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Abstract In post-fire Siberian larch forests, where tree density can vary within a burn perimeter, shrubs
constitute a substantial portion of the vegetation canopy. Leaf area index (LAI), defined as the one-sided

total green leaf area per unit ground surface area, is useful for characterizing variation in plant canopies. We
estimated LAI with allometry for trees and tall shrubs (>0.5 and <1.5 m) across 26 sites with varying tree
stem density (0.05-3.3 stems/m?) and canopy cover (4.6%—76.9%) in a uniformly-aged mature Siberian larch
forest that regenerated following a fire ~75 years ago. We investigated relationships between tree density, tree
LAI, and tall shrub LAI, and between LAI and satellite observations of Normalized Difference and Enhanced
Vegetation Indices (NDVI and EVI). Across the density gradient, tree LAI increases with increasing tree
density, while tall shrub LAI decreases, exhibiting no patterns in combined tree-shrub LAI. We also found
significant positive relationships between tall shrub LAI and NDVI/EVI from PlanetScope and Landsat
imagery. These findings suggest that tall shrubs compensate for lower tree LAI in tree canopy gaps, forming a
canopy with contiguous combined tree-shrub LAI across the density gradient. Our findings suggest that NDVI
and EVI are more sensitive to variation in tall shrub canopies than variation in tree canopies or combined
tree-shrub canopies in these ecosystems. The results improve our understanding of the relationships between
forest density and tree and shrub leaf area and have implications for interpreting spatial variability in LAI,
NDVI, and EVI in Siberian boreal forests.

Plain Language Summary After wildfires burn forests in northeast Siberia, they often grow back
unevenly, with some sections containing many more trees than others. Sections with more trees have a higher
capacity to take up carbon and higher rates of energy production, which has important implications for climate
change. To investigate how vegetation varies across sections of a forest which burned in 1940, we estimated
the separate and combined contributions of trees and tall shrubs (>0.5 and <1.5 m) in high, medium, and low
density sections using tree and shrub stem diameter measurements. We estimated the canopy vegetation in each
section of forest by calculating the total area of leaves in the section and dividing it by the total ground area,
producing the leaf area index (LAI). In sections with less dense tree cover, tall shrubs made up for lower tree
leaf area, and the combined leaf area of trees and tall shrubs was consistent across the sections of different tree
density. We also compared our leaf area measurements with measures of vegetation productivity produced from
satellite imagery, finding that the satellite measures were correlated with tall shrub LAI but not with tree LAI
or combined LAI from trees and shrubs.

1. Introduction

A large and growing body of research suggests that the magnitude of warming due to anthropogenic climate
change in the Arctic is four times the global average (Previdi et al., 2021; Rantanen et al., 2022; Serreze &
Barry, 2011). This Arctic amplification is partly due to sea ice loss across the Arctic, which decreases regional
albedo and amplifies warming, a process known as the sea ice—albedo feedback (Hudson, 2011; Perovich &
Polashenski, 2012; Previdi et al., 2021; Winton, 2006). The extreme magnitude of this warming drives ongoing
shifts in Arctic vegetation, with shrubs and trees increasing cover in areas previously consisting of graminoid
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tundra (Elmendorf et al., 2012; Macias-Fauria et al., 2012; Tape et al., 2006). Satellite observations show green-
ing trends consistent with these shifts (Berner et al., 2020; Berner & Goetz, 2022; Myers-Smith et al., 2020),
and vegetation modeling predicts increased woody cover across the Arctic by over 50%, with changes in physi-
ognomic class to at least half of all vegetated areas by 2050 (Pearson et al., 2013). These changes could further
decrease albedo as growing season length and the snow-masking effects of vegetation increase in magnitude,
causing further amplification of warming in the Arctic (Pearson et al., 2013). In addition to direct stimulation of
vegetation growth, rising temperatures have wide-reaching ecological ramifications in the Arctic as they dras-
tically alter many fundamental geophysical processes such as wildfire and permafrost freeze-thaw cycles, with
consequent changes in vegetation cover and composition.

Changing climate indirectly impacts boreal forests through increased wildfire extent, frequency and severity
(Groisman et al., 2007; Johnstone et al., 2016; Johnstone & Kasischke, 2005; Z. Liu et al., 2012; Ponomarev
et al., 2016; Stocks et al., 1998). Unusual wildfire events can function as a trigger of vegetation change
in fire-dependent ecosystems, as more severe fires driven by warming climate alter the seedbed through the
exposure of more mineral soils, promoting the germination and establishment of light-seeded hardwood trees
over more heavily seeded conifers (Cai et al., 2013; Groisman et al., 2007; Johnstone et al., 2016; Johnstone
& Kasischke, 2005; Ponomarev et al., 2016; Stocks et al., 1998). This phenomenon is well-studied in North
American boreal forests, where wildfire has facilitated shifts from conifer-dominance to the dominance of decid-
uous broadleaf species, altering the spatial distribution of carbon (Johnstone, Chapin, et al., 2010; Johnstone,
Hollingsworth, et al., 2010; Mack et al., 2021). However, the role of wildfire in the facilitation of vegetation
shifts remains largely unexplored in Siberia, where the majority of continuous permafrost occurs within the
boreal forest biome. In monodominant Cajander larch (Larix cajanderi Mayr.) boreal forests of northeast Sibe-
ria, stand-replacing fires play an essential role in ecological succession (Alexander et al., 2012; Shorohova
et al., 2009; Valendik & Ivanova, 2001). Instead of alternate successional trajectories driven by changes in tree
functional types like those commonly seen in North America, forest trajectories can vary depending on forest
tree density in relation to shrub cover (Alexander et al., 2012, 2018), given the differences in species assemblages
between North American and Siberian forests. In northeast Siberia, tall deciduous shrubs (>0.5 and <1.5 m),
particularly Betula nana L. and Salix spp., are abundant where tree density is low (Paulson et al., 2021). Fire
is widespread in the region, with fire frequency (Ponomarev et al., 2016) and burned area (Talucci et al., 2022)
increasing in response to climatic changes, yet the extent to which large scale shifts in tree density occur remains
unclear.

Plant canopies, which serve as a primary interface between the atmosphere and the biosphere, are key to under-
standing how variation in ecosystem structure might relate to climate feedbacks with albedo (Bonan et al., 1992;
Webb et al., 2021), water and energy exchange (Beringer et al., 2005), and CO, uptake capacity (Ollinger
et al., 2008; Richardson et al., 2013). Leaf area index (LAI) is a key parameter in the modeling of earth system
processes in the Arctic, particularly the cycling and dynamics of carbon (e.g., Birch et al., 2021; Ueyama, Ichii,
et al., 2013; Ueyama, Iwata, et al., 2013), and water (e.g., Hedstrom & Pomeroy, 1998; Launiainen et al., 2019;
Parajuli et al., 2020). LAI is defined as the one-sided total green leaf area per unit ground surface area (J. M. Chen
& Black, 1992; Fernandes et al., 2014), agreeing with the definition of LAI for flat-needled trees (i.e., L. cajan-
deri) used in calculating the Moderate Resolution Imaging Spectroradiometer (MODIS) LAI product (Myneni
etal., 1997, 2015). Typically, LAl is estimated indirectly for the entire canopy through the use of optical methods,
but it can also be estimated directly through the use of allometric relationships (J. M. Chen et al., 1997; Gower
et al., 1999; Jonckheere et al., 2004).

In the context of modeling ecosystem processes, remote sensing is often used to infer spatial and temporal
variability in canopy LAI. This approach can be challenging in many contexts, as the relationship between
ground-based LAI values and satellite-derived vegetation indices (VIs) such as the Normalized Difference and
Enhanced Vegetation Indices (NDVI and EVI, respectively) is highly variable depending on factors that include
the time of year, the statistical methods used to derive the indices, background NDVI levels, and the temporal
scale of measurement (J. M. Chen & Cihlar, 1996; Cohen et al., 2003; Wang et al., 2005). Research conducted at
the same Siberian larch forest used in this study demonstrates that remotely sensed VIs do not capture variation
in forest cover, finding that NDVI and EVI are both unrelated to field observations of tree canopy cover and
biomass (Loranty, Davydov, et al., 2018). Some remote sensing products estimate LAI directly without the use of
NDVI or EVI as a proxy, such as the MODIS LAI product (MOD15) and the Polarization and Directionality of
the Earth's Reflectance (POLDER) LAI maps. However, when assessed for accuracy in boreal forests, MODIS
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overestimated LAI for forests early in post-fire succession and underestimated it for later successional forests (X.
Chen et al., 2005; Serbin et al., 2013; Verbyla, 2005), while POLDER generally underestimated LAI (Abuelgasim
et al., 2006). Given the uncertainty of satellite-derived VIs to accurately reflect post-fire LAI variation, analyses
of variation in LAI and vegetation dynamics using ground-based allometry data are very valuable. They are
particularly useful for understanding vegetation-climate feedbacks in the context of vegetation shifts, especially
in high-latitude ecosystems experiencing amplified warming.

In this study, we investigate variation in plant canopies across a monodominant upland Siberian larch forest,
examining the separate and combined contributions of trees and tall shrubs (>0.5 and <1.5 m) to LAL. While
prostrate shrubs and other non-woody vegetation types are found in the understory, tall shrubs are most abun-
dant and vary with forest density (Paulson et al., 2021). We use tree and tall shrub stem measurements from 26
similarly-aged, mature stands along a gradient varying in larch stem density and located within the perimeter of a
single wildfire that occurred ca. 1940 (Paulson et al., 2021). We estimate LAI for trees and tall shrubs using site-
and genus/species-specific allometric equations and examine the relationships between tree and tall shrub LAI,
and two commonly used satellite-derived proxies for vegetation productivity, the NDVI and EVI, respectively.
By analyzing variation in LAI across the tree density gradient, and comparing that data to satellite vegetation
indices, we aim to address the following questions: (a) How do tree LAl tall shrub LAI, and combined tree-shrub
LAI vary across a post-fire tree density gradient? and (b) How do the commonly used vegetation indices NDVI
and EVI relate to variation in tree LAI, tall shrub LAI, and combined tree-shrub LAI? We expect tree LAI to
increase with increasing tree stem density while tall shrub LAI decreases. Overall, we expect combined tree-shrub
LALI to increase with tree stem density, with tall shrubs partially compensating for lower tree LAI at less dense
stands. We do not expect to find a relationship between variation in LAI and variation in NDVI or EVI, given the
lack of relationships between satellite-derived VIs, larch canopy cover, and larch biomass observed in previous
research at this study site (Loranty, Davydov, et al., 2018).

2. Methods
2.1. Study Site

The study was conducted in Siberia near the Northeast Science Station (NESS) in Cherskiy, Sakha Repub-
lic, Russian Federation (68.76°N, 161.46°E; Figure 1). The climate is cold with mean annual, summer, and
winter temperatures of —10.5°C, 10.9°C, and —31.3°C, respectively for the 1991-2020 reference period (Paulson
et al., 2021). Data gaps in precipitation observations submitted to the Global Historical Climatology Network
preclude calculation precipitation sums for the same reference period, however Berner et al. (2013) report mean
total annual precipitation of 282 mm using CRU data for the 1938-2009 reference period. The region is under-
lain by continuous permafrost. Forests are composed exclusively of Cajander larch trees, a deciduous conifer
that is fire adapted with non-serotinous cones and wind-dispersed seeds. Understory vegetation includes tall
erect shrubs (Betula spp. and Salix spp.), short evergreen shrubs (Vacciunium vitis idaea, Empetrum nigrum,
and Rhododendron tomentosum (syn. Ledum palustre)), mosses (Aulacomnium spp. and Polytrichum spp.), and
lichens (Cladonia rangiferina, Cetraria cuculata, and Stereocaulon tomentosum) (Paulson et al., 2021). Wildfire
is required for larch germination, reducing competition and improving seedbed conditions by exposing the soil
mineral layer (Alexander et al., 2018). More than half (50%-60%) of fires in the region are stand-replacing,
destroying existing larch vegetation through the root layer and leading to the development of a consistently aged
cohort (Alexander et al., 2018; Sofronov & Volokitina, 2010). Historically, stand-replacing fires have occurred
every 80-300 years (Krylov et al., 2014), but climate change is driving increases in fire frequency, extent, and
prevalence (Ponomarev et al., 2016).

To examine how variation in tree density affects LAI in an evenly-aged monodominant larch forest, we sampled
trees and tall shrubs within the perimeter of a fire that burned ca. 1940. Forests within the burn perimeter exhibit
a wide range of tree stem densities, with stands grouped as low (<3,500 stems/ha), medium (>3,500 and <10,000
stems/ha), and high (>10,000 stems/ha) density (Paulson et al., 2021; X. J. Walker et al., 2021). High density
stands have an average of 2.12 stems/m?, 64.1% canopy cover, and 1,828.8 g aboveground biomass; medium
density stands have an average of 0.71 stems/m?, 40.5% canopy cover, and 1,271.5 g aboveground biomass;
low density stands have an average of 0.16 stems/m?, 17.9% canopy cover, and 431.3 g aboveground biomass
(Table 1). The variation in larch stem density is likely a consequence of the combined effects of variation in
burn severity and seed availability (Alexander et al., 2018; Paulson et al., 2021). Most trees within these stands
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Figure 1. The left panel shows a map of the study sites denoting the different density classes. Illustrative photos on the right panel show representative high-density (a),
medium-density (b), and low-density sites (c), along with aerial photos of high-density (e) and low-density (f) sites.

originated between 10 and 15 years post-fire, and surveys of standing dead and coarse woody debris indicate a
uniform low-density stand existed across the area before the fire (Paulson et al., 2021).

2.2. Field Data

We used high-resolution satellite imagery and field reconnaissance to identify 26 stands within the burn perim-
eter that spanned a range of post-fire tree density (Figure 1). During the summers of 2014-2017, we conducted
detailed vegetation inventories at each stand. Our sampling was conducted along three 30 m long belt transects
spaced ~30 m apart, with widths ranging from 1 to 8 m depending on tree density, creating plots ranging in area
from 30 to 240 m?2. Within each belt transect we recorded the diameter at breast height (DBH) for every live tree.
We sampled tall shrubs (>0.5 and <1.5 m) using a subplot with a length of 5 m nested within each belt transect.
Subplots began at one end of each transect and had widths ranging from 0.5 to 4 m depending on stem density,
creating subplots ranging in area from 2.5 to 20 m?. Tall shrub stem density was generally quite high, so subplots
with lengths >5 m would have been redundant. Within each tall shrub subplot, the basal diameter (BD) of all live
tall shrubs was recorded.

2.3. Allometry

Table 1 We estimated LAI from tree and tall shrub stem diameter measurements

b oot Cllnrereinien by Dttty Clesss using locally-calculated, genus/species-specific allometric relationships

Mean characteristic + Standard error (Alexander et al., 2012; Berner et al., 2015). Using the general equation for

Stand Teosiomdensy  Commy e Moz leaf mass, LM = ax®, where x represents BD or DBH, and a and b represent

density class (stems/m?) (%) biomass (g) genus/species-specific parameters (see Table 2), we estimated leaf mass for

) each tree and tall shrub. Next, we multiplied leaf mass by mean specific leaf
High 2.121 + 0.321 64.106 + 3.842 1,828.797 + 248.089 . .

area (SLA) to estimate total leaf area for each individual (Kropp et al., 2019).

S e 2 Ay Lapleny e 2R Finally, we summed the total leaf area for all individuals in each belt transect

Low 0.164£0.055  17.907+3.486  431.275+247.156  and divided the sum by transect ground area to estimate LAI for each transect.
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Table 2 We used the mean of the three transects in each stand as the stand-level LAI
Allometric Parameters and Specific Leaf Area by Species value.
Allometric parameters Specific leaf area (cm*g) ~ We calculated separate allometric equations for high- and low-density stands
D High because canopy architecture and allocation patterns likely varied due to
Species type a b density  Low density different levels of competition for resources. Medium-density stands are
Larix cajanderi BD 2255 145 112.89° 34,60 essentially clumps of high-density forest, so SLA values for h1gh-de§51ty
DBH AT were used for these stands. SLA values for trees and tall shrubs were derived
’ ’ from leaves and needles sampled at high- and low-density study sites during
Ll s EID 457 245 167447 126.55¢ the 2016 and 2017 field seasons (Kropp & Loranty, 2018). We performed
Salix spp. BD 3.01° 2.18°  145.48¢ 127.02¢ leaf mass allometry using existing equations derived from destructive harvest

Alexander et al., 2012. "Kropp et al.,

collected by authors.

2019. “Berner et al., 2015. “Data of trees and shrubs at the study sites, as well as from similar nearby sites.
To estimate tall shrub leaf mass we used genus/species-specific equations
from Berner et al. (2015) that were calculated using shrubs from sites in the
region, including our study sites. For tree leaf mass at low-density sites we

used equations reported by Alexander et al. (2012) that were derived from destructive harvests at a similar nearby

site (Kajimoto et al., 2006). Equations for high-density leaf mass were developed by Kropp et al. (2019) from
destructive harvests at our study sites.

2.4. Satellite Data

To investigate relationships between LAI and satellite-derived VIs, we used imagery from the PlanetScope and
Landsat satellite platforms. We used a single Landsat 8 OLI image acquired on 28 July 2017, and a single Plan-
etScope image acquired on 26 July 2017. Both images were also used for comparison of forest cover and VIs
by Loranty, Davydov, et al. (2018). The Landsat scene from WRS Path 105 Row 12 was processed to Surface
Reflectance and acquired from the USGS EarthExplorer, and has a spatial resolution of 30 m. We used the
included cloud mask to exclude clouds and shadows and applied an NDVI threshold of 0.5 to exclude cloud
shadows missed by the mask. Masking did not remove data from any of our study sites. PlanetScope captures
imagery in blue, green, red, and NIR spectral bands at 3 m spatial resolution (Planet Team, 2017). The Planet
Surface Reflectance product is derived by atmospherically correcting the top-of-atmosphere reflectance product
using a radiative transfer model informed by concurrent MODIS scenes (Vermote et al., 1997). The Planet image
was manually screened for cirrus or haze contamination. NDVI was calculated using NIR and Red reflectances
as follows:

NIR — Red

NDVI = ———
NIR + Red

EVI was calculated using NIR, Red, and Blue reflectances as follows:

NIR — Red
(NIR + 6) X (Red — 7.5) X (Blue + 1)

EVI=2.5x

For analysis we extracted data from all pixels within a 15 m radius of plot centers from Landsat and Planet NDVI
and EVI images. For Landsat imagery, the radius was approximately one pixel and for Planet imagery the radius
was approximately five pixels, using a weighted average to aggregate any data beyond the 15 m radius. The radius
of 15 m was selected as it encompasses all the transects without exceeding the sampled area or including areas
where edge effects could have skewed results due to proximity to a road.

2.5. Data Analysis

We processed field data and satellite images and performed all data analyses with R 4.0.3 (R Core Team, 2020).
To find the significance of differences in mean allometric LAI across sites of high, medium, and low density,
we performed one-way analysis of variance (ANOVAs) of tree, shrub, and combined tree-shrub LAI using the
aov function in R. A post-hoc Tukey's honest significance test was performed on each ANOVA to calculate the
significance of the difference between each combination of densities. We also performed a linear regression of
the relationship between tree and shrub LAI using the Im function in R. We used the same function to perform
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Table 3
Allometric LAI for Tree and Tall Shrub Species at High, Medium, and Low Density Stands

Mean LAI =+ standard error (m?m?)

Tall shrubs
Stand density class Trees (L. cajanderi) Salix spp. Betula spp. Total tall shrubs  Trees + shrubs
High 1.294 + 0.364* 0.018 + 0.025 0.124 + 0.121* 0.134 + 0.123* 1.43 +0.487
Medium 0.819 + 0.397% 0.030 + 0.037 0.341 + 0.156% 0.362 + 0.172% 1.18 + 0.569
Low 0.663 + 0.599¢ 0.042 + 0.049 0.447 £ 0.217¢ 0.487 + 0.225¢ 1.15 £ 0.824

Note. Superscript letters indicate significance (p < 0.05) from Tukey's honest significance test.

linear regressions of the relationships between EVI and NDVI, and tree, shrub, and combined tree-shrub LAIL
The raster (Hijmans, 2020) and rgdal (Bivand et al., 2020) packages were used for processing satellite imagery,
and the ggplot2 (Wickham, 2016) package was used to generate data visualizations.

3. Results
3.1. Allometry and Canopy Composition

Allometry revealed an inverse relationship between tree LAI and tall shrub LAI, with tree LAI increasing with
stands of increasing tree density. The SLA values used in allometric calculations are presented in Table 2 for each
genus/species at high and low tree density stands. Mean LAI values from allometry by tree density, vegetation
type (tree vs. tall shrub), and species are reported in Table 3. In high density stands, 90% of combined tree-shrub
LAI (1.4 m*m?) was due to trees (1.3 m%/m?), with only 10% due to tall shrubs (0.13 m?*m?). In medium density
stands, 69% of total LAI (1.2 m%m?) was due to trees (0.82 m?m?), and 31% was due to tall shrubs (0.36 m?/m?).
In low density stands, 58% of total LAI (1.2 m%*/m?) was due to trees (0.66 m%*/m?), and 42% was due to tall shrubs
(0.49 m?*/m?). Betula spp. contributed 87%, 92%, and 91% of tall shrub LAI at high, medium, and low densities,
respectively, with Salix spp. contributing the remainder of tall shrub LAI. We found significant differences in
mean tree LAI (Figure 2a; F, ;; = 16.02; p < 0.001) and tall shrub LAI (Figure 2b; F), (, = 29.52; p < 0.001)
between high, medium, and low density sites. The differences in mean combined tree-shrub LAI between differ-
ent densities were not significant (Figure 2¢, F, o, = 1.34; p = 0.27). We also found a significant negative rela-
tionship between tall shrub LAI and tree LAI, represented by the model s = —0.24¢ + 0.54 , where s is tall shrub
LAI and ¢ is tree LAI (Figure 3; R> = 0.28, p = 0.007).

3.2. Leaf Area Index and Satellite VIs

We found significant positive linear relationships between tall shrub LAI and Planet NDVI (Figure 4c, p = 0.002,
r = 0.47), as well as tall shrub LAI and Landsat NDVI (Figure 5c, p = 0.02, r = 0.59). We also observed signifi-
cant positive relationships between tall shrub LAI and Planet EVI (Figure 4d, p = 0.005, r = 0.57), and tall shrub
LAI and Landsat EVI (Figure 5d, p = 0.003, » = 0.56). Additionally, there was a significant negative relation-
ship between tree LAI and Landsat EVI (Figure 5b, p = 0.008, r = —0.53). Relationships between tree LAI and
Landsat NDVI, tree LAI and Planet NDVI/EVI, and combined tree-shrub LAI and Landsat and Planet NDVI/
EVI were not significant.

4. Discussion
4.1. What Are the Implications of Tree-Shrub LAI Compensation?

Mean tree LAI and tall shrub LAI differed significantly between sites of high, medium, and low larch density, but
combined tree-shrub LAI did not. Additionally, we found a significant negative correlation between mean tree
LALI and tall shrub LAI These findings suggest that the role of tall shrubs in this larch forest canopy is compen-
satory, providing a higher proportion of combined tree-shrub LAI in stands with lower tree LAI due to lower
tree density. Furthermore, this tall shrub compensation creates a canopy of consistent combined tree-shrub LAI
across the gradient of tree density. The phenomenon of tree-shrub LAI compensation has not been documented
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Figure 2. Mean leaf area index (LAI) for trees (a), tall shrubs (b), and trees + shrubs (c) for forest stands in high, medium,
and low density classes.

before and has potential implications for interpreting measures of LAI, as well as remotely sensed VIs, when the
contributions of tall shrubs and trees to total canopy LAI have not been evaluated separately. When interpreting
LAI products derived from satellite imagery, our results provide insight as to how tree and tall shrub LAI relate
to each other and to tree stem density for a Cajander larch forest.

Variation in tree and tall shrub LAI across the tree density gradient likely drives variation in understory compo-
sition, diversity, and abundance. Paulson et al. (2021) surveyed understory characteristics across the same tree
density gradient, finding insignificant variation in graminoid, herb, lichen, and short shrub abundance, a positive
relationship between tree density and moss abundance, and a negative relationship between tree density and tall
shrub abundance. They also report that when active layer depth and soil organic layer (SOL) depth are at their
mean values, species richness decreases with increasing larch density, a pattern typically attributed to lower
resource availability at high density stands (Bartels & Chen, 2010; Euskirchen et al., 2006; Grandpré et al., 1993).
This suggests that the relationship between LAI and understory biodiversity is dependent on whether the canopy
is dominated by trees or tall shrubs, with tall shrub canopies supporting higher understory biodiversity. Even if
combined tree-shrub LAI is equal across the tree density gradient, the structural differences between columnar
tree and clumped tall shrub canopies likely drive variation in understory light availability. Mosses are significant
components of understory communities and can have high leaf areas (Bond-Lamberty & Gower, 2007; Turetsky
et al., 2012), but there is an absence of high-quality data for moss abundance and leaf area in Siberian boreal
forests.
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° Graminoids, herbs, lichens, mosses, and short shrubs all likely contribute
. b to total ecosystem LAI in addition to trees and tall shrubs. However, as
Ng 0.6 - noted above, point-intercept surveys of understory vegetation at our study
‘}‘E e sites illustrate that only tall shrubs and moss vary proportionally with tree
= density, while graminoids, herbs, lichens, and short shrubs are equally abun-
5 0.4 4 dant across the density gradient (Paulson et al., 2021). This, combined with
= the relatively low abundance of these functional types relative to trees and
% shrubs, makes it reasonable to assume that their contributions to LAI and
= 02 impacts on VIs are also relatively small and similar across sites. Moss abun-
l(—u dance increased with tree density (Paulson et al., 2021), and may therefore
= have varying contributions to total ecosystem LAI. However, in high density
% 0.0 forests where mosses are most abundant, they would likely be obscured by
the tree canopy making their effects on VIs unclear.

0.5

Mean Tree LAl (m?/m?)

1.0 1.5
4.2. Leaf Area Index and Satellite-Derived VIs

We found significant, positive relationships between tall shrub LAI and

Figure 3. Linear regression of the significant relationship between mean tree NDVI, as well as between tall shrub LAI and EVI, using both PlanetScope

and tall shrub leaf area index (LAI) by plot. For this regression, R? = (.28,

p <0.05.

and Landsat imagery. Relationships between tree LAI and VIs were insig-
nificant. NDVI and EVI were both included in these analyses because
NDVI is commonly used to examine boreal vegetation dynamics, while EVI
offers improvements in accounting for the effects of soil and other potentially confounding factors, presenting
rationale to compare the indices in this context. We observed discrepancies between the absolute values of VIs
derived from Landsat and Planet imagery that may be due to differences in product resolution and band wave-
length, as documented in other types of forest (Hirkonen et al., 2015; Y. Liu et al., 2018; Ogutu et al., 2012), or
due to atmospheric corrections and/or differences in illumination and viewing geometry. Our focus was on spatial
variability between sites, and the patterns we observed are consistent between the imagery sources, so we did not
further investigate or attempt to account for or correct differences between sensors. The consistency of our results
suggests that tall shrub canopies influence satellite-derived VIs more strongly than larch canopies, a finding that
is in line with previous research at our sites demonstrating no link between either NDVI or EVI and larch biomass
or canopy cover (Loranty, Davydov, et al., 2018). A possible explanation for this relationship is that tall shrub
canopies are distributed less vertically and more horizontally than tree canopies. Thus, a larger proportion of the
leaf area of tall shrub canopies is visible to satellite sensors than the leaf area of tree canopies. Additionally, the
more vertically distributed tree canopies include a larger proportion of non-photosynthetic tissue (i.e., stems and
branches) than shrub canopies. The negative relationship we found between tree LAI and EVI may also reflect
the higher proportion of non-photosynthetic material in trees than in shrubs.

We estimated LAI using site- and species-specific allometric equations, rather than more commonly employed
optical methods. Optical methods use light transmission to measure the gap fraction of the canopy surface, and
can be obtained using hemispherical photographs, a plant canopy analyzer, or a quantum sensor (J. M. Chen
et al., 1997; Gower et al., 1999; Jonckheere et al., 2004). While there are uncertainties associated with allomet-
ric approaches, optical measures of LAI also have uncertainties related to the representativeness of observation
points, light conditions, and clumping of leaves (Ryu et al., 2010). Shin et al. (2020) directly compare allomet-
ric and optical LAI at a similar Cajander larch forest in eastern Siberia, finding good agreement between the
methods, and indicating that our results are comparable to those derived from optical techniques. However, this
only applies to tree LAI, as obtaining optical measurements of tall shrub canopies would be challenging due to
the low sensor positioning that would be required, and the difficulty associated with differentiating tree and tall
shrub LAL

Due to the apparent correlation between satellite-derived VIs and tall shrub LAI, we speculate that NDVI and
EVI might be relatively accurate proxies for tall shrub LAI and biomass, but not tree LAI and biomass in these
ecosystems. Though more data is necessary to determine the accuracy and consistency of this relationship, it may
alter interpretations of long-term trends in VIs in locations where tree canopy cover varies. Greening and brown-
ing trends in response to warming are very well documented in the Arctic, especially at the taiga-tundra ecotone
(TTE; Berner et al., 2020; Berner & Goetz, 2022; de Jong et al., 2011; Guay et al., 2014; Ju & Masek, 2016;
Myers-Smith et al., 2020). Greening has been explicitly linked to the expansion of deciduous shrubs north of the
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Figure 4. From Planet imagery, the relationships between mean tree LAI and NDVI (a), mean tree LAI and EVI (b), mean tall shrub LAI and NDVI (c), mean tall
shrub LAI and EVI (d), mean tree + shrub LAI and NDVI (e), and mean tree + shrub LAI and EVI (f). Each plot displays the Pearson's correlation coefficient (r), and
the p-value. In plots (c) and (d), where p < 0.05, indicating a significant relationship, a regression line is included.

TTE in Siberia, specifically to increases in Salix spp. growth, one of the shrubs present at our study sites (Forbes
etal., 2010). Our findings concur, supporting the established link between increasing shrub growth and long-term
greening trends in Siberia. The relationships between tree and tall shrub LAI and satellite-derived VIs also have
potential implications for ecosystem modeling, given that the partitioning of leaf area between trees and shrubs
throughout the canopy is a key assumption in many models. A better understanding of the spatial and temporal
distribution of trees and tall shrubs could improve the way this vegetation is represented in ecosystem models.

As a key interface between the biosphere and the atmosphere, there are several implications of variation in leaf
area for ecological modeling. Our findings illustrate how trees and tall shrubs contribute to LAI across a tree
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Figure 5. From Landsat imagery, the relationships between mean tree LAI and NDVI (a), mean tree LAI and EVI (b), mean tall shrub LAI and NDVI (c¢), mean tall
shrub LAI and EVI (d), mean tree + shrub LAI and NDVI (e), and mean tree + shrub LAI and EVI (f). Each plot displays the Pearson's correlation coefficient (r), and
the p-value. In plots (b), (c) and (d), where p < 0.05, indicating a significant relationship, a regression line is included.

density gradient in a Siberian larch forest and show that Landsat and Planet NDVI and EVI do not capture differ-
ences in forest structure due to the compensatory effects of tall shrubs in the understory. Given the substantial
physiological and structural differences between trees and shrubs, accurately quantifying their relative contribu-
tions to post-fire LAI has implications for understanding a range of climatically important ecosystem processes in
which woody vegetation plays a key role, including forest productivity (X. J. Walker et al., 2021), ecohydrology
(Kropp et al., 2019), and soil thermal regimes (Loranty, Abbott, et al., 2018), among others. In boreal systems, VIs
are typically used to infer phenology, growing season length, water and carbon dynamics, and vegetation-climate
feedbacks. As VIs are typically derived from satellite imagery in this context, there is a significant amount of
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uncertainty regarding what vegetation drives VIs and their spatial variation. Different assumptions regarding
whether VIs are driven by trees or shrubs could lead to different interpretations and model representations of key
earth system process dynamics. Our findings provide field-based measures of tree and tall shrub vegetation that
demonstrates substantial abundance of tall shrub leaf area in low-density forests, as well as the subsequent need
for accurate tree and tall shrub leaf area representation in models of processes such as carbon and water fluxes.

As our analyses were performed within the perimeter of a single fire, there are certainly limitations to the contexts
in which they should be interpreted. Factors such as landscape history, soil conditions, and topography likely
impact patterns in post-fire recruitment of trees and understory vegetation. Our results corroborate patterns of
tree and shrub biomass observed across a larger geographic area encompassing many burn perimeters (Alexander
et al., 2012; Webb et al., 2017), suggesting that the relationship between tree and shrub canopies likely holds
true for upland Cajander larch forests in northeast Siberia. Data on tree and tall shrub variation from a wider
geographic area are needed to determine the limitations of this relationship.

4.3. Potential Drivers of Variation in Tree and Shrub Leaf Area Index

Variation in burn severity across the burn perimeter is likely one of several factors driving variation in tree and
tall shrub recruitment, and subsequent variation in biomass and LAI. Other potential factors include abiotic
conditions (Cai et al., 2013; Johnstone, Hollingsworth, et al., 2010; Sofronov & Volokitina, 2010) and competi-
tive interactions with other species (Dolezal, 2004; Hart & Chen, 2006; Nilsson & Wardle, 2005). During wild-
fire, the SOL burns unevenly, exposing the mineral soil beneath to varying degrees across the burn perimeter
(Johnstone & Chapin, 2006; Johnstone & Kasischke, 2005). Alexander et al. (2018) found, using experimental
burns in a nearby study area, that exposed mineral soil improves seedbed conditions for L. cajanderi and observed
a positive relationship between burn severity and L. cajanderi recruitment, consistent with other research from
Siberian boreal larch forests (Sofronov & Volokitina, 2010). Portions of the forest with high L. cajanderi recruit-
ment rates due to higher burn severity could have lower tall shrub recruitment rates due to a more complete larch
canopy, leading to smaller canopy gaps and decreased light availability for shrub establishment. However, this
relationship has not been sufficiently investigated, and there could be other factors affecting shrub recruitment,
depending on the mechanisms by which these shrub species recolonize a recently burned forest.

The mechanisms for post-fire recruitment of boreal shrubs are not well studied, especially in Siberia, but research
from North American boreal forests has investigated these mechanisms in Betula nana, the most abundant shrub
at our study site. B. nana regenerates quickly after low- and moderate-severity fire by resprouting from the
surviving root crown and rhizomes, but high-severity fire kills the root crown and rhizomes, preventing resprout
(de Groot et al., 1997; Racine et al., 1987). Although B. nana does produce wind-dispersed seeds, studies suggest
that establishment from seed is rare in disturbed ecosystems (Ebersole, 1989; Whittaker, 1993). Therefore, it
is possible that areas of the wildfire perimeter with higher burn severity might have high rates of L. cajanderi
recruitment due to the high level of mineral soil exposure (Alexander et al., 2012, 2018) and low or nonexist-
ent rates of B. nana sprouting due to the death of the root crown and rhizomes. Conversely, areas with lower
burn severity might exhibit lower rates of L. cajanderi recruitment due to lower levels of mineral soil exposure
(Alexander et al., 2012, 2018) and higher rates of B. nana sprouting due to lower levels of damage to the root
crown and rhizomes. Another factor that almost certainly influences variation in tree and tall shrub recruitment is
proximity to seed sources in unburned stands. Complex interactions between the many factors affecting post-fire
recruitment and growth of trees and shrubs in boreal forests are likely occurring and additional research regarding
the fire ecology of the trees and tall shrubs present at the site is necessary for a more conclusive explanation.

Recruitment is not the only factor that might influence variation in tree and tall shrub LAI in larch forests. Differ-
ences in tree and shrub growth rates would also affect subsequent variation in tree and shrub canopies. Studies
from across northern Siberia show that Larix spp. growth rates have decreased with increasing temperatures over
recent decades (Berner et al., 2013; Kharuk et al., 2019; Shuman et al., 2011). Research from our study sites, near
the northern edge of the L. cajanderi range, shows that although rising temperatures are expected to generally
increase tree growth, increased tree density decreases active layer depth, increasing competitive interactions
and ultimately decreasing larch growth rates (X. J. Walker et al., 2021). This concurs with other findings from
northeast Siberia showing overall decreases in L. cajanderi growth rates since the mid-twentieth century (Berner
et al., 2013). In contrast, the growth rates of shrubs are increasing in response to rising temperatures in the Arctic
(Myers-Smith et al., 2015). Climate change has increased the length of the growing season throughout the Arctic,
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contributing to increased shrub presence across the region (Chapin et al., 2004; Euskirchen et al., 2006; Goetz
et al., 2005). Evidence also suggests that specifically Betula nana and Salix spp., the two shrubs most common
at our study sites, have exhibited increasing growth rates in recent decades associated with rising temperatures
(Frost & Epstein, 2014; Heim et al., 2021; Stow et al., 2004; Tape et al., 2006; M. D. Walker et al., 2006). Though
tall shrubs are expected to be abundant in the understory of boreal forest regardless of climatic changes, it is
possible that increasing shrub growth rates due to rising temperatures influence shrub biomass and canopy cover.
Further investigations into the prevalence of tall shrubs in the understory of boreal forest over time could provide
insight into the potential role of climatic shifts in altering tree-shrub canopy dynamics.

5. Conclusions

We found that in a post-fire Siberian boreal larch forest, tall shrubs (>0.5 and <1.5 m) compensate for decreased
tree LAI at lower density stands to create a plant canopy of consistent combined tree-shrub LAI across the
density gradient. While tree LAI and tall shrub LAI individually vary significantly between high, medium, and
low-density sites, variation in combined tree-shrub LAI is not significant. We also found that tall shrub LAI,
but not tree LAI or combined tree-shrub LAI, was significantly and positively correlated with NDVI and EVI,
indicating that tall shrub canopy cover has a greater effect on satellite-derived vegetation indices than tree or
total canopy cover. Our results highlight the importance of tall shrubs in the canopy composition of regener-
ating boreal forests. As climate change leads to increased wildfire frequency, and as vegetation shifts toward
shrub-dominated disturbance regimes across the Arctic, understanding how shrubs contribute to plant canopies
will likely become increasingly critical.
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