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Building microbial kinetic models for environmental application: a theoretical perspective
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ABSTRACT

Kinetic modeling of microbial reactions is a common tool for addressing the central
environmental questions of our time, from contaminant remediation to the global carbon cycle.
This review presents an overview of trait-based frameworks for modeling the kinetics of
microbial reactions, with an emphasis on environmental application. I first highlight two key
model assumptions: the simplification of microbial communities as ensembles of microbial
functional groups and the description of microbial metabolism at a coarse-grained level with
three metabolic reactions — catabolic reaction, biomass synthesis, and maintenance. Next, [ aim
to establish a connection between microbial rate laws and the mechanisms of metabolic reactions.
For metabolic reactions limited by single substrates, the widely used rate law is the Monod
equation. However, in cases where substrates are solids or nonaqueous phase liquids (NAPLs),
the Contois equation and the Best equation may offer better alternatives. In microbial
metabolisms limited by multiple nutrients simultaneously, two competing rate laws exist: the
multiplicative rate law and Liebig’s law of the minimum. Then I present two strategies for
extending the modeling framework developed for laboratory cultures to natural environments.
One strategy follows the multiplicative rate law and incorporates dimensionless functions to
account for pH, temperature, salinity, cell density, and other environmental conditions. The other
strategy focuses on the physiology of natural microbes, explicitly considering dormancy,
biomass decay, and physiological acclimation. After that, I highlight recent improvements
enabled by the application of molecular biology tools, ranging from functional gene-based
models to metabolic models. Finally, I discuss the inherent limitations of trait-based modeling
frameworks and their implications for model development and evaluation, including the gap
between functional groups represented in silico and microbial communities found in natural

environments, as well as the requirement of internal consistency in microbial parameter sets.
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1. INTRODUCTION

Microbial kinetics is a subfield of microbiology that studies the rates of microbial
metabolisms — including the rates of chemical reactions catalyzed by microbes and microbial
growth (Jannasch and Egli, 1993; Jin et al., 2013; Kovarova-Kovar and Egli, 1998; Panikov,
1995). It has become a backbone of conceptual and modeling frameworks across disciplines,
from food and nutrition science (Whiting, 1995), to water quality (Reichert et al., 2001),
wastewater treatment (Wanner, 2021), and to contaminant remediation and biogeochemical
element cycling (Fennel et al., 2022; Li, 2019; Seigneur et al., 2019). As a research topic of
microbiology, microbial kinetics had a humble beginning, developed by a handful of scientists
fascinated with patterns of microbial growth. Among the pioneers, the most influential is Jacques
Monod, a French biochemist who discovered that microbial growth rates vary hyperbolically
with the concentrations of limiting nutrients (Monod, 1942, 1949). He captured the hyperbolic
relationship with a rate law akin to the adsorption isotherm equation or the Michaelis-Menten
equation. This rate law, named after him, made possible for the first time the prediction of
microbial population dynamics without prior knowledge of population sizes (Panikov, 1995).
Monod also left behind an often-cited but now obsolete statement that “the study of the growth of
bacterial cultures does not constitute a specialized subject or branch of research: it is the basic

method of Microbiology” (Monod, 1949).

Accompanying the great expansion of microbial kinetics is a paradigm shift in our view
of microbes and the technological revolution in microbiological research. Before World War 11,
most microbiologists were preoccupied with obtaining pure cultures and solving problems
related to human life — curing for human diseases and improving food production and processing
(Bonnet et al., 2020). At their dispense included optical microscopes and classical culture-
dependent tools, such as liquid culturing media and agar plates (Vitorino and Bessa, 2017). After
World War II, microbiological tools have gone through a series of innovations and upgrades,
including the invention of polymerase-chain reaction (PCR) and16S rDNA clone library
construction in the 1970s and, more recently, high-throughput next generation sequencing
methods (Garner et al., 2021; Vitorino and Bessa, 2017). These culture-independent tools opened
the opportunity of directly interrogating microorganisms in situ, including their genes and

expressions, and metabolic activities and ecological functions. Without the need for pure culture,
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they avoided the bias of culture-dependent methods, and revolutionized and broadened the scope
of both pure and applied microbiology, including environmental microbiology and
geomicrobiology that study microbes and their activities in natural environments. Today, we
accept that microbes are the Earth’s hardest-working chemical engineers and a key driver of
global element cycling (Falkowski et al., 2008; Finlay et al., 2020). They are widespread in the
environment, from the atmosphere to deep crust, and their biomass constitutes approximately one
fifth of the total biomass (Bar-On et al., 2018; Flemming and Wuertz, 2019). They display vast
genomic and trophic diversities, and their metabolisms shape the chemistry of the environment
by catalyzing redox reactions, mineral precipitation and dissolution, and other chemical reactions

(Soong et al., 2020; Zinger et al., 2012).

Understanding and forecasting the geochemical and environmental significance of
microorganisms require quantitative tools, such as kinetic models of microbial reactions. These
models simulate not only the chemical fluxes driven by microbial metabolisms but also the sizes
of microbial populations. They lay their foundation on the kinetic modeling framework of
chemical reactions, which itself builds on the fundamental principles of mass conservation,
thermodynamics, and chemical kinetics (Bebernes and Eberly, 2013; Bethke, 2022; Higham,
2008). For a reacting mixture of chemical compounds, its kinetic model is formulated as a
mathematical problem of a group of ordinary differential equations (ODEs), constrained by the
equation of state and other thermodynamic relationships. Each ODE uses time as the independent
variable to describe the concentration balance of a chemical compound, and is constructed on the
basis of the stoichiometric equations and the rate laws of chemical reactions. Stoichiometric
equations express reaction products as the proportional combinations of reactants, while rate
laws are analytic expressions that relate reaction rates to temperature, chemical concentrations,

and other macroscopic parameters.

Modeling microbial reactions in natural environments has been the subject of significant
interest among geochemists, biologists, and environmental engineers, and a number of review
articles, book chapters, and special issues of journals have appeared over the last decade or so
(Arndt et al., 2013; Bethke, 2022; Calderer et al., 2010; Chambon et al., 2013; Fennel et al., 2022;
Geng et al., 2022; Jeong et al., 2019; Meile and Scheibe, 2019; Paraska et al., 2014; Perez-Garcia
et al., 2016; Song et al., 2014; Sookhak et al., 2019; Tan et al., 2021; Thullner and Regnier,
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2019). Here our intention is to present the theory of microbial reaction modeling in a systematic
and coherent way. We first start with the concept of microbial functional groups and the
framework of microbial reaction modeling, clarifying the necessary assumptions and
simplifications of microbial communities and metabolisms in natural environments. Next, we
focus on microbial rate laws and demonstrate the mechanistic link between microbial rate laws
and metabolic reactions. Then we discuss the strategies that work to extend the modeling
framework for laboratory cultures to natural environments. Afterwards, we highlight recent
model improvements enabled by molecular biology tools. Finally, we emphasize the biases of
microbial kinetic modeling and the challenges and limitations associated with its application to

natural environments.

While the framework for modeling microbial kinetics is general, we illustrate the
framework by focusing on chemotrophs — microbes that utilize chemical compounds as their
energy sources. Also, given the large number of microbial rate laws, we limit the rate laws and
modifications to those that capture microbial physiology and the growth conditions of the
environment (see table 1), rather than providing an exhaustive historical chronology. By taking
this approach, we acknowledge that certain important models and applications might be
overlooked. Nonetheless, our aim is to underscore the key assumptions and limitations of
microbial kinetic models, as well as showcase modeling strategies that have proved effective in
natural systems. These topics and discussions hold relevance to today’s endeavors that seek to
improve microbial reaction modeling by incorporating insights from cutting-edge tools of

chemical analysis and molecular biology.
2. MODELING FRAMEWORK

Microbial kinetic models are a special type of chemical reaction models that treat
microorganisms as autocatalysts — catalysts that reproduce themselves by catalyzing chemical
reactions. They are constructed on the basis of the kinetic modeling framework for abiotic
multicomponent reacting mixtures (Bebernes and Eberly, 2013; Bethke, 2022; Higham, 2008),
and by applying simplifications and assumptions related to microbial communities and their

metabolisms.
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2.1. Microbial Functional Group

Models are simplifications of reality. Compared to other microbiological models, such as
stoichiometric and kinetic metabolic models that focus on enzymes and agent-based models that
focus on individual cells (Foster et al., 2021; Nagarajan et al., 2022; Orth et al., 2010), microbial
kinetic models for environmental applications adopt two unique simplifications — one addresses
microbial diversity and the other is about microbial metabolism (fig 1). The two simplifications
strike a balance between the complexity arising from microbial diversity and the practical
applicability enabled by a relatively simple modeling framework and its straightforward

deployment.

The first simplification is the application of functional groups as the basic unit of
microorganisms. From the lens of functional ecology, a functional group is a cohort of microbial
cells defined by their functional traits — microbial characteristics that affect the growth and
survival of microorganisms (Flynn et al., 2015; Nock et al., 2016; Violle et al., 2007).
Accordingly, a microbial community can be simplified as a collection of different functional
groups. By default, microbial kinetic models do not explicitly consider biochemical, structural,
or morphological traits, but only focus on functional traits that directly modulate the rates of
microbial reactions — for example, metabolic rates at very high and very low nutrient
concentrations, and the efficiency of microbial metabolism. In addition, microbial kinetic models
neglect trait differences between microbial cells of the same group, or trophic relationships and
interactions within the same group. Instead, cells of the same functional group share the same
functional trait values, respond in similar fashions to environmental perturbations, and play
similar roles in ecosystem functioning and biogeochemical processes (Gitay and Noble, 1997).
With these assumptions, a functional group can be quantified with a single state variable — the
biomass concentration Cx (g-kg™!), the mass of /iving cells belonging to a functional group per

kg water (Bachmann et al., 2016; Bolter, 1994; Murphy et al., 2007).

Microbial communities have also been analyzed with identity-based approaches, such as
16S rRNA-based phylogenetic characterization and taxonomic classification (Nkongolo and
Narendrula-Kotha, 2020). The focus on functional traits, not phylogeny or taxonomy, is
supported by the consensus that the composition of functional groups serves as a mechanistic

link between microbial diversity and ecosystem functioning (Crowther et al., 2019; McGill et al.,



146
147

148
149
150
151
152
153
154
155
156
157
158
159

160

161
162
163

164
165
166
167
168

169
170
171
172
173

2006). This focus has led to the widespread use of the term "trait-based microbial models" to

highlight the central role of functional traits in formulating microbial kinetic models.

The second simplification pertains to the description of microbial metabolism. Microbial
kinetic models treat each functional group as a single reacting component, and describe its
metabolism at a coarse-grained level without accounting for the details of metabolic pathways or
regulations. Specifically, microbial kinetic models concentrate on three fundamental metabolic
reactions — catabolic reaction, biomass synthesis, and maintenance (fig 2A). Catabolic reactions
harvest the energy available in the environment by making ATPs, biomass synthesis reactions
utilize ATPs to produce new biomass from essential nutrients, such as carbon, nitrogen,
phosphorus, and trace elements, in the environments, and biomass maintenance reactions
consume ATPs to sustain the integrity and functionality of cellular components as well as to
ensure the viability and survival of microbial cells (Hoehler and Jergensen, 2013; van Bodegom,
2007). Other metabolic processes, such as co-metabolism and detoxification, are not explicitly

considered. The three metabolic reactions are governed by the principle of energy balance,

JP,C:JP,X+JP,M7 (1)

that is, the flux Jp,c of ATP production by catabolism is balanced by the fluxes of ATP
consumption by biomass synthesis (Jp,x) and by maintenance (Jp,x) (Pirt, 1965). This principle

ensures the overall consistency and reliability of microbial metabolic rates within the model.

Following the standard framework of chemical reaction modeling, the description of a
metabolic reaction splits into three prongs: the stoichiometric equation and the rate law of the
metabolic reaction, and the functional traits (or microbial parameters) required by the rate law.
The three prongs describe metabolic reactions from different perspectives and with different

emphases:

e Stoichiometric equations list the substrates and products of metabolic reactions, and make
possible the modeling of the chemical interactions between microbes and the environment —
the environment supports microbes by supplying nutrients (e.g., energy and element sources)
and, in return, microbes alter ambient environments by consuming nutrients and releasing

waste products. These equations also define the ratios of the nutrient and product fluxes
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driven by microbial metabolisms, and ensure that microbial kinetic models honor the
principles of mass conservation and charge balance.

e Microbial rate laws express metabolic reaction rates in terms of macroscopic parameters,
such as pH, temperature, and the concentrations of biomass, nutrients, metabolic products,
and chemical inhibitors. They provide a theoretical basis to compute chemical fluxes through
microbial biomass and the rates of microbial growth and how the chemical fluxes and growth
rates respond to the changes in the physicochemical conditions of the environment.

e Functional traits are represented in microbiological models as rate law parameters, including
stoichiometric and kinetic parameters. Stoichiometric parameters quantify the efficiency of
microbial metabolism, and include the yields of ATPs and biomass per unit nutrient. Kinetic
parameters define microbial reaction rates at extreme nutrient concentrations, such as very
high and very low concentrations, and include rate constants, half-saturation constants, and
nutrient affinities (i.e., the ratios of rate constants to half-saturation constants) (Healey, 1980;

Kovérova-Kovar and Egli, 1998; Law and Button, 1977).

The three prongs enable us to describe microbial functional groups as auto-catalysts with a
minimum set of stoichiometric equations and rate laws, thereby keeping modeling tasks in check.
In this way, microbial kinetic models are robust enough to capture the essential features of
microbial metabolisms yet generic enough to be applicable to diverse microorganisms in both

engineered systems and natural environments.

2.2. Stoichiometric Equation and Reaction Rate

In line with standard practices in chemical kinetics, metabolic reactions and their rates are
defined in terms of stoichiometric reaction equations. Catabolic reactions synthesize ATPs by
consuming extracellular energy sources. Their stoichiometric equations can be constructed
according to the principles of mass balance and charge balance. For example, respiration
reactions couple redox reactions in the environment to ATP synthesis in the cytoplasm and can
be represented as

ZVDD+ZVADﬁZVD+D++ZVA,A’, (2)
D A D' A
where D and D" are the electron donor and its oxidized form, respectively, and A and A~ are the

electron acceptor and its reduced form, respectively, and vp and others are stoichiometric
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coefficients. Following the common practice in chemical kinetics, catabolic reaction rate rc

(mol-kg!-s7!) is defined as

_1dG 114G, 146G, 1 40,

v, dt Vo dtv,odt v, dt

.=

€)

Here Cp and others are molal (M) concentrations. The double arrow in equation 2 emphasizes
that chemical reactions proceed forward and backward at the same time. For this reason,

catabolic rates

o =To, =T 4)
represent the differences between the forward (rc+) and backward rates (rc-) of the reactions. For
reactions far away from thermodynamic equilibrium, such as aerobic respiration and nitrate
reduction, their backward rates can be safely neglected and their net rates can be approximated as

the forward rates.

Biomass synthesis produces biomass from extracellular sources of carbon, nitrogen, and
other elements. Constructing a stoichiometric equation for biomass synthesis can be challenging,
particularly when the elemental composition of biomass is unknown, or when more than one
chemical compound serves as the source of carbon, nitrogen, or other elements. In these cases, as

an approximation, we can apply a generic chemical formula of biomass, for example, CsH7;0:N

(Hoover and Porges, 1952), and assume that acetate (CH3COO~) and ammonium ( NH;, ) serve as

the sources of carbon and nitrogen, respectively. Under these assumptions, the stoichiometric

equation of biomass synthesis is

2.5CH,COO™ +NH, +1.5H" - C,H,O,N + 3H,0. (5)
Where other sources of carbon and nitrogen are available, or if a different biomass chemical
formula is assumed, results similar to equation 5 can be derived by following the principles of
mass and charge balance (Geider and Roche, 2002; Jin and Bethke, 2007; Popovic, 2019). The
rate 7x (g-kg!-s7') of biomass synthesis is the rate at which biomass synthesis raises biomass

concentration Cx,

dcC
g = th . (6)
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Accordingly, the rate at which nutrient N is consumed by biomass synthesis is

%:_V_er_ (7
a W,

Here Cn is nutrient concentration (M), w is the stoichiometric coefficient of nutrient N in

equation 5, and Wwu is the molecular weight calculated from the biomass chemical formula.

Maintenance summarizes the metabolic pathways that preserve the integrity and
functions of cellular components and structures. No stoichiometric equation is available to
describe biomass maintenance in terms of extracellular nutrients and metabolic products. The
rate rm (g-kg'-s7!) of biomass maintenance is expressed as the rate at which biomass
concentration is decreased by the maintenance pathways,

Ty = dix .

This definition is consistent with the view that maintenance metabolism consumes ATPs, but

(8)

does not yield new biomass — if maintenance did not occur, its ATP flux would be available to

biomass synthesis, increasing biomass concentrations.

In addition to maintenance metabolisms, other processes, such as transition to dormancy,
cell lysis and death, and predation by higher microorganisms, also contribute to lowering
biomass concentrations (Moger-Reischer and Lennon, 2019; Pérez et al., 2016). However, the
contributions of the individual processes to biomass loss are technically difficult to pinpoint. For
this reason, biomass decay has been used as a collective term to summarize all the processes that
work together to lower biomass concentrations (Van Loosdrecht and Henze, 1999). Biomass

decay rate p

=r. 9
i
is the sum of the rates of biomass maintenance, cell lysis, predation, and others (7pi).

Related to biomass synthesis and decay is microbial growth, a macroscopic phenomenon
defined as the apparent increase in microbial biomass or cell number over time. In microbiology,
growth is commonly characterized with specific growth rate x (s™'), the instantaneous relative

rate of biomass increase,
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Following the principle of mass conservation,

p=—rI(r—1). (11)

In other words, specific growth rate reflects the balance between the rates of biomass synthesis

and decay per unit biomass (fig 3A).

2.3. Mass Conservation Equation

For a system of m number of functional groups and #» number of chemical compounds, its
state is defined by the concentrations of chemical compounds and functional groups. For an
isothermal system, its state is captured by applying the principle of mass conservation to each
chemical compound and functional group and by accounting for the rates of catabolic reactions,
biomass synthesis, and biomass decay of functional groups (eqs 3, 6, and 9). The results are a
system of coupled equations, commonly summarized with a matrix equation and a vector

equation. The matrix equation accounts for the chemical fluxes driven by metabolisms,

1

Ja=ScRc+ 7,7 SxRx, (12)
M

where Ja is a column vector of size n, its element Ja; is the production flux of chemical Aj, the
net rate at which A; is produced (or consumed, if negative) per kg water (M-s~!), Rc and Rx are
two vectors of size m, their elements rcj and rx are the rates of catabolic reaction (M-s~!) and
biomass synthesis (g-kg'-s™!) of group j, respectively, Sc and Sx are the stoichiometric matrices
of size mxn, their element Scjj and Sx,jj are the stoichiometric coefficient of A; in the catabolic
reaction and biomass synthesis reaction of group j, respectively, and can be constructed from the

stoichiometric equations for catabolic and biomass synthesis reactions, respectively.
The vector equation describes microbial growth,
Jx =Rx - Rb. (13)

Here Jx is a column vector of size m and its element Jxj is the growth rate of group j, Rx is a
vector whose element rx;j is the rate of biomass synthesis of group j, and Ro is a vector whose

element rp; is the decay rate of group j (see equation 11). For a non-isothermal system, an

10



281  additional equation for temperature (or energy) is required.
282  2.4. Frameworks in Common Use

283 The trait-based modeling framework uses biomass concentration Cx as a state variable,
284  and describes microbial metabolism at the coarse-grained level with catabolic reaction, biomass
285  synthesis, and maintenance. The framework presented above is general and simplifies to the

286  various frameworks in common use today:

287 First, the biomass-explicit modeling framework takes a simplified form by assuming that
288  biomass synthesis and catabolism are tightly coupled (Fang et al., 2009; Li et al., 2009; Yabusaki
289  etal., 2007). Under this assumption, biomass yield per unit of energy substrate stays constant,
290  the entire metabolism can be described with a single stoichiometric equation that combines

291  equation 2 and 5. With this unified equation, a single rate expression is sufficient to calculate the

292  chemical fluxes and growth rates of microorganisms.

293 The general modeling framework reduces to the biomass-explicit catabolism-focused
294  framework by assuming that biomass synthesis and catabolism are tightly coupled and by

295  neglecting the nutrient consumption by biomass synthesis (Jin et al., 2013; Rittmann et al., 1980;
296  Schifer et al., 1998; Sykes et al., 1982; Talin et al., 2003; Thullner et al., 2005; Yabusaki et al.,
297  2011). In this case, microbial growth rate is calculated according to equation 13, but the nutrient
298  consumption by biomass synthesis is not considered (i.e., the second term on the right side of
299  equation 12 is set to 0). Where a nutrient participates in both catabolism and biomass synthesis,

300  such simplification tends to underestimate the flux of nutrient consumption.

301 The modeling framework further reduces to the biomass-implicit catabolism-focused

302 framework by assuming that biomass concentrations remain constant. In this case, biomass

303  synthesis and decay are neglected (i.e., eq 13 is not considered), and microbes are no longer

304  described as autocatalysts. This framework has found wide application in sediment diagenesis

305 modeling (Berner, 1980; Boudreau, 1996; Dale et al., 2008; Soetaert et al., 1996; Wang and Van
306  Cappellen, 1996), as well as to some extent in groundwater reactive transport modeling, where
307  biomass concentration or other growth-related information is not a primary concern (Hunter et al.,

308  1998).

11
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3. RATE LAWS FOR LABORATORY APPLICATIONS

Rate laws are the workhorses of chemical kinetics, providing robust tools not only for
computing reaction rates but also for dissecting reaction mechanisms (Masel, 2001). In microbial
kinetics, most rate law applications have focused on rate calculations. Here we illustrate the link
between microbial rate laws and metabolic mechanisms by first focusing on the rate laws for
microbial metabolisms limited by a single nutrient and then the rate laws for metabolisms limited

by more than one nutrient.

3.1. Rate Laws of Single Limiting Nutrients

Monod (1942, 1949) developed the first microbial rate law, an empirical equation for
microbial growth limited by a nutrient dissolved in solution. Other rate expressions have also
been proposed, but they rarely gained much traction (Panikov, 1995). However, at least two of
these rate expressions should deserve more attention. One is the Contois equation that describes
an inverse relationship between specific growth rate and biomass concentration originally
observed in a glucose-fed Aerobacter aerogenes culture (Contois, 1959). This equation has
found widespread applications in microbial degradation of particulate organic matter (POC)
(Chen and Hashimoto, 1980; Hemsi et al., 2010). Its alternative forms have also been applied to

microbial reduction of ferric minerals (Hacherl et al., 2003; Roden, 2006).

The other rate expression is the Best equation (Best, 1955). This equation has been
derived in theory for a special type of interaction between microbial cells and substrates of poor
solubility or strong hydrophobicity, such as minerals or nonaqueous phase liquids (NAPLs). In
these cases, microbes do not directly react with solids or NAPLSs, but only utilize their dissolved
forms. Taking as an example polycyclic aromatic hydrocarbons (PAHs), microbes can utilize
naphthalene and phenanthrene dissolved in water, but cannot directly consume PAHs (Volkering
et al., 1992). To sustain metabolism, the dissolution of PAHs into bulk solution is required.
Interestingly, both the Contois and the Best equations relate specific growth rate to the
concentration ratio of substrate to biomass, and despite their apparent difference, the Best

equation can be approximated with the Contois equation.

12
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3.1.1. Monod equation
The original Monod equation consists of a single-term hyperbolic function of nutrient
concentration (Monod, 1942, 1949), and was later amended to account for biomass maintenance

(Herbert, 1958; Pirt, 1965). The revised Monod equation in its commonly used form is

M= My Fo =k (14)
where umax 1s the maximum specific growth rate, Fc is a dimensionless factor of nutrient
concentration, and kp is the specific rate of biomass decay (s™!). The revised equation assumes
that the rate of biomass decay is proportional to biomass concentration, with the proportionality
constant denoted as kp. From the perspective of mass conservation (see eq 11), the first term in

equation 14 gives the specific rate of biomass synthesis.
The concentration factor Fc,

c= CN(:L—NKM (15)
is a relatively simple hyperbolic function that describes saturation-type kinetics. Here Cx is the
concentration of nutrient N, and Ky is the half-saturation constant. Concentration factor Fc
quantifies the limitation by nutrient N — the extent to which the nutrient lowers growth rate
below its maximum value (fig 4A). Where the factor is close to 0, specific growth rate u stays
near 0, and growth is limited significantly by the nutrient. Where the factor is close to unity,

variations in nutrient concentration do not change the rate much, and the nutrient limitation can

be safely neglected.

Monod (1942, 1949) also discovered that the biomass yield Yxn per unit of nutrient (N)
can be treated as a constant (g-mol~!). This yield coefficient relates the rate rx of biomass
synthesis to the rate 7y of nutrient consumption, i.e.,

Yy = :— . (16)
It provides a basis to recast the Monod equation in terms of nutrient consumption. A special case
occurs where microbial metabolism is limited by a substrate consumed by catabolism (or an

energy source) and biomass synthesis rate is limited by the supply flux of ATP. Under these

conditions, combining equation 14 and 16 gives the rate law for catabolic reaction, i.e.,

13
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— ™C,max
Here kc max is the rate constant (mol-g~!-s™!) or the maximum rate of catabolic reaction per unit

biomass,

k :@_ (18)

C,max
VeYys

Here s is the stoichiometric coefficient of the energy substrate in catabolic reaction (eq 2), and

Yxs 1s the biomass yield per unit energy substrate.

Despite its empirical nature and relatively simple form, the Monod equation does bear a
limited connection with metabolic mechanism (Jin et al., 2022). A metabolic reaction consumes
nutrients dissolved in solution in a series of steps (fig SA). First, nutrients diffuse from the bulk
solution to the cell surface, and are then taken up into the cytoplasm and consumed by enzymes
along metabolic pathways. For microbial cells suspended in solution, nutrient diffusion does not
limit the progress of overall metabolism (Smith et al., 2014). Instead, metabolic rates are
determined by one or more enzymes. Therefore, metabolic reactions can be described as cell-
controlled metabolic reactions to highlight that it is the enzymes within cells that control
metabolic rates (table 2). However, the extents of the rate limitation by different enzymes are not
fixed, but dependent on nutrient concentrations in the bulk solution. Where nutrient
concentrations are relatively small, the enzymes that participate in nutrient uptake dominate the
rate control, and can be considered as rate-limiting enzymes. At relatively large nutrient
concentrations, other enzymes become rate limiting. The Monod equation accounts for the rate-
limiting enzymes at very low nutrient concentrations with the ratio of gmax to Km or the ratio of

kC,max to K,

kg == (19)

This parameter ratio is commonly termed as nutrient affinity or affinity constant k. (Healey,
1980; Law and Button, 1977). The Monod equation also accounts for the rate-limiting enzymes
at very high nutrient concentrations with kc max (Or gmax). These results support previous
laboratory observations that the Monod equation provides reasonable approximations to

microbial growth. The results also suggest that typical hyperbolic relationships between growth

14
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rates and nutrient concentrations reflect the shift in rate-limiting enzyme between very high and

very low nutrient concentrations, not the rate-substrate relationships of individual enzymes.

A related equation, the Michaelis-Menten equation, has also been widely applied to
microbial reaction modeling (Dugdale, 1967; Dugdale, 2018). While both equations use the same
hyperbolic function, they differ in their physical significance and the specific systems they are
applied to. The Michaelis-Menten equation was derived in theory for biochemical reactions
catalyzed by enzymes; its mechanistic basis involves the formation of an enzyme-substrate
complex and its subsequent conversion to products (Cornish-Bowden, 2013). The Monod
equation was constructed empirically for microbial growth and reflects the emergent property of
the entire network of metabolic enzymes. Therefore, to clearly specify the subject of the
modeling and the underlying principles, the hyperbolic equation applied to enzyme-catalyzed
reactions, such as the enzymatic uptake of nutrients from the environment into the cytoplasm and
the extracellular hydrolysis of organic matter, should be referred to as the Michaelis-Menten
equation. Conversely, for metabolic reactions catalyzed by a series of enzymes, such as

respiration and fermentation, the equation should be referred to as the Monod equation.

3.1.2. Contois equation

The Contois equation has been applied to microbial oxidation of particulate organic
matter and reduction of ferric minerals. In both cases, microbes interact with solid-phase
substrates via various mechanisms, including direct contact, ligands, and electron carriers (fig
5B). For example, to utilize particulate organic matter, microbes first synthesize and release
extracellular enzymes (or exoenzymes) (Wang and Li, 2014; Wu et al., 2021). The exoenzymes
attack the surface of particulate organic carbon (POC) and hydrolyze organic carbon to
oligomers and monomers of amino acids, nucleic acids, sugars, and lipids, which are then taken
up by microbial cells. To reduce ferric minerals, microbes transfer electrons from the cell surface
to the mineral surface via electrically conductive filamentous pili or surface proteins, by
dissolving ferric minerals with ligands and then reducing aqueous ligand-Fe(III) complex, and by
employing electron carriers, such as quinone-bearing humic substances (Shi et al., 2016; Weber
et al., 2006). To differentiate these reactions from cell-controlled metabolic reactions (table 2),
we follow the common practice in chemical kinetics and describe metabolic reactions involving

solid surfaces as surface-controlled reactions (Masel, 2001).
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Organic matter degradation. The kinetics of organic matter degradation has been studied under
two extreme conditions by two disciplines, highly concentrated bioreactors by wastewater
engineers and sediments of low abundance by biogeochemists. From wastewater treatment
studies (Bhattacharya and Khai, 1987; Chen and Hashimoto, 1980; Ghaly and Echiegu, 1993;
Hemsi et al., 2010; Vavilin et al., 1996; Vavilin et al., 1997), an emerging consensus is that

specific growth rate varies with the concentration ratio On/x of organic matter to biomass,

a

Oux = , (20)

N
CX
and that the variation follows the Contois equation, an equation that uses the same hyperbolic

function in the Monod equation (Contois, 1959). Here Cx is the concentration of organic matter.

The Contois equation calculates specific growth rate according to equation 14 and with the

concentration function Fc,

- L @
QN/X + KM

where the K, is the biomass-specific half-saturation constant. Figure 4B takes microbial

C

degradation of fragmented walnut shells as an example and illustrates how the concentration

factor varies with the concentration ratio Onyx.

In comparison, the kinetic studies of sedimentary organic matter suggest that the rate rom

of organic matter degradation follows the G model,

Tom = kon - Cris (22)
where kom is the rate constant (s~!) and is believed to reflect the reactivity of organic matter
(Berner, 1964). The G model represents a special case of the Contois equation, where the
concentration ratio Onx is far less than the specific half-saturation constant, i.e., Onx < Ky, .

Under this condition, the specific rate constant kom becomes the affinity constant for organic

matter, or the ratio of the rate constant to the biomass-specific half-saturation constant,

k _ kC,max (23)
oM — K](/[ .
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Equation 23 suggests that the rate constant kom reflects not only the reactivity of organic matter
but also the kinetic properties of microorganisms. In many applications, the multi-G model is
required (Westrich and Berner, 1984). This model separates organic matter into different groups
according to their specific rate constants, which can be indicative of the different affinity

constants exhibited by microbes utilizing these organic matter groups.

Ferric mineral reduction. Ferric iron respiring microbes utilize ferric minerals as electron
acceptors. Hacherl et al. (2003) recognized that during microbial iron reduction, electrons are
transferred to the reactive surface sites of ferric minerals, and suggested to use the concentrations
of bioavailable surface sites, instead of ferric minerals, to evaluate the rates of iron reduction.
They also proposed a rate expression to relate iron reduction rate to the concentration ratio of
biomass to surface sites. The same equation was used by Roden (2006) to describe the kinetics of
iron reduction, and applied in modeling microbial iron reduction in natural environments (Bethke
et al., 2008; Jin and Roden, 2011; Johannesson et al., 2019). This rate expression can be recast as
the Contois equation (eqs 17 and 21). Figure 4C takes nanocrystalline goethite as an example and
shows how the factor (eq 21) varies with concentration ratio Oss/x of bioavailable surface sites to

biomass.

The Contois equation differs from the Monod equation in that the hyperbolic function is
expressed in terms of the concentration ratio On/x of nutrient to biomass. This difference arises
from the fact that solid-phase compounds cannot be directly taken up by microbes from the
environment into the cytoplasm, and their utilization requires metabolic strategies different from
those for aqueous substrate consumption. Wang and Li (2014) noted that during the degradation
of POC, colonies develop on the surface of POC, and derived the Contois equation by
accounting for the coverage of POC’s surface by microbial cells, and by assuming that microbes
attached to the surface of POC grow exponentially and that the growth of suspended microbes
can be neglected. Likewise, according to the mechanisms of ferric iron reduction (Shi et al., 2016;
Weber et al., 2006), we can derive the Contois equation by assuming that the electron transfer
between cell and mineral surfaces are at quasi-steady state (see Supplementary Information).
These derivations suggest a trade-off between biomass concentration and the surface area of

solid-phase substrates. At a given concentration of solid-phase substrates, increases in biomass
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concentration increase the rate, but diminish the solid-phase substrate available to individual

cells, which in turn decreases the rate.

3.1.3. Best equation

The Best equation has been derived in theory by considering two reaction steps, the
dissolution of minerals (or NAPLs) followed by microbial uptake and consumption (fig 5C)
(Bosma et al., 1997; Koch, 2005; Sanford and Crawford, 2000; Wick et al., 2001). By assuming
that the two steps are at quasi-steady state, e.g., the dissolution flux and the consumption flux
equal each other (Bosma et al., 1997), the rate of metabolic reaction follows the Best equation
(Best, 1955). Alternatively, a kinetic model can be built to explicitly simulate the two processes
according to the rate laws of mineral dissolution and the Monod equation. However, where the
concentrations of dissolved nutrients are too low or technically difficult to analyze, it might be
desirable to directly relate metabolic rates to the concentrations of solids (or NAPLs). To
highlight the requirement of the dissolution reaction, we follow the classification of chemical

reactions and describe these metabolic reactions as mass transfer-controlled reactions (table 2).

Similar to the Contois equation, the Best equation also recognizes that the determinant of
specific growth rate is not simply nutrient concentration Cx, but the concentration ratio On/x of
nutrient to biomass (eq 20) (see Supplementary Information). It replaces the concentration factor

in equation 14 and 17 with

FC:1+(1+a2)ﬂ~QN/x 1_\/1_[“(14?3%2 ]2 _ (24)
N/X

Here o and f are two parameters. a is the ratio of the equilibrium concentration Ceq — the

concentration at which the nutrient dissolution reaction is at equilibrium — to the half-saturation

constant K, i.e., a = Ceg/Km. Parameter f is the ratio of the kinetic coefficient of dissolution to

the affinity constant of metabolism (eq 19),

k..
p="os (25)
kaff

Here Aaiss 1s the dissolution rate per unit solid or NAPL (see Supplementary Information). Factor
o measures the relative strength of a solid (or NAPL) in supporting metabolism, whereas factor £

compares the kinetic constants of the dissolution reaction to those of microbial metabolism.
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Similar to the Contois equation, the Best equation (eqs 14 and 24) also predicts a
hyperbolic relationship. Figure 4D takes as an example microbial degradation of a-
hexachlorocyclohexane (a-HCH) and shows, according to the Best equation, how the rate varies
with the concentration ratio On/x weighted with factor £. In evaluating equation 24, we take the
equilibrium concentration Ceq of a-HCH at 25 °C at 7.3 mg-L~! (Richardson and Miller, 1960),
and the half-saturation constant Ky at 8.5 mg-L~! (Bachmann et al., 1988). Where the weighted
concentration ratios are relatively large, metabolic rates are limited by microbial metabolism.
Under this condition, the concentration factor approaches a maximum value (Fc max) that is
dependent on the equilibrium concentration and the half-saturation constant (see Supplementary

Information),

C
FC max —— * (26)
’ C,+Ky

Substituting the above values of Ceq and Km, the maximum concentration factor is 0.46. This
example Fcmax value highlights the limitation of mass transfer on microbial kinetics — if a-HCH

completely dissolves in growth media, the Fc,max value should be unity.

Where the weighted concentration ratios approach 0, metabolic rates are determined by
the dissolution rates of minerals and NAPLs. Under this condition, the concentration factor

becomes a linear function of the concentration ratio,

kg C

F Cmin — e 'QN/ca (27)
kc

and metabolic rates vary linearly with nutrient concentrations,

r. = kg, C, Cy. (28)

s “eq N
The hyperbolic relationships defined by the Best equation (eqs 14 and 24) and the
Contois equation (eqs 14 and 21) resemble each other. To illustrate this point, we approximate
the concentration factor Fc defined by the Best equation with the concentration factor defined by

the Contois equation,

ﬂ ) QN/X

~ F max o, -~ ot (29)
‘ “ ﬂ ) QN/X + KM
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In the example of microbial degradation of a-HCH, the biomass-specific half-saturation constant

is about 0.4, and the difference between the two equations are too close to show in figure 4D.

3.2. Rate Laws of Multi Limiting Nutrients

Where metabolic reactions are controlled by more than one nutrient, two strategies have
been applied to compute reaction rates. One strategy is based on the multiplicative rate law, and

the other is according to Liebig’s law of the minimum (Zinn et al., 2004).

3.2.1. Respiration

A respiration reaction synthesizes ATPs by transferring electrons from an electron donor
to an acceptor. The most common rate law for respiration rate 7r is the multiplicative or the dual
Monod equation (Bungay III, 1968; Humphrey, 1974). This equation accounts for the

concentrations of the electron donor and acceptor simultaneously,

1y =k

max C'X FDFA b (3 0)
where Fp and Fa are the concentration factors of the electron donor and acceptor, respectively.

In addition, Liebig’s law of the minimum has also been applied,

Ty =kmaXCX-min(FD,FA). 31
This equation postulates that respiration rate is determined by the concentration of either the
electron donor or the acceptor, whichever places a stronger limitation (Ryder and Sinclair, 1972;

Williamson and McCarty, 1976).

3.2.2. Growth

Both the multiplicative rate law and Liebig’s law of the minimum have also been applied
to microbial growth. MeGee et al. (1972) constructed the first multiplicative rate law to simulate
the growth of Lactobacillus casei limited by glucose and riboflavin. According to their rate law,

specific growth rate of L. casei is

ll’l = lumaxF'SFN _kD ‘ (32)
where Fs and Fx are the concentration factors for glucose and riboflavin, respectively.

Alternatively, the specific growth rate may follow Liebig’s law of the minimum,
/’l:lumax min(F'S’FN)_kD‘ (33)
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This rate law assumes that growth rate is determined either by an energy substrate (i.e., glucose)

or by an essential nutrient (i.e., riboflavin) (Bader, 1978; Droop, 1974; Sykes, 1973).

3.2.3. Chemical inhibition

Chemical inhibition is a common phenomenon of microbial metabolism. A typical
example includes nutrients of high concentrations, which act as a double-edged sword. Taking
methanogens as an example, their metabolism is supported by acetate, ammonium, methanol,
sulfide, and other nutrients. On one hand, relatively high nutrient concentrations raise growth
rates. On the other hand, high concentrations also inhibit the growth, and the extent of the
inhibition depends on both methanogen species and physicochemical conditions, such as pH and
temperature (Chen et al., 2014; Fukuzaki et al., 1990). Methanogen metabolism is also inhibited
by other chemical inhibitors, including structural analogs of coenzyme M, short- to long-chain
fatty acids, ethylene and acetylene, halogenated aliphatic hydrocarbons (e.g., chloroform,
fluoroacetate, and methyl fluoride), and by the presence of alternative electron acceptors (Liu et

al., 2011).

To account for chemical inhibition, numerous empirical functions have been proposed to
amend microbial rate laws (Mulchandani and Luong, 1989). One of the earliest examples came
from Boon and Laudelout (1962). They assumed that the nitrite inhibition on aerobic nitrite
oxidation of Nitrobacter winogradskyi follows a pattern similar to non-competitive inhibition
observed in enzyme reactions, and quantified the significance of the inhibition by using a

dimensionless inhibition factor Fi,

F=—_
K, +C,

(34)

Here K is the inhibition constant (M), and Ci is the concentration of inhibitor (fig 6A).

3.3. Thermodynamic Consistency

Rigorous rate laws must honor the principles of thermodynamics — a requirement so
called “thermodynamic consistency” (Boudart, 1976). This requirement can be met by amending

rate laws with the thermodynamic potential factor Fr,

—exp| -
F. =1 exp( ;(RT] (35)
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where fis the thermodynamic drive (J-mol™"), y is the average stoichiometric number, and can be
approximated as the number of times the rate-determining step occurs per metabolic reaction, R

is the gas constant (8.3145 J-mol~!-K™!), and T is temperature in Kelvin.

Thermodynamic drives for metabolic reactions depend on whether ATPs are synthesized
or consumed. For example, catabolic reactions couple redox reactions to ATP synthesis, and
their thermodynamic drives are the differences between the energies available in the environment

and the energies saved by ATP synthesis,

f=AG, -Y,-AG, (36)
Here available energies AGa are calculated as the negative of Gibbs free energies of chemical
reactions, AGp is the phosphorylation energy — the energy consumed by ATP synthesis from
ADP and phosphate in the cytoplasm, about 45 kJ¥mol ATP) !, Yp is the number of ATPs
synthesized per respiration or fermentation reaction (Jin and Bethke, 2003; 2005). Figure 6B
shows, according to equation 35, how the thermodynamic factor varies with the thermodynamic

drive.

The thermodynamic potential factor in equation 35 and 36 represents a general
description of the relationship between the thermodynamics and kinetics of microbial reactions,
and can be simplified to other models of the thermodynamic control under different conditions
(Jin and Bethke, 2005). For example, the model of Hoh and Cord-Ruwisch (1996) is best applied
to microbial reactions that do not conserve energy. The models of Fennell and Gossett (1998)
and Liu et al. (2001) are developed primarily for metabolic reactions with a stoichiometric
number yq of 1 per reaction. The model of LaRowe et al. (2012) draws an analogy from Fermi-
Dirac statistics in quantum systems, and predicts that, where chemical reactions are at
thermodynamic equilibrium, reaction rates are not zero, but instead have finite and positive
values. This prediction contradicts the principle of detailed balance, where at equilibrium, the

forward and backward rates precisely compensate for each other, resulting in net rates of zero.

3.4. Generic Rate Laws

Rate laws of microbial metabolisms have been summarized in two generic equations (Jin

et al., 2013; Zwietering et al., 1992). One is the rate law for microbial respiration,
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rR:kc,max'CX'F}'FT'f(FD:FA)a (37)

where f{ ) is the multiplicative (e.g., eq 30) or the minimum function (e.g., eq 31). The other is

for biomass synthesis, and is either the multiplicative rate law (e.g., eq 32),

rX:rX,P'HFNi 5 (38)

or Liebig’s law of the minimum (e.g., eq 33),

Iy = min(rX,P7 /umaxCXFNl ) lumaxCXFNz 9) . (39)
Here rxp is the rate of ATP-dependent biomass synthesis, or the rate where biomass synthesis is

limited by the availability of energy sources only, and Fy and F, are the concentration factors

of nutrient Ny and N, respectively. According to equation 16,

Ixp = VsYshy - (40)
The concentration factors, i.e., Fp, Fa, K, and others, may take different forms, depending on

whether nutrients are dissolved in solution (eq 15) or occur as solids and NAPLs (egs. 21 and 24).
From the rate of biomass synthesis, specific growth rate is calculated according to equation 11.
Where microbial metabolism is limited either by electron donor D or by acceptor A, equation 37
reduces to equation 17 and, at the same time, equation 38 and 39 converge and specific growth

rate is calculated according to equation 14.

The generic rate laws (eqs 37, 38, and 39) have been applied with two distinct approaches.
One approach centers around respiration, and first determines respiration rate by evaluating the
rate law of respiration (eq 37). The respiration rate is then applied to assess the rate law of
biomass synthesis (eq 38 or 39). The other approach emphasizes biomass synthesis, and first
calculates the rate of ATP-dependent biomass synthesis by combining equation 37 with 40. The
rate rx.p is then applied to evaluate the rate of microbial growth (eq 11 and 38 or eq 11 and 39)
and to calculate respiration rate by rearranging equation 40. Both approaches yield identical

results.
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4. EXTENDING TO NATURAL ENVIRONMENTS

Applying the trait-based modeling framework to natural environments necessitates
modifications to the fundamental model assumptions related to microbial communities,
metabolic reactions, and the rate laws of microbial kinetics (figs 2 and 3, and table 1). Natural
environments are home to microbial communities that experience a broad range of growth
conditions, including variations in pH, temperature, and nutrient concentrations. Additionally, in
most natural environments, microbial activities are generally low, and a substantial portion of
microbial cells remain dormant (Wang et al., 2014; Wormer et al., 2019). In contrast, the trait-
based framework was initially developed from the observations of laboratory experiments. These
experiments typically take place in controlled environments that are uniform and rich in nutrients,
and optimized for microbial growth in terms of physicochemical conditions. Furthermore,
laboratory studies often focus on the exponential growth phase, during which most microbial
cells display high metabolic activity. Consequently, modeling microbial processes in natural
environments should account for the physiology of natural microbes as well as the specific
growth conditions of the environment. Here we focus on the modifications that account for

dormancy, biomass decay, physiological acclimation, and environmental conditions.

Microbial kinetics in natural environments is also subject to a multitude of additional
factors, including microbial interactions and the intricate nature of the physicochemical
conditions. Microbes interact with both other microbes and their surroundings via various
mechanisms, such as physiochemical alterations, exchange of metabolites, signaling, biofilm
formation, and chemotaxis, among others (Dong et al., 2022; Hibbing et al., 2010). The
complexity of the ambient environment is exemplified by spatial heterogeneity and temporal
fluctuations in physicochemical conditions (Nguyen et al., 2020; Nunan et al., 2020). In principle,
incorporating these factors can be achieved by assembling relevant functional groups into a
microbial reaction model and by coupling microbial reaction modeling to geochemical modeling
and to reactive transport modeling (Bethke, 2022; Gharasoo et al., 2012). However, delving into

a detailed exploration of this topic extends beyond the scope of the current discussion.

4.1. Dormancy
To apply the trait-based modeling framework to natural environments, it is essential to

divide a functional group into subgroups in order to explicitly consider the different
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physiological states of microbial cells, including actively proliferating cells and the different
stages of dormancy (Hunt, 1977; Stevenson, 1977). This treatment allows a functional group to
have two types of biomass — one for actively growing cells and the other for dormant cells (fig
3B). This treatment is supported by two observations. Firstly, dormant cells constitute a
significant proportion of microbial cells in diverse environments, such as soils, marine sediments,
and other natural settings (Wang et al., 2014; Wormer et al., 2019). Secondly, while dormant
cells do not actively grow, it is important to note that dormancy does not imply inactivity (fig
2C). Dormant cells may engage in limited metabolic processes, albeit at rates significantly lower
than those of actively growing cells (Hoehler and Jorgensen, 2013; Lever et al., 2015; Price and

Sowers, 2004; Reeve et al., 1984).

In theory, to accurately simulate the three physiological states of natural microbes, at
least three subgroups are required. These subgroups encompass an actively growing subgroup, a
dormant subgroup primarily focused on biomass maintenance, and another dormant subgroup
dedicated to the repair of damaged cellular components and structures (Price and Sowers, 2004).
Transitions between the subgroups occur, with the transition rates assumed to be proportional to
biomass concentrations. Several factors influence these transition rates, including
physicochemical conditions and physiological states. The latter can be quantified by the
difference in energy flux between catabolism and maintenance or the growth rate relative to the

maximum growth rate (Ayati, 2012; Bradley et al., 2019; Konopka, 1999; Wang et al., 2014).

4.2. Biomass Decay

Modeling microbial metabolisms in natural environments requires the consideration of
chemical fluxes driven by biomass decay, including those of biomass maintenance and cell lysis
(Bradley et al., 2018; Hoehler and Jorgensen, 2013; Liang et al., 2019). Although these fluxes in
laboratory nutrient-enriched bioreactors may not reach the same magnitude as those of catabolic

reactions and biomass synthesis, they hold significant importance in natural environments.

For instance, in natural environments, cell death and subsequent lysis and fragmentation
of microbial cells release cellular components into the surroundings, producing so-called
necromass (fig 3) (Késtner et al., 2021; Liang et al., 2019). Microbial necromass represents a
distinct pool of natural organic matter, accounting for up to 80% of organic carbon in soils. It

serves as a unique exogenous nutrient for microbial metabolism, contributing to cryptic growth —
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the growth enabled by utilizing cellular components released through cell lysis (Banks and
Bryers, 1990; Koch, 1959; Ryan, 1959). Microbial necromass differs from other forms of
organic matter, such as plant residuals, in terms of degradation kinetics and interactions with

minerals (Cotrufo et al., 2013; Fan et al., 2021; Wang et al., 2020a).

Maintenance pathways consume ATPs, which are supplied by catabolism that utilizes
two different types of energy sources, exogenous (or external) and endogenous substrates (figs
2B and C) (Beeftink et al., 1990; Marr et al., 1963; Schulze and Lipe, 1964). Endogenous
substrates encompass various cellular components, such as poly-B-hydroxybutyrate and other
energy-storage compounds, proteins, lipids, RNA, and more (Dawes and Ribbons, 1964; Herbert,
1958; Porges et al., 1953). The consumption of endogenous substrates for ATP production can
be viewed as a special reaction — endogenous catabolic reaction. This particular reaction
decreases biomass concentrations and produces COz, and other waste products (Roslev and King,
1995). To emphasize the sources of energy substrates, catabolic reactions using extracellular
substrates can be referred to as exogenous catabolic reactions. While microbial maintenance in
nutrient-rich bioreactors is powered primarily by exogenous substrates, the consumption of
endogenous substrates becomes significant in oligotrophic environments, such as pristine

aquifers, marine sediments, and other (Kjelleberg et al., 1987).

Simulating endogenous catabolic reaction and microbial necromass production requires
amending trait-based microbial reaction models with respective stoichiometric reaction equations
and rate expressions. When formulating the rate expressions for these fluxes, a common
assumption is that they are directly proportional to biomass concentrations (Fan et al., 2021).
Other factors, such as temperature, pH, salinity, and viral abundance, also influence these
processes (Shimoda et al., 2002; Wang et al., 2020b). These fluxes are governed by the principle
of energy balance (fig 2B and C). In particular, the energy fluxes of actively growing subgroups

must honor

J,

P.ex

+J

P,in

=Jpx tJpm- (41)

Here Jpex and Jpin are the ATP fluxes of exogenous and endogenous catabolic reactions,

respectively. For dormant subgroups, equation 41simplifies to

J,

P,ex

+J

P,in

=J

PM >

(42)
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because the energy flux of biomass synthesis reduces to 0.

4.3. Environmental Conditions

To account for the physicochemical and biological conditions present in natural
environments, an intuitive strategy is to follow the multiplicative rate expression (eq 30) by
amending the rate laws for laboratory cultures (eqs 37 and 38) with additional dimensionless
functions. These functions are designed to capture the specific environmental conditions of
interest (Zwietering et al., 1992), and examples include those for temperature, pH, water activity,

and biomass concentrations.

4.3.1. pH and temperature

Microbial catabolism and biomass synthesis respond to pH and temperature variations by
following bell- or triangle-shaped curves characterized by a set of three parameters, the
minimum, optimal, and maximum pHs and temperatures. At pHs and temperatures below the
minimum or above the maximum values, microbial metabolism pauses. Between the minimum
and optimal values, temperature and pH increases raise microbial catabolic and growth rates.
Between the optimal and maximum values, the increases lower microbial rates. A
commonly-used model to describe the bell-shaped temperature response of catabolism and
biomass synthesis is the empirical cardinal temperature model (Rosso et al., 1993). According to

this model, the dimensionless factor Frwmp for temperature is

(T - T )T =T)°

Fryp = max 0, . (43)
(7:)pt - Tmin)I:(T;)pt - Tmin )(T - 7:)pt) - (T;)pt - Tmax )(Topt + Tmin - 2T):|
Here Tmin, Topt, and Tmax are the minimum, optimal, and maximum temperatures of microbial
reactions. Likewise, the cardinal pH model is,
H-pH H-pH .
F, =max]0 (pH - pH,,,, J(pH —pH ;) 44)

" (pH-pH,,;, )(pH-pH,, ) - (pH-pH,,)* |’
where pHmin, pHopt, and pHmax are the minimum, optimal, and maximum pHs (Rosso et al., 1995).
Figure 7A and B show, according to the cardinal models, how the temperature factor Frmp of
mesophilic microbes varies with temperature and how the pH factor Fpn of neutrophiles varies

with pH.
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In comparison, current experimental evidence suggests that the temperature response of
biomass maintenance might be monotonic, and can be described with the Arrhenius equation
(Price and Sowers, 2004; Tijhuis et al., 1993). Specific maintenance rate kv is calculated

according to

E
k, = A, -ex aM 45
M M p(RT ] (45)

K

where Awm is the pre-exponential factor, and Eam is the apparent activation energy. Figure 8
shows, according to equation 45 and on the basis of the data compiled by Price and Sowers
(2004), how specific maintenance rate varies with temperature. For every 10 °C increase in
temperature, the specific maintenance rate increases about an order of magnitude, which
confirms a rule-of-thumb view about the different specific maintenance rates in laboratory

bioreactors and natural environments (Schmidt, 1992).

4.3.2. Salinity and water activity

Salinity, the total ion concentration in a solution (Williams and Sherwood, 1994), is a
primary factor that controls the diversity, composition, and function of natural microbial
communities (Yang et al., 2016; Zhang et al., 2021). Salinity determines turgor pressure, the
difference in hydrostatic pressure between the cytoplasm and the ambient environment, which in
turn determines microbial growth rates (Rojas and Huang, 2018). In the food and pharmaceutical
industry, the effect of salinity has been approached within the context of water activity (aw), a
solution property that quantifies the amount of “free”” unbound water molecules available for
chemical reactions and microbial metabolisms (Daniel et al., 2004; Troller and Christian, 1978).
Water activity is measured experimentally as the ratio between the fugacity of water vapor of a
solution and the fugacity of pure water at the same temperature and pressure. In theory, water
activity is calculated from molar water concentration, stoichiometric ionic strength, and the
osmotic coefficient and can be taken as the effective water content expressed in terms of water

mole fraction (Cazier and Gekas, 2001; Stokes and Robinson, 1948).

Similar to microbial kinetic responses to pH and temperature, microbial response to
salinity follows bell- or triangle-shaped curves (Stevenson et al., 2015). A cardinal water activity
model can also be constructed with three cardinal parameters, the minimum, optimal, and

maximum water activities (Peleg, 2022). For non-halophiles and many halotolerant microbes,
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their optimal water activity stays close to unity, and their growth rates appear to decrease linearly
with decreasing water activity (Emborg and Dalgaard, 2008; McMeekin et al., 1987). In these
cases, the factor Fw of water activity can be described with a simple linear function (McMeekin
et al., 1987; Zwietering et al., 1992),

a a min
F,, =max{0, —== (46)
—a

where aw,min 1S the minimum water activity required by microbial metabolism. This parameter is
not a constant, but varies with both microbial strains and the physiochemical conditions of the
environment, including temperature (Santos et al., 1994). Figure 7C shows how the factor of

Staphylococcus xylosus varies with water activity (McMeekin et al., 1987).

4.3.3. Biomass concentration

The Monod equation assumes that biomass-specific rates of catabolism and growth are
independent of biomass concentrations. This assumption assumes unlimited resources and does
not account for the limitations on the total biomass that can be sustained by the environment.
Also, the assumption contradicts quorum sensing — cell-to-cell communication via the production
and release of signal molecules (Fuqua et al., 1994). Quorum sensing enables microbes to
regulate their gene expression and to adjust their phenotypic traits in accordance with the

biomass concentration in the ambient environment (Abisado et al., 2018; Swift et al., 2001).

Following the classical Verhulst-Pearl logistic equation (Peleg and Corradini, 2011), a
simple approach to relate cell-specific rate to biomass concentration is to amend microbial rate

laws with the following biomass capacity function (Wu et al., 2022),

F, =1- Gy (47)

X,max

Here Cx max 1s carrying capacity, the maximum biomass concentration that can be supported by
an environment (Chapman and Byron, 2018). According to this factor (fig 7D), relatively low
biomass concentrations have negligible effect on microbial kinetics, but increases in biomass
concentrations slow down microbial reactions. Other approaches, such as the inhibition function,

have also been proposed to account for biomass concentration (Hilau et al., 2022).
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Carrying capacity is determined by a suite of environmental and biological factors, and
therefore its inclusion in the biomass factor brings additional benefits. For example, by including
the biomass factor, we can constrain microbial growth with environmental factors, such as space
and surface area, and hydrodynamics. Furthermore, the biomass factor keeps simulated biomass
concentrations in check (Wu et al., 2022). This is especially important for simulating the
metabolic reactions of a functional group within a community. Without this factor, the biomass
concentration of a functional group is determined by nutrient fluxes into the environment, and

therefore may exceed the carrying capacity of the environment.

4.4. Physiological Acclimation

Applying the trait-based modeling framework to natural environments requires the
kinetic and stoichiometric parameters of natural microbes. These parameters have been analyzed
for laboratory cultures, but only to a very limited extent in natural environments (Jin et al., 2013;
Pallud and Van Cappellen, 2006). For example, Wu et al. (2022) compiled the trait parameters
for acetoclastic methanogenesis — a process responsible for ~70% of methane bioproduction in
terrestrial environments (Conrad, 1999). Despite the global significance of the process, only two
studies have directly determined half-saturation constants in natural systems, and the analysis of

rate constants and biomass yield coefficients still needs to be carried out.

Most microbial parameters obtained with laboratory experiments are not directly
applicable to natural environments. Current available data suggest that microbial parameters,
including rate constants, half-saturation constants, and biomass yield coefficients, are not
constants, but dependent on culture history and physicochemical conditions of the environment
(Ferenci, 1999; Grady et al., 1996; Kovarova-Kovar and Egli, 1998). The variation in trait values,
or phenotypic plasticity, highlights a fundamental difference between regular catalysts and
microorganisms. While the catalysts in chemical processes are fairly stable, microorganisms are
capable of acclimating to their ambient environment (Aksnes and Cao, 2011; Flynn et al., 2015;
Merchant and Helmann, 2012). Here acclimation refers to reversible modification of phenotypic
traits, including microbial kinetic and stoichiometric parameters, in response to changes in

temperature, pH, resource availability, and other environmental conditions.

Physiological acclimation provides a theoretical basis to extrapolate

laboratory-determined trait values to natural environments. The extrapolation is based on the

30



831
832
833
834
835
836
837
838
839
840

841
842
843
844
845
846
847
848

849

850
851

852
853

854

855
856

optimality assumption that through natural selection only organisms whose physiological traits
are optimally adjusted according to the conditions of the ambient environment could survive and
reproduce in continual competition for resources (Smith et al., 2011). By building optimization-
based models of acclimation, we can constrain the plasticity of microbial parameters as a
function of environmental conditions (fig 9). The optimization models focus on two functional
traits and assume that the two traits are determined by the allocation of limited cellular resources,
such as proteins, ribosomes, and other macromolecules. Allocating more resources to one trait
limits the resources available to the other trait, leading to the trade-off between the two traits.
These models have been built for the kinetics of nutrient uptake and microbial catabolism, and

the thermodynamic efficiency of microbial metabolism.

4.4.1. Nutrient uptake

Pahlow (2005) and Smith and Yamanaka (2007) developed a model of optimal nutrient
uptake. In their model, nutrient uptake flux Jx is maximized by taking nutrient affinity and
maximum uptake flux as control variables. Nutrient affinity defines the slope at which uptake
fluxes increase with very low nutrient concentrations, and maximum uptake flux defines the flux
where nutrient concentrations are very large. According to their results (Smith et al., 2015), by
acclimating to nutrient concentration Cx in the ambient environment, microbes change their

Michaelis constant Kn . of nutrient uptake according to

(48)

Here Jmax,x and amax N are the potential maximum values of maximum uptake flux and nutrient

affinity, respectively.

From the acclimation-dependent Michaelis constant K s, nutrient uptake flux Jx can be

calculated from the Michaelis-Menten equation, i.e.,

CN

Jy=J ———.
N max,N CN + KN’a

(49)

By assuming that biomass synthesis rate is determined by nutrient uptake flux, we can calculate

specific growth rate according to equation 11, that is
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p=Yo Iy —ky. (50)
Figure 10 applies the optimal nutrient uptake model (eq 48 to 50) to nitrate consumption by

phytoplankton, and shows how the Michaelis constant, nitrate uptake flux, and specific growth

rate vary with nitrate concentration in the ambient environment.

The optimal uptake model (eq 48 to 50) is most effective in environments with low
nutrient concentrations. This limitation arises from the assumption that nutrient uptake is the
rate-determining step. While this assumption is generally valid when nutrient concentrations are
close to 0, the rate-determining steps of microbial metabolisms are not fixed, but shift to other

enzymes in environments with relatively large nutrient concentrations (Jin et al., 2022).

4.4.2. Catabolic reaction

Wu et al. (2022) constructed an acclimation model for microbial catabolism limited by a
single energy substrate. Their model assumes that catabolic rates are limited by substrate uptake
at very low substrate concentrations and by a different reaction at very high concentrations. Their
model further assumes that microbes maximize their catabolic rates by optimizing the partition

of cellular resources between the two rate-determining steps.

The model of Wu et al. (2022) relates the kinetic parameters of a microbe in natural
environments to the parameter values of laboratory cultures. Specifically, the half-saturation
constant Kwv.. of natural microbes depends on the half-saturation constant Km,, of laboratory

cultures according to

KM,a = \/E.KM,O' (51)
Here £ is the ratio of substrate concentration Cs in the environment to the concentration Cs in

laboratory bioreactors,

f= o (52)
- CS,O '
The rate constant &, of natural microbes is
C. +K
k, =k, ———==, (53)
CS,o + KM,a

where £k, is the rate constant of laboratory cultures.
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Wu et al. (2022) applied the model and explored how ambient acetate concentrations may
affect the kinetic parameters of acetoclastic methanogenesis. According to their results,
compared to those of laboratory cultures, the rate constants and the half-saturation constants of
methanogens acclimating to the environment of a few uM acetate can be one order of magnitude
smaller (fig 11A and B). These results help explain the dominance of Methanosaeta over
Methanosarcina at <0.1 mM acetate. Without acclimation, the methanogenesis rates of
Methanosarcina, calculated with the Monod equation, would stay close to those of Methanosaeta
at <1 mM acetate (fig 11C). Accordingly, Methanosarcina and Methanosaeta would co-exist in
environments of <1 mM acetate, a prediction that contradicts field observations that
Methanosaeta dominates low-acetate environments. By accounting for acclimation,
Methanosaeta obtains larger methanogenesis rates at <0.1 mM acetate, which confers to

competitive advantage against Methanosarcina.

4.4.3. Metabolic efficiency

Wu et al. (2022) developed a model of maximum ATP flux to predict the thermodynamic
efficiency of microbial catabolism. This model maximizes the flux of ATP synthesis by trading-
off the rate against the ATP yield of catabolism. At a given available energy, increases in the
ATP yield raise the rate of ATP production, but lower the thermodynamic drive and hence the
catabolic rate, which in turn lowers the rate of ATP production. The optimal yield of ATP,
expressed in mol ATP synthesized per mol nutrient, varies with the energy AGa available in the

environment (see eq 36), and the variation can be approximated according to

Y,

bop = - AGY . (54)
For microbial reactions that have an average stoichiometric number of 2 per reaction, exponent £
is estimated at 1.1 and coefficient « is about 4.2x107% mol'!-J-!'! (fig 12A). From the optimized
ATP yield, we can calculate the optimal biomass yield Yx,op as the product of the ATP yield and

biomass yield per ATP,

Y

X,0op

=a-Y, AGL, (55)

where Yxp is the biomass yield per ATP, which is about 5 g-mol~! for anaerobic respiration (Jin,

2012).
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The maximum ATP flux model predicts that ATP and biomass yields increase with
available energy (fig 12A and B), which is consistent with the paradigm that where more energy
is available, more energy is conserved (Jin, 2012). The efficiency of microbial energy
conservation can be calculated as the percentage of saved energy per available energy (Roels,
1983). Where available energy is low, the thermodynamic efficiency is also small, close to 50%.
Increases in available energy raise the efficiency. For aerobic respiration, the efficiency can

reach ~85% (fig 12C).

The relationship between biomass yield and the available energy has been a long-
standing question in microbiology and biotechnology. Various methods have been proposed to
estimate biomass yield, including the ATP-based method (Kleerebezem and Van Loosdrecht,
2010), Gibbs energy dissipation method (Heijnen and Dijken, 1992), thermodynamic electron
equivalents model (McCarty, 2007), and Gibbs Energy Dynamic Yield Method (Smeaton and
Van Cappellen, 2018). Compared to these methods, the maximum ATP flux method accounts for
the tradeoff between the rate and yield of microbial catabolism, requires minimum information
about metabolic pathways, and provides a straightforward estimation directly from a commonly

analyzed chemical parameter — the energy available in the environment.
5. MOLECULAR BIOLOGY-ENABLED MODEL IMPROVEMENTS

Recent advancements in molecular biology have made available a wide range of low-cost
high-throughput cultivation-independent tools and techniques for studying natural microbes.
These tools have been applied to characterize and quantify various biological molecules, from
phylogenetic markers (or ribosomal rRNA genes), functional genes, and their products
(ribosomal RNA, mRNA transcripts, and proteins), to the complete sets of DNA (or genome),
mRNA, proteins, and metabolites in a microbial cell or population (i.e., genomics,
transcriptomics, proteomics, and metabolomics, respectively) and in a microbial community (i.e.,
meta-omics). Their applications informed the construction and applications of microbial kinetic
models, and inspired a multitude of novel strategies that integrate molecular data into the
simulation of microbial reactions, including functional gene-based modeling, pathway-specific

kinetic modeling, and genome-scale stoichiometric metabolic modeling (Storiko et al., 2021).
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5.1. Functional Gene-based Model

A functional gene is a portion of DNA that codes for a polypeptide chain or other gene
product. Functional genes in natural environments can be directly detected and quantified with
gene and metagenomic sequencing. The first functional gene-based model came from Reed et al.
(2014). They replaced functional groups with functional genes and built a model of nitrogen
cycling in the Arabian Sea oxygen minimum zone (OMZ) with eight functional genes, including
the ammonia monooxygenase gene and the hydrazine oxidoreductase gene. This approach links
microbes in silico to those in the environment, and makes possible model validation by

comparing gene abundances to field observations.

Using functional genes as surrogates for microbial functional groups builds on the
following considerations. First, microbes are grouped into functional groups according to their
metabolic reactions. Metabolic reactions are catalyzed with enzymes coded by functional genes.
Therefore, microbes can also be grouped according to their functional genes. Taking the
functional group of methanogens as an example, this group is conventionally constructed with
microbes capable of producing methane. Because all methanogens carry the methyl-coenzyme M
reductase (or mcr) gene, this group can also be represented with the mcr gene. Second, DNA is a
stable biomolecule and its nucleotide sequence does not change significantly in response to
short-term external environmental changes. By linking gene productions to catabolic reactions
and by applying the principle of mass balance, the net rate of gene production can be calculated

on the basis of concentration balance principle according to

1 dC 17
C_TG =Ve¥os
¢ at Co

—kpg - (56)
where Cg is the gene copy number per kg water, Ygs is the yield of gene copy number per
energy substrate S, and kp G is the specific rate of gene decay. Combining equation 37 with 56
gives the framework of the functional gene-based model that replaces biomass concentration Cx

with functional gene concentration Cg as a state variable.

Louca et al. (2016) expanded the functional gene approach by numerically tracking the
concentrations of mRNA and enzymes, and simulated microbial reactions associated with the
cycling of nitrogen and sulfur in an oceanic oxygen minimum zone. They expressed the

production rates of mRNAs and enzymes in terms of the rates of catabolic reactions, and
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968  simulated the concentrations of the two macromolecules on the basis of concentration balance.
969 By doing so, their modeling framework integrates metagenomic, metatranscriptomic and

970  metaproteomic datasets into the simulation.

971 The functional gene approach uses a single gene to represent microbes, and hence

972  requires that a gene be unequivocally associated with only one chemical reaction. This

973  requirement is problematic. First, functional genes may be involved in more than one reaction.
974  For example, the dissimilatory sulfite reductase gene (dsr) has been applied as a diagnostic tool
975  for microbial sulfate reduction, but this gene also participates in microbial sulfur oxidation

976  (Ghosh and Dam, 2009). Likewise, the mcr gene is required for both methanogenesis and

977  anaerobic methane oxidation. In these cases, the functional-gene approach is best applied to
978  environments where biogeochemical cycling is truncated. For example, where methanogens are

979  producing methane, anaerobic methane oxidation is negligible.

980 Second, more than one gene is required to describe microbial respiration. A typical

981 example would be methanogenesis. By using the mcr gene alone, we would not be able to

982  simulate hydrogenotrophic and acetoclastic methanogenesis at the same time. We would also fail
983  in accounting for the competition between Methanosarcina and Methanosaeta, the two genera
984  capable of acetoclastic methanogenesis. Therefore, the functional-gene approach is best applied
985  to environments where microbial respiration of an electron acceptor is powered primarily by a

986  single electron donor and driven by a single functional group.

987 Finally, the functional gene approach is not applicable to the fermentation of organic

988  matter to Ho, short-chain fatty acids, alcohols, and other simple organic compounds,

989  dissimilatory reduction of ferric iron, or other microbial processes, whose functional genes have
990 yet to be identified. To simulate organic matter degradation to carbon dioxide and methane with
991 the functional gene approach, previous studies combined organic matter fermentation with the
992  respiration of sulfate and other electron acceptors into single reactions, and simulated the

993  progress of the reactions on the basis of the functional genes of respiration pathways (Louca et
994  al., 2016; Reed et al., 2014). While this approach of lumping together organic matter

995  fermentation and respiration is popular among many biogeochemists, it assumes that the rates of
996  organic matter degradation are limited by the reduction of electron acceptors, which contradicts

997 the consensus that organic matter degradation is limited by the step of organic matter hydrolysis
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or fermentation (Wu et al., 2021). To avoid this assumption, we propose to simulate organic
matter degradation to inorganic carbon by combining the trait-based framework for organic

matter fermentation with the functional gene framework for respiration.

5.2. Metabolic Models

Metabolic models are mathematical representations of individual biochemical pathways
or at genome scale the entire metabolic pathways of organisms (Dahal et al., 2020; Embree et al.,
2015). They are commonly simulated with stoichiometric and kinetic methods. Stoichiometric
modeling searches for the chemical fluxes through metabolic networks on the basis of the mass
balance principle and the optimality principle. Kinetic modeling traces the progress of individual
biochemical reactions within a metabolic network and therefore network fluxes by combining the

principle of mass balance with enzyme kinetics.

5.2.1. Genome-scale stoichiometric model
Genome-scale stoichiometric metabolic models are built by applying the mass balance
principle to metabolic fluxes. For a metabolic network of m number of reactions and #» number of

metabolites, its metabolic fluxes are related to the rates of biochemical reactions according to
J=SR, (57)

where J is a column vector of size n, its element J; is the flux of metabolite, net rate at which
metabolite A; is produced (or consumed, if negative) per unit biomass, R is a vector of size m, its
element 7; is the rate of biochemical reaction j per unit biomass, S is a stoichiometric matrix of
size mxn, its element Sj; 1s the stoichiometric coefficient of A; in the reaction of enzyme j, and
can be constructed from genomic information and related literature data (Orth et al., 2010). To
link the metabolic network to biomass synthesis, a hypothetical reaction is included in the
network to describe the production of one gram of biomass dry weight from a stoichiometric

combination of nucleic acids, proteins, carbohydrates, and other macromolecules.

Stoichiometric modeling solves rate vector R by assuming that microbial metabolism is
at steady state. Under this assumption, metabolic fluxes, except those of nutrient uptake, waste
product excretion, and biomass synthesis, stay at zero. Because there are more metabolites
(hence metabolite fluxes) than there are reactions (i.e., m < n), the solution for the rate vector is

underdetermined.
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A common approach to uniquely determine the vector R is flux balance analysis (FBA)
(Feist and Palsson, 2008; Heirendt et al., 2019). FBA formulates the underdetermined vector R
as an optimization problem by imposing an objective upon metabolic networks, and by
accounting for maximum and minimum values on metabolite fluxes J and enzyme rates R. An
example objective is to maximize one of the biochemical reactions — the hypothetical biomass
synthesis reaction (Price et al., 2004; Schuetz et al., 2007; Schuster et al., 2008). FBA solves the
rate vector R that meets the objective by using linear programming (or linear optimization).
Because FBA uses nutrient uptake fluxes as input, and predicts the fluxes of waste product
excretion and the rates of growth, it is essentially a yield coefficient estimator, or stoichiometric

coefficient estimator (Senger et al., 2014).

Stoichiometric metabolic modeling enables a direct integration of high-throughput
genomic data into microbial reaction modeling, and offers a powerful tool for exploring
microbial metabolism at the system level and in unprecedented detail (Henry et al., 2010). For
example, stoichiometric metabolic models have been combined with the enzyme kinetics of
nutrient uptake to predict microbial chemical fluxes (Mahadevan et al., 2002). The parameters
for substrate uptake are assigned either by fitting the simulation outcome to laboratory
observations (Scheibe et al., 2009b), or by directly using the values determined for relevant
enzymes (Zhuang et al., 2010). Scheibe et al. (2009b) applied this approach to the genome-scale
metabolic model of Geobacter sulfurreducens, and simulated the progress of uranium
bioremediation in an aquifer. Their predictions had to be scaled down by a factor of 10 in order
to be applicable to the environment (Fang et al., 2011; Scheibe et al., 2009a). This ad hoc
adjustment likely reflects the high sensitivity of the modeling results to the kinetic parameters of
enzymes (Klier, 2012). As an alternative, the flux of nutrient uptake can be calculated according

to the Monod equation (Shapiro et al., 2018).

Stoichiometric metabolic modeling has also being applied to solve the stoichiometric
equations of metabolic reactions. Shapiro et al. (2018) updated the genome-scale metabolic
model of M. barkeri, performed FBA, and determined the stoichiometric equation for the

biomass synthesis of M. barkeri growing on acetate and ammonium:

1.73CH,COO" +0.95NH; +0.08HHPO>" +0.05C,H,NO,S + 0.88H"

(58)
— X +0.08CO, +0.02CH,SH+2.39H,0.
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Here X represents the biomass with a chemical formula of Cs 52Hs.4201.33NP0.08S0.03, and was
determined from the macromolecules composition of M. barkeri biomass. Compared to the
generic equation for biomass synthesis (eq 5), equation 58 improves the accuracy and expands
the capability of the kinetic model of M. barkeri. Specifically, equation 58 captures cysteine
(C3H7NO2S) as an essential nutrient and methanethiol (CH3SH) as an unconventional metabolic
product of M. barkeri metabolism. Also, this equation predicts that the biomass synthesis of M.
barkeri requires that acetate and ammonium are supplied a flux ratio of 1.8, smaller than the ratio
of 2.5 given by the generic equation of biomass synthesis. These results have been applied to
assess the extent of nitrogen limitation on the metabolisms of aquifer methanogens (Shapiro et

al., 2018).

The limitations of stoichiometric metabolic modeling have been discussed previously,
including the incomplete knowledge of genome sequences and the lack of a unified standard in
model construction (Bernstein et al., 2021; Ebrahim et al., 2015; Ravikrishnan and Raman, 2015).
In applying stoichiometric metabolic modeling to natural environments, we should also note that
most models are validated against laboratory observations, which bear limited relevance to
natural environments. In addition, while the objective of maximizing growth yield has worked
well in laboratory bioreactors, this objective may not reflect the strategies employed by microbes

in natural environments.

5.2.2. Pathway-specific kinetic model

Kinetic metabolic models are constructed by combining the principle of mass balance
with the rate equations of biochemical reactions. A kinetic metabolic model consists of (1) a
matrix equation that describes the mass balance of metabolites (eq 57), (2) a set of equations that
relate the rates of biochemical reactions to enzyme turnover, saturation, allosteric regulation, and

reaction thermodynamics,

ri = A Cgj, Cwmi, ki, K, ...), (59)
and (3) the initial state of the metabolic system (i.e., metabolite and enzyme concentrations at
time 0) (Saa and Nielsen, 2017). Here C;, 1s the concentration of enzyme j expressed in terms of
cell volume, Cyij 1s the cellular concentration of metabolite 1, and 4; and K represent the kinetic
and thermodynamic parameters of the biochemical reaction catalyzed by enzyme j, respectively.

Parameter k; and K can be sourced from online databases, borrowed from homologous enzymes
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from other organisms, estimated with optimization, or by fitting to metabolomics and fluxomic
datasets (Foster et al., 2021). Kinetic metabolic models are solved numerically from a given
initial state by integrating metabolic fluxes forward over time. Their results describe the temporal

variation in metabolite concentrations and reaction fluxes.

Constructing kinetic metabolic models requires kinetic parameters of biochemical
reactions and regulatory metabolic interactions, which are not available for most enzymes of
biomass synthesis. As a result, previous efforts have focused primarily on catabolic pathways,
including those of geochemical significance. Example models include the acetate consumption
model by Geobacter sulfurreducens (King et al., 2009), nitrate reduction model (Li et al., 2017),
dissimilatory sulfate reduction model (Wing and Halevy, 2014), and the models of
hydrogenotrophic, acetoclastic, and methylotrophic methanogenesis (Gropp et al., 2022; Jin et al.,

2022; Peterson et al., 2014; Rhim and Ono, 2022). Some example model applications include:

e Metabolic kinetic models are applied as plug-in modules to compute microbial reaction rates
in biogeochemical reaction models and reactive transport models (King et al., 2009).
Metabolic kinetic models predict how metabolite concentrations and biochemical reaction
rates vary with time, which can be applied to compute the overall rates of metabolic reactions
and how the rates respond to changes in environmental conditions.

¢ Kinetic metabolic modeling is applied to estimate the rate constant, the half-saturation
constant, and other microbial parameters (Jin et al., 2022). Kinetic metabolic models predict
microbial reaction rates from enzyme kinetic and thermodynamic parameters, without the
need for trait parameters or the properties of overall metabolic reactions. These models can
be applied to estimate the kinetic parameters of microbial catabolism.

¢ Kinetic metabolic modeling is applied to understand the mechanistic underpinning of
microbial physiology (Jin et al., 2022). By tracking chemical fluxes through metabolic
reactions and their responses to environmental conditions, kinetic metabolic modeling
simulate physiological properties as emergent properties from underlying biochemical
reactions and their interactions.

¢ In addition, kinetic metabolic modeling is applied to decipher isotope fractionations
associated with microbial metabolisms and how the fractionations depend on environmental

and microbiological factors (Gropp et al., 2022; Wing and Halevy, 2014).
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These examples illustrate the potential of kinetic metabolic models in improving the modeling of
microorganisms by moving trait-based models beyond the coarse-grained level description of

metabolic reactions.
6. CHALLENGES AND LIMITATIONS

The application of trait-based microbial models to natural environments requires the
abstraction, simplification, and idealization of microbial communities and their metabolisms,
which inevitably introduces biases and limitations. Acknowledging these biases and limitations
is critical for a comprehensive understanding of the boundaries and uncertainties associated with
model outcomes. It enables us to make informed interpretations and decisions based on
simulation results. For example, these biases and limitations must be considered during model
construction and application, particularly when evaluating whether the trait-based modeling
framework addresses the questions and issues of interest and, if so, whether our current
knowledge and available data are adequate for building quality trait-based models. Also, in
interpreting and applying simulation results, the model biases and limitations provide a baseline
and help ensure that our efforts align with both model assumptions and underlying biological

principles.
6.1. Model Features and Limitations

Trait-based kinetic models adopt two simplifications to simulate the metabolisms of
microbial communities. One simplification is the treatment of microbial communities as
ensembles of microbial functional groups, and the separation of functional groups to actively
growing and dormant subgroups (figs 1 to 3). This simplification gives rise to two model features.
First, trait-based models are unstructured in that they do not account for the internal state of
microbial cells (i.e., cellular chemical composition and physical structure) or their variation with
the microbial life cycle (Esener et al., 1983; Simsek and Kim, 2018). By assuming that the
internal state remains fixed, we also assume that microbial metabolism is at steady state, and
microbial growth is balanced — the growth of cellular components occurs at the same rate per
unit biomass. In addition, balanced growth implies that microbial growth is exponential (Koch,
1993; Painter and Marr, 1968); the steady state assumption dictates that the rates of biomass

production and cell number increase converge (Fishov et al., 1995).
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Second, trait-based models are unsegregated because we assume that individual cells
within a group (or subgroup) share the same functional traits (Campbell, 1957; Oldewurtel et al.,
2021). Trait-based models do not consider morphological traits or cellular chemical composition.
In this way, trait-based models simulate the changes in population sizes of functional groups and

subgroups, not the development and reproduction of individual cells.

The other simplification is the description of microbial metabolism at the coarse-grained
level with three reactions — catabolic reaction, biomass synthesis, and maintenance (figs 1 and 2).
This simplification leads to an underappreciated feature of trait-based models — they are
mechanistic in nature, as they account for the fluxes of mass and energy through microbial
biomass (figs 2 and 3). First, the fluxes of a chemical compound is described by the ODEs for
concentration conservation, and by accounting for the rates of metabolic reactions. The
contributions of the metabolic reactions to the overall flux depend on the coupling between
catabolism and anabolism, or the efficiency of microbial metabolism. Second, the rates of the
metabolic reactions are constrained by the principle of energy balance (eqs 1, 41, and 42). This
principle ensures that the rates of these reactions are consistent with the overall energy

requirements and ATP production within the microbial system.

The two simplifications have important implications in model development and
application. First, a major criticism towards using functional groups (or subgroups) as a basic
unit of biology is the elusive relationship between functional groups in silico and microbes in
natural environments. Natural microbes have been analyzed with both culture-dependent and
independent approaches. Culture-dependent approaches, such as the most probable number
(MPN) method, select microbes on the basis of nutrient requirement, and therefore provide a
potential quantification of functional groups. However, the MPN method is strongly biased, and
tends to underestimate cell abundances by orders of magnitude (Vester and Ingvorsen, 1998;
Woomer, 1994). Culture-independent methods include the molecular biology tools based on
marker genes or functional genes. While marker genes, such as 16S rRNA for prokaryotes, are
highly conservative and thus provide a faithful description of microbial phylogeny, their link to
microbial functional traits is not necessarily unique or conclusive, due to the widespread
redundancy of metabolic functions in microbial communities (Louca et al., 2018b). On the other

hand, the functional gene-based tools directly target at the metabolic potentials of microbial
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communities, and therefore have been applied to probe the functional diversity of microbial
communities. However, the relationship between functional genes and microbial functional
groups may not be unique or unequivocal (see 5.1. Functional gene-based model), and the
quantitative relationship between cell counts and gene copy numbers (or the abundances of gene
products) remains unclear (Louca et al., 2018a; Morton et al., 2019). Because of the disconnect
between functional group and natural microbes, the biomass concentration of functional group
should be treated as a pseudo-variable. The disconnect also questions the application of the trait-
based framework to the simulation of the sizes of microbial populations. Moreover, trait-based
models cannot be independently validated, and simulation results cannot be verified by

experimentally analyzing the abundances of natural microbes.

Second, the separation of microbial biomass into two types, actively growing and
dormant, is not sufficient to accurately reproduce the different phases of microbial growth (fig 3).
Trait-based models track the size of actively growing biomass from the rate difference between
biomass synthesis and decay. Depending on the relative rates of the two processes, growth is at
the exponential, stationary, or death phase. Missing from the model outcome is the lag phase, a
period before the onset of exponential growth where microbes adjust to new environmental
conditions (Bertrand and Margolin, 2019). To simulate the lag phase, rate expressions must be
amended. Nonetheless, due to their unstructured nature, trait-based models overlook the dramatic
physiological and metabolic differences among the various growth phases (Bergkessel et al.,
2016; Jaishankar and Srivastava, 2017). This simplified perspective on growth phases limits the
applicability of trait-based models, especially in surface or near-surface natural systems, where
microbial growth frequently shifts between different growth phases in response to temporal

variations in nutrient supplies and other growth conditions.

Finally, model revisions are required to simulate co-metabolism, detoxification, and other
metabolic processes of biogeochemical significance. Co-metabolism transforms chemical
compounds without supporting microbial growth (Nzila, 2013). It takes place because many
enzymes and cofactors are promiscuous. For example, cytochromes found in sulfate-reducing
and iron-reducing microbes can reduce soluble hexavalent uranium U(V]) to insoluble
tetravalent uranium U(IV), such as uraninite (Majumder and Wall, 2017). Methane-mono-

oxygenase (MMO) from methanotrophs oxidizes not only its natural substate — methane — but
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also >300 different organic compounds (Nzila, 2013). Detoxification refers to microbial
transformation of toxic chemicals to nontoxic or inert forms. Organic pollutants can be degraded
to CO; and other harmless compounds. Metals and metalloids, such as mercury and arsenic, can
be detoxified via redox reactions and methylation (Maguffin et al., 2015; Yan et al., 2019).
Simulating these processes requires additional functions that relate process rates to the kinetics

of catabolism, biomass synthesis, or maintenance.

6.2. Limited Knowledge of Microbial Kinetics

Biogeochemical modelers face a significant and often overlooked dilemma in their
pursuit of accurately reproducing experimental observations or forecasting future
biogeochemical changes. This dilemma stems from the inherent inadequacy of microbial kinetic
theory in precisely describing microbial metabolic rates. Microbial rate laws, such as the Monod
equation, only provide approximations, not accurate descriptions, of the relationship between
microbial rates and their controlling factors. Microbial kinetics draws inspiration from chemical
kinetics and adopted its basic tools, including rate laws. While rate laws have proven effective in
describing abiotic chemical reactions and catalysts, their application to microbial metabolisms

falls short due to the gap between microbial rate laws and metabolic mechanisms.

Numerous studies have highlighted the discrepancy between the predictions of microbial
rate laws and the experimental observations of microbial kinetics (Panikov, 1995). These
observations are not surprising — microbial rate laws appear too simplistic to fully capture the
complexity inherent in microbial metabolism. Most microbial rate laws follow the same structure
as rate laws for abiotic chemical reactions, characterized by single-term analytical expressions
with a limited number of parameters. In comparison, microbes employ intricate networks
consisting of tens to hundreds of enzymes to drive catabolism and biomass synthesis, while also
regulating the expression and activities of these enzymes according to ambient environmental

conditions.

The dilemma of microbial kinetic modeling has been addressed through the use of kinetic
metabolic modeling. Jin et al. (2022) simulated the growth of Methanosarcina barkeri in
laboratory bioreactors, specifically focusing on the limitation imposed by methanol. They found
that the growth rate of M. barkeri is determined by two different enzymes at methanol

concentrations near 0 and >10 mM, respectively. At intermediate concentrations, all enzymes in
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the methanogenesis network contribute to controlling the growth rate, albeit to varying extents.
However, the Monod equation only incorporates two parameters, gmax and Km (or the ratio of
Umax to Knm). These parameters account for the rate-determining enzymes at very high and very
low methanol concentrations. No additional parameter is available to account for the contribution
from the remaining enzymes in the methanogenesis network. In essence, microbial rate laws do
not sufficiently account for how microbial reaction rates are controlled by enzymes. For this
reason, classical rate laws fail in accurately reproducing the relationship between microbial rates
and various controlling factors. In the case of methanol methanogenesis, the application of the

Monod equation leads to a relative error of up to 42% in rate predictions.

The gap between rate law and metabolism is also supported by the debate about which
law, the multiplicative rate law or Liebig’s law of the minimum (i.e., eq 30 or 31, respectively),
provides a better description of microbial respiration. In practice, respiration rates have been
widely predicted with the dual-Monod equation (eq 30). However, the two rate laws might
reflect the different catalytic mechanisms of respiration reactions. Figure 13A shows a model of
a hypothetical respiration reaction: an electron donor and acceptor are taken up from the
environment into the cytoplasm, where the electron transfer between them is catalyzed by a
redox enzyme. If the electron-transfer step is the rate determining step, respiration rate depends
on the ambient concentrations of electron donors and acceptors at the same time. As a result,
respiration rate follows the dual-Monod equation (Jin and Bethke, 2002). On the other hand, if
the rate-determining step is the uptake of the electron donor or acceptor, respiration rate would

follow Liebig’s law of the minimum.

Likewise, we are still arguing about the applications of the multiplicative rate law and
Liebig’s law of the minimum to biomass synthesis (Bader, 1978; Droop, 1974; Egli, 2013; Zinn
et al., 2004). The two rate laws ultimately converge to the Monod equation (eq 14) where
microbial metabolism is limited by an energy source. Under this condition, biomass synthesis
rate increases linearly with catabolic rate (eq 16), the slope of the increase corresponds to the
maximum biomass yield per unit of energy substrate, and catabolism and biomass synthesis are

considered as being tightly coupled (Russell and Cook, 1995).

Where biomass synthesis is limited not only by energy sources, but also by one or more

element sources, the multiplicative rate law and Liebig’s law of the minimum make contrasting
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predictions. For example, where the limitation by nitrogen (or phosphorus) sources is more
pronounced than the limitation by energy substrates, Liebig’s law of the minimum predicts that
biomass synthesis rate is solely determined by the availability of nitrogen sources, and biomass
synthesis becomes decoupled from catabolism. This prediction is consistent with laboratory
observations that where ammonium or phosphate is limiting, the biomass synthesis by M. barkeri
is decoupled from methanogenesis (Archer, 1985; Kenealy et al., 1982). In comparison, the
multiplicative Monod equation predicts that biomass synthesis remains coupled to catabolism,
but at a decreased efficiency — the slope of the increase in growth rate with catabolic rate is the
product of the biomass yield per unit of energy substrate and the nutrient factor, i.e., Yx/s-F.
Similar to respiration, biomass synthesis may follow the multiplicative rate law, Liebig’s law of
the minimum, or other rate expressions, depending on the configuration of metabolic networks

and the position of rate-determining steps (fig 13B).

Perhaps, the worst case is the calculation of biomass maintenance rates. While biomass
maintenance has long been recognized as a critical factor for slow microbial growth (Pirt, 1965),
we are still arguing about the definition of maintenance metabolism and its physiological
contributors (Hoehler and Jorgensen, 2013; Kempes et al., 2017; Lahtvee et al., 2014; Wang and
Post, 2012). Furthermore, despite the mounting evidence on the variations of specific
maintenance rate kv with pH, temperature, growth rate, and other environmental and
physiological factors (Biselli et al., 2020; Price and Sowers, 2004; van Bodegom, 2007), most of

us continue to treat this parameter as a constant.

The incomplete understanding of microbial kinetics becomes more evident when
considering the demand for microbial parameters in constructing trait-based models compared to
their limited availability. Microbial kinetic parameters can be determined through laboratory
incubation experiments (Kovarova-Kovar and Egli, 1998). By incubating laboratory cultures of
known density, we can determine the maximum rate or uptake affinity from catabolic rates at
relatively large or low nutrient concentrations, respectively. Determining the half-saturation
constant may require incubations across a range of nutrient concentrations (Owens and Legan,
1987). Alternatively, multiple parameter values can also be obtained simultaneously by fitting
microbial activity measurements, such as the concentrations of nutrients, metabolites, biomarkers,

and biomass over time. This method is limited by parameter identifiability and uncertainty. In
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essence, only combinations of parameters, not individual parameters, can be uniquely estimated
(Holmberg, 1982; Petersen et al., 2003). Moreover, the monitoring of chemical and microbial
variables often occurs with different frequencies and levels of accuracy, further contributing to

parameter uncertainty.

As of today, experimental analyses of microbial kinetics have largely focused on
common laboratory cultures and the parameters related to their exponential growth, such as rate
constants, half-saturation constants, and biomass yields. This emphasis on laboratory cultures is
an inevitable outcome of the ‘great plate count anomaly’, which postulates that the number of
bacterial cells that can be cultivated under laboratory conditions represents <1% of the number of
bacterial cells in an environmental sample (Pande and Kost, 2017; Staley and Konopka, 1985).
The preference for studying exponential growth parameters is largely due to the inconvenience
associated with investigating slow or non-growing microbial populations. While parameters
related to exponential growth define the competitive fitness of microbes, the parameters of
biomass decay, such as those related to cell lysis and biomass maintenance, are essential in
forecasting the occurrence and fate of microbes in natural environments. In practice, the
assignment of microbial parameters with no or little experimental support is often done on an ad
hoc basis. Although this practice may align simulation results with experimental observations or
empirical expectations, it is analogous to driving a brand-new car with a leaking tire — reports
can be drafted, but confidence in reaching the intended goal may be jeopardized. The disparity
between rate laws and metabolism, coupled with the limited availability of microbial parameters,
poses significant challenges in trait-based microbial modeling, from model construction and
sensitivity analysis to deployment, result interpretation, and application. Advancements in
experimental approaches and a more comprehensive understanding of microbial kinetics are
crucial for overcoming these limitations and improving the applicability of trait-based microbial

models.

6.3. Internal Consistency of Microbial Parameters

Modeling microbial metabolisms in natural environments requires a set of internally
consistent values of trait parameters. Internal consistency means that all the parameter values of
functional groups agree with each other according to the same set of physical, chemical, and

biological principles. The requirement of internal consistency has been widely appreciated in
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building thermodynamic databases and geochemical modeling (Helgeson, 1978; Nordstrom et al.,
2014). Applying inconsistent parameter datasets is akin to building a house on sand. Without
internal consistency, microbial parameter datasets overlook the potential relationships between
microbial parameters and the assumptions imbedded in microbial kinetic models, introduce

errors in simulation results, and limit our confidence in model applications.

Microbial parameters measure the kinetic and stoichiometric traits of a functional group
and reflect how microbes adapt and acclimate to the ambient environment under the constraints
of physical, chemical, and biological principles. To align with the underlying mechanisms of
microbial metabolisms, the values of these parameters should be obtained from microorganisms
of same metabolic and regulatory pathways, similar culturing history, and with experiments
under the same set of physiochemical conditions. However, rarely did a single experimental
study determine a complete set of microbial parameters at the growth conditions of interest.
Instead, trait parameters have been determined with different experimental setups (e.g., batch,
fed-batch, and chemostat reactors), different growth media (e.g., chemically defined media made
from chemical compounds of know composition and complex media prepared with organic
compounds of unknown composition), and with microbes at different physiological states (i.e.,
resting vs growing) at different pH, temperature, and other physicochemical conditions. In
addition, parameter values have also been obtained by fitting simulation results to experimental
observations, and by applying ad hoc assumptions and estimating theoretically. By pooling
parameter values from heterogenous sources, we introduce inconsistency into microbial

parameter datasets.

Previous experimental studies have uncovered a series of relationships between microbial
parameters, which provide a strong support for the requirement of internal consistency in

microbial parameter sets. Some example relationships include:

e Rate constants correlate positively with half-saturation constants (Litchman et al., 2015).
Alternatively, rate constants correlate negatively with substrate affinities, the ratios of rate
constants to the half-saturation constants. These relationships have been accounted for by
physiological acclimation to different nutrient concentrations.

e Where more energy is available in the environment, more energy is conserved as ATP, and

more biomass is synthesized (Jin, 2012). The increase in ATP yield with increasing available
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energy is supported by the ATP yields of aerobic respiration, microbial ferric mineral
reduction, sulfate reduction, and methanogenesis. In addition, the pathways of biomass
synthesis in different microbes shares similar efficiency, i.e., similar biomass yields per ATP
(Stouthamer and Van Verseveld, 1985). Therefore, where more ATPs are synthesized, more
biomass is produced.

e Specific maintenance rate kv increases with increasing specific growth rate u. Experimental
observations support that specific maintenance rate is not a constant, but varies with specific
rate of biomass synthesis (Neijssel and Tempest, 1976). These observations are further
supported by the positive correlations between specific maintenance rate and maximum

specific growth rate umax (van Bodegom, 2007).

On the basis of the common practice in geochemical modeling, a quality microbial
parameter set should reflect the current state of knowledge, and account for all available
information about the metabolism of interest. Parameter values in such a dataset should be
internally consistent, and accurate over relevant physiochemical conditions. To meet these
requirements, the following quality criteria should be considered in building microbial parameter

sets:

e All the data of a functional group is derived from clearly defined reference conditions,
including pH, temperature, pressure, ionic strength, nutrient concentrations, and with a single
group of physiological constants. These physiological constants include cell size and shape,
biomass chemical formula and molecular weight, the phosphorylation potential, the weight
percentage of protein in cell dry weight, and cell dry weight per wet weight.

e To determine the value of a parameter, all relevant original experimental results and
knowledge-based information are compiled and considered simultaneously. Conflicts and
inconsistencies are documented and resolved.

e Appropriate mathematical functions (e.g., section 4.2) are applied to reflect microbial
acclimation to ambient environment and to relate the data at the reference state to the state of
different physicochemical conditions.

e All the data is compatible with basic principles of metabolism and physiology.

e Any inconsistency should be documented and minimized to the extent possible.
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These criteria help ensure the reliability and accuracy of parameter values and represent a first
step towards building internally-consistent dataset of microbial kinetics. They should be adopted
in constructing microbial kinetic models, a critical step towards improving the environmental

applications of microbial kinetic modeling.
7. CONCLUDING COMMENTS

Trait-based microbial reaction modeling simulates the kinetics of chemical reactions
catalyzed by microbial metabolisms by treating microbes as autocatalysts. It builds on the
modeling framework for abiotic reacting mixtures (Bebernes and Eberly, 2013; Bethke, 2022;
Higham, 2008), and adopts two assumptions on microbial communities and metabolisms,
including simplifying microbial communities as ensembles of functional groups (or subgroups)
and describing metabolisms at the coarse-grained level with three metabolic reactions — catabolic
reaction, biomass synthesis, and maintenance. Trait-based kinetic models are mechanistic in that
they implicitly link the three metabolic reactions via ATP production and consumption (eqgs 1, 41,
and 42), and explicitly account for chemical fluxes driven by both catabolism and biomass
synthesis. Trait-based models use microbial functional groups as the basic units of
microorganisms, and hence are unstructured and unsegregated — they neglect the internal state of
microbial cells and assume that cells within a functional group are the same in terms of their
metabolism and functional traits. The focus on the three metabolic reactions balances the
complexity inherent to microbial metabolism and the efficacy in capturing essential metabolic
features. The application of functional groups is supported by the consensus that functional
diversity, not phylogenetic or taxonomic diversity, serves as a mechanistic link between
microbes and biogeochemical processes (Crowther et al., 2019; McGill et al., 2006). However,
biomass concentrations of functional groups should be treated as pseudo-variables because of the
gap between functional groups in trait-based models and microbial communities in the
environment. Due to metabolic diversity of individual microbes and metabolic redundancy in
most microbial communities, microbial groups defined solely with metabolic reactions may not
be directly linked to microbial cells in natural environments. This gap has significantly hindered
the validation and application of microbial kinetic models. Potential improvements, such as
replacing functional groups with functional genes or gene products, have appeared from the

recent application of molecular biology tools (Louca et al., 2016; Reed et al., 2014).
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Building trait-based models requires stoichiometric equations of metabolic reactions.
These equations are relatively straightforward to construct for catabolic reactions, provided that
energy sources and reaction products have been determined. Writing the equations for biomass
synthesis can be challenging, especially where neither nutrient nor the elemental composition of
biomass has been analyzed. In these situations, current solutions include the application of
generical chemical formulars for biomass and the assumption that microbes use common carbon
and nitrogen sources in the environment of interest. Recently, the stoichiometric equation of
biomass synthesis has also been solved with genome-scale metabolic models. Example
applications show that in addition to improve the accuracy of reaction stoichiometry, genome-
scale metabolic modeling also expands the capabilities of trait-based models by uncovering

essential nutrients and unconventional metabolic products (Wu et al., 2022).

Building trait-based models for environmental applications requires the account of
environmental conditions in microbial rate laws. Most microbial rate laws were originally
developed for laboratory applications and fall into three types, depending on metabolic
mechanisms. The first type is the rate laws for cell-controlled metabolic reactions that directly
consume nutrients dissolved in solution, and the most popular example is the Monod equation
(Monod, 1942, 1949). The second type are the rate laws, such as the Contois equation
(Bhattacharya and Khai, 1987), for surface-controlled metabolic reactions, including microbial
oxidation of particulate organic matter and reduction of ferric minerals. The Best equation
represents the third type that applies to mass transfer-controlled metabolic reactions, where
metabolic reactions require the dissolution of solids or NAPLs (Bosma et al., 1997). While the
Monod equation treats nutrient concentrations as the sole determinant of specific growth rates,
the Contois equation and the Best equation relate specific growth rates to the concentration ratios
of nutrient to biomass. Despite the many rate laws currently available for laboratory cultures, our
knowledge of microbial kinetics still remains far from complete — these rate laws only provide
approximations, not accurate descriptions of microbial reaction rates (Jin et al., 2022). In
addition, where more than one nutrient limits microbial metabolism, which rate law, the
multiplicate law, Liebig’s law of the minimum, or some other expressions, should we apply still

remains an open question.
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Applying trait-based modeling frameworks developed for laboratory cultures to natural
environments requires modifications that consider both microbial physiology and growth
conditions in the environment. Growth conditions, such as temperature, pH, and water activity,
are accommodated by amending microbial rate laws with dimensionless factors. Modifications
related to microbial physiology involves subdividing functional groups into subgroups to
encompass actively growing and dormant cells, and explicitly considering biomass maintenance,
cell death and lysis, and predation to simulate the chemical fluxes of biomass decay.
Additionally, optimization-based models of physiological acclimation have been built to
extrapolate microbial parameters determined in the lab to natural systems. Acclimation models
directly address the challenges that the trait parameters of laboratory cultures are not directly
applicable to natural environments, and have been developed for nutrient uptake, catabolism, and
thermodynamic efficiency of microbial metabolism (Smith et al., 2011; Wu et al., 2022). While
the significance of growth conditions has gained widespread recognition, the potential of

accounting for microbial physiology is yet to be fully appreciated by the modeling community.

Building quality trait-based models also demands internal consistency in microbial
parameter sets. The requirement of internal consistency stems from the plasticity and
interdependence of microbial parameters: most microbial parameters do not have fixed values,
but co-vary with environmental conditions (Ferenci, 1999; Grady et al., 1996; Kovarova-Kovar
and Egli, 1998). As a first step towards building parameter dataset of internal consistency, we put
forward a series of guidelines, including the rigorous standards for deriving microbial parameters
from laboratory observations and the parameter accuracy across the environmental conditions of
interest. By focusing on the modeling frameworks and model assumptions, the limitations of
microbial rate laws, and the necessity of internal consistency in microbial parameter sets, we
hope to make clear the capabilities and limitations of trait-based microbial kinetic modeling
frameworks, and to build and apply trait-based microbial reaction models in a transparent,

objective, and reproducible manner.
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Table 1. Example models of microbial kinetics and their assumptions.

Model Equation Assumption Reference
Microbial metabolism

Monod equation 14, 15, 17 Microbial rate varies hyperbolically with the Monod (1942, 1949)
concentration of a limiting nutrient.

Contois equation 14, 20, 21 Microbial rate varies hyperbolically with the Contois (1959)
concentration ratio of nutrient to biomass.

Best equation 14, 24 Microbial consumption of a solid nutrient requires an Best (1955)
initial step of nutrient dissolution.

Multiplicative rate law 30, 32 Microbial rate is controlled by multiple nutrients. Humphrey (1974); MeGee

etal. (1972)
Liebig’s law of the 31,33 Microbial rate is determined by the most limiting nutrient. ~Ryder and Sinclair (1972);
minimum Williamson and McCarty
(1976)

Non-competitive 34 Chemical inhibition is analogous to non-competitive Boon and Laudelout

inhibition model @ enzyme inhibition. (1962)

Thermodynamic factor 35, 36 Microbial reactions honor the consistency between Jin and Bethke (2003);
thermodynamics and kinetics. (2005)

Biomass capacity factor 47 Growth rate per capita decreases as biomass approachesa  Wu et al. (2022)
maximum imposed by limited resources in the
environment.

Cardinal response model 43,44 Microbial rates respond to the changes in temperature, Rosso et al. (1995); Rosso

pH, and water activity by following bell-shaped curves.

67

et al. (1993)



Biomass decay model 45

Physiological acclimation

Optimal nutrient uptake 48 to 50
model

Optimal catabolic rate 51 to 53
model
Optimal metabolic 54, 55

efficiency model

Molecular biology-enabled improvement

Functional gene-based 56
model

Genome-scale 57
stoichiometric metabolic
model

Pathway-specific kinetic 57,59
metabolic model

Biomass decay rate increases linearly with biomass
concentration and the slope of the increase varies with
temperature according to the Arrhenius equation.

Microbes trade-off nutrient affinity against maximum
uptake flux to maximize the flux of nutrient uptake.

Microbes trade-off nutrient affinity against maximum

catabolic rate to maximize the rate of catabolic reaction.

Microbes trade-off the rate and ATP yield of catabolic
reaction to maximize the rate of ATP production.

Microbial reaction rates are proportional to the
abundances of related functional genes.

The fluxes through a metabolic network are determined
by the principle of mass balance.

The fluxes through a metabolic network are determined
by the principle of mass balance and the rate laws of
biochemical reactions.

Herbert (1958); Pirt
(1965); Tijhuis et al.
(1993)

Smith et al. (2015)

Wu et al. (2022)

Wu et al. (2022)

Louca et al. (2016); Reed
et al. (2014)

Orth et al. (2010)

Jin et al. (2022); King et
al. (2009)

Note: (a) For other inhibition models, see Mulchandani and Luong (1989).
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Table 2. Metabolic reactions of different mechanisms require different rate laws.

Reaction type Example Rate law Reference

Cell-controlled Oxidation of acetate and Hp; Monod equation (eqs 14 and 15) Monod (1942, 1949)
reduction of O, nitrate, and sulfate.

Surface-controlled Organic matter fermentation; ferric ~ Contois equation (eqgs 14, 20, Chen and Hashimoto
mineral reduction and 21) (1980); Hacherl et al.

(2003); Roden (2006)

Mass transfer-controlled Degradation of polycyclic aromatic ~ Best equation (eqs 14 and 24) Volkering et al. (1992);

hydrocarbons Wick et al. (2001)
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Microbial community Functional group Metabolic reactions

Figure 1. Microbial kinetic models describe the metabolisms of a microbial community with two
assumptions. One assumption treats the community as an ensemble of different microbial groups
whose functional traits have different values; the other treats the metabolism of a functional
group at a coarse-grained level with three metabolic reactions, catabolic reaction, biomass
synthesis, and maintenance. Each functional group is defined with a set of kinetic and
stoichiometric parameters, including the rate constant (k), the half-saturation constants for
electron donors (Kp), acceptors (Ka), and nutrients (Kn), the biomass yield (Yxs), and the
specific decay constant (kp), and measured with biomass concentration (Cx). Catabolic reaction
makes ATP by catalyzing the redox reaction between electron donor D and acceptor A, and by
producing oxidized electron donor D" and reduced electron acceptor A~. Biomass synthesis
reaction consumes ATPs to produce new biomass and metabolic products (Pi, P2, ...) from
nutrients (N1, N2, ...) in the environment.

70



Exogenous substrate Exogenous substrate Exogenous substrate

Environment

Cytoplasm Endogenous substrate Endogenous substrate

Catabolism
Jpc Catabolism

. - -

JP'X "P,X
, . : Jom
A Biomass synthesis AW Biomass synthesis
- : Maintenance
acive - Dormar

(A) (B) (€

Figure 2. Microbial kinetic models describe metabolism with three metabolic reactions,

catabolic reaction, biomass synthesis, and maintenance. Models for laboratory applications focus
on the catabolic reaction that uses exogenous energy substrates, and the ATP fluxes driven by the
three reactions are balanced (eq 1, A). Models for environmental applications consider two
distinct energy sources — exogenous and endogenous, and two types of microbial cells — active
growing (B) and dormant (C); the ATP fluxes for actively growing (B) and dormant microbes (C)
are governed by equation 41 and 42, respectively.

71



Synthesis Synthesis
Deactivation
Biomass Active biomass Dormant biomass
A::.tivation

Decay Lysis Lusi
Uptake ysis

 Necromass
(A) (B)

Figure 3. Microbial kinetic models use biomass concentration as a state variable to track the
sizes of microbial functional groups. Laboratory-focused models consider the balance between
biomass synthesis from essential nutrients (or element sources) in the environment and biomass
decay (A), while models for environmental application differentiate actively-growing biomass
from dormant biomass (B). The two types of biomass transit between each other via activation
and deactivation, and both types undergo lysis to form necromass. Necromass, a component of
natural organic matter, serves as a nutrients source, contributing to cryptic growth.
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Figure 4. Concentration factors Fc in the Monod equation (A), the Contois equation (B and C)
and the Best equation (D) quantify the effect of limiting nutrients on cell-, surface-, and mass
transfer-controlled metabolic reactions, respectively. The concentration factor of cell-controlled
reaction (A) is calculated at different nutrient concentrations Cn according to equation 15 for the
growth of Escherichia coli on glucose, by taking the half-saturation constant Kvm of glucose at 22
UM (Monod, 1949). The concentration factor for surface-controlled metabolic reaction is
calculated according to equation 21 by taking the biomass-specific half-saturation constant of
organic matter at 7.5 g-g~' (B) (Hemsi et al., 2010) and the biomass-specific half-saturation
constant of bioavailable surface sites at 0.14 mol-g~!' (C) for microbial reduction of nano-
crystalline goethite (Jin and Roden, 2011); On/x is the concentration ratio of organic matter to
biomass; Oss/x is the concentration ratio of bioavailable surface site to biomass; to calculate the
abundance of surface sites from goethite concentrations, one mole nano-crystalline goethite is
assumed to have 5.3x1073 mol surface site. The concentration factor for mass transfer-controlled
metabolic reaction (D) is calculated at different parameter -weighted concentration ratios for
microbial degradation of a-hexachlorocyclohexane (a-HCH, dark line with parameter a of 0.86)
according to equation 24; grey lines are the concentration factors for a values of 0.1, 1, and 10.
Dashed lines in panel A to D represent the maximum values of the concentration factors (Fc max)
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Figure 5. Metabolic reactions separate into three types, cell-, surface-, and mass transfer-
controlled reactions. (A) Cell-controlled metabolic reactions consume nutrients dissolved in
solution, and include nutrient diffusion from the bulk solution to the cell surface and the uptake
and consumption of dissolved nutrients by microbial cells. (B) Surface-controlled reactions, such
as microbial reduction of ferric iron minerals, are metabolic reactions that interact with the
surface of solids via direct contact, ligands (L), and electron carriers (Shi et al., 2016; Weber et
al., 2006); rectangles labelled with Fe(III) represent the bioavailable reactive sites on the surface
of minerals, Fe(II)-L is an aqueous ferric iron and ligand complex species, and C and C™ are the
oxidized and reduced forms of electron carriers, respectively. (C) Mass transfer-controlled
reactions are metabolic reactions that include the dissolution of solids or nonaqueous phase
liquids (NAPLs), nutrient diffusion from the bulk solution to the cell surface, and the uptake and
consumption of dissolved nutrients by microbial cells.

74



| | | | | | | | |
0 50 100 150 200 0 20 40 60

Nitrite (mM) f(kJ'moI’l)

Figure 6. Inhibition factor Fi (A) and thermodynamic potential factor Fr (B) quantify the rate
limitation by inhibiting compound and thermodynamic drive f, respectively. Inhibition factor (eq
34) is calculated for the inhibition of nitrite on aerobic nitrite oxidation by Nitrobacter
winogradskyi with an inhibition constant of 130 mM (Boon and Laudelout, 1962). The
thermodynamic potential factor is calculated according to equation 35 with the average
stoichiometric number y of 1, 2, 4, and 8.
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Figure 7. Dimensionless factors account for the kinetic effects of temperature T (Ftmp, A), pH
(Fpn, B), water activity aw (Fw, C), and biomass concentration Cx (Fx, D). Temperature factor
Frwmp 1s calculated according to equation 43 and by taking mesophilic microbes as an example
with their minimum, optimal, and maximum temperature at 0, 37 and 50 °C, respectively. pH
factor Fpn 1s calculated according to equation 44 and by taking neutrophilic microbes as an
example with their minimum, optimal, and maximum pH at 5, 7.5, and 9, respectively (Jin and
Kirk, 2018). Water activity factor Fiw is calculated according to equation 46 and by taking the
minimum water activity at 0.84 for Staphylococcus xylosus (McMeekin et al., 1987). Biomass
factor Fx is calculated according to equation 47 with different maximum biomass concentrations

CX,max-
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Figure 8. Variations with temperature T in specific maintenance rate. Line is calculated

according to equation 45 by taking Am at 2.5x10'° s! and Eam at 1.02X10% J-mol~! (Wu et al.,
2021).
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Figure 9. Optimization-based models of physiological acclimation relate microbial parameters to
environmental conditions via cellular resource allocation (Wu et al., 2022). These models
assume that growth rates are determined by two functional traits (trait 1 and 2) and trait values
depend linearly on the cellular resources allocated to them (R1 and R2, respectively). Microbes
maximize their growth rate by adjusting the partition of the limited resources between the two
traits in accordance with environmental conditions, such as nutrient concentration or available
energy, leading to the trait-off between the two traits.
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Figure 10. The model of optimal nutrient uptake accounts for the acclimation of phytoplankton
to ambient nitrate concentrations by relating the Michaelis constant of nitrate uptake to nitrate
concentrations in the environment. (A) The Michaelis constant is calculated according to
equation 48. (B) Nitrate uptake flux is calculated according to equation 49. (C) Specific growth
rate is calculated according to equation 50. In the calculations, the potential maximum nitrate
uptake flux is set at 5.0 mol-(mol C)~'-d"!, the potential maximum nitrate affinity at 0.15
m?>-(mmol C)'-d"!, the biomass yield Yxn at 0.6 mol C-(mol N)~!, and the specific decay
constant at 0 (Smith et al., 2015). Dotted lines are calculated with the half-saturation constant at
10 mM, without accounting for acclimation.
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Figure 11. The model of maximum catabolic flux accounts for the acclimation of acetoclastic
methanogens, Methanosarcina and Methanosaeta, by relating their rate constant and half-
saturation constant to ambient acetate concentrations (Wu et al., 2022). The rate constant (A) and
the half-saturation constant (B) are calculated according to equation 53 and 51, respectively; the
specific rate of methanogenesis (C) is calculated according to equation 17. In these calculations,
the acetate concentration used for routine laboratory culturing is 50 mM, the rate constants of
laboratory Methanosarcina and Methanosaeta are at 2.3x107% and 6.4x10~" mol-g~!-s7!,
respectively; the half-saturation constants of the two methanogens are at 4.44 and 0.81 mM,
respectively (Wu et al., 2022, their supplementary table 1). Dotted lines in panel C are calculated
according to equation 17, without accounting for acclimation.
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Figure 12. The model of maximum ATP flux accounts for microbial acclimation to
thermodynamic conditions of the environment by relating ATP yield (A), and therefore biomass
yield (B) and thermodynamic efficiency (C), to the energy available in the environment (Wu et
al., 2022). The ATP yield and biomass yield are calculated according to equation 54 and 55,
respectively. The thermodynamic efficiency is calculated as the ratio of the energy saved as ATP
to the energy available in the environment; the saved energy is the product of the ATP yield and
the phosphorylation energy — the energy consumed by ATP synthesis from ADP and phosphate
in the cytoplasm and its value is about 45 kJ-(mol ATP)~! (Jin, 2012).
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Figure 13. The dual-Monod equation and Liebig’s law of the minimum reflect the different rate-
determining steps of microbial respiration (A) and biomass synthesis (B). In a hypothetical case
of respiration, electron donors (D) and acceptors (A) are first transported from the environment
to the cytoplasm, where they combine with enzymes to form enzyme-substrate complexes
(E-D-A) and react to oxidized electron donors (D") and reduced electron acceptors (A-). If the
uptake of electron donors or acceptors is the rate-determining step, respiration rates follow
Liebig’s law of the minimum; if the rate-determining step is the formation of enzyme-substrate
complexes or the electron transfer between electron donors and acceptors, respiration rates
follow the dual-Monod equation. In a hypothetical case of biomass synthesis, nutrients (N,

No, ..., Ny) are first transported from the environment to the cytoplasm, where they are converted
by enzymes (E1, Ea, ..., En) to metabolites (M1, Mo, ..., My). The metabolites then combine with
another enzyme (Ex) to form biomass. If nutrient uptake or metabolite formation is the rate-
determining step, biomass synthesis rates follow Liebig’s law of the minimum; if the rate-
determining step is the assemblage of metabolites to biomass, biomass synthesis rates follow the
multiplicative rate law.
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