Adapting Rapid Motor Adaptation for Bipedal Robots

Ashish Kumar*!, Zhongyu Li*!, Jun Zeng', Deepak Pathak?, Koushil Sreenath!, Jitendra Malik!

Abstract— Recent advances in legged locomotion have en-
abled quadrupeds to walk on challenging terrains. However,
bipedal robots are inherently more unstable and hence it’s
harder to design walking controllers for them. In this work,
we leverage recent advances in rapid adaptation for locomotion
control, and extend them to work on bipedal robots. Similar
to existing works, we start with a base policy which produces
actions while taking as input an estimated extrinsics vector from
an adaptation module. This extrinsics vector contains informa-
tion about the environment and enables the walking controller
to rapidly adapt online. However, the extrinsics estimator
could be imperfect, which might lead to poor performance
of the base policy which expects a perfect estimator. In this
paper, we propose A-RMA (Adapting RMA), which additionally
adapts the base policy for the imperfect extrinsics estimator by
finetuning it using model-free RL. We demonstrate that A-
RMA outperforms a number of RL-based baseline controllers
and model-based controllers in simulation, and show zero-shot
deployment of a single A-RMA policy to enable a bipedal robot,
Cassie, to walk in a variety of different scenarios in the real
world beyond what it has seen during training. Videos and
results at https://ashish-kmr.github.io/a-rma/

I. INTRODUCTION

The ability of legged animals to traverse a wide variety of
terrains has inspired decades of research in legged robots
to replicate this capability in artificial systems. Although
great advances have been made via control theoretic methods
[1]-[14], designing these controllers often requires expert
parameter tuning for different terrain. With recent advances
in learning, research interest has shifted towards methods that
learn to walk. Impressive results have been achieved in the
past few years, notably Lee et.al. [15] and RMA [16], for
general-purpose legged locomotion in challenging real-world
terrains. However, these results have largely been shown in
quadrupeds which are relatively easier to control than bipedal
robots.

Our goal is to see how well a learning-based approach
works for bipedal robots. Unlike their quadruped or hexapod
counterparts, bipeds are more dynamic and offer coverage of
more terrains at the cost of being more prone to instability.
Although there have been several investigations of applying
learning methods to bipedal robots [17], [18], until now,
the robustness performance has not matched their quadruped
counterparts in terms of robustness to scenarios not seen
during training (Figure 1).

We train our robot in simulation and start with Rapid
Motor Adaptation (RMA) [16] as a baseline for sim2real

* Authors contributed equally.

1 University of California Berkeley, {ashish_kumar, zhongyu_li, zengjun-
sjtu, koushils, malik}@berkeley.edu

2 Carnegie Mellon University, dpathak@cs.cmu.edu

Fig. 1: We demonstrate the performance of A-RMA with a bipedal
robot in several challenging setups which includes slippery surfaces,
foam, and pulling a payload. Some of these were never seen
during training and the policy was deployed without any calibration
or real-world finetuning. Note that bipeds are inherently more
unstable compared to quadrupeds, which makes each of these much
more challenging than for a quadruped robot. Videos at https:
//ashish-kmr.github.io/a-rma/

transfer to the Cassie biped. In contrast to the popular
idea of training a terrain-invariant policy [19], RMA trains
an adaptive policy conditioned on latent extrinsics vector
that encodes terrain-specific information in simulation. After
training this base policy, the extrinsic vector is then estimated
online by an adaptation module using the history of observed
proprioceptive states. However, we found that scaling RMA
as-is to complex bipeds is faced with several challenges.
The first challenge is training the base policy from scratch
using reinforcement learning. To address this issue and
learn naturally stable high-performance gaits, we bootstrap
the base policy from a set of reference motions generated
using a gait library. The second challenge, however, is a
more fundamental one. For complex robots like bipeds, it is
usually very challenging to precisely estimate the privileged
extrinsics at deployment just from the observable states. This
creates a large domain gap for the base policy at deployment
which was trained with accurate extrinsics. The higher the
magnitude of extrinsics estimation error, the worse the base
policy performs. We bridge this gap by another round of
finetuning the base policy using the imperfect extrinsics
estimated from adaptation module instead of conditioning
on the perfect extrinsics. We call our method A-RMA due to
the adaptation of RMA policy itself, as outlined in Figure 2.
Similar to the base policy and adaptation module in RMA,

https://ashish-kmr.github.io/a-rma/
https://ashish-kmr.github.io/a-rma/
https://ashish-kmr.github.io/a-rma/

A-RMA policy adaptation step is also trained in simulation.
We evaluate A-RMA on a complex Cassie bipedal robot
and show evaluations on several challenging environments
in both simulation and real world.

II. RELATED WORK

a) Model-based Control for Bipedal Robots: Locomo-
tion of bipedal robots has been traditionally approached
via notions of gait stability such as ZMP criterion [1] or
Capturability [3] using robot’s reduced-order models [2],
[4]-[6], [10], [20]. Although these methods can effectively
control humanoid robots with flat feet, they often walk con-
servatively. Alternatively, Hybrid Zero Dynamics (HZD) [7],
[9], [11]-[13] based techniques can also generate stable
periodic walking based on input-output linearization using
robot’s full-order model. However, HZD-based controllers
for 3D robots typically need extensive parameter tuning in
both simulation and in the real world, and are hard to adapt to
the environment changes. In this work, we use reinforcement
learning to learn our walking controllers, using the HZD-
based walking gaits only as reference motions to produce
natural looking gaits. This allows us to generate more diverse
and effective stable walking behaviours since we don’t have
hard constraints on periodicity and neither do we require a
precise model.

b) RL-based Control for Legged Robots: Reinforce-
ment learning for legged locomotion has shown promising
results in learning walking controllers that can be success-
fully deployed in the real world [16], [17], [21]-[23]. Data-
driven methods could either use reference motions [17], [23]
to learn walking behaviours, learn residuals over predefined
foot motions [15], [24], or learn without any motion priors
and foot trajectory generators [16], [22], [25]. In this work,
we use a hybrid approach where we warm start the learning
process using a HZD-based gait library, but subsequently
reduce the dependency on them by lowering the costs related
to imitating the gait library.

Recent works have also built bipedal controllers using RL.
Model-based RL in [26], [27] is used to learn a walking
controller on Cassie in simulation to track a velocity. Alter-
natively, work in [28], [29] learns model free residuals over
reference motions, while work in [30] learns walking poli-
cies that can track a commanded planar velocity on Cassie in
the real world. Although residual control speeds up training,
the corrections that can be applied to the reference trajectory
is limited which limits the diversity of behaviours of the
controller. This can be addressed by learning policies which
don’t rely on reference motions during deployment, but
instead add motion constraints during training by either using
reference motions or through foot fall constraints via reward
terms [17], [31], [32]. We follow this general approach in
this paper. More specifically, we use reference trajectories
for imitation via reward terms, except that we only use
them to warm start the learning process and then reduce the
dependency on them and use energy minimization [33] to
allow for diverse behaviors which can be more general than
the reference motions.

A) Training in Simulation
Phase 1

X Oy 1 |—>]
e Base Policy
Mass, Friction
etc (e) | Env Factor Encoder (i) > ()

A

“Trainable Modules in Red Regress

Phase 2
Xps Oy
: Adaptation Module (¢) (m)

X101 > -
-

Phase 3 .
X @
v @ Base Policy
5 Adaptation Module (¢)) 2, (™)

B) Deployment

X515 4451
5 Adaptation Module
. 30 Hz
o)

Fig. 2: We show the training and deployment phases of A-RMA.
The first two phases are the same as RMA [16]. We additionally
add a third phase in which the base policy is fine-tuned again with
PPO while keeping the adaptation module fixed, to account for
imperfect estimation of extrinsics. We found this to be critical for
reliable performance in the real world.

c) Simulation to Real World Transfer: Sim-to-real
methods allow deployment of walking policies in the real
world after training them in simulation, which is a safe
and inexpensive data source. Parameters finetuning on the
hardware is one way to bridge the gap for model-based
methods [11], [12], [34]. Alternatively, several works use
domain randomization which varies the system properties
in simulation in order to cover the uncertainty in the real
world [17]-[19], [23], [31], [32], [35]-[38]. These methods
achieve robustness at the cost of optimality, where they
try to learn a single environment-agnostic behaviour for
all deployment scenarios. Instead, we learn an adaptive
policy which enables transfer to widely varying deployment
scenarios.

d) System Identification and Adaptation: An adaptive
policy conditions to environment variations instead of being
agnostic to them. These variations can be explicitly estimated
during deployment either through a module that is trained
in simulation [39] or can be estimated by optimizing for
high returns using evolutionary algorithms [40]. Predicting
the exact parameters is both unnecessary and difficult, which
in turn leads to poor empirical performance. Instead, a low
dimensional latent embedding can be used [16], [23], [41]
which contains an implicit estimate of the environment. At
test time, this latent embedding can be optimized using
policy gradients from real-world rollouts [23], Bayesian opti-
mization [42], or random search [38]. An alternate approach
is to use meta learning to learn to adapt online [43]. These
methods tend to take multiple rollouts to adapt in the real
world [44], [45] which is prohibitive for several scenarios.
In this work, we follow the approach of [16] which learns a
feed forward policy to estimate the latent environment vector,
enabling rapid adaptation in fractions of a second.

III. GENERAL WALKING CONTROLLER

Our walking controller contains a base policy which pro-
duces the target joint points for the robot, and an adaptation
module which uses proprioceptive history to continually
estimate the extrinsics vector. Such a vector contains in-
formation about the environment that can be used by the
base policy to adapt. In this section, we describe how we
train the base policy for bipeds since trivially training the
policy from scratch results in unnatural gaits, unlike prior
work in quadrupeds [16]. Instead we use reference motions
to bootstrap learning but unlike prior methods which use
reference motions [15], [17], we reduce the dependence
on these reference motions as training progresses to learn
optimal behaviors in a data driven way.

A. Walking Policy

We train an adaptive walking policy (71) using model free
reinforcement learning to learn a stable walking policy while
imitating reference motions generated using a HZD-based
gait library. Here, the gait library consists of a collection
of periodic walking gaits at different walking velocities and
walking heights. The base walking policy (7) takes two
arguments as input 1) the current state z;, 2) the extrinsics
vector z; € R® and then predicts the next action a.
The predicted action a; is the target position for the 10
actuated robot joints which is converted to torque using
a PD controller. The extrinsics vector z; is a compressed
version of the environment vector e; € R47 generated by .
The environment vector e; includes things such as friction,
inertia, center of mass, etc (see Sec III-C), but the extrinsics
vector z; only retains as much information from e; as is
necessary for the base policy to adapt. We thus have,

2z = pler), (D

a; = ﬁl(xt,at—lvgtvzt)' (2)

We implement p and m; as MLPs and jointly train
them end-to-end using model-free reinforcement learning to
maximize the following expected return of the policy 7:

T-1
J(ﬂ-) = E‘rwp(r\fr) [Z lytTt‘| 5
t=0

where 7 = {(z0, ao,70), (€1,a1,71)...} is the trajectory of
the agent when executing policy 71, and p(7|m;) represents
the likelihood of the trajectory under ;.

B. Reward Function

The reward function encourages the agent to track the goal
commanded and to imitate the reference motion from the
gait library. Let’s denote the robot’s actual motor positions
as G, pelvis translation position and velocity as g, and (}p,
the pelvis rotation and rotation velocity as ér and §,. Let the
corresponding quantities for the reference motion be denoted
by ¢y, Gp» G- 47 and g, respectively. We additionally denote
the robot’s torque as u and the robot’s ground reaction force
as F'. The reward at each time step ¢ is a weighted sum of:

1) Motor imitation: exp[—p1]|q%, — Gm||3]

2) Pelvis position imitation: exp[—pz||q) — Gp|[3]

3) Pelvis velocity imitation: exp[—ps]|d} — g,|[3]

4) Pelvis rotation imitation: exp[—p4(1 — cos (¢ — Gr)]

5) Rotational velocity imitation: exp[—ps||d% — ¢.|3]

6) Torque penalty: exp[—pe||u||3]

7) Ground reaction force penalty: exp[—p7||F||3],
where the corresponding weights of each of the reward
terms are [0.3,0.24,0.15,0.13,0.06,0.06,0.06]7, and p; to
pr are [5.0,0.1,5.0,5.0, 1.0, 5e 7, 1.25¢5]). To stabilize the
pelvis, we set the desired roll and pitch velocity to 0, and
the desired yaw velocity is from the user command c(t).
We compute the desired pelvis translational and rotational
positions by integrating the corresponding desired velocity.
Moreover, we decay the coefficients of the imitation terms as
the training progresses to reduce the dependence on reference
motions and learn optimal data driven behaviours.

C. Environment Variations and Terrains

During the learning of the walking policy, we vary the
ground friction, robot’s motor friction, mass and center of
mass of the robot and robot links. We train over fractal
terrain, flat terrain, slopes and discrete terrains such as steps
(see Table I).

IV. WALKING CONTROLLER WITH RAPID ADAPTATION

Following the process described in the previous section,
we now have a base policy which can use the extrinsics
vector to adapt. However, this extrinsics vector uses privi-
leged simulation information and is unavailable in the real
world. To resolve this, we generalize the idea proposed
in [16] of learning an adaptation module using the history
of commanded actions and robots proprioception to estimate
these extrinsics online. The insight is that the discrepancy
between what was commanded to the robot and the actual
joint positions contains information about these extrinsics.
However, such an estimation could be noisy as the extrinsics
vector might not be fully observable. To fix this, we further
finetune the base policy to learn to walk adaptively with an
imperfect extrinsics vector. We now describe this in detail
below.

A. Adaptation Module for Estimating Extrinsics

Privileged environment information e; is not available in
the real world, and consequently its encoded extrinsics vector
z¢ 1s not accessible during deployment. Similar to [16], we
estimate the extrinsics online from the proprioceptive history
(T¢—g:t—1, Gr—f:¢—1) using the adaptation module ¢. In our
experiments, we use k = 70 which roughly corresponds to
2s. The estimated extrinsic vector is thus given by,

2= (Ti—kit—1, Qp—pi—1).-

We can train the adaptation module in simulation via
supervised learning to minimize: MSE(Z, 2;) = |12 — 2:||%,
where z; = p(e;). We model ¢ as a 1-D CNN to capture
temporal correlations.

We collect trajectories by unrolling the base policy 71 with
the Z; predicted by the randomly initialized function ¢, and

then pair it with the ground truth z; to train ¢. We iteratively
repeat this until convergence.

B. Finetuning with Estimated Extrinsics

For our setting, the extrinsics estimated by the adaptation
module ¢ is imperfect since z; might not be fully observable
from the proprioception history. We observed this as the
regression error to estimate z; did not become low enough
during the training of the adaptation module. This causes
the base policy m; to experience a significant drop in
performance since it is trained with perfect extrinsics, and
noisy estimation introduces a domain gap. To overcome this
issue, we propose to further finetune the base policy 7 with
the imperfect extrinsics predicted by the adaptation module
¢ trained in phase 2, see Fig. 2. The adaptation module is
kept frozen and the base policy is finetuned using model
free reinforcement learning with the reward described in
Section III-B. This gives us the final base policy w2 which
is used in deployment.

V. EXPERIMENTAL SETUP
A. Hardware

We use the Cassie robot for our experiments. It is a
dynamic, life-sized, and underactuated bipedal robot which
has 20 DoFs and is introduced in details in [12, Sec. II]. It has
10 actuated rotational joints g, = [q)" Q{E, 4.7]7 (abduction,
rotation, hip pitch, knee, and toe motofs), and four passive
joints qgi éR (shin and tarsus joints). Its floating base, the
robot pelvis ¢, = [qx, @y Gz, @y G0, qg]*» has 6 DoFs for
sagittal ¢, lateral g,, vertical ¢., roll gy, pitch g, and
yaw ¢y, respectively. The entire robot coordinate ¢ € R?°
includes all robot DoFs whereas the observable DoFs ¢° €
R excludes the pelvis translational position ¢, , . which
can not be reliably obtained by the sensors on the robot
hardware. There is an onboard Intel NUC on the robot, which
runs our policy. The policy updates at 30 Hz and the joint-
level PD controller operates at 2 kHz.

B. Simulation Setup

We use the simulation environment for reinforcement
learning on Cassie developed in [17], which itself is based
on an open source MuJoCo simulator [46], [47]. During
training, each episode has a maximum number of time
steps of T=2500 (83 s). In each episode, we resample a
new command ¢(t) = [¢4 ¢ q7,¢4]" and randomize the
environment parameters every 8 s. The randomization range
of the command is between [—1.0, —0.3,0.65, —30°]7 and
[1.0,0.3,1.0,30°]T. The episode will terminate early if the
pelvis height falls below 0.55 m, or if the tarsus joints qé /R
hit the ground [17].

C. State-Action Space

a) Observation: The
(7445 At—a:t—1, Dy g5 D15 Do 445 Doy 75 Ct) at
time ¢ consists of 4 parts. There are observable robot states
q° = [¢°,¢°] at the current and the past 4 time steps,
and the actions a from the past 4 time steps. There is

observation X =

Parameter Range Unit
Link Mass [0.7,1.3] x default kg
Link Mass Center [0.7,1.3] x default m
Joint Damping [0.3,4.0] x default Nms/rad
Spring Stiffness [0.95,1.05] x default = Nm/rad
Ground Friction Ratio [0.3, 3.0] 1
Fractal Terrain Height [0.0, 0.12] m

TABLE I: The range of dynamics parameters that are extended
from [17, Table II] and are varied in the phase 1 of A-RMA.

also reference motion ql,, = [¢F,, "] which includes the
reference motor position and motor velocity at current time ¢
and future time steps (next 1, 4, 7 time steps) obtained from
a HZD-based gait library [17]. Moreover, the command ¢,
is also part of the observation. ¢; includes desired sagittal
and lateral walking speed, walking height, and turning yaw
rate (¢; = [¢2, 4, q2, 44D

b) Action: The action a; = ¢ is the target position
for the 10 actuated motors on Cassie which are first passed
through a low-pass filter [17] before being sent to the PD
controller to generate the torque u for each motor.

D. Environment and Terrain variations

We randomize the environment parameters that includes
robot modelling errors, sensor noise and delay, and terrain
variations during the training. Based on previous work [17],
the range of the randomization that is newly introduced is
presented in Table. I. Furthermore, we also introduce fractal-
like terrain variations to make the policies robust.

E. Training Details

a) Base Policy and Environment Encoder: The base
policy (m) is a MLP with 2 hidden layers of size 512 each.
The environment encoder (11) has 1 hidden layer of size 256,
and output (2) size of 8. We train the policy with PPO using
a batch size of 65536 and minibatch size of 8192.

b) Adaptation Module: The adaptation module (¢) con-
tains 3 convolution layers (kernels sizes 8,5,5 and strides
4,1, 1 respectively) followed by 1 hidden layer of size 256.
The output layer (2) is 8 dimensional. We train the policy
with Adam optimizer using the same batch size, for a total
of 2000 iterations, resampling a new batch in every iteration.

¢) Base Policy Finetuning Stage: In the last finetuning
stage of A-RMA, we freeze the adaptation module and
finetune the base policy using PPO with a batch size of 65536
and minibatch size of 8192 for 2000 iterations.

VI. RESULTS AND ANALYSIS

We first validate A-RMA in both MuJoCo and MATLAB
Simulink (a high-fidelity simulator), and then present the
results of RMA deployed on a bipedal robot Cassie in the
real world. All A-RMA results in simulation and the real
world are from the same policy which was only trained in
MuJoCo and was deployed in MATLAB Simulink and the
real world without any finetuning during test time. In this
paper, we focus more on the control performance with a
nominal walking height ¢, = 0.98 m, i.e., we do not change
the walking height ¢, during the test though the policy is
trained with variable walking height.

Min Feasible Tracking
Friction Cmd Range Error
HZD Controller [12] 0.3 39/147 [0.1554, 0.0811]
Robust MLP [17] 0.3 147/147 [0.0869, 0.1150]
RMA [16] 0.2 147/147 [0.0908, 0.0965]
A-RMA (Ours) 0.2 147/147 [0.0849,0.0952]

TABLE II: Comparison of A-RMA with baseline controllers in
MATLAB Simulink. We observe that all RL-controllers can track
the entire command range. Of these, A-RMA and RMA generalize
beyond the training friction range, maintaining stability in as low as
a 0.2 friction coefficient. A-RMA has the best tracking performance
in both [¢<, qj] compared to all the baseline controllers.

MTTF (s) Return Tracking Err Mean Jerk
A-RMA-static 7.1 158.5 0.79 0.64
RMA [16] 114 273.6 0.29 0.92
A-RMA 14.0 335.8 0.30 0.30
A-RMA-priv 14.2 340.0 0.27 0.28

TABLE III: Comparison of A-RMA with baseline controllers
in MuJoCo. We observe that A-RMA’s performance is very
close to A-RMA-priv, which has access to privileged simulation
information, and is better than all the baseline controllers for the
metrics: MTTF (max episode length = 20s), Returns and Mean Jerk
experienced. The tracking performance (Mean Tracking Error) is
similar to RMA. Note that RMA experiences a large drop compared
to A-RMA-priv because of unobservability of the entire extrinsics
vector from proprioception. A-RMA-static sees a sharp drop in
performance compared to A-RMA, validating the importance of
a continually and rapidly updating extrinsics vector.

A. Simulation Validation

The Simulink simulator provides us a safe validation
environment to compare locomotion controllers while pro-
viding very high fidelity dynamics which is much more
accurate than MuJoCo. We additionally show comparisons
of A-RMA to its other adaptive variants in MuJoCo. Please
note that the agent has no access to the Simulink data
during the policy training in MuJoCo. We benchmark the A-
RMA with the following locomotion controllers on Cassie
as baselines: 1) a HZD-based controller (HZD) developed
in [12] based on [11], 2) a robust RL-based locomotion
controller represented by MLP (Robust MLP) developed
in [17], 3) A-RMA-static in which we estimate the latent
in the first time step and then freeze it for the rest of the
episode, 4) RMA [16]. Finally as oracle, we also show the
performance of A-RMA-priv which has access to privileged
simulation information for reference. Please note that, for all
the RL-based controllers, we utilize the same formulation of
rewards and range of dynamics randomization presented in
Sec. V-D during training.

We benchmark these controllers using the following met-
rics: 1) the converged return, 2) command tracking perfor-
mance on a nominal ground, 3) Minimum friction success-
fully handled, 4) Mean time to Fall (MTTF), 5) Mean Jerk of
all the joints. In MuJoCo, the reported metrics are computed
over 10 episodes with an episodic timeout of 20s during
which we randomize all the parameters shows in Table I.

Iql:y(’rrl,/s)

(c) A-RMA

Fig. 3: Plot of tracking error in sagittal and lateral directions
different controllers. RMA and A-RMA produce less oscillations
than the Robust MLP once the lateral velocity has stabilized.

a) Converged Return and MTTF: We report the perfor-
mance of A-RMA-priv to understand the maximum achiev-
able performance. As shown in Table III, going from A-
RMA-priv to RMA shows a sharp performance fall in
both the metrics. This sharp fall is a consequence of non-
negligible phase 2 regression loss as the extrinsics vector
might not be fully observable from the proprioception his-
tory. We show that the proposed A-RMA recovers this per-
formance drop and approximately matches the performance
of the A-RMA-priv. We additionally see that A-RMA-static
has a substantial performance fall indicating the importance
of rapid online adaptation via estimated extrinsics.

b) Command Tracking: We compare the different loco-
motion controllers on command tracking performance where
we sample different desired sagittal walking speed ¢¢ and
lateral walking speed q;l. The command tracking perfor-
mance includes two parts: the range of the command for
which a controller is able to maintain gait stability (Feasible
Command Set [17]), and tracking error between the desired
and actual robot walking velocities.

We test the range of command [qg,qg]T from
[-1.0, —0.3]T to [1.0,0.3]T with a resolution of [0.1,0.1]
with a nominal walking height ¢, = 0.98 on Cassie with
different locomotion controllers in simulation. These count
for 147 different commands and a command is considered
feasible if the controller can maintain stability for 10
seconds. As demonstrated earlier in [17], HZD controller
is only able to stably track a limited number of commands
at nominal walking height. Specifically, the lateral walking
speed cannot exceed 0.1 m/s while walking forwards, and

(a) HZD (b) Robust MLP (c) RMA (d) A-RMA

Fig. 4: Trajectories of Cassie on slippery ground with friction coefficient of 0.2. We observe that A-RMA has minimal lateral deviation
and is more stable than RMA, which shows significant deviation in the lateral walking direction.

rh

(b) Nominal ground (sideways)

~40 kg payload on wheels
r.!h gk W ‘
\ 3

E‘ "lt” Lrl%u |

(@)

Nomin
iy

al ground (forward)
I'% z I'%

(d) Slippery ground (e) Uneven ground with variable softness

Fig. 5: Real world deployment of Cassie walking on nominal ground, towing a payload, walking on a slippery surface, and on rough
terrain with variable softness of the ground. The payload and rough terrain tests were repeated twice with consistent results. The same
A-RMA policy was deployed in all these scenarios without any real world fine-tuning, task specific tuning, or calibration. We observe

that A-RMA maintains stability in all of these deployment scenarios despite never having seen some of them during training.

there are only 39/147 feasible commands using the HZD
controller. However, all of the RL-based controllers can
cover the entire range of the testing commands, i.e., there are
147/147 feasible commands using locomotion controllers
using Robust MLP, RMA, and A-RMA. In terms of the
tracking errors, as shown in Fig. 3, A-RMA manifests the
least tracking errors with the only [0.0849,0.0952]7 m/s
compared to other RL-based controllers (Table. II and
Table. III). Moreover, as seen in Fig. 3, RMA and A-RMA
produce less oscillations than Robust MLP. A-RMA has an
overall superior performance in command tracking.

c) Mean Jerk: We measure the jerk experienced in the
motors in MuJoCo for the baseline controllers. We observe
in Table III that A-RMA almost matches the smoothness of
the A-RMA-priv, while RMA and A-RMA-static seem to do
much worse. The additional phase 3 in A-RMA allows the
base policy to learn smooth behaviours while accounting for
the imperfect extrinsics estimator.

d) Slippery Ground: We use MATLAB Simulink to
quantify the ability of locomotion controller to maintain gait
stability on slippery ground. Fig. 4 shows that both HZD and
Robust MLP fail to maintain robot balance when the ground
friction coefficient is set to 0.2 while RMA and A-RMA
succeed to control the robot to walk forwards and backwards.
We do a line search on friction values and observe that the
minimal ground friction for which HZD and Robust MLP
can maintain stability is 0.3 while RMA and A-RMA can
go down to 0.2. This is significant because bipedal robots

are inherently unstable and become very hard to control as
the coefficient of friction approaches zero. Note that the RL-
controllers were not trained for friction value of 0.2 (see
Table I), demonstrating that RMA and A-RMA have better
generalization at test time than Robust MLP. Furthermore, as
shown in Fig. 4d, Cassie does not deviate a lot in the lateral
direction (with command q;l = 0) when it walks backwards
using A-RMA, while there exists a large drift to the right for
RMA in Fig. 4c. This showcases A-RMA’s superior tracking
performance even on a slippery ground.

B. Real World Experiments

We deploy A-RMA on a Cassie bipedal robot in the
real world, and test in four scenarios: 1) tracking variable
commands on a nominal ground, 2) robot walking while
towing a heavy load with cable, 3) slippery ground, and 4)
rough terrain with variable softness. We use the same policy
for all our experiments which was trained in MuJoCo simu-
lation and is deployed without any finetuning or calibration.
The results are demonstrated in Fig. 5. Videos are available
at [48] and included in the video attachment.

As shown in Fig. 5a, 5b, Cassie is able to track varying
commands including forwards, backwards, and sideways
walking speed while maintaining gait stability and low
ground impacts.

In the load carrying task, Cassie controlled by A-RMA
is able to tow the load (around 40 kg with wheels) while
maintaining forward walking speed with no significant drift
to other directions, as shown in Fig. 5c. During the tests, the

robot is able to stay robust to the pulling force from the cable
which fluctuates depending on the speed of the payload and
the tension in the string making it hard to model. Despite,
slack/taut changes happening during the trials, the robot is
able to maintain stability against such hybrid mode switches.

During the slippery ground test, we cover the ground by
a plastic sheet with water in between in order to reduce the
ground friction coefficient, as shown in Fig. 5d. When the
robot steps onto the plastic sheet, there are significant slips
between the robot feet and ground, i.e., unexpected contact
changes which makes controlling a life-sized robot with such
low ground traction very challenging. However, the proposed
policy is able to adapt to the changes in ground friction and
contacts, and therefore able to maintain gait stability on such
a slippery ground while tracking varying commands in both
forward and lateral directions.

We also introduce challenging types of terrains and con-
tacts in the tests presented in Fig. 5e, where we randomly
place soft foams and wooden planks on the ground and let
the robot walk onto that region. Such random changes of
softness on the ground will change the contact type between
the robot feet and ground: the contact region is on the sole
when robot steps on a rigid plank while the contact can
happens anywhere on the robot foot if it step into the soft
foam, which making the contact very hard to model. Cassie,
using A-RMA, is not only able to step on the rigid plank
but also onto the soft foams without losing balance. Please
note that the softness of the ground is not randomized during
training as simulating a soft contact with high fidelity is still
an open question. However, A-RMA is still able to generalize
to the softness changes in the real world despite never having
seen it during training.

VII. CONCLUSION

We study bipedal walking in complex, high-dimensional,
life-sized Cassie robot. We propose A-RMA which extends
the RMA algorithm by accounting for imperfect extrinsics
estimation from the adaptation module. This is done by
adding an additional base policy finetuning phase using
model-free RL. This phase uses the imperfect extrinsics from
adaptation module to allow the base policy to account for the
unobservability in extrinsics. We have shown empirical gains
in performance over model based as well as one of state-of-
the art RL controllers. We train A-RMA on bipedal Cassie
robot in simulation and then use the same A-RMA controller
to experiment with walking on foam, slippery surface, rough
terrain and payload towing in the real world. A-RMA shows
generalization to terrains beyond what is seen during training
without additional real-world finetuning or calibration. One
limitation of the current work is that the robot is blind
and only uses proprioception. For future work, it would be
interesting to integrate on-board visual cameras for walking.

ACKNOWLEDGEMENT

This work was supported by the DARPA Machine Com-
mon Sense program and National Science Foundation Grant
CMMI-1944722.

[1]

[2]

[3]

[4]

[5]

[6]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

REFERENCES

M. Vukobratovic and B. Borovac, “Zero-moment point—thirty five
years of its life,” International journal of humanoid robotics, vol. 1,
no. 01, pp. 157-173, 2004. 1, 2

S. Kuindersma, F. Permenter, and R. Tedrake, “An efficiently solvable
quadratic program for stabilizing dynamic locomotion,” in IEEE In-
ternational Conference on Robotics and Automation, 2014, pp. 2589—
2594. 1,2

J. Pratt, T. Koolen, T. De Boer, J. Rebula, S. Cotton, J. Carff,
M. Johnson, and P. Neuhaus, “Capturability-based analysis and control
of legged locomotion, part 2: Application to m2v2, a lower-body
humanoid,” The international journal of robotics research, vol. 31,
no. 10, pp. 1117-1133, 2012. 1, 2

X. Xiong and A. D. Ames, “Coupling reduced order models via
feedback control for 3d underactuated bipedal robotic walking,” in
IEEE-RAS International Conference on Humanoid Robots, 2018. 1, 2
S. Feng, X. Xinjilefu, W. Huang, and C. G. Atkeson, “3d walking
based on online optimization,” in 2013 13th IEEE-RAS International
Conference on Humanoid Robots, 2013, pp. 21-27. 1, 2

H. Dai, A. Valenzuela, and R. Tedrake, “Whole-body motion planning
with centroidal dynamics and full kinematics,” in IEEE-RAS Interna-
tional Conference on Humanoid Robots, 2014, pp. 295-302. 1, 2

J. W. Grizzle, C. Chevallereau, A. Ames, and R. Sinnet, “3d bipedal
robotic walking: Models, feedback control, and open problems,” in
IFAC Symposium on Nonlinear Control Systems, 2010. 1, 2

N. A. Radford, P. Strawser, K. Hambuchen, J. S. Mehling, W. K.
Verdeyen, A. S. Donnan, J. Holley, J. Sanchez, V. Nguyen, L. Bridg-
water et al., “Valkyrie: Nasa’s first bipedal humanoid robot,” Journal
of Field Robotics, vol. 32, no. 3, pp. 397-419, 2015. 1

X. Da, O. Harib, R. Hartley, B. Griffin, and J. W. Grizzle, “From 2d
design of underactuated bipedal gaits to 3d implementation: Walking
with speed tracking,” IEEE Access, vol. 4, pp. 3469-3478, 2016. 1, 2
Y. Gong and J. Grizzle, “Angular momentum about the contact point
for control of bipedal locomotion: Validation in a lip-based controller,”
arXiv preprint arXiv:2008.10763, 2020. 1, 2

Y. Gong, R. Hartley, X. Da, A. Hereid, O. Harib, J.-K. Huang, and
J. Grizzle, “Feedback control of a cassie bipedal robot: Walking,
standing, and riding a segway,” in American Control Conference, 2019,
pp. 4559-4566. 1, 2, 5

Z. Li, C. Cummings, and K. Sreenath, “Animated cassie: A dynamic
relatable robotic character,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2020. 1, 2, 4, 5

J. Reher and A. D. Ames, “Control lyapunov functions for compliant
hybrid zero dynamic walking,” arXiv preprint arXiv:2107.04241,
2021. 1, 2

E. Dantec, R. Budhiraja, A. Roig, T. Lembono, G. Saurel, O. Stasse,
P. Fernbach, S. Tonneau, S. Vijayakumar, S. Calinon et al., “Whole
body model predictive control with a memory of motion: Experiments
on a torque-controlled talos,” in 2021 IEEE International Conference
on Robotics and Automation (ICRA). 1EEE, 2021, pp. 8202-8208. 1
J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” Science
Robotics, vol. 5, no. 47, 2020. 1, 2, 3

A. Kumar, Z. Fu, D. Pathak, and J. Malik, “RMA: Rapid Motor
Adaptation for Legged Robots,” in Robotics: Science and Systems,
2021. 1,2,3,5

Z. Li, X. Cheng, X. B. Peng, P. Abbeel, S. Levine, G. Berseth,
and K. Sreenath, “Reinforcement learning for robust parameterized
locomotion control of bipedal robots,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA), 2021, pp. 2811-
2817. 1,2,3,4,5

J. Siekmann, S. Valluri, J. Dao, L. Bermillo, H. Duan, A. Fern, and
J. Hurst, “Learning memory-based control for human-scale bipedal
locomotion,” in Robotics: Science and Systems, 2020. 1, 2

J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2017, pp. 23-30. 1, 2

Z. Li, J. Zeng, S. Chen, and K. Sreenath, “Vision-aided autonomous
navigation of underactuated bipedal robots in height-constrained en-
vironments,” arXiv preprint arXiv:2109.05714, 2021. 2

N. Kohl and P. Stone, “Policy gradient reinforcement learning for
fast quadrupedal locomotion,” in IEEE International Conference on
Robotics and Automation, 2004., vol. 3. 1EEE, 2004, pp. 2619-2624.
2

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis,
V. Koltun, and M. Hutter, “Learning agile and dynamic motor skills
for legged robots,” Science Robotics, vol. 4, no. 26, 2019. 2

X. B. Peng, E. Coumans, T. Zhang, T.-W. E. Lee, J. Tan, and S. Levine,
“Learning agile robotic locomotion skills by imitating animals,” in
Robotics: Science and Systems, 07 2020. 2

A. Iscen, K. Caluwaerts, J. Tan, T. Zhang, E. Coumans, V. Sindhwani,
and V. Vanhoucke, “Policies modulating trajectory generators,” in
Conference on Robot Learning. PMLR, 2018, pp. 916-926. 2

T. Haarnoja, S. Ha, A. Zhou, J. Tan, G. Tucker, and S. Levine,
“Learning to walk via deep reinforcement learning,” in Robotics:
Science and Systems, 2018. 2

G. A. Castillo, B. Weng, T. C. Stewart, W. Zhang, and A. Hereid,
“Velocity regulation of 3d bipedal walking robots with uncertain dy-
namics through adaptive neural network controller,” in 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2020, pp. 7703-7709. 2

G. A. Castillo, B. Weng, W. Zhang, and A. Hereid, “Hybrid zero
dynamics inspired feedback control policy design for 3d bipedal
locomotion using reinforcement learning,” in IEEE International Con-
ference on Robotics and Automation, 2020, pp. 8746-8752. 2

Z. Xie, G. Berseth, P. Clary, J. Hurst, and M. van de Panne, “Feedback
control for cassie with deep reinforcement learning,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2018, pp.
1241-1246. 2

Z. Xie, P. Clary, J. Dao, P. Morais, J. Hurst, and M. Panne, “Learning
locomotion skills for cassie: Iterative design and sim-to-real,” in
Conference on Robot Learning, 2020, pp. 317-329. 2

T. Johannink, S. Bahl, A. Nair, J. Luo, A. Kumar, M. Loskyll,
J. A. Qjea, E. Solowjow, and S. Levine, “Residual reinforcement
learning for robot control,” in International Conference on Robotics
and Automation, 2019, pp. 6023-6029. 2

J. Siekmann, K. Green, J. Warila, A. Fern, and J. Hurst, “Blind bipedal
stair traversal via sim-to-real reinforcement learning,” in Robotics:
Science and Systems, 2021. 2

J. Siekmann, Y. Godse, A. Fern, and J. Hurst, “Sim-to-real learning of
all common bipedal gaits via periodic reward composition,” in 2021
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2021, pp. 7309-7315. 2

Z. Fu, A. Kumar, J. Malik, and D. Pathak, “Minimizing energy
consumption leads to the emergence of gaits in legged robots,”
Conference on Robot Learning, 2021. 2

L. Yang, Z. Li, J. Zeng, and K. Sreenath, “Bayesian optimization meets
hybrid zero dynamics: Safe parameter learning for bipedal locomotion
control,” arXiv preprint arXiv:2203.02570, 2022. 2

F. Sadeghi and S. Levine, “Cad2rl: Real single-image flight without a
single real image,” in Robotics: Science and Systems, 2013. 2

X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” in /EEE
international conference on robotics and automation, 2018, pp. 1-8.
2

W. Yu, V. C. Kumar, G. Turk, and C. K. Liu, “Sim-to-real transfer
for biped locomotion,” in 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2019, pp. 3503-3510. 2

W. Yu, J. Tan, Y. Bai, E. Coumans, and S. Ha, “Learning fast adapta-
tion with meta strategy optimization,” IEEE Robotics and Automation
Letters, 2020. 2

W. Yu, J. Tan, C. K. Liu, and G. Turk, “Preparing for the unknown:
Learning a universal policy with online system identification,” in
Robotics: Science and Systems, 2017. 2

W. Yu, C. K. Liu, and G. Turk, “Policy transfer with strategy opti-
mization,” in International Conference on Learning Representations,
2018. 2

W. Zhou, L. Pinto, and A. Gupta, “Environment probing interaction
policies,” in 7th International Conference on Learning Representa-
tions, ICLR 2019, 2019. 2

W. Yu, V. C. V. Kumar, G. Turk, and C. K. Liu, “Sim-to-real transfer
for biped locomotion,” in 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems. 1EEE, 2019. 2

C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in International Conference on
Machine Learning. PMLR, 2017. 2

X. Song, Y. Yang, K. Choromanski, K. Caluwaerts, W. Gao, C. Finn,
and J. Tan, “Rapidly adaptable legged robots via evolutionary meta-

[45]

[46]

[47]

[48]

learning,” in International Conference on Intelligent Robots and Sys-
tems (IROS), 2020. 2

I. Clavera, A. Nagabandi, S. Liu, R. S. Fearing, P. Abbeel, S. Levine,
and C. Finn, “Learning to adapt in dynamic, real-world environments
through meta-reinforcement learning,” in International Conference on
Learning Representations, 2019. 2

E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. 1EEE, 2012, pp. 5026-5033. 4
Agility Robotics, “cassie-mujoco-sim. (2018).” [Online]. Available:
https://github.com/osudrl/cassie-mujoco-sim 4

“Experiment video. (2022).” [Online]. Available: https://youtu.be/
HSdFHX0qQqg 6

https://github.com/osudrl/cassie-mujoco-sim
https://youtu.be/HSdFHX0qQqg
https://youtu.be/HSdFHX0qQqg

	Introduction
	Related Work
	General Walking Controller
	Walking Policy
	Reward Function
	Environment Variations and Terrains

	Walking Controller with Rapid Adaptation
	Adaptation Module for Estimating Extrinsics
	Finetuning with Estimated Extrinsics

	Experimental Setup
	Hardware
	Simulation Setup
	State-Action Space
	Environment and Terrain variations
	Training Details

	Results and Analysis
	Simulation Validation
	Real World Experiments

	Conclusion
	References

