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Abstract

UV and optical continuum reverberation mapping is a powerful tool for probing the accretion disk and inner broad-
line region. However, recent reverberation mapping campaigns in the X-ray, UV, and optical have found lags
consistently longer than those expected from the standard disk reprocessing picture. The largest discrepancy to date
was recently reported in Mrk 335, where UV /optical lags are up to 12 times longer than expected. Here, we
perform a frequency-resolved time lag analysis of Mrk 335, using Gaussian processes to account for irregular
sampling. For the first time, we compare the Fourier frequency-resolved lags directly to those computed using the
popular interpolated cross-correlation function method applied to both the original and detrended light curves. We
show that the anticipated disk reverberation lags are recovered by the Fourier lags when zeroing in on the short-
timescale variability. This suggests that a separate variability component is present on long timescales. If this
separate component is modeled as reverberation from another region beyond the accretion disk, we constrain a size
scale of roughly 15 lt-days from the central black hole. This is consistent with the size of the broad-line region
inferred from HQ reverberation lags. We also find tentative evidence for a soft X-ray lag, which we propose may be
due to light travel time delays between the hard X-ray corona and distant photoionized gas that dominates the soft

X-ray spectrum below 2 keV.

Unified Astronomy Thesaurus concepts: Active galactic nuclei (16); Supermassive black holes (1663);
Reverberation mapping (2019); Seyfert galaxies (1447); Accretion (14); Gaussian Processes regression (1930)

Supporting material: data behind figure

1. Introduction

Understanding how material accretes onto supermassive
black holes is causally linked to our grasp of feedback from
active galactic nuclei (AGNs) and its impact on galactic
evolution as a whole. In practice, however, we are unable to
spatially resolve the accretion disk in an AGN, out to the broad-
line region (BLR) located near the outskirts of the disk.
Reverberation mapping allows us to overcome this limit by
measuring the light travel time between circumnuclear regions
to inform us of their relative locations (e.g., Blandford &
McKee 1982; Peterson et al. 2004; Bentz et al. 2009;
Fausnaugh et al. 2016; Cackett et al. 2018; Edelson et al.
2019; Cackett et al. 2020). We refer to Cackett et al. (2021) for
a recent review. In essence, material at different radii from the
black hole will dominate the emission in distinct wave bands,
giving rise to variability in one wave band that lags or leads
that of another due to the difference in light travel time between
regions.

While the time lags between X-ray bands allow us to probe
the innermost accretion flow (X-ray reverberation mapping, see
Zoghbi et al. 2011; De Marco et al. 2013; Uttley et al. 2014;
Kara et al. 2016, for review), the lags between longer
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wavelength bands grant sight out to the outermost regions of
the disk and the inner BLR. The accretion disk emits thermally,
producing UV photons that are Compton up-scattered to X-ray
energies by a region of high-energy electrons located close to
the black hole, giving rise to the central X-ray-emitting region
known as the corona (Haardt & Maraschi 1991). These coronal
X-rays then irradiate and are thermally reprocessed by the disk,
which will then emit in the UV-optical-infrared (UVOIR)
bands. The variability in the central corona is therefore
expected to drive correlated variability that can be observed
with a delay at longer wavelengths. Specifically, the X-rays
first reach the inner, hotter parts of the disk before reaching the
outer, colder parts. By assuming a temperature profile for a
standard thin Shakura & Sunyaev (1973) accretion disk
(T(R) x R—3/*), the lags are expected to increase in size with
wavelength as 7 M3 (Collier et al. 1998, 1999; Cackett
et al. 2007). The normalization for this lag-wavelength relation
depends on the mass and accretion rate of the black hole, as
well as the physical properties of the disk (Fausnaugh et al.
2016).

Our catalog of lag measurements between the X-ray, UV,
and optical have grown significantly due to recent, high-
cadence, multicolor campaigns using the Neil Gehrels Swift
Observatory (Burrows et al. 2005; Roming et al. 2005) and
ground-based telescopes, which have been carried out for 10
AGNs including Mrk 335 (e.g., McHardy et al. 2014; Shappee
et al. 2014; Edelson et al. 2015; Fausnaugh et al. 2016;


https://orcid.org/0000-0002-8671-1190
https://orcid.org/0000-0002-8671-1190
https://orcid.org/0000-0002-8671-1190
https://orcid.org/0000-0003-0172-0854
https://orcid.org/0000-0003-0172-0854
https://orcid.org/0000-0003-0172-0854
https://orcid.org/0000-0002-8294-9281
https://orcid.org/0000-0002-8294-9281
https://orcid.org/0000-0002-8294-9281
https://orcid.org/0000-0002-4794-5998
https://orcid.org/0000-0002-4794-5998
https://orcid.org/0000-0002-4794-5998
https://orcid.org/0000-0003-3828-2448
https://orcid.org/0000-0003-3828-2448
https://orcid.org/0000-0003-3828-2448
https://orcid.org/0000-0001-9092-8619
https://orcid.org/0000-0001-9092-8619
https://orcid.org/0000-0001-9092-8619
mailto:clewin@mit.edu
http://astrothesaurus.org/uat/16
http://astrothesaurus.org/uat/1663
http://astrothesaurus.org/uat/2019
http://astrothesaurus.org/uat/1447
http://astrothesaurus.org/uat/14
http://astrothesaurus.org/uat/1930
https://doi.org/10.3847/1538-4357/ace77b
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ace77b&domain=pdf&date_stamp=2023-08-22
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ace77b&domain=pdf&date_stamp=2023-08-22
http://creativecommons.org/licenses/by/4.0/

THE ASTROPHYSICAL JOURNAL, 954:33 (13pp), 2023 September 1

Cackett et al. 2018; McHardy et al. 2018; Edelson et al. 2019;
Cackett et al. 2020; Herndndez Santisteban et al. 2020; Kara
et al. 2021, 2023). While these campaigns have found the time
lags to roughly follow the expected 7 o M*/3 relation from disk
reprocessing, the measured lags are on average longer than
expected, typically by a factor of 2—3. The largest discrepancy
to date was recently reported in Mrk 335 by Kara et al. (2023),
where the lags are over an order of magnitude longer than
expected given the mass and accretion rate of the source.
Additionally, the discrepancies are consistently largest in the U
band near 3500 A, where lags exceed the best-fit disk
reprocessing model (even with the aforementioned longer-
than-expected normalizations) by roughly a factor of 2 (see
Figure 5 in Edelson et al. 2019).

Spectroscopic monitoring of NGC 4593 by the Hubble
Space Telescope revealed a clear discontinuity in the lags at the
Balmer jump, corroborating the theory that the observed U-
band lag excesses are due to the diffuse continuum of the BLR
(Cackett et al. 2018). Less than a year later, Chelouche et al.
(2019) used a bivariate reverberation model for distinguishing
between emission components based on variability patterns in
Mrk 279, from which they also concluded the too-long lags
were due to contamination from reprocessing beyond the disk.
Such contamination from the BLR is expected to increase the
lags in all bands, with significant contamination at the Balmer
jump (Korista & Goad 2001; Lawther et al. 2018; Korista &
Goad 2019; Netzer 2022). Since the BLR is located beyond the
disk, the BLR continuum would affect the lags on timescales
longer than those of the disk (up to tens of days).

A timescale-dependent approach for computing the lags is
thus valuable in order to separate the lags originating from the
BLR versus the disk. A common approach used to isolate the
variability on short timescales (where we expect to see
contributions from the disk) is to compute the lags after
detrending the light curves, that is, subtracting the data by a
low-degree polynomial or moving boxcar average to remove
the variability operating on the longest timescales (e.g.,
McHardy et al. 2018; Hernandez Santisteban et al. 2020; Pahari
et al. 2020; Vincentelli et al. 2021). For example, McHardy
et al. 2018 found that the observed UVOIR lags in NGC 4593
approach those expected from disk reprocessing when
detrending the light curves to filter out variability on timescales
longer than 5 days. They also showed that reproducing the lags
requires a response function consisting of a prompt response
from the disk and a longer tail attributed to a distant reprocessor
consistent with the BLR. Hernandez Santisteban et al. 2020
similarly reported disk reprocessing lags as a result of
detrending the light curves of Fairall 9, in effect isolating the
variability present on roughly the same timescales as McHardy
et al. (2018).

The aforementioned works computed the lags using the
popular interpolated cross-correlation function (ICCF) method
of Peterson et al. (1998). An alternate approach is to compute
the lags as a function of frequency® directly (the so-called
frequency-resolved lags) using Fourier techniques. These
Fourier lags at low frequencies tend toward those produced
by the ICCF approach (Wilkins & Fabian 2013; Cackett et al.
2022), hence the use of light-curve detrending to access
correlated variability operating on higher frequencies (shorter

® For clarity, all mentions of frequency refer to Fourier/temporal frequency—

the inverse of which describes the timescale of the variability—as opposed to
the frequency of light (wavelength is instead used in this case).
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timescales) when using the ICCF. An advantage to the
frequency-resolved lags is that they enable more robust
modeling of the transfer functions, and thus, for instance, the
geometry of the reprocessor. From modeling the frequency-
resolved lags of NGC 5548 with disk reprocessing, Cackett
et al. (2022) required an additional model component to
account for a distant reprocessor, again in agreement with the
BLR, in order to reproduce the long lags at low frequencies.

The aforementioned analyses of the continuum lags have
shown the importance of examining the variability at different
timescales (i.e., frequencies), in order to separate distinct
variability processes and spatial scales. However, the direct
application of Fourier techniques to compute the lags as a
function of frequency requires the light curves to be evenly
sampled. This criterion is satisfied more typically in X-ray
observations (e.g., XMM-Newton), which have thus been
pivotal for isolating reverberation signatures in AGNs (e.g.,
Kara et al. 2016) and black hole X-ray binaries (e.g., Wang
et al. 2022). The required regular sampling, however, is not
possible for longer wavelength observations, for instance, due
to weather constraints for ground observatories. As a result,
alternate approaches have been devised to enable the use of
Fourier techniques to irregularly sampled light curves, such as
the maximum-likelihood approach first used in light-curve
analysis by Miller et al. (2010), and then expanded by Zoghbi
et al. (2013). This approach consists of fitting an assumed
model for the power spectra and cross-spectra, and thus the
frequency-resolved lags (as applied to UVOIR lags in Cackett
et al. (2022)). Others have fit the light curves with a maximum
entropy method to recover the response function (Vio et al.
1994).

In this paper, we overcome uneven sampling by modeling
the observed variability in each wave band independently using
Gaussian processes (GPs). GPs have been researched and
applied extensively in the machine-learning (ML) community
for decades, becoming particularly popular after Neal (1995)
showed that infinitely complex Bayesian neural networks
converge to GPs. Many even questioned whether GPs would
replace this fundamental ML architecture (MacKay 1998),
given the more interpretable nature of GPs (e.g., the kernel/
covariance function hyperparameters in a GP correspond to
intuitive properties of the data, such as variability length scales
and amplitudes). In the astrophysics community, the use of GPs
has been growing in popularity for regression applications to
sparse light curves of asteroids (Willecke Lindberg et al. 2021),
stars (Brewer & Stello 2009; Czekala et al. 2017), and AGNs
(Kelly et al. 2014; Wilkins 2019; Griffiths et al. 2021; Lewin
et al. 2022), and for generative modeling (e.g., quasar spectra;
Eilers et al. 2022). GPs have been shown to be successful in
modeling AGN variability via the faithful reproduction of
underlying autocorrelation functions (Wilkins 2019; Griffiths
et al. 2021). Most pertinent for this work is the efficacy of GPs
in preserving phase/cross-correlation information between
light curves: the recovery of time lags within a fractional error
of a few percent has been shown using both simulations and
real data (Wilkins 2019; Lewin et al. 2022).

Modeling the variability with GPs allows one to draw evenly
sampled realizations of the light curves, including data in the
gaps. The frequency-resolved lags are then computed from
thousands of realizations, resulting in a final lag distribution.
Unlike the maximum-likelihood approach, GP regression does
not make assumptions regarding the cross-correlation between
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wave bands—the variability in any two bands is modeled
independently of the other, and thus any significant cross-
correlation is produced on its own (i.e., as a result of structure
in the original data).

In this paper, we implement both popular approaches used
for continuum reverberation mapping: the frequency-resolved
lags computed with Fourier techniques and the ICCF, the latter
computed using both the original and detrended light curves.
We compute the frequency-resolved and ICCF lags of the well-
known narrow-line Seyfert 1 (NLS1) Mrk 335 using the X-ray,
UV, and optical light curves from the reverberation mapping
campaign presented by Kara et al. (2023). In addition to finding
the largest discrepancy of the lags to date using the ICCF, they
found that the X-rays are not highly correlated with the UVOIR
bands, until a flare is observed in all bands at the end of the
campaign. When including the flare, the soft X-rays are
measured to lag the UV variability by over 10 days. This result
is contrary to the disk reprocessing picture, where outward
reprocessing occurs in response to variations of the central
X-ray emitting region. Stated potential origins include mass
accretion rate fluctuations propagating inwards in the flow and/
or a vertical extent of the corona at the end of the campaign.
We aim to further investigate these results using the frequency-
resolved lags by probing the degree of lag contamination from
the BLR using impulse response function models for standard
disk reprocessing and a distant reprocessor from Cackett et al.
(2007, 2022).

2. Observations

Kara et al. (2023) presented the first results on a high-
cadence (roughly three visits per day) 100 day X-ray, UV, and
optical reverberation mapping campaign of Mrk 335, which
began on 2019 October 14. Our analysis focuses on the data
collected by Swift (XRT, UVOT) and ground-based telescopes
in the 94 day time window (MJD 2450000 = 8770-8864)
where the data are simultaneous between observatories. This
window was chosen to exclude the large gap in the Swift data
at the end of the campaign, as using GP regression to
interpolate over the gap results in unprofitably larger
uncertainties on the lags (although doing so gives consistent
results). All of the light curves used in this analysis are shown
in Figure 1, and the data are provided in the online version of
this article.

The Swift X-ray light curves were produced using the Swift-
XRT data products generator’ (Evans et al. 2007, 2009).
Similar to Kara et al. (2023), we apply a 3 day binning of the
X-ray light curves given the low count rate. We nonetheless
find the CCF centroid lags and the frequency-resolved lags to
agree within uncertainty from those estimated with per-
observation binning. We refer the reader to Kara et al. (2023)
for details on the Swift UVOT and ground-based data
reduction. This procedure includes applying a mask to mitigate
the localized variations in the detector sensitivity. Out of their
set of masks, we have applied the most conservative (i.e., least
aggressive) mask, which filters out 4%-10% of the data
depending on the band. We find that the CCF and frequency-
resolved lags are very similar across mask choices, with the
lags and their uncertainties deviating by less than 10% even
when using the most aggressive mask.

7 https: //www.swift.ac.uk /user_objects/index.php
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Figure 1. Left: light curves from the 100 day reverberation campaign presented
by Kara et al. (2023) with Swift and ground-based telescopes from MID
2458770-2458865. The average of 1000 GP realizations is shown by solid
orange and blue lines, with shaded regions indicating 1o in the distribution. In
practice, we do not average over the realizations to compute the lags (see
Section 3). Right: the CCF (solid black line) and the distribution of ICCF
centroid lags (colored histograms), both with respect to the UVW2 band.

(The data used to create this figure are available.)

The ground-based observations were carried out by the
following observatories/telescopes: Las Cumbres Observatory
I m network (Brown et al. 2013), Liverpool Telescope 2 m
(Steele et al. 2004), San Pedro Mirtir Observatory 1.5m
(Butler et al. 2012; Watson et al. 2012), Wise Observatory 18
inch (Brosch et al. 2008), and the Zowada Observatory 20 inch
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(Carr et al. 2022). Using the Sloan Digital Sky Survey (SDSS)
g’’’z and Pan-STARRS z; filters, with the measurements in
both the SDSS and Pan-STARRS z-labeled filters combined.
We henceforth refer to the filters as the griz bands. Like Kara
et al. (2023), we use the Swift UBV bands instead of the
ground-based data collected in the SDSS u’ (poor signal-to-
noise) and Johnson BV bands (poor time sampling versus
Swift).

3. Fourier-resolved Timing Using GPs

We aim to compute the frequency-resolved time lags
between each wave band and a common reference band (the
UVW2 band) using a Fourier-based approach in order to
decompose the correlated variability occurring on different
timescales /frequencies. This method requires regularly
sampled data (i.e., without gaps), which is not the case for
our light curves. We overcome this limitation by modeling the
observed variability in each wave band independently using
GPs, which allows us to then draw continuous light-curve
realizations, including data in the gaps, from which we
compute the frequency-resolved lags.

While we refer to Rasmussen & Williams ( 2006), Wilkins
(2019), and Griffiths et al. (2021) for a more detailed
introduction to GPs, we provide a condensed overview here.
We have a vector of count rates d observed at times t, which
we assume to be a realization from a GP. This means that the
data have been drawn from a multivariate Gaussian distribution
with mean function m(t) = E[f (¢)], where f(¢) is a function of
count rates (f(z;) is the observed count rate at time #;), and
covariance function, henceforth referred to as the kernel
function, k(t, t') = E[(f () — m()(f (') — m@))].

We assume that m=0, given that the data is first
standardized as per common practice, meaning that we subtract
the mean of the light curve and then divide it by the standard
deviation. The kernel function describes how the data deviates
from the mean function and thus models the empirical
variability. One must assume the data are normally distributed
as well as a functional form for the kernel function, which we
discuss in the following Sections (3.1 and 3.2, respectively).
The choice of kernel function form has been found to impact
the significance of lag recovery depending on the data sampling
rate (Griffiths et al. 2021; Lewin et al. 2022). Each functional
form has its own set of hyperparameters 0, each encoding a
different aspect of the variability, such as length scales
(timescales, in our case), amplitudes, etc. The hyperparameters
are determined by finding the set of hyperparameter values that
maximizes the likelihood of the model given the observed data
(the marginal likelihood). In practice, it is common to minimize
the negative log marginal likelihood (NLML) (Equation (17) in
Griffiths et al. 2021). A separate GP is trained in each wave
band using only the light curve of that band, so each model is
entirely self-contained and independent.

We then generate realizations with count rate data d, by
making random draws of the conditional distribution (d|d)
(Equation (5) in Wilkins 2019), defined by the optimized
multivariate Gaussian distribution and the observed data vector
d. We draw 1000 evenly sampled realizations, including the
data in the observed gaps, in each wave band of interest and the
UVW?2 reference band.

We apply a standard Fourier approach to the light-curve
realizations in order to compute the frequency-resolved lags, a
method reviewed in detail by Uttley et al. (2014). In summary,
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the cross-spectrum is computed between each of the 1000 pairs
of realizations (one realization in the band of interest, the other
in the UVW?2 reference band). This number of realizations was
selected based on the convergence of the resulting lag
distribution. The cross-spectrum is then binned into coarser
frequency bins (centered at frequency v). The phase of the
binned cross-spectrum is then converted to a time lag by
dividing by 27y, resulting in a lag-frequency spectrum between
each pair of realizations. The final lag-frequency spectrum and
its 1o uncertainties are given by the mean and standard
deviation of the 1000 lags in each frequency bin.

The architecture used for simulating time series in addition
to model training and subsequent interpolation was created by
combining and modifying the tools from Scikit-learn®
and the X-ray timing analysis package pyLag’ (Wilkins
2019).

3.1. Assuming a Normal Flux Distribution

We assess the applicability of GPs for modeling our light
curves by testing if the empirical flux distribution is normally
distributed. In actuality, accreting black holes have been found
to instead follow log-normal flux distributions (Uttley et al.
2005). In this case, we train the GP on the log-transformed light
curves (log-transforming data that originally follows a log-
normal distribution will result in data that is normally
distributed) and exponentiate the realizations drawn from the
conditional posterior.

We perform Kolmogorov—Smirnov (K-S) tests (Massey 1951)
to assess the statistical difference between the cumulative
distribution of our light curves from that of a standard normal
distribution (where ;=0 and o=1, as our data is first
standardized). In other words, the K-S test is performed using
the null hypothesis that the observed flux sample was drawn
from a normal distribution. To choose whether to first log-
transform the light curves, we compare the p-value from the K-S
tests when using the raw flux values versus the log-transformed
flux values. For our more coarsely sampled X-ray light curves,
we instead perform a Shapiro-Wilk (S-W) test, which is more
appropriate for smaller data sets (n < 50) than the K-S test
(n > 50; Mishra et al. 2019).

The K-S tests result in p-values ranging from 0.01-0.47,
with an average p-value of 0.12. This means that in all bands
(except X-rays, where this test is not used), we cannot reject the
null hypothesis that the flux values (whether log-transformed or
not) have been drawn from a normal distribution at the 1%
confidence level. The deviation from the null hypothesis is
even less significant (i.e., the flux distribution better agrees
with a normal distribution) when log-transforming the data,
which leads to greater p-values by 11% on average and above
0.05 in all cases. The S-W test performed on the X-ray bands
show similar results: the p-values for the soft X-ray band are
0.07 (raw) and 0.19 (log-transformed), and for the hard X-ray
band, 0.08 (raw) and 0.48 (log-transformed).

The K-S test has been criticized for its sensitivity to only
large-scale differences (the shape and median) between the
empirical (cumulative) distribution functions (EDFs) of the
data and model (Babu & Feigelson 2006). As an additional
check for Gaussianity in the UVOIR bands, we perform
Cramer—von Mises (C-vM) tests (Cramér 1928), which are

& hups: //scikit-learn.org /
? http://github.com/wilkinsdr/pylag
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more sensitive to both small- and large-scale differences in the
EDF (Babu & Feigelson 2006). The results and the conclusions
that follow are consistent with those from the K-S tests. The
C-vM tests result in p-values ranging from 0.01-0.39, with an
average p-value of 0.11; like the K-S tests, we cannot reject the
null hypothesis that the flux values (whether log-transformed or
not) have been drawn from a normal distribution at the 1%
confidence level. We similarly find that log-transforming the
data leads to better agreement with a normal distribution, as
shown by higher p-values than those found when using the raw
data by roughly 10% on average.

In summary, the K-S and C-vM tests both give results from
which we can conclude the data is normally distributed: for the
raw data, we cannot reject the null hypothesis at a 1%
significance level, although in most cases above the 10%
significance level. Log-transforming the data results in even
higher p-values, meaning that the data itself is more likely to
follow a log-normal distribution. As such, we train the GPs on
the log-transformed count rates in all bands.

3.2. Selecting the Kernel Function

We consider the same three common forms for the kernel
function as those assessed to describe AGN variability by
Wilkins (2019), Griffiths et al. (2021), and Lewin et al. (2022):
the squared exponential (SE), rational quadratic (RQ), and
Matérn kernels. We refer to Wilkins (2019) for an introduction
to these functional forms.

The probability of the observed light-curve data given the
model is quantified by the NLML function, which is minimized
during hyperparameter optimization, as introduced in the
previous subsection. We thus compare the kernel forms’
efficacy in modeling the observed variability by comparing
their optimized NLML values. Since the source variability, data
sampling, and signal-to-noise varies across wave bands, the
best-performing kernel form may also vary across bands; as
such, we perform this comparison in each band.

For all but the g and UVW2 bands, we conclude that the RQ
kernel best captures the observed variability based on having
the lowest optimized NLML value (NLML averaged across
bands: 126.5), with the Matérn-% kernel inching behind
(average NLML: 153.2). For the g and UVW2 bands, the
Matérn—% kernel instead wins, with an NLML of 32.2 averaged
across these two bands versus 74.6 in the case of RQ. The
difference in kernel form for modeling only these two bands
could result from the higher signal-to-noise in these two bands
as shown in Figure 1. These results are generally consistent
with previous kernel comparisons for modeling AGN varia-
bility, as Wilkins (2019), Griffiths et al. (2021), and Lewin
et al. (2022) all find the RQ and Matém—% kernels to perform
statistically similar. Similar to the three aforementioned works,
we find the SE kernel provides the poorest description of the
observed light curves.

We compare the four possible combinations of the top two
performing kernel forms (RQ versus Matém-+ for the bands of
interest and the reference band) to compare how the close-call
kernel choice affects the lags and their uncertainties. We find
the impacts of this choice are much less noticeable in our case
than that shown in Griffiths et al. (2021), likely due to our light
curves having less sparse sampling. The lag uncertainties are
similar across the kernel forms, within 10% on average in the
lowest frequency bin and 5% at higher frequencies. The sizes
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of the lags are even more invariant, within 5% on average in the
lowest frequency bin and 2% at higher frequencies.

3.3. Simulated Lag Recovery

GP regression has shown success in the accurate recovery of
frequency-resolved time lags in AGN light curves, with
previous work spanning a considerable range of sampling
rates, data gap sizes, and signal-to-noise (Wilkins 2019;
Griffiths et al. 2021; Lewin et al. 2022). As a check for how
GP regression affects time lag recovery for our specific
observations, we perform simulations similar to those of
Wilkins (2019) and Lewin et al. (2022).

We first simulate light curves with lengths, means, and
standard deviations matching our observations in each band
using the method of Timmer & Koenig (1995), assuming a
slope of —2 in the power spectral density (PSD), which is
consistent with UV /optical PSDs studied for nearby AGNs
(Smith et al. 2018; Panagiotou et al. 2020). The amplitude of
the Fourier transform at each frequency is set to match that of
the assumed PSD, with the phase of each component drawn at
random from a uniform distribution. The light curves are then
convolved with a time-delayed 6 function of the form 6(t — T)
to shift the light curves by T'=2 days (10 days for the case of
the soft X-ray band), representative of the lags measured using
the CCF approach (see Section 4). Instead of binning these
light curves to the average sampling rates of the observations,
we thinned the simulated light curves by only considering
points at the same time as the observed UVW?2 band and the
band of interest, respectively, to best replicate the observed
sampling. Noise is simulated by redrawing each flux value
from a Gaussian distribution whose mean and standard
deviation is set by the original flux and uncertainty,
respectively.

We then modeled the variability in each simulated light
curve using GPs to compute the frequency-resolved lags, using
the same frequency bins as our actual analysis. In addition to
evaluating the error in the GP-recovered lags, we also compare
them to the lags computed from simulated light curves that are
instead uniformly binned to match the average empirical
sampling rate, to which Fourier techniques can be immediately
applied. This latter assessment allows us to roughly gauge the
effects of GPs on the lags and their uncertainties and
coherences versus those from standard Fourier techniques.
The performance of these two sampling choices in recovering
the simulated lags is shown in Figure 2.

We find the impacts of GP regression on lag recovery for our
observations to be generally consistent with those found by
Wilkins (2019) and Lewin et al. (2022). The lags in all bands
and frequency bins using GPs agree within 5% from those
computed by immediately applying Fourier techniques to the
equally sampled data. The true value of the lag lies within 1o
from those computed with GPs in all cases (below the phase-
wrapping frequency, as roughly zero lag arises when averaging
in frequency bins above this frequency). Similar to the
aforementioned works, we find the use of GPs to impact the
uncertainties on the lags more significantly than the sizes of the
lags themselves. The uncertainties are typically larger by up to
20% in the lowest frequency bin and larger on average by
roughly 15%. In our worst-performing UVOIR band (z), the
uncertainties are larger by nearly 25% on average.

As shown in Figure 2, we find the use of GPs to considerably
lower the measured coherence, which is expected given the
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Figure 2. Distributions of lags and bias-corrected coherence from simulated
light curves with a 2 day lag in the g, z band (left, middle), and a 10 day lag in
the soft X-ray band (right), with respect to the simulated UVW2 reference
band. We compare the simulated lag recovery from unevenly sampled light
curves, with time bins matching those of the observations and thus require the
use of GPs (orange), to evenly sampled light curves (black) allowing
immediate use of Fourier techniques. Shaded regions are used to visualize
the overlapping lag uncertainties. The effect of applying GPs to compute the
lags and their uncertainties are the most (z, soft X-ray) and least pronounced (g)
in these bands in terms of error from the simulated lag and uncertainties
compared to those computed from regularly sampled data.

increased uncertainties on the GP-recovered lags. The coher-
ence is least affected in the lowest frequency bin, where the
coherence is typically within 0.05 from those computed using
the evenly sampled light-curve simulations. The effects are
more noticeable at higher frequencies, where the coherence is
commonly 0.1-0.2 lower on average, but still consistent within
error. These results are unsurprising: the GP recovers the
overall light-curve shape and thus the correlated variability on
long timescales. On the other hand, the shorter timescale
variability in the data gaps is uncorrelated between realizations
in different wave bands (as the variability amplitude drops to
levels equivalent to the uncertainty), as a result of each light
curve being interpolated independently without a prior
dictating if one wave band should lag or lead another.

4. Results
4.1. Frequency-resolved (Fourier) Time Lags

We present the frequency-resolved'® time lags of Mrk 335 in
the X-ray, UV, and optical, which we computed by applying
Fourier techniques to GP realizations, as described in the
previous section. The lags and bias-corrected coherence with
respect to the UVW2 band were computed in five logarith-
mically spaced bins ranging from 0.02-0.8 day ' (except the
X-ray bands, whose 3 day binning limits us to frequencies
below the Nyquist frequency at ~0.2day '), with lo
uncertainties determined from the standard deviation of the
lags and coherence across the 1000 GP realizations. A
representative lag-frequency spectrum (the i band) is shown in
Figure 3, and the lag-frequency spectra with coherences for all
wave bands are shown in Figure 4. The shape of the lags as a
function of frequency resembles that of the lags measured in
NGC 5548 by Cackett et al. (2022) in that the size of the lags
decreases with frequency. The coherence also decreases with
frequency, although the coherence in the two lowest frequency
bins is typically very high (>0.9). The coherence is slightly

10 All mentions of [frequency refer to Fourier/temporal frequency, as opposed
to the frequency of light (wavelength is instead used in this case).
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Figure 3. An exemplar band (the i band) for comparing the lags computed with
respect to the UVW2 band using Fourier techniques (black) and the (non-
frequency-resolved) CCF using the original light curves (blue) and the
detrended light curves (orange), with lo uncertainties shown. The non-
detrended CCF lag is consistent with the low-frequency component of the
Fourier lags, whereas the detrended CCF lag is consistent with those at higher
frequencies. See Figure 4 for the lags computed in all bands.

lower in the longer optical bands (riz; <0.85) and substantially
lower (< ~0.5) in the X-ray bands. We show in Section 3.3
that simulated lags can indeed be recovered in these cases,
despite the lower coherence due to coarser data sampling,
signal-to-noise, and the use of GPs in these bands. The low-
frequency coherence measured from the actual riz- and soft
X-ray data are within error (or just nearly, within 1.1¢ in the
case of soft X-rays) from the simulated values after the use of
GPs. It is thus difficult to conclude whether the lower
coherence values that we measure are intrinsic (due to
incoherent processes), given that simulating the data sam-
pling/quality plus the use of GPs can nearly reproduce the
observed coherence. Nonetheless, the lags are successfully
recovered within lo in these cases, regardless of the low
coherence exacerbated by applying GPs.

Figure 5 presents the lags in the lowest three frequency bins
as a function of wavelength. All sets of UVOIR lags increase
with wavelength and roughly follow the expected T M3
relation for reprocessing by a standard Shakura and Sunyaev
disk (Cackett et al. 2007). We independently fit each set of lags
as a function of wavelength with the function 7=
Tl A)*3 — 1], where X\y=1869 A is the rest-frame
wavelength of the UVW2 reference band and 7 is the
normalization fit to the data. For the frequency-resolved lags,
we compare the lags in each frequency range to those expected
from disk reprocessing by modeling the interband impulse
response functions for this source, as described in Section 5.

The lowest frequency lags show the largest departure from
those expected from disk reprocessing: the observed lags at this
frequency are a factor of 3—7 longer (~4.5 on average) than
expected. At higher frequencies, the normalization decreases to
rapidly approach the expected lag—wavelength relation for this
source, with the lags in the 0.09-0.18 day ™' range (rightmost
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Figure 4. Frequency-resolved lags computed in each band with respect to the UVW2 reference band, with corresponding bias-corrected coherence values below. The
(non-frequency-resolved) CCF lags computed from the original light curves are shown with 1o uncertainties in blue, and those computed from the detrended light
curves in orange. The 3 day binning of the X-ray light curves limits us to frequencies below ~0.2 day ' (the Nyquist frequency).

panel of Figure 5) roughly consistent with the lags expected
from disk reprocessing. .

Kara et al. (2023) found the CCF lags in the U band (3465 A)
to exceed the disk reprocessing model (7 o< Y 3) in this source
by ~30%. Lag excesses in this band have been observed in
nearly all sources observed in reverberation campaigns using
Swift and ground-based monitoring (Cackett et al. 2018; Edelson
et al. 2019; Hernandez Santisteban et al. 2020; Vincentelli et al.
2021). We observe a similar U-band excess in the lowest
frequency bin with high coherence (0.95), where the U-band lag
is nearly 60% longer than the A*/3 best fit. Similar to the overall
discrepancy from disk reprocessing, the U-band excess is
resolved at higher frequencies (again, the 0.09-0.18 day '
range), where it lies within 1o from the A3 best fit.

Kara et al. (2023) also found the soft X-ray (0.3-1.5 keV)
variability to lag that observed in the UVW?2 band, a result in
tension with the standard reprocessing model. We find agreeing
evidence for this in the lowest frequency bin, where the soft
X-ray band lags the UVW2 by ~13 days. If we recompute the
lags without the flare (MJD 2450000 = 8770-8850), the soft
X-rays still lag the UVW2 by roughly 11 days, but with even
higher coherence (0.63). This result is discussed further in
Section 6. The hard X-rays (1.5-10 keV), however, are not
lagging the UVW2, and are actually more likely to be leading
the UVW2 reference band as expected, although both the
frequency-resolved and CCF lags in the hard band are
consistent with zero lag.

4.2. Non-frequency-resolved (CCF) Time Lags

We also calculated the time lags between each band and
the UVW2 reference band using the ICCF method of

Peterson et al. (1998). The ICCF is computed by shifting
one of the light curves and determining the correlation
coefficient by linearly interpolating the other light curve.
Uncertainties on the lags were estimated using a Monte Carlo
method using the flux randomization/random subset selection
(FR/RSS). This method consists of generating 1000 light-
curve realizations with a random subset of the original data
points. Each flux measurement is then redrawn from a normal
distribution whose mean and standard deviation are set to the
observed flux and associated uncertainty. The CCF and its
centroid lag value are computed for each realization, resulting
in a distribution whose median and 16% and 84% quantiles
give the final lags and their uncertainties. The entirety of this
procedure was carried out using PyCCF'' (Sun et al. 2018).

We apply this technique to both the original light curves and
the detrended light curves, meaning that each light curve is
independently fit and then subtracted by a low-degree
polynomial, in our case a cubic polynomial (of the form
at’ + b +ct+d for time ¢ and parameters a, b, c, d).
Detrending the light curves effectively removes the variability
operating on the longest timescale (i.e., lowest frequency) in
each light curve (see Welsh 1999). The chosen degree of
polynomial best reproduces the overall shape of the light curves
based on mean-squared error. An illustrative example of a best-
fit polynomial to the data is shown in Figure 6.

As an additional point of comparison between methods, we
also repeated the procedure above, instead computing the lags
using the discrete correlation function (DCF) method of
Edelson & Krolik (1988), which computes the CCF between
two unevenly sampled light curves by binning the CCF itself.

' pyCCF: http://ascl.net/code/v/1868.
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Figure 5. The frequency-resolved lags in the lowest three frequency bins, fit with a 7 o A*/3 relation with best-fit normalization values (7o) shown (dashed blue line).
The dashed orange line shows the expected lag—wavelength relation for this source using the disk reprocessing model in each frequency range. At higher frequencies,

the lags rapidly approach the expected lag—wavelength relation for this source, with the lags in the 0.09-0.18 day ™

! range roughly consistent with the disk

reprocessing model. If this discrepancy is due to contamination from a distant reprocessor, then it is occurring on timescales longer than 1/0.09 = 11.5 days,
consistent with the radius of the BLR based on the 13.9 day Hf lag (Grier et al. 2012).

The DCF lags, computed using the original and detrended light
curves, were consistent within error from the CCF lags shown
here; as such, only the CCF lags are presented.

The resulting CCFs and the distributions of ICCF centroid
lags computed using the original light curves are shown in
Figure 1. The lags and their uncertainties for both the original
and detrended light curves are shown in Figure 3 (for the
exemplar i band) and Figure 4 (for all wave bands). The (not-
detrended) CCF lag results are generally in agreement with
Kara et al. (2023) as expected, given that we used roughly 85%
of the same data. We instead do not use the data after the large
gap in the Swift data, since implementing GP regression over
this large gap significantly increased uncertainties on the lags
(but gave results consistent within error). Similar to Kara et al.
(2023), we find the maximum correlation coefficient (com-
monly denoted R...) values are generally high (>0.8), but
slightly lower in the z band (0.73) and lowest in the X-ray
bands (0.60-0.68). The centroid lags are consistently longer
than the ICCF peak lags (by ~20% on average), indicating that
the transfer function is asymmetric with a tail to long lags,
providing evidence for reprocessing on long timescales
(Cackett et al. 2022).

We find that the CCF lags computed using the original light
curves are consistent with the Fourier lags in the lowest
frequency bin, except in the z band, as expected given that the
low-frequency lags have been found to tend to the CCF
centroid (see, e.g., Wilkins & Fabian 2013). The CCF lags
computed using the detrended light curves are generally
consistent with the Fourier lags at higher frequencies (by a
factor of 2—4 higher than those matching the not-detrended
CCF). These results motivate investigation as to what processes
are operating on different timescales, for instance reprocessing
off of the BLR versus the disk. Such contamination from the
BLR would most significantly impact these low frequencies
given the observed radius of the BLR, and is thus a potential
origin for the largest discrepancy from standard disk reproces-
sing seen to date (as first reported by Kara et al. 2023).

Figure 6 shows the CCF lags computed from both the original
and detrended light curves as a function of wavelength Again,
the lags roughly follow the expected 7T M3 relation for

standard disk reprocessing and are thus fit with the function
= 1[(\/Ao)*3 — 1], where \o= 1869 A is the rest-frame
wavelength of the UVW2 reference band and 7, is the
normalization fit to the data. The expected value for the
normalization depends on the mass, accretion rate, and physical
properties of the disk (see Equation (12) in Fausnaugh et al.
2016). Assuming a black hole mass of (1.69 +0.17) x 10" M,
(Grier et al. 2012) and L/Lggq = 0.07 (Tripathi et al. 2020), the
expected normalization of the CCF lags is 79 = 0.09 4= 0.01 days.

The discrepancy from the expected normalization is most
substantial in the CCF lags computed from the original light
curves (179=0.77 days): the normalization is longer than
expected by a factor of almost 9. This disagreement more than
halves when computing the CCF lags using the detrended light
curves, which results in a considerably smaller normalization
(70 =0.33 days). While the detrended lags are thus more
consistent with those expected from disk reprocessing, they are
still too long by a factor of 3.

Similar to the low-frequency lags, we observe a U-band
(3465 A) excess in the (non-detrended) CCF la s, where the U-
band lag is nearly 80% longer than even the \*/* best fit. Just as
the U-band lag excess is resolved in the Fourier lags at higher
frequencies, the U-band excess is resolved when detrending the
light curves in that the lag becomes within 1o from the 243
best fit.

5. Modeling the Frequency-resolved Lags

We aim to model the Mrk335 lag-frequency spectra
presented in Figure 4 by first modeling the expected
frequency-resolved lags from standard disk reprocessing. We
apply the model described in Cackett et al. (2007), which is
characterized by disk temperatures (at an arbitrary radius of 1
It-day) in a faint and bright state (T, Tr). The CCF lags as a
function of wavelength depend on these temperatures
(Equation (13) in Cackett et al. 2007). Similar to Cackett
et al. (2022), we set the temperatures to match the lag—
wavelength relation expected from standard disk reprocessing
(Fausnaugh et al. 2016), which we determine by computing a
normalization of 7o =0.09 £ 0.01 days, assuming a black hole
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consistent with the BLR, see Section 5.

mass of (1.69+0.17) x 10’ M (Grier et al. 2012) and
L/Lgqq=0.07 (Tripathi et al. 2020). This results in tempera-
tures Tr=2670 K and Tz =4530 K.

Similar to Cackett et al. (2022), we compute the frequency-
resolved lags expected from the aforementioned disk reproces-
sing model by computing the impulse response function at each
wavelength of interest (Equation (7) in Cackett et al. 2007),
assuming an inclination of 57° (Wilkins et al. 2015). This
approach assumes that the light curve in each band is
reprocessed with respect to (i.e., is a convolution of) a driving
light curve. In order to account for the UVW2 band also being
a reprocessed light curve (i.e., not the driving light curve), we
multiply the complex conjugate of the UVW?2 transfer function
(the Fourier transform of the impulse response function) by the
transfer function of each band of interest (see Cackett et al.
2022, for more details). The phase lag of this product of

transfer functions (which is a cross-spectrum) is then converted
to a lag-frequency spectrum by dividing by 27, where v is the
frequency of each bin.

The resulting lags from this model are shown in Figure 7.
The disk model response function has an immediate peak and
tail (as shown in Figure 2 of Cackett et al. 2007), giving rise to
roughly constant lags at low frequencies and lags that decrease
above some frequency. Equivalently, more reprocessing is seen
when moving farther out in the disk (longer lags), until
reaching a radius of maximum reprocessing. Moving out
beyond this radius, reprocessing becomes negligible as the
impulse response approaches zero, resulting in a roughly
constant lag at low frequencies.

The disk model provides a poor description of the low-
frequency lags, where the model consistently undershoots the
lags, often by a factor of 3—4. As a result, the shape of the
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model differs noticeably from the lags: the disk reprocessing
model flattens below roughly 0.1 day ', whereas the observed
lags increase, often rapidly, at these lower frequencies.
The disk model, however, is much better at reproducing
the high-frequency lags. The reduced chi-squared is
X = 520.5/51 = 10.2. The high x” value is exacerbated by
the inability of the model to recreate the long soft X-ray lag,
since reprocessing anticipates a negative lag with respect to the
UVW2 band. Without the X-ray bands, the fit statistic
improves to XIZ/ = 285.2/45 = 6.3. These results are in
agreement with Cackett et al. (2022), who similarly found that
the low-frequency lags of NGC 5548 could not be adequately
reproduced by disk reprocessing. They instead found the
observed lags to be significantly better described when
including an additional impulse response function to account
for potential lag contributions from a distant reprocessor
(consistent with the BLR). We apply this procedure to our data,
taking the final impulse response function () to be a
combination of that from disk reprocessing (14;sx) and a distant
reprocessor representing the BLR (¢gy r):

Yot (1) = (1 = fVdisk () + fiopLr (1), (D

where f is the fractional contribution of the BLR to the total
impulse response function. All impulse response functions are
normalized to have a total area of 1. We use the same simple
model as Cackett et al. (2022) for an extended reprocessor, a
log-normal impulse response:

1 _(n@) — M)
TN T [ 252 ]

A log-normal impulse response is an analytic prescription to
model reprocessing by the BLR and is a smoother alternative to
the top-hat response function expected from reprocessing by a
spherical shell (Uttley et al. 2014). We refer the reader to
Figure 5 in Cackett et al. (2022) illustrating how the final
impulse response function varies for different BLR fraction
values using the same models for the disk and BLR as this
paper, albeit with slightly different Tr, Ty values.

The median of the log-normal shaped response is ¢, so we
set M = In(13.9) in an initial test using the 13.9 day HQ lag
from previous BLR reverberation mapping campaign results
(Grier et al. 2012). The standard deviation S is initially set to 1
for simplicity. Just as the contribution from the BLR diffuse
continuum  varies across wavelengths (Korista &
Goad 2001, 2019), we fit the BLR fraction of the total
response function to the observed lags in each band
independently.

The resulting best fit of the disk+BLR model is shown in
Figure 7. This model provides a much better description of the
observed low-frequency lags than the disk reprocessing model
alone. Including the BLR component (with the median fixed at
13.9 days) improves the fit statistic to Xi = 73.0/39 =19

from X,z, = 520.5 / 51 = 10.2 in the case of the disk reproces-
sing model. The resulting BLR fractions as a function of
wavelength are shown in Figure 8. The BLR model component
contributes more to the final model at longer wavelengths, but
shows evidence for a local maximum in the U band, consistent
with the U-band lag excess thought to originate from the
Balmer jump in the BLR diffuse continuum.

Even with the BLR component, the model is unable to
replicate the long soft X-ray lag. While we do not expect a
significant contribution to the soft X-ray band by the BLR, we
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Figure 8. Fraction of the total (disk+BLR) model made up from the BLR
component, denoted f in Equation (1). The BLR fraction shows a local
maximum in the U band near 3500 A. As a point of visual comparison, the
inlay at the bottom is Figure 9 from Korista & Goad (2019), which shows the
ratio of the diffuse continuum emission to the total spectral energy distribution
as a function of wavelength, with the x-axis aligned to match our plot.

use the model component as a proxy for the radius required to
produce such a lag. If we refit excluding the X-ray bands,
the reduced chi-squared improves to Xz% = 29.0/ 35 =0.83
from x> = 285.2/45 = 6.3.

We also refit the data with the combined disk+-BLR model,
this time fitting for the median (e My and standard deviation (S)
of the distant reprocessor model, instead of assuming the
observed 13.9 day median. The BLR fraction is again fit in
each band independently. The disk component remains the
same as before, with values dictated by the mass and accretion
rate. We spanned values for e from 0.5-25 days and § from
0.1-5 days, with and without the X-ray bands. Fitting without
the X-ray bands results in best-fit values and 1o-uncertainties
of eM = 15.4%24 days and S = 0.9 days. The radius of the
extended reprocessor inferred from fitting the UVOIR lags is
thus in agreement with that of the BLR based on the observed
13.9 day Hp lag (Grier et al. 2012). The fit statistic
(Xi = 26/33 = 0.79) is within 5% of that found when using

the measured e = 13.9 days and assuming S = 1 (X,Z/ = 0.83).
When including the X-ray bands, the extended reprocessor
component requires a slightly larger radius in an attempt to
produce the measured soft X-ray lag at e™ = 16.47{} days and
§=0.9+£0.1 days.

In order to probe the radii of reprocessing required to
reproduce the lags at each wavelength independently, we fit the
lags but allow the parameters of the extended reprocessor
model to differ across wave bands. This results in the median of
the extended reprocessor to be consistent with the observed HG
lag/BLR in all cases except the soft X-ray band, although the
parameters are less tightly constrained. We are unable to model
the long soft X-ray lag with a single shared ¢ and S; instead,
fitting the soft X-ray band alone requires a radius larger than
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that of the BLR, with e = 18.7%!2 days and §=0.9+
0.1 days. This result is discussed further in Section 6.
Cackett et al. (2022) also attempted to model the frequency-
resolved lags of NGC 5548 with reprocessing off of a
significantly larger disk. We performed a similar final test
using only the disk reprocessing model, but now with a larger
disk (i.e., normalization): instead of setting the disk tempera-
tures by fitting the lags expected given the mass and accretion
rate of the source, we instead fit the temperatures to our
measured CCF lags, resulting in much hotter temperatures
Tr=36,800 K, Tp=46,200 K than before. This model
provides a considerably worse description of the lags than
the combined BLR+smaller disk model, resulting in a fit
statistic of x> = 510.2/51 = 10.0 when including the X-ray

bands and Xi = 97.4/45 = 2.16 when excluding the X-ray

bands (versus Xi = 0.83 from the smaller disk+BLR model).
Regardless, the normalization required to reproduce the CCF
lags with thin-disk reprocessing (7o = 0.77 days) would require
L/Lggg=43.8 if we assume a black hole mass of
(1.69 £0.17) x 107 M., (Grier et al. 2012), orders of
magnitude higher than the observed value for this source and
the accretion rate at which the thin-disk model is expected to
hold (Fausnaugh et al. 2016; Tripathi et al. 2020).

6. Discussion

A recent reverberation mapping campaign of the well-known
NLS1 Mrk 335 in the X-ray, UV, and optical (Kara et al. 2023)
resulted in several interesting findings. While all recent
reverberation mapping campaigns have reported UVOIR
continuum lags longer on average than those expected from
standard disk reprocessing, the Mrk 335 lags were found to be
longer by a factor of 5 to 12—the largest discrepancy to date.
These long lags are often thought to be the result of additional
contribution to the lags from the diffuse continuum of the BLR
(Korista & Goad 2001, 2019), which also explains why the
most significant lag excesses are consistently observed near the
Balmer jump (Cackett et al. 2018). If the BLR interpretation is
correct, one would expect reprocessing from the BLR to
dominate on long timescales, and that from the disk on short
timescales, thus motivating a frequency-resolved approach.

In this paper, we presented and modeled the frequency-
resolved lags of Mrk 335, as shown in Figures 4 and 7, which
were calculated by applying Fourier techniques to GP
realizations in order to overcome uneven sampling. We
compare these results to those computed using the (non-
frequency-resolved) ICCF method commonly used for rever-
beration mapping measurements. We compute the CCF lags
from both the original and detrended light curves, meaning that
we fit and subtract the light curves by a low-degree (cubic)
polynomial to remove the variability on the longest timescales.

The lags are systematically longest in the lowest frequency
bin, and decrease in size at higher frequencies, similar to the
frequency-resolved lags in NGC 5548 (Cackett et al. 2022).
The lags in the lowest frequency bin (0.02-0.04 day ') are
often noticeably longer, often by a factor of 3—4, than the lags
observed at any higher frequency. As a result, the Mrk 335 lags
show a steeper slope below 0.1 day ' than those observed at
roughly the same frequency in NGC 5548. This could be
indicative of stronger contamination by the BLR in Mrk 335, or
related to differences in the intrinsic variability of these systems
at low frequencies. In addition, the CCF lags computed from
the original light curves in this source are almost always
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consistent with the lags in the lowest frequency bin (see
Figure 4). If the continuum of the BLR is contaminating the
low-frequency lags and thus the CCF lags, then this could
contribute to the CCF lags in this source showing the largest
discrepancy in the lags from disk reprocessing yet (Kara et al.
2023). In either case, studying more objects with a similar
approach will allow us to better differentiate between BLR
contamination strength and properties of the source variability
at low frequencies.

In order to probe contamination of the low-frequency lags,
we first modeled the frequency-resolved lags expected from
reprocessing off a standard Shakura & Sunyaev (1973)
accretion disk, using the impulse response function model of
Cackett et al. (2007). We set the model temperatures to match
the expected CCF lags computed using the lag normalization
from Fausnaugh et al. (2016) given Mrk335’s mass
((1.69 £0.17) x 107 M; Grier et al. 2012) and observed
L/Lggq =0.07 (Tripathi et al. 2020). The lowest frequency
lags are longer by a factor of 3—7 (~4.5 on average) than those
expected from disk reprocessing in this frequency range, in
addition to a U-band excess characteristic of BLR contamina-
tion by roughly 80% above even the T M3 best fit. As
shown in Figure 5, the lags rapidly approach the expected disk
reprocessing lags at higher frequencies. The lags above
0.09 day ' are generally well described by the disk model,
including a resolution to the U-band excess. Therefore, if the
discrepancy in the observed lags from disk reprocessing is due
to contamination from a distant reprocessor, then it is occurring
on timescales longer than 1/0.09=11.5 days, which is
consistent with the radius of the BLR based on the 13.9 day
Hp3 lag observed by Grier et al. (2012). The CCF lags tell a
similar story: detrending the light curves to remove the longest
timescale variability results in lags considerably more con-
sistent with disk reprocessing, but the lags are still too long by
a factor of 3 (see Figure 6).

We are unable to reproduce the measured frequency-
resolved lags with standard disk reprocessing (Figure 7).
Fitting the disk temperatures to the observed CCF lags instead
of assuming values based on the mass and L/Lgqq requires an
accretion rate orders of magnitude higher than both the
observed value (L/Lgqq=43.8 versus 0.07; Tripathi et al.
2020) and the assumptions of the thin-disk model (Fausnaugh
et al. 2016). As a result, we include the log-normal impulse
response function used by Cackett et al. (2022) to model
additional lag contributions from a distant reprocessor. We first
set the median of the component to match the observed
13.9 day H/3 lag (Grier et al. 2012) and allow for the fractional
contribution of the BLR model to the total disk+BLR model to
vary across bands, as expected from the BLR diffuse
continuum (Korista & Goad 2001, 2019). This model provides
a much better description of the UVOIR lags, especially at low
frequencies (Xi = 0.83 versus Xi = 6.3 from the disk model
alone, without the X-ray bands), but is still unable to fully
reproduce the long soft X-ray lag. When we fit for the radius of
the distant reprocessor model, the median is constrained at
15.473¢ days, indicating that the distant reprocessor is
constrained at a radius consistent with that of the BLR.

The lowest frequency lags increase much faster as a function
of wavelength than predicted by disk reprocessing, as shown in
Figure 5. To account for this, the BLR model contributes more
to the total model at longer wavelengths, as was the case for
Cackett et al. (2022) when modeling the frequency-resolved
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lags in NGC 5548. We report BLR fraction values similar to
those reported for NGC 5548, in addition to finding a local
maximum in BLR fraction in the U band as expected if BLR
contamination is the culprit to the U-band lag excess. The BLR
fraction increases rapidly leading up to the U band, followed by
a slower rise at longer wavelengths. This shape resembles the
expected contribution from the BLR diffuse continuum and its
associated lags Korista & Goad (2001, 2019), although one
might expect a larger drop in the B-band BLR fraction
immediately following the Balmer jump.

We emphasize that our modeling of the lags is limited in that
we have applied a single model for disk reprocessing and an
analytic treatment to account for contributions to the lags by an
extended reprocessor. While we do explore multiple sets of
parameters for the disk reprocessing model (namely, the disk
temperatures expected for a black hole of this mass and
accretion rate, in addition to those found from fitting the
measured CCF lags), additional modeling using more physical
models is warranted. This includes more complex models for
the disk, such as those that include general relativity
(Kammoun et al. 2021a, 2021b), and more physical models
for the BLR (Korista & Goad 2019; Netzer 2020).

6.1. X-Ray Variability Lagging the UV

Kara et al. (2023) also found a low correlation between the
X-ray and UVOIR bands, until a flare is observed at the end of
the campaign. The soft X-rays are measured to then lag the UV
variability by over 10 days. This result is contrary to
reprocessing occurring in response to variations of the central
X-ray emitting region. They propose mass accretion rate
fluctuations propagating inward in the flow and/or a vertical
extent of the corona at the end of the campaign as potential
solutions. In our frequency-resolved lags, we also found that
the soft X-ray band (0.3-1.5keV) lags the UVW2 band by
roughly 13 days. We show in Section 3.3 the successful
recovery of simulated lags in the X-ray bands, despite the lower
coherence introduced by coarser data sampling, signal-to-noise,
and the use of GPs. If we remove the flare at the end of the
campaign (MJD 2450000 = 8770-8850), we still find an
~11 day lag of the soft X-rays behind the UV with a higher
coherence than before (0.62 versus 0.5). Fitting for the radius
of the distant reprocessor using only the soft X-rays results in a
slightly larger radius (18.7:1:42‘ days) than when fitting the
UVOIR bands (15.47%] days), albeit within 1.5¢.

High-resolution X-ray spectra of Mrk 335 revealed soft
X-ray lines indicative of hot photoionized gas located at a
radius of ~7-80 It-days (Longinotti et al. 2008; Parker et al.
2019; Liu et al. 2021). The primary X-ray continuum will first
reach the accretion disk (causing a response of the UV /optical
bands), and only later reaches the more distant circumnuclear
gas, responsible for the soft X-ray lines. In other words, both
the accretion disk and the distant circumnuclear material are
responding to variations in the primary continuum, but because
the accretion disk is closer to the central source, we see the
UV /optical lead the soft X-ray band. This adds complexity to
the central reprocessing picture, where the X-ray variability of
the corona drives (and should thus lead) the longer wavelength
variability. The location of the gas beyond the BLR would
explain why the lag is seen at low frequencies, and thus why
the distant reprocessor component requires a larger radius in
this band only.
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Unlike the soft X-ray band, the hard X-ray band
(1.5-10keV) does not lag the UV. Using XMM-Newton and
NuSTAR observations of Mrk 335 taken in a similar low X-ray
state, Parker et al. (2019) found that the reprocessed emission
from this hot, photoionized gas dominates the X-ray spectrum
below ~2 keV, whereas the hard X-rays represent more closely
the intrinsic continuum, and therefore show little lag with
respect to the UV. This could explain why only the soft X-rays
are seen to lag the UV, whereas the hard X-rays are more likely
to instead lead the UV. In this scenario, we would expect the
soft X-rays from the distant plasma to also lag the hard X-rays
from the corona. As a check, we compute the lags between the
hard and soft X-ray bands using the method outlined in
Section 4.2, and find (tentatively, given the data quality in both
of these bands) that the soft band lags the hard by 6.871! days,
with a maximum correlation coefficient (R,,x) of 0.61.

We note that the soft X-ray variability lagging the UV (and
tentatively the hard X-rays) due to reprocessing by hot,
photoionized gas is only one possible scenario. For instance,
Silva et al. (2016) showed that the nonzero photoionization and
recombination timescale of warm absorbers could lead to a soft
X-ray lag. However, given the inferred densities of typical
warm absorbers, these lags are expected to be much shorter
than the soft lag seen here. Another possibility is that the X-ray
lag is produced from fluctuations in the mass accretion rate that
flow inward through the disk on the viscous timescale (e.g.,
Lyubarskii 1997; Arévalo et al. 2008), as proposed by Kara
et al. (2023).

7. Conclusions

We have computed the frequency-resolved X-ray and
UVOIR lags of Mrk 335, which we attempted to reproduce
by modeling the lags produced from reprocessing by a standard
Shakura & Sunyaev (1973) accretion disk. We directly
compare these frequency-resolved lags to those computed
using the popular ICCF method applied to both the original and
detrended light curves. Here are our main results:

1. We modeled the observed variability in each wave band
with GPs, allowing us to generate evenly sampled
realizations from which we compute the frequency-
resolved lags presented in Figure 4.

2. The lowest frequency (0.02-0.04 day ') lags are longer
by a factor of 3—7 (~4.5 on average) than those expected
from standard disk reprocessing, including a U-band
(~3500 A) excess of roughly 60% near the Balmer jump.

3. We computed the theoretical frequency-resolved time
lags expected from a Shakura & Sunyaev (1973) disk.
We find that the high-frequency lags are well described
by the disk reprocessing model, including a resolution of
the U-band excess, but the low-frequency lags require an
additional component (see Figure 5).

4. We are unable to reproduce the observed lags, especially
at low frequencies, with thin-disk reprocessing models.
Modeling the CCF lags with only thin-disk reprocessing
requires an accretion rate orders of magnitude higher than
the observed value. The CCF lags become more
consistent (but not fully) with disk reprocessing after
detrending the light curves, including a resolution of the
U-band excess (see Figure 6).

5. The frequency-resolved lags are well described when
including a model component that accounts for additional
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contribution to lags from a distant reprocessor at a radius
set to that of the BLR, based on previous measurements
of the HQ lag (see Figure 7). Fitting the UVOIR lags for
the radius of this component results in a value consistent
with the measured 13.9 day Hj3 lag (15.47%¢ days).

6. The soft X-ray band (0.3-1.5 keV) lags the UVW2 band
by roughly 13 days, contrary to the standard reprocessing
picture. We show simulated lags are successfully
recovered in the X-ray bands, despite the lower coherence
introduced by coarser data sampling, signal-to-noise, and
the use of GPs. Reproducing this large low-frequency lag
with the disk+BLR model requires a slightly larger BLR
radius than that inferred from the observed HB. We
propose that the soft X-rays lagging the UV could be due
to light travel time delays between the hard X-ray corona
and distant photoionized gas that dominates the soft
X-ray spectrum below 2 keV.
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