030 

example objective is to maximize one of the biochemical reactions – the hypothetical biomass 1031 

synthesis reaction (Price et al., 2004; Schuetz et al., 2007; Schuster et al., 2008). FBA solves the 1032 

rate vector R that meets the objective by using linear programming (or linear optimization). 1033 

Because FBA uses nutrient uptake fluxes as input, and predicts the fluxes of waste product 1034 

excretion and the rates of growth, it is essentially a yield coefficient estimator, or stoichiometric 1035 

coefficient estimator (Senger et al., 2014). 1036 

Stoichiometric metabolic modeling enables a direct integration of high-throughput 1037 

genomic data into microbial reaction modeling, and offers a powerful tool for exploring 1038 

microbial metabolism at the system level and in unprecedented detail (Henry et al., 2010). For 1039 

example, stoichiometric metabolic models have been combined with the enzyme kinetics of 1040 

nutrient uptake to predict microbial chemical fluxes (Mahadevan et al., 2002). The parameters 1041 

for substrate uptake are assigned either by fitting the simulation outcome to laboratory 1042 

observations (Scheibe et al., 2009b), or by directly using the values determined for relevant 1043 

enzymes (Zhuang et al., 2010). Scheibe et al. (2009b) applied this approach to the genome-scale 1044 

metabolic model of Geobacter sulfurreducens, and simulated the progress of uranium 1045 

bioremediation in an aquifer. Their predictions had to be scaled down by a factor of 10 in order 1046 

to be applicable to the environment (Fang et al., 2011; Scheibe et al., 2009a). This ad hoc 1047 

adjustment likely reflects the high sensitivity of the modeling results to the kinetic parameters of 1048 

enzymes (Klier, 2012). As an alternative, the flux of nutrient uptake can be calculated according 1049 

to the Monod equation (Shapiro et al., 2018).  1050 

Stoichiometric metabolic modeling has also being applied to solve the stoichiometric 1051 

equations of metabolic reactions. Shapiro et al. (2018) updated the genome-scale metabolic 1052 

model of M. barkeri, performed FBA, and determined the stoichiometric equation for the 1053 

biomass synthesis of M. barkeri growing on acetate and ammonium:  1054 
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Here X represents the biomass with a chemical formula of C3.52H5.42O1.33NP0.08S0.03, and was 1056 

determined from the macromolecules composition of M. barkeri biomass. Compared to the 1057 

generic equation for biomass synthesis (eq 5), equation 58 improves the accuracy and expands 1058 

the capability of the kinetic model of M. barkeri. Specifically, equation 58 captures cysteine 1059 

(C3H7NO2S) as an essential nutrient and methanethiol (CH3SH) as an unconventional metabolic 1060 

product of M. barkeri metabolism. Also, this equation predicts that the biomass synthesis of M. 1061 

barkeri requires that acetate and ammonium are supplied a flux ratio of 1.8, smaller than the ratio 1062 

of 2.5 given by the generic equation of biomass synthesis. These results have been applied to 1063 

assess the extent of nitrogen limitation on the metabolisms of aquifer methanogens (Shapiro et 1064 

al., 2018). 1065 

The limitations of stoichiometric metabolic modeling have been discussed previously, 1066 

including the incomplete knowledge of genome sequences and the lack of a unified standard in 1067 

model construction (Bernstein et al., 2021; Ebrahim et al., 2015; Ravikrishnan and Raman, 2015). 1068 

In applying stoichiometric metabolic modeling to natural environments, we should also note that 1069 

most models are validated against laboratory observations, which bear limited relevance to 1070 

natural environments. In addition, while the objective of maximizing growth yield has worked 1071 

well in laboratory bioreactors, this objective may not reflect the strategies employed by microbes 1072 

in natural environments.   1073 

5.2.2. Pathway-specific kinetic model  1074 

Kinetic metabolic models are constructed by combining the principle of mass balance 1075 

with the rate equations of biochemical reactions. A kinetic metabolic model consists of (1) a 1076 

matrix equation that describes the mass balance of metabolites (eq 57), (2) a set of equations that 1077 

relate the rates of biochemical reactions to enzyme turnover, saturation, allosteric regulation, and 1078 

reaction thermodynamics,  1079 

 rj = f(CEj, CMi, kj, Kj, …), (59) 1080 

and (3) the initial state of the metabolic system (i.e., metabolite and enzyme concentrations at 1081 

time 0) (Saa and Nielsen, 2017). Here CEj, is the concentration of enzyme j expressed in terms of 1082 

cell volume, CMi is the cellular concentration of metabolite i, and kj and Kj represent the kinetic 1083 

and thermodynamic parameters of the biochemical reaction catalyzed by enzyme j, respectively. 1084 

Parameter kj and Kj can be sourced from online databases, borrowed from homologous enzymes 1085 
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from other organisms, estimated with optimization, or by fitting to metabolomics and fluxomic 1086 

datasets (Foster et al., 2021). Kinetic metabolic models are solved numerically from a given 1087 

initial state by integrating metabolic fluxes forward over time. Their results describe the temporal 1088 

variation in metabolite concentrations and reaction fluxes.  1089 

Constructing kinetic metabolic models requires kinetic parameters of biochemical 1090 

reactions and regulatory metabolic interactions, which are not available for most enzymes of 1091 

biomass synthesis. As a result, previous efforts have focused primarily on catabolic pathways, 1092 

including those of geochemical significance. Example models include the acetate consumption 1093 

model by Geobacter sulfurreducens (King et al., 2009), nitrate reduction model (Li et al., 2017), 1094 

dissimilatory sulfate reduction model (Wing and Halevy, 2014), and the models of 1095 

hydrogenotrophic, acetoclastic, and methylotrophic methanogenesis (Gropp et al., 2022; Jin et al., 1096 

2022; Peterson et al., 2014; Rhim and Ono, 2022). Some example model applications include:  1097 

• Metabolic kinetic models are applied as plug-in modules to compute microbial reaction rates 1098 

in biogeochemical reaction models and reactive transport models (King et al., 2009). 1099 

Metabolic kinetic models predict how metabolite concentrations and biochemical reaction 1100 

rates vary with time, which can be applied to compute the overall rates of metabolic reactions 1101 

and how the rates respond to changes in environmental conditions.  1102 

• Kinetic metabolic modeling is applied to estimate the rate constant, the half-saturation 1103 

constant, and other microbial parameters (Jin et al., 2022). Kinetic metabolic models predict 1104 

microbial reaction rates from enzyme kinetic and thermodynamic parameters, without the 1105 

need for trait parameters or the properties of overall metabolic reactions. These models can 1106 

be applied to estimate the kinetic parameters of microbial catabolism.  1107 

• Kinetic metabolic modeling is applied to understand the mechanistic underpinning of 1108 

microbial physiology (Jin et al., 2022). By tracking chemical fluxes through metabolic 1109 

reactions and their responses to environmental conditions, kinetic metabolic modeling 1110 

simulate physiological properties as emergent properties from underlying biochemical 1111 

reactions and their interactions.   1112 

• In addition, kinetic metabolic modeling is applied to decipher isotope fractionations 1113 

associated with microbial metabolisms and how the fractionations depend on environmental 1114 

and microbiological factors (Gropp et al., 2022; Wing and Halevy, 2014).  1115 
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These examples illustrate the potential of kinetic metabolic models in improving the modeling of 1116 

microorganisms by moving trait-based models beyond the coarse-grained level description of 1117 

metabolic reactions. 1118 

6. CHALLENGES AND LIMITATIONS 1119 

The application of trait-based microbial models to natural environments requires the 1120 

abstraction, simplification, and idealization of microbial communities and their metabolisms, 1121 

which inevitably introduces biases and limitations. Acknowledging these biases and limitations 1122 

is critical for a comprehensive understanding of the boundaries and uncertainties associated with 1123 

model outcomes. It enables us to make informed interpretations and decisions based on 1124 

simulation results. For example, these biases and limitations must be considered during model 1125 

construction and application, particularly when evaluating whether the trait-based modeling 1126 

framework addresses the questions and issues of interest and, if so, whether our current 1127 

knowledge and available data are adequate for building quality trait-based models. Also, in 1128 

interpreting and applying simulation results, the model biases and limitations provide a baseline 1129 

and help ensure that our efforts align with both model assumptions and underlying biological 1130 

principles.   1131 

6.1. Model Features and Limitations  1132 

Trait-based kinetic models adopt two simplifications to simulate the metabolisms of 1133 

microbial communities. One simplification is the treatment of microbial communities as 1134 

ensembles of microbial functional groups, and the separation of functional groups to actively 1135 

growing and dormant subgroups (figs 1 to 3). This simplification gives rise to two model features. 1136 

First, trait-based models are unstructured in that they do not account for the internal state of 1137 

microbial cells (i.e., cellular chemical composition and physical structure) or their variation with 1138 

the microbial life cycle (Esener et al., 1983; Şimşek and Kim, 2018). By assuming that the 1139 

internal state remains fixed, we also assume that microbial metabolism is at steady state, and 1140 

microbial growth is balanced – the growth of cellular components occurs at the same rate per 1141 

unit biomass. In addition, balanced growth implies that microbial growth is exponential (Koch, 1142 

1993; Painter and Marr, 1968); the steady state assumption dictates that the rates of biomass 1143 

production and cell number increase converge (Fishov et al., 1995). 1144 
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Second, trait-based models are unsegregated because we assume that individual cells 1145 

within a group (or subgroup) share the same functional traits (Campbell, 1957; Oldewurtel et al., 1146 

2021). Trait-based models do not consider morphological traits or cellular chemical composition. 1147 

In this way, trait-based models simulate the changes in population sizes of functional groups and 1148 

subgroups, not the development and reproduction of individual cells.  1149 

The other simplification is the description of microbial metabolism at the coarse-grained 1150 

level with three reactions – catabolic reaction, biomass synthesis, and maintenance (figs 1 and 2). 1151 

This simplification leads to an underappreciated feature of trait-based models – they are 1152 

mechanistic in nature, as they account for the fluxes of mass and energy through microbial 1153 

biomass (figs 2 and 3). First, the fluxes of a chemical compound is described by the ODEs for 1154 

concentration conservation, and by accounting for the rates of metabolic reactions. The 1155 

contributions of the metabolic reactions to the overall flux depend on the coupling between 1156 

catabolism and anabolism, or the efficiency of microbial metabolism. Second, the rates of the 1157 

metabolic reactions are constrained by the principle of energy balance (eqs 1, 41, and 42). This 1158 

principle ensures that the rates of these reactions are consistent with the overall energy 1159 

requirements and ATP production within the microbial system. 1160 

The two simplifications have important implications in model development and 1161 

application. First, a major criticism towards using functional groups (or subgroups) as a basic 1162 

unit of biology is the elusive relationship between functional groups in silico and microbes in 1163 

natural environments. Natural microbes have been analyzed with both culture-dependent and 1164 

independent approaches. Culture-dependent approaches, such as the most probable number 1165 

(MPN) method, select microbes on the basis of nutrient requirement, and therefore provide a 1166 

potential quantification of functional groups. However, the MPN method is strongly biased, and 1167 

tends to underestimate cell abundances by orders of magnitude (Vester and Ingvorsen, 1998; 1168 

Woomer, 1994). Culture-independent methods include the molecular biology tools based on 1169 

marker genes or functional genes. While marker genes, such as 16S rRNA for prokaryotes, are 1170 

highly conservative and thus provide a faithful description of microbial phylogeny, their link to 1171 

microbial functional traits is not necessarily unique or conclusive, due to the widespread 1172 

redundancy of metabolic functions in microbial communities (Louca et al., 2018b). On the other 1173 

hand, the functional gene-based tools directly target at the metabolic potentials of microbial 1174 
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communities, and therefore have been applied to probe the functional diversity of microbial 1175 

communities. However, the relationship between functional genes and microbial functional 1176 

groups may not be unique or unequivocal (see 5.1. Functional gene-based model), and the 1177 

quantitative relationship between cell counts and gene copy numbers (or the abundances of gene 1178 

products) remains unclear (Louca et al., 2018a; Morton et al., 2019). Because of the disconnect 1179 

between functional group and natural microbes, the biomass concentration of functional group 1180 

should be treated as a pseudo-variable. The disconnect also questions the application of the trait-1181 

based framework to the simulation of the sizes of microbial populations. Moreover, trait-based 1182 

models cannot be independently validated, and simulation results cannot be verified by 1183 

experimentally analyzing the abundances of natural microbes.  1184 

Second, the separation of microbial biomass into two types, actively growing and 1185 

dormant, is not sufficient to accurately reproduce the different phases of microbial growth (fig 3). 1186 

Trait-based models track the size of actively growing biomass from the rate difference between 1187 

biomass synthesis and decay. Depending on the relative rates of the two processes, growth is at 1188 

the exponential, stationary, or death phase. Missing from the model outcome is the lag phase, a 1189 

period before the onset of exponential growth where microbes adjust to new environmental 1190 

conditions (Bertrand and Margolin, 2019). To simulate the lag phase, rate expressions must be 1191 

amended. Nonetheless, due to their unstructured nature, trait-based models overlook the dramatic 1192 

physiological and metabolic differences among the various growth phases (Bergkessel et al., 1193 

2016; Jaishankar and Srivastava, 2017). This simplified perspective on growth phases limits the 1194 

applicability of trait-based models, especially in surface or near-surface natural systems, where 1195 

microbial growth frequently shifts between different growth phases in response to temporal 1196 

variations in nutrient supplies and other growth conditions.  1197 

Finally, model revisions are required to simulate co-metabolism, detoxification, and other 1198 

metabolic processes of biogeochemical significance. Co-metabolism transforms chemical 1199 

compounds without supporting microbial growth (Nzila, 2013). It takes place because many 1200 

enzymes and cofactors are promiscuous. For example, cytochromes found in sulfate-reducing 1201 

and iron-reducing microbes can reduce soluble hexavalent uranium U(VI) to insoluble 1202 

tetravalent uranium U(IV), such as uraninite (Majumder and Wall, 2017). Methane-mono-1203 

oxygenase (MMO) from methanotrophs oxidizes not only its natural substate – methane – but 1204 
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also >300 different organic compounds (Nzila, 2013). Detoxification refers to microbial 1205 

transformation of toxic chemicals to nontoxic or inert forms. Organic pollutants can be degraded 1206 

to CO2 and other harmless compounds. Metals and metalloids, such as mercury and arsenic, can 1207 

be detoxified via redox reactions and methylation (Maguffin et al., 2015; Yan et al., 2019). 1208 

Simulating these processes requires additional functions that relate process rates to the kinetics 1209 

of catabolism, biomass synthesis, or maintenance.  1210 

6.2. Limited Knowledge of Microbial Kinetics 1211 

Biogeochemical modelers face a significant and often overlooked dilemma in their 1212 

pursuit of accurately reproducing experimental observations or forecasting future 1213 

biogeochemical changes. This dilemma stems from the inherent inadequacy of microbial kinetic 1214 

theory in precisely describing microbial metabolic rates. Microbial rate laws, such as the Monod 1215 

equation, only provide approximations, not accurate descriptions, of the relationship between 1216 

microbial rates and their controlling factors. Microbial kinetics draws inspiration from chemical 1217 

kinetics and adopted its basic tools, including rate laws. While rate laws have proven effective in 1218 

describing abiotic chemical reactions and catalysts, their application to microbial metabolisms 1219 

falls short due to the gap between microbial rate laws and metabolic mechanisms. 1220 

Numerous studies have highlighted the discrepancy between the predictions of microbial 1221 

rate laws and the experimental observations of microbial kinetics (Panikov, 1995). These 1222 

observations are not surprising – microbial rate laws appear too simplistic to fully capture the 1223 

complexity inherent in microbial metabolism. Most microbial rate laws follow the same structure 1224 

as rate laws for abiotic chemical reactions, characterized by single-term analytical expressions 1225 

with a limited number of parameters. In comparison, microbes employ intricate networks 1226 

consisting of tens to hundreds of enzymes to drive catabolism and biomass synthesis, while also 1227 

regulating the expression and activities of these enzymes according to ambient environmental 1228 

conditions.  1229 

The dilemma of microbial kinetic modeling has been addressed through the use of kinetic 1230 

metabolic modeling. Jin et al. (2022) simulated the growth of Methanosarcina barkeri in 1231 

laboratory bioreactors, specifically focusing on the limitation imposed by methanol. They found 1232 

that the growth rate of M. barkeri is determined by two different enzymes at methanol 1233 

concentrations near 0 and >10 mM, respectively. At intermediate concentrations, all enzymes in 1234 
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the methanogenesis network contribute to controlling the growth rate, albeit to varying extents. 1235 

However, the Monod equation only incorporates two parameters, µmax and KM (or the ratio of 1236 

µmax to KM). These parameters account for the rate-determining enzymes at very high and very 1237 

low methanol concentrations. No additional parameter is available to account for the contribution 1238 

from the remaining enzymes in the methanogenesis network. In essence, microbial rate laws do 1239 

not sufficiently account for how microbial reaction rates are controlled by enzymes. For this 1240 

reason, classical rate laws fail in accurately reproducing the relationship between microbial rates 1241 

and various controlling factors. In the case of methanol methanogenesis, the application of the 1242 

Monod equation leads to a relative error of up to 42% in rate predictions.  1243 

The gap between rate law and metabolism is also supported by the debate about which 1244 

law, the multiplicative rate law or Liebig’s law of the minimum (i.e., eq 30 or 31, respectively), 1245 

provides a better description of microbial respiration. In practice, respiration rates have been 1246 

widely predicted with the dual-Monod equation (eq 30). However, the two rate laws might 1247 

reflect the different catalytic mechanisms of respiration reactions. Figure 13A shows a model of 1248 

a hypothetical respiration reaction: an electron donor and acceptor are taken up from the 1249 

environment into the cytoplasm, where the electron transfer between them is catalyzed by a 1250 

redox enzyme. If the electron-transfer step is the rate determining step, respiration rate depends 1251 

on the ambient concentrations of electron donors and acceptors at the same time. As a result, 1252 

respiration rate follows the dual-Monod equation (Jin and Bethke, 2002). On the other hand, if 1253 

the rate-determining step is the uptake of the electron donor or acceptor, respiration rate would 1254 

follow Liebig’s law of the minimum.  1255 

Likewise, we are still arguing about the applications of the multiplicative rate law and 1256 

Liebig’s law of the minimum to biomass synthesis (Bader, 1978; Droop, 1974; Egli, 2013; Zinn 1257 

et al., 2004). The two rate laws ultimately converge to the Monod equation (eq 14) where 1258 

microbial metabolism is limited by an energy source. Under this condition, biomass synthesis 1259 

rate increases linearly with catabolic rate (eq 16), the slope of the increase corresponds to the 1260 

maximum biomass yield per unit of energy substrate, and catabolism and biomass synthesis are 1261 

considered as being tightly coupled (Russell and Cook, 1995).   1262 

Where biomass synthesis is limited not only by energy sources, but also by one or more 1263 

element sources, the multiplicative rate law and Liebig’s law of the minimum make contrasting 1264 
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predictions. For example, where the limitation by nitrogen (or phosphorus) sources is more 1265 

pronounced than the limitation by energy substrates, Liebig’s law of the minimum predicts that 1266 

biomass synthesis rate is solely determined by the availability of nitrogen sources, and biomass 1267 

synthesis becomes decoupled from catabolism. This prediction is consistent with laboratory 1268 

observations that where ammonium or phosphate is limiting, the biomass synthesis by M. barkeri 1269 

is decoupled from methanogenesis (Archer, 1985; Kenealy et al., 1982). In comparison, the 1270 

multiplicative Monod equation predicts that biomass synthesis remains coupled to catabolism, 1271 

but at a decreased efficiency – the slope of the increase in growth rate with catabolic rate is the 1272 

product of the biomass yield per unit of energy substrate and the nutrient factor, i.e., YX/S⋅FN. 1273 

Similar to respiration, biomass synthesis may follow the multiplicative rate law, Liebig’s law of 1274 

the minimum, or other rate expressions, depending on the configuration of metabolic networks 1275 

and the position of rate-determining steps (fig 13B). 1276 

Perhaps, the worst case is the calculation of biomass maintenance rates. While biomass 1277 

maintenance has long been recognized as a critical factor for slow microbial growth (Pirt, 1965), 1278 

we are still arguing about the definition of maintenance metabolism and its physiological 1279 

contributors (Hoehler and Jørgensen, 2013; Kempes et al., 2017; Lahtvee et al., 2014; Wang and 1280 

Post, 2012). Furthermore, despite the mounting evidence on the variations of specific 1281 

maintenance rate kM with pH, temperature, growth rate, and other environmental and 1282 

physiological factors (Biselli et al., 2020; Price and Sowers, 2004; van Bodegom, 2007), most of 1283 

us continue to treat this parameter as a constant.  1284 

The incomplete understanding of microbial kinetics becomes more evident when 1285 

considering the demand for microbial parameters in constructing trait-based models compared to 1286 

their limited availability. Microbial kinetic parameters can be determined through laboratory 1287 

incubation experiments (Kovárová-Kovar and Egli, 1998). By incubating laboratory cultures of 1288 

known density, we can determine the maximum rate or uptake affinity from catabolic rates at 1289 

relatively large or low nutrient concentrations, respectively. Determining the half-saturation 1290 

constant may require incubations across a range of nutrient concentrations (Owens and Legan, 1291 

1987). Alternatively, multiple parameter values can also be obtained simultaneously by fitting 1292 

microbial activity measurements, such as the concentrations of nutrients, metabolites, biomarkers, 1293 

and biomass over time. This method is limited by parameter identifiability and uncertainty. In 1294 
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essence, only combinations of parameters, not individual parameters, can be uniquely estimated 1295 

(Holmberg, 1982; Petersen et al., 2003). Moreover, the monitoring of chemical and microbial 1296 

variables often occurs with different frequencies and levels of accuracy, further contributing to 1297 

parameter uncertainty.  1298 

As of today, experimental analyses of microbial kinetics have largely focused on 1299 

common laboratory cultures and the parameters related to their exponential growth, such as rate 1300 

constants, half-saturation constants, and biomass yields. This emphasis on laboratory cultures is 1301 

an inevitable outcome of the ‘great plate count anomaly’, which postulates that the number of 1302 

bacterial cells that can be cultivated under laboratory conditions represents <1% of the number of 1303 

bacterial cells in an environmental sample (Pande and Kost, 2017; Staley and Konopka, 1985). 1304 

The preference for studying exponential growth parameters is largely due to the inconvenience 1305 

associated with investigating slow or non-growing microbial populations. While parameters 1306 

related to exponential growth define the competitive fitness of microbes, the parameters of 1307 

biomass decay, such as those related to cell lysis and biomass maintenance, are essential in 1308 

forecasting the occurrence and fate of microbes in natural environments. In practice, the 1309 

assignment of microbial parameters with no or little experimental support is often done on an ad 1310 

hoc basis. Although this practice may align simulation results with experimental observations or 1311 

empirical expectations, it is analogous to driving a brand-new car with a leaking tire – reports 1312 

can be drafted, but confidence in reaching the intended goal may be jeopardized. The disparity 1313 

between rate laws and metabolism, coupled with the limited availability of microbial parameters, 1314 

poses significant challenges in trait-based microbial modeling, from model construction and 1315 

sensitivity analysis to deployment, result interpretation, and application. Advancements in 1316 

experimental approaches and a more comprehensive understanding of microbial kinetics are 1317 

crucial for overcoming these limitations and improving the applicability of trait-based microbial 1318 

models. 1319 

6.3. Internal Consistency of Microbial Parameters  1320 

Modeling microbial metabolisms in natural environments requires a set of internally 1321 

consistent values of trait parameters. Internal consistency means that all the parameter values of 1322 

functional groups agree with each other according to the same set of physical, chemical, and 1323 

biological principles. The requirement of internal consistency has been widely appreciated in 1324 



48 
 

building thermodynamic databases and geochemical modeling (Helgeson, 1978; Nordstrom et al., 1325 

2014). Applying inconsistent parameter datasets is akin to building a house on sand. Without 1326 

internal consistency, microbial parameter datasets overlook the potential relationships between 1327 

microbial parameters and the assumptions imbedded in microbial kinetic models, introduce 1328 

errors in simulation results, and limit our confidence in model applications. 1329 

Microbial parameters measure the kinetic and stoichiometric traits of a functional group 1330 

and reflect how microbes adapt and acclimate to the ambient environment under the constraints 1331 

of physical, chemical, and biological principles. To align with the underlying mechanisms of 1332 

microbial metabolisms, the values of these parameters should be obtained from microorganisms 1333 

of same metabolic and regulatory pathways, similar culturing history, and with experiments 1334 

under the same set of physiochemical conditions. However, rarely did a single experimental 1335 

study determine a complete set of microbial parameters at the growth conditions of interest. 1336 

Instead, trait parameters have been determined with different experimental setups (e.g., batch, 1337 

fed-batch, and chemostat reactors), different growth media (e.g., chemically defined media made 1338 

from chemical compounds of know composition and complex media prepared with organic 1339 

compounds of unknown composition), and with microbes at different physiological states (i.e., 1340 

resting vs growing) at different pH, temperature, and other physicochemical conditions. In 1341 

addition, parameter values have also been obtained by fitting simulation results to experimental 1342 

observations, and by applying ad hoc assumptions and estimating theoretically. By pooling 1343 

parameter values from heterogenous sources, we introduce inconsistency into microbial 1344 

parameter datasets. 1345 

Previous experimental studies have uncovered a series of relationships between microbial 1346 

parameters, which provide a strong support for the requirement of internal consistency in 1347 

microbial parameter sets. Some example relationships include: 1348 

• Rate constants correlate positively with half-saturation constants (Litchman et al., 2015). 1349 

Alternatively, rate constants correlate negatively with substrate affinities, the ratios of rate 1350 

constants to the half-saturation constants. These relationships have been accounted for by 1351 

physiological acclimation to different nutrient concentrations. 1352 

• Where more energy is available in the environment, more energy is conserved as ATP, and 1353 

more biomass is synthesized (Jin, 2012). The increase in ATP yield with increasing available 1354 
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energy is supported by the ATP yields of aerobic respiration, microbial ferric mineral 1355 

reduction, sulfate reduction, and methanogenesis. In addition, the pathways of biomass 1356 

synthesis in different microbes shares similar efficiency, i.e., similar biomass yields per ATP 1357 

(Stouthamer and Van Verseveld, 1985). Therefore, where more ATPs are synthesized, more 1358 

biomass is produced.  1359 

• Specific maintenance rate kM increases with increasing specific growth rate µ. Experimental 1360 

observations support that specific maintenance rate is not a constant, but varies with specific 1361 

rate of biomass synthesis (Neijssel and Tempest, 1976). These observations are further 1362 

supported by the positive correlations between specific maintenance rate and maximum 1363 

specific growth rate µmax (van Bodegom, 2007).  1364 

On the basis of the common practice in geochemical modeling, a quality microbial 1365 

parameter set should reflect the current state of knowledge, and account for all available 1366 

information about the metabolism of interest. Parameter values in such a dataset should be 1367 

internally consistent, and accurate over relevant physiochemical conditions. To meet these 1368 

requirements, the following quality criteria should be considered in building microbial parameter 1369 

sets: 1370 

• All the data of a functional group is derived from clearly defined reference conditions, 1371 

including pH, temperature, pressure, ionic strength, nutrient concentrations, and with a single 1372 

group of physiological constants. These physiological constants include cell size and shape, 1373 

biomass chemical formula and molecular weight, the phosphorylation potential, the weight 1374 

percentage of protein in cell dry weight, and cell dry weight per wet weight.  1375 

• To determine the value of a parameter, all relevant original experimental results and 1376 

knowledge-based information are compiled and considered simultaneously. Conflicts and 1377 

inconsistencies are documented and resolved. 1378 

• Appropriate mathematical functions (e.g., section 4.2) are applied to reflect microbial 1379 

acclimation to ambient environment and to relate the data at the reference state to the state of 1380 

different physicochemical conditions.  1381 

• All the data is compatible with basic principles of metabolism and physiology.  1382 

• Any inconsistency should be documented and minimized to the extent possible. 1383 
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These criteria help ensure the reliability and accuracy of parameter values and represent a first 1384 

step towards building internally-consistent dataset of microbial kinetics. They should be adopted 1385 

in constructing microbial kinetic models, a critical step towards improving the environmental 1386 

applications of microbial kinetic modeling.   1387 

7. CONCLUDING COMMENTS 1388 

Trait-based microbial reaction modeling simulates the kinetics of chemical reactions 1389 

catalyzed by microbial metabolisms by treating microbes as autocatalysts. It builds on the 1390 

modeling framework for abiotic reacting mixtures (Bebernes and Eberly, 2013; Bethke, 2022; 1391 

Higham, 2008), and adopts two assumptions on microbial communities and metabolisms, 1392 

including simplifying microbial communities as ensembles of functional groups (or subgroups) 1393 

and describing metabolisms at the coarse-grained level with three metabolic reactions – catabolic 1394 

reaction, biomass synthesis, and maintenance. Trait-based kinetic models are mechanistic in that 1395 

they implicitly link the three metabolic reactions via ATP production and consumption (eqs 1, 41, 1396 

and 42), and explicitly account for chemical fluxes driven by both catabolism and biomass 1397 

synthesis. Trait-based models use microbial functional groups as the basic units of 1398 

microorganisms, and hence are unstructured and unsegregated – they neglect the internal state of 1399 

microbial cells and assume that cells within a functional group are the same in terms of their 1400 

metabolism and functional traits. The focus on the three metabolic reactions balances the 1401 

complexity inherent to microbial metabolism and the efficacy in capturing essential metabolic 1402 

features. The application of functional groups is supported by the consensus that functional 1403 

diversity, not phylogenetic or taxonomic diversity, serves as a mechanistic link between 1404 

microbes and biogeochemical processes (Crowther et al., 2019; McGill et al., 2006). However, 1405 

biomass concentrations of functional groups should be treated as pseudo-variables because of the 1406 

gap between functional groups in trait-based models and microbial communities in the 1407 

environment. Due to metabolic diversity of individual microbes and metabolic redundancy in 1408 

most microbial communities, microbial groups defined solely with metabolic reactions may not 1409 

be directly linked to microbial cells in natural environments. This gap has significantly hindered 1410 

the validation and application of microbial kinetic models. Potential improvements, such as 1411 

replacing functional groups with functional genes or gene products, have appeared from the 1412 

recent application of molecular biology tools (Louca et al., 2016; Reed et al., 2014).  1413 
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Building trait-based models requires stoichiometric equations of metabolic reactions. 1414 

These equations are relatively straightforward to construct for catabolic reactions, provided that 1415 

energy sources and reaction products have been determined. Writing the equations for biomass 1416 

synthesis can be challenging, especially where neither nutrient nor the elemental composition of 1417 

biomass has been analyzed. In these situations, current solutions include the application of 1418 

generical chemical formulars for biomass and the assumption that microbes use common carbon 1419 

and nitrogen sources in the environment of interest. Recently, the stoichiometric equation of 1420 

biomass synthesis has also been solved with genome-scale metabolic models. Example 1421 

applications show that in addition to improve the accuracy of reaction stoichiometry, genome-1422 

scale metabolic modeling also expands the capabilities of trait-based models by uncovering 1423 

essential nutrients and unconventional metabolic products (Wu et al., 2022).  1424 

Building trait-based models for environmental applications requires the account of 1425 

environmental conditions in microbial rate laws. Most microbial rate laws were originally 1426 

developed for laboratory applications and fall into three types, depending on metabolic 1427 

mechanisms. The first type is the rate laws for cell-controlled metabolic reactions that directly 1428 

consume nutrients dissolved in solution, and the most popular example is the Monod equation 1429 

(Monod, 1942, 1949). The second type are the rate laws, such as the Contois equation 1430 

(Bhattacharya and Khai, 1987), for surface-controlled metabolic reactions, including microbial 1431 

oxidation of particulate organic matter and reduction of ferric minerals. The Best equation 1432 

represents the third type that applies to mass transfer-controlled metabolic reactions, where 1433 

metabolic reactions require the dissolution of solids or NAPLs (Bosma et al., 1997). While the 1434 

Monod equation treats nutrient concentrations as the sole determinant of specific growth rates, 1435 

the Contois equation and the Best equation relate specific growth rates to the concentration ratios 1436 

of nutrient to biomass. Despite the many rate laws currently available for laboratory cultures, our 1437 

knowledge of microbial kinetics still remains far from complete – these rate laws only provide 1438 

approximations, not accurate descriptions of microbial reaction rates (Jin et al., 2022). In 1439 

addition, where more than one nutrient limits microbial metabolism, which rate law, the 1440 

multiplicate law, Liebig’s law of the minimum, or some other expressions, should we apply still 1441 

remains an open question. 1442 
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Applying trait-based modeling frameworks developed for laboratory cultures to natural 1443 

environments requires modifications that consider both microbial physiology and growth 1444 

conditions in the environment. Growth conditions, such as temperature, pH, and water activity, 1445 

are accommodated by amending microbial rate laws with dimensionless factors. Modifications 1446 

related to microbial physiology involves subdividing functional groups into subgroups to 1447 

encompass actively growing and dormant cells, and explicitly considering biomass maintenance, 1448 

cell death and lysis, and predation to simulate the chemical fluxes of biomass decay. 1449 

Additionally, optimization-based models of physiological acclimation have been built to 1450 

extrapolate microbial parameters determined in the lab to natural systems. Acclimation models 1451 

directly address the challenges that the trait parameters of laboratory cultures are not directly 1452 

applicable to natural environments, and have been developed for nutrient uptake, catabolism, and 1453 

thermodynamic efficiency of microbial metabolism (Smith et al., 2011; Wu et al., 2022). While 1454 

the significance of growth conditions has gained widespread recognition, the potential of 1455 

accounting for microbial physiology is yet to be fully appreciated by the modeling community.  1456 

Building quality trait-based models also demands internal consistency in microbial 1457 

parameter sets. The requirement of internal consistency stems from the plasticity and 1458 

interdependence of microbial parameters: most microbial parameters do not have fixed values, 1459 

but co-vary with environmental conditions (Ferenci, 1999; Grady et al., 1996; Kovárová-Kovar 1460 

and Egli, 1998). As a first step towards building parameter dataset of internal consistency, we put 1461 

forward a series of guidelines, including the rigorous standards for deriving microbial parameters 1462 

from laboratory observations and the parameter accuracy across the environmental conditions of 1463 

interest. By focusing on the modeling frameworks and model assumptions, the limitations of 1464 

microbial rate laws, and the necessity of internal consistency in microbial parameter sets, we 1465 

hope to make clear the capabilities and limitations of trait-based microbial kinetic modeling 1466 

frameworks, and to build and apply trait-based microbial reaction models in a transparent, 1467 

objective, and reproducible manner. 1468 
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Table 1. Example models of microbial kinetics and their assumptions.  

Model Equation Assumption Reference 

Microbial metabolism    

Monod equation 14, 15, 17 Microbial rate varies hyperbolically with the 
concentration of a limiting nutrient. 

Monod (1942, 1949) 

Contois equation 14, 20, 21 Microbial rate varies hyperbolically with the 
concentration ratio of nutrient to biomass. 

Contois (1959) 

Best equation 14, 24 Microbial consumption of a solid nutrient requires an 
initial step of nutrient dissolution.   

Best (1955) 

Multiplicative rate law 30, 32  Microbial rate is controlled by multiple nutrients. Humphrey (1974); MeGee 
et al. (1972) 

Liebig’s law of the 
minimum 

31, 33 Microbial rate is determined by the most limiting nutrient. Ryder and Sinclair (1972); 
Williamson and McCarty 
(1976) 

Non-competitive 
inhibition model (a) 

34 Chemical inhibition is analogous to non-competitive 
enzyme inhibition.  

Boon and Laudelout 
(1962) 

Thermodynamic factor 35, 36 Microbial reactions honor the consistency between 
thermodynamics and kinetics.  

Jin and Bethke (2003); 
(2005) 

Biomass capacity factor 47 Growth rate per capita decreases as biomass approaches a 
maximum imposed by limited resources in the 
environment. 

Wu et al. (2022) 

Cardinal response model 43, 44 Microbial rates respond to the changes in temperature, 
pH, and water activity by following bell-shaped curves.  

Rosso et al. (1995); Rosso 
et al. (1993) 
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Biomass decay model 45 Biomass decay rate increases linearly with biomass 
concentration and the slope of the increase varies with 
temperature according to the Arrhenius equation.  

Herbert (1958); Pirt 
(1965); Tijhuis et al. 
(1993) 

Physiological acclimation 

Optimal nutrient uptake 
model  

48 to 50 Microbes trade-off nutrient affinity against maximum 
uptake flux to maximize the flux of nutrient uptake.  

Smith et al. (2015) 

Optimal catabolic rate 
model 

51 to 53 Microbes trade-off nutrient affinity against maximum 
catabolic rate to maximize the rate of catabolic reaction.  

Wu et al. (2022) 

Optimal metabolic 
efficiency model 

54, 55 Microbes trade-off the rate and ATP yield of catabolic 
reaction to maximize the rate of ATP production.  

Wu et al. (2022) 

Molecular biology-enabled improvement 

Functional gene-based 
model 

56 Microbial reaction rates are proportional to the 
abundances of related functional genes. 

Louca et al. (2016); Reed 
et al. (2014) 

Genome-scale 
stoichiometric metabolic 
model 

57 The fluxes through a metabolic network are determined 
by the principle of mass balance.   

Orth et al. (2010) 

Pathway-specific kinetic 
metabolic model 

57, 59 The fluxes through a metabolic network are determined 
by the principle of mass balance and the rate laws of 
biochemical reactions.  

Jin et al. (2022); King et 
al. (2009) 

  

Note: (a) For other inhibition models, see Mulchandani and Luong (1989).  
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Table 2. Metabolic reactions of different mechanisms require different rate laws. 

 

Reaction type Example Rate law Reference 

Cell-controlled Oxidation of acetate and H2; 
reduction of O2, nitrate, and sulfate.  

Monod equation (eqs 14 and 15) Monod (1942, 1949) 

Surface-controlled Organic matter fermentation; ferric 
mineral reduction 

Contois equation (eqs 14, 20, 
and 21) 

Chen and Hashimoto 
(1980); Hacherl et al. 
(2003); Roden (2006) 

Mass transfer-controlled Degradation of polycyclic aromatic 
hydrocarbons 

Best equation (eqs 14  and 24) Volkering et al. (1992); 
Wick et al. (2001) 
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Figure 1. Microbial kinetic models describe the metabolisms of a microbial community with two 
assumptions. One assumption treats the community as an ensemble of different microbial groups 
whose functional traits have different values; the other treats the metabolism of a functional 
group at a coarse-grained level with three metabolic reactions, catabolic reaction, biomass 
synthesis, and maintenance. Each functional group is defined with a set of kinetic and 
stoichiometric parameters, including the rate constant (k), the half-saturation constants for 
electron donors (KD), acceptors (KA), and nutrients (KN), the biomass yield (YX/S), and the 
specific decay constant (kD), and measured with biomass concentration (CX). Catabolic reaction 
makes ATP by catalyzing the redox reaction between electron donor D and acceptor A, and by 
producing oxidized electron donor D+ and reduced electron acceptor A−. Biomass synthesis 
reaction consumes ATPs to produce new biomass and metabolic products (P1, P2, …) from 
nutrients (N1, N2, …) in the environment.  
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Figure 2. Microbial kinetic models describe metabolism with three metabolic reactions, 
catabolic reaction, biomass synthesis, and maintenance. Models for laboratory applications focus 
on the catabolic reaction that uses exogenous energy substrates, and the ATP fluxes driven by the 
three reactions are balanced (eq 1, A). Models for environmental applications consider two 
distinct energy sources – exogenous and endogenous, and two types of microbial cells – active 
growing (B) and dormant (C); the ATP fluxes for actively growing (B) and dormant microbes (C) 
are governed by equation 41 and 42, respectively.  
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Figure 3. Microbial kinetic models use biomass concentration as a state variable to track the 
sizes of microbial functional groups. Laboratory-focused models consider the balance between 
biomass synthesis from essential nutrients (or element sources) in the environment and biomass 
decay (A), while models for environmental application differentiate actively-growing biomass 
from dormant biomass (B). The two types of biomass transit between each other via activation 
and deactivation, and both types undergo lysis to form necromass. Necromass, a component of 
natural organic matter, serves as a nutrients source, contributing to cryptic growth.  
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Figure 4. Concentration factors FC in the Monod equation (A), the Contois equation (B and C) 
and the Best equation (D) quantify the effect of limiting nutrients on cell-, surface-, and mass 
transfer-controlled metabolic reactions, respectively. The concentration factor of cell-controlled 
reaction (A) is calculated at different nutrient concentrations CN according to equation 15 for the 
growth of Escherichia coli on glucose, by taking the half-saturation constant KM of glucose at 22 
µM (Monod, 1949). The concentration factor for surface-controlled metabolic reaction is 
calculated according to equation 21 by taking the biomass-specific half-saturation constant of 
organic matter at 7.5 g⋅g−1 (B) (Hemsi et al., 2010) and the biomass-specific half-saturation 
constant of bioavailable surface sites at 0.14 mol⋅g−1 (C) for microbial reduction of nano-
crystalline goethite (Jin and Roden, 2011); QN/X is the concentration ratio of organic matter to 
biomass; QSS/X is the concentration ratio of bioavailable surface site to biomass; to calculate the 
abundance of surface sites from goethite concentrations, one mole nano-crystalline goethite is 
assumed to have 5.3×10−3 mol surface site. The concentration factor for mass transfer-controlled 
metabolic reaction (D) is calculated at different parameter β-weighted concentration ratios for 
microbial degradation of α-hexachlorocyclohexane (α-HCH, dark line with parameter α of 0.86) 
according to equation 24; grey lines are the concentration factors for α values of 0.1, 1, and 10. 
Dashed lines in panel A to D represent the maximum values of the concentration factors (FC,max) 
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Figure 5. Metabolic reactions separate into three types, cell-, surface-, and mass transfer-
controlled reactions. (A) Cell-controlled metabolic reactions consume nutrients dissolved in 
solution, and include nutrient diffusion from the bulk solution to the cell surface and the uptake 
and consumption of dissolved nutrients by microbial cells. (B) Surface-controlled reactions, such 
as microbial reduction of ferric iron minerals, are metabolic reactions that interact with the 
surface of solids via direct contact, ligands (L), and electron carriers (Shi et al., 2016; Weber et 
al., 2006); rectangles labelled with Fe(III) represent the bioavailable reactive sites on the surface 
of minerals, Fe(III)-L is an aqueous ferric iron and ligand complex species, and C and C− are the 
oxidized and reduced forms of electron carriers, respectively. (C) Mass transfer-controlled 
reactions are metabolic reactions that include the dissolution of solids or nonaqueous phase 
liquids (NAPLs), nutrient diffusion from the bulk solution to the cell surface, and the uptake and 
consumption of dissolved nutrients by microbial cells.     
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Figure 6. Inhibition factor FI (A) and thermodynamic potential factor FT (B) quantify the rate 
limitation by inhibiting compound and thermodynamic drive f, respectively. Inhibition factor (eq 
34) is calculated for the inhibition of nitrite on aerobic nitrite oxidation by Nitrobacter 
winogradskyi with an inhibition constant of 130 mM (Boon and Laudelout, 1962). The 
thermodynamic potential factor is calculated according to equation 35 with the average 
stoichiometric number χ of 1, 2, 4, and 8.  
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Figure 7. Dimensionless factors account for the kinetic effects of temperature T (FTMP, A), pH 
(FpH, B), water activity aW (FW, C), and biomass concentration CX (FX, D). Temperature factor 
FTMP is calculated according to equation 43 and by taking mesophilic microbes as an example 
with their minimum, optimal, and maximum temperature at 0, 37 and 50 oC, respectively. pH 
factor FpH is calculated according to equation 44 and by taking neutrophilic microbes as an 
example with their minimum, optimal, and maximum pH at 5, 7.5, and 9, respectively (Jin and 
Kirk, 2018). Water activity factor FW is calculated according to equation 46 and by taking the 
minimum water activity at 0.84 for Staphylococcus xylosus (McMeekin et al., 1987). Biomass 
factor FX is calculated according to equation 47 with different maximum biomass concentrations 
CX,max. 

  

0.8 0.9 1
a

W

0

1

FW

C

0 10 20 30 40 50
T (Co)

0

1

FTMP

4 5 6 7 8 9 10
pH

0

1

F
pH

A B

0 1
CX

 (×10−
3
 g⋅kg−

1)

0

1

FX

D

C
X,max

 = 10−3
 g⋅kg−

1

5×10−
4
 g⋅kg−

1

10−4
 g⋅kg−

1



77 
 

 

 

Figure 8. Variations with temperature T in specific maintenance rate. Line is calculated 
according to equation 45 by taking AM at 2.5×1010 s−1 and Ea,M at 1.02×105 J·mol−1 (Wu et al., 
2021). 
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Figure 9. Optimization-based models of physiological acclimation relate microbial parameters to 
environmental conditions via cellular resource allocation (Wu et al., 2022). These models 
assume that growth rates are determined by two functional traits (trait 1 and 2) and trait values 
depend linearly on the cellular resources allocated to them (R1 and R2, respectively). Microbes 
maximize their growth rate by adjusting the partition of the limited resources between the two 
traits in accordance with environmental conditions, such as nutrient concentration or available 
energy, leading to the trait-off between the two traits.  
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Figure 10. The model of optimal nutrient uptake accounts for the acclimation of phytoplankton 
to ambient nitrate concentrations by relating the Michaelis constant of nitrate uptake to nitrate 
concentrations in the environment. (A) The Michaelis constant is calculated according to 
equation 48. (B) Nitrate uptake flux is calculated according to equation 49. (C) Specific growth 
rate is calculated according to equation 50. In the calculations, the potential maximum nitrate 
uptake flux is set at 5.0 mol⋅(mol C)−1⋅d−1, the potential maximum nitrate affinity at 0.15 
m3⋅(mmol C)−1⋅d−1, the biomass yield YX/N at 0.6 mol C⋅(mol N)−1, and the specific decay 
constant at 0 (Smith et al., 2015). Dotted lines are calculated with the half-saturation constant at 
10 mM, without accounting for acclimation.  
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Figure 11. The model of maximum catabolic flux accounts for the acclimation of acetoclastic 
methanogens, Methanosarcina and Methanosaeta, by relating their rate constant and half-
saturation constant to ambient acetate concentrations (Wu et al., 2022). The rate constant (A) and 
the half-saturation constant (B) are calculated according to equation 53 and 51, respectively; the 
specific rate of methanogenesis (C) is calculated according to equation 17. In these calculations, 
the acetate concentration used for routine laboratory culturing is 50 mM, the rate constants of 
laboratory Methanosarcina and Methanosaeta are at 2.3×10−6 and 6.4×10−7 mol·g−1·s−1, 
respectively; the half-saturation constants of the two methanogens are at 4.44 and 0.81 mM, 
respectively (Wu et al., 2022, their supplementary table 1). Dotted lines in panel C are calculated 
according to equation 17, without accounting for acclimation.   
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Figure 12. The model of maximum ATP flux accounts for microbial acclimation to 
thermodynamic conditions of the environment by relating ATP yield (A), and therefore biomass 
yield (B) and thermodynamic efficiency (C), to the energy available in the environment (Wu et 
al., 2022). The ATP yield and biomass yield are calculated according to equation 54 and 55, 
respectively. The thermodynamic efficiency is calculated as the ratio of the energy saved as ATP 
to the energy available in the environment; the saved energy is the product of the ATP yield and 
the phosphorylation energy – the energy consumed by ATP synthesis from ADP and phosphate 
in the cytoplasm and its value is about 45 kJ⋅(mol ATP)−1 (Jin, 2012).  
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Figure 13. The dual-Monod equation and Liebig’s law of the minimum reflect the different rate-
determining steps of microbial respiration (A) and biomass synthesis (B). In a hypothetical case 
of respiration, electron donors (D) and acceptors (A) are first transported from the environment 
to the cytoplasm, where they combine with enzymes to form enzyme-substrate complexes 
(E⋅D⋅A) and react to oxidized electron donors (D+) and reduced electron acceptors (A−). If the 
uptake of electron donors or acceptors is the rate-determining step, respiration rates follow 
Liebig’s law of the minimum; if the rate-determining step is the formation of enzyme-substrate 
complexes or the electron transfer between electron donors and acceptors, respiration rates 
follow the dual-Monod equation. In a hypothetical case of biomass synthesis, nutrients (N1, 
N2, …, Nn) are first transported from the environment to the cytoplasm, where they are converted 
by enzymes (E1, E2, …, En) to metabolites (M1, M2, …, Mn). The metabolites then combine with 
another enzyme (EX) to form biomass. If nutrient uptake or metabolite formation is the rate-
determining step, biomass synthesis rates follow Liebig’s law of the minimum; if the rate-
determining step is the assemblage of metabolites to biomass, biomass synthesis rates follow the 
multiplicative rate law. 
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