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Abstract

Flowering plants alternate between two multicellular genera-
tions: the diploid sporophyte and haploid gametophyte. Despite
its small size, the gametophyte has significant impacts on plant
genetics, evolution, and breeding. Each male pollen grain and
female embryo sac is a multicellular organism with indepen-
dent gene expression, a functioning metabolism, and special-
ized cell types. In this review, we describe recent progress in
understanding the process in which the haploid genome takes
over expression from its diploid parent — the sporophyte-to-
gametophyte transition. The focus is on pollen, but similar
concepts may also apply to the female gametophyte. Techno-
logical advances in single-cell genomics offer the opportunity
to characterize haploid gene expression in unprecedented
detail, positioning the field to make rapid progress.
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Introduction

In angiosperms, most of the gametophyte life cycle
occurs within developing flowers and is heavily supported
by the sporophyte. The mature gametophyte is small,
containing only 3 cells for male pollen and 4—15 for the
female embryo sac [1]. However, the gametophyte is not
a passive carrier for genetic information, as there is active
gene expression from the haploid genome. Distinct
phenotypes can routinely be seen segregating among
pollen grains from a single plant [2], and transcripts for a
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majority of genes are detectable in the gametophyte
[3—5]. As a result, a large fraction of the genome is
exposed to selection during the haploid phase [6—9].

"This review focuses on the timing of haploid expression
in the gametophyte, with an emphasis on male pollen.
We discuss parallels between early gametophyte
expression and the maternal-to-zygotic transition
(MZ'T), an analogous shift in expression from parent-to-
offspring in the embryo. There are far too many fasci-
nating aspects of gametophyte biology to cover here; we
point the reader to excellent reviews on allied topics
including male [10—12] and female [1] gametophyte
development, pollen gene expression [5], epigenetic
regulation in the gametophyte [13—16], evolutionary
implications of the gametophytic phase [6—8], broader
consequences of haploid selection [9], and the
maternal-to-zygotic transition in plants [17—20] and
animals [21—24]. In this review, we use the phrase
‘haploid expression’ to mean the portion of gene
expression, whether transcript or protein, originating
from the haploid gametophyte genome.

Expression from the haploid pollen genome
Active gametophytic gene expression has important
consequences for plant genetics and evolution because
it connects haploid genotype to phenotype [25]. Ga-
metophytes from a single plant can be genetically het-
erogeneous because of the shuffling of alleles during
meiosis and the occurrence of new mutations during
development. The capacity for selection is particularly
high in pollen, as there are large population sizes (e.g. 10
million pollen grains per maize plant) and extensive
competition during dispersal and fertilization. Further-
more, recessive mutations can immediately show a
phenotype in the haploid phase. For example, Figure 1a
shows a micrograph of rice pollen stained with iodine
[2]. The parent plant was heterozygous for a recessive
waxy allele, and the waxy (unstained) phenotype can be
seen segregating among pollen grains from this single
plant. This example demonstrates another important
feature of pollen expression: it can affect alleles that
have phenotypes in other stages of the life cycle. The
waxy allele in Figure la is also responsible for the
glutinous phenotype of “sticky” rice, and thus has an
additional, agronomically important phenotype in
endosperm [2,26].
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Gene expression in pollen originates from the haploid genome. a) Micrograph of rice pollen stained for amylose starch using iodine. The pollen is from a

single heterozygous plant segregating for the waxy (unstained) phenotype.

From Ref. [2], reproduced with permission from Springer Nature. b) Allelic bias

of transcripts from a single isolated maize pollen grain, plotted for the first three chromosomes. The inferred pollen haplotype is below. Data from Ref. [3].

c) Allelic bias of transcripts from a single isolated mouse sperm. Data fro
genome and plotted as described in Ref. [3].

m Ref. [33] (SRA accession SRR12790356), mapped to the GRCm39 mouse

A large fraction of the genome is expressed in the
gametophyte. Transcripts for 40—60% of predicted
genes are detectable during pollen development
[3—5,8], most of which (~90%) are also expressed in
the sporophyte and likely represent genes important for
both life cycle phases. There are developmental trends
in gene expression, with reduced transcript diversity in
mature pollen compared to earlier haploid stages [5]. In
mature pollen, most expression originates from the
haploid genome [3,27,28], with carryover transcripts and
proteins from the sporophyte being rare. Widespread
haploid expression is reflected in the frequency of
gametophytic phenotypes. Mutant alleles with strong
gametophytic defects are routinely found in genetic
screens [29,30], and even relatively small chromosomal
deletions cannot be transmitted through pollen [31,32].

Distinguishing expression originating from the
haploid genome

Given the small size of the angiosperm gametophyte,
haploid expression has historically been difficult to
follow except for a handful of genes with readily acces-
sible phenotypes [2,27,28]. Bulk methods cannot
unambiguously separate haploid-derived expression
because steady-state transcript and protein levels are
regulated at many steps. Fortunately, genomic technol-
ogies are now sensitive enough to assay even single
haploid cells [3,33], and single pollen grains and pre-
cursors can be isolated manually with established

techniques [3,34,35]. In single pollen grains from Fy
hybrid plants, haploid expression is distinguishable
because it comes from a single allele (Figure 1b), while
diploid-derived expression is biallelic in origin [3].
Allele-specific pollen expression data is currently only
available for the transcriptome [3], but similar tech-
niques could be paired with proteomics [36] or ribosome
profiling [37] to study gametophytic protein expression
and translational regulation.

Comparison to animals

The scale of haploid expression is vastly different be-
tween plants and animals. This can be clearly seen by
comparing recent allele-specific RNA-seq data of single
maize pollen grains [3] to mouse sperm [33]; while
pollen grains showed strong, genome-wide allelic bias
reflecting the haploid genotype (Figure 1b), most tran-
scripts in mouse sperm were derived from both parental
alleles (Figure 1c; biological reasons for this reviewed in
Ref. [9]). The contrast is even stronger based on phe-
notypes, as many animal species routinely produce
functional gametes with severe genomic abnormalities
[9]. For example, in healthy human adults, 5.3% of
sperm and 16.1% of oocytes lack entire chromosomes
[38,39]. Ancuploidy has been observed for every auto-
some and both sex chromosomes [39], and aneuploid
sperm are capable of fertilizing an egg [38]. Thus, the
haploid genome is not strictly required for the haploid
phase in animals.
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However, phenotypes less severe than “death” can still
have important impacts on evolutionary timescales, and
this is true in the haploid phase just as it is in the diploid
one. There are examples of animal genes with experi-
mentally confirmed transmission ratio distortion [9].
Furthermore, a subset of mouse genes showed statisti-
cally significant allelic bias in sperm; this subset was
enriched in selective sweep regions, suggesting
increased selective pressure [33]. Finally, haploid tran-
scription might have impacts beyond the immediate
production of gene products, as there is evidence that
transcription in animal sperm decreases the genic mu-
tation rate by activating transcription-coupled DNA
repair [40].

The sporophyte-to-gametophyte transition
(SGT) and gametophyte genome activation
(GGA)

It has long been suspected that pre-meiotic transcripts
persist in the haploid phase of plants [41], leading some
microspore-expressed genes to be under sporophytic
control. Recent evidence indicates that this is a global
phenomenon, as pre-meiotic (biallelic) transcripts are
retained for the majority of genes until ~11 days after
meiosis in maize [3]. This is analogous to the maternal-
to-zygotic transition (MZT) in animals, in which the
zygotic genome is initially transcriptionally quiescent
and early embryonic development is under maternal
genetic control [21]. Here, we define the SGTand GGA
in direct analogy to MZTand ZGA: SGT is the complete
process in which pre-meiotic, sporophytic gene products
are degraded and replaced with gametophytic products;
GGA specifically refers to the activation of the haploid
gametophyte genome, an important component of SGT.

Timing of the SGT in maize pollen

A recent study used allele-specific RNA-sequencing to
follow haploid expression throughout maize pollen
development [3]. Sporophytic transcripts persisted
throughout the unicellular microspore (UM) stage, up
to 11 days after meiosis. This was followed by a rapid and
global shift to monoallelic expression near the time of
pollen mitosis I (PMI). Monoallelic expression was
driven primarily by new transcription and genome acti-
vation: pre-meiotic transcripts could still be detected
after PMI, but a massive increase in transcripts from the
haploid genome overwhelmed the low level of residual
sporophytic transcripts.

By integrating these allele-specific expression data with
classic genetic studies, a more complete model of the
SGT can be derived (Figure 2). In particular, Kindiger
and colleagues characterized the consequences of 17 of
20 chromosomal arm deficiencies during pollen devel-
opment [31]. They found that hypoploid phenotypes
clustered at two stages: around the time of tetrad
dissolution and during PMI (Figure 2, bottom). This
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Working model of the SGT during maize pollen development. Bottom:
timing of the earliest phenotype for chromosome deficiencies in 17 of 20
maize chromosomal arms, from Ref. [31].

second cluster can be readily explained if GGA occurs
just before PMI, as any chromosome deficiencies that
are still viable quickly lead to defects after widespread
GGA. The earlier cluster suggests that some haploid
expression is required long before PMI. No haploid-
expressed genes were observed prior to PMI in the
recent allele-specific expression study [3], but if such
genes were a rare subset they could have been missed.
By comparison, in many animal species the MZT has
been resolved into a multi-step process with multiple
waves of ZGA [21]. Tt will be important to establish the
identity of haploid expressed genes at the start of pollen
development, potentially representing a minor, early
wave of GGA. Given that 10 chromosomal arm de-
ficiencies led to phenotypes before PMI [31], it would
suggest ~12 genes are both expressed and required
before PMI' (95% confidence interval: 7—15 genes).

Why would the major wave of GGA be delayed until
PMI? One hypothesis is that this delay protects the
male germline from transposons. PMI is the cell division
that separates the somatic vegetative cell from the

! Binomial distribution assuming each chromosome arm has approximately the same
number of genes and essential gametophyte genes are randomly distributed between
them.
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gametophyte germline (generative cell). In many animal
species, ZGA is actively delayed in primordial germ cells
relative to the soma [21,42]. This is thought to reduce
the rate of DNA damage by making the chromosomes
less accessible to mutagens. The selective pressure to
keep the microspore genome inaccessible may be
particularly high because of the prevalence of active
transposons in plants. In committed somatic cells,
transposons are evolutionarily aligned with their hosts:
anything that decreases host fitness will reduce the
chance of the transposon’s own survival. In the germline,
however, there is evolutionary conflict between trans-
poson and host [42], as a decrease in host fitness can be
offset if it allows the transposon to replicate.

Timing of the SGT in other species

The timing of ZGA varies widely among animal species,
occurring before the first cell division in some (e.g.
mouse) and not until there are hundreds of cells in
others (Xenopus) [21]. It is not yet clear if there is similar
variation in GGA and SGT among plants. Many species
have large differences in chromatin status between UMs
and later stages [15,43—45], suggesting that PMI may
mark an important, conserved shift in pollen gene
expression. However, transcriptional changes between
the uni- and bi-cellular stages are modest in Arabidopsis
[5,46,47], which has led to the conclusion that the SGT
occurs later in Arabidopsis compared to maize [47]. We
argue that this conclusion is hasty without allele-specific
sequencing data from single gametophytes, as it is
possible for the source of transcription to change (from
diploid to haploid) without a substantial shift in relative
transcript abundance. In maize, many genes that do not
show a substantial change in relative transcript abun-
dance at PMI still shift from biallelic to monoallelic in
origin [3]. Further data will clarify this issue. If the scope
and timing of the SGT does vary between species, it
would provide a mechanism for plants to control how
much haploid selection they face [48].

Potential mechanisms of GGA

What might be the initial trigger for GGA? In some
species, isolated microspores can be cultured in minimal
media and develop into mature, viable pollen [49]. If
GGA has not already occurred at the time of isolation in
these cultures, it would suggest that genome activation
is initiated by the gametophyte itself and does not
require a signal from the surrounding anther tissue. A
classic model for the MZT in animals is that ZGA is
triggered as the nuclear to cytosolic (N/C) ratio in-
creases during the early embryonic cell divisions,
titrating out specific DNA-binding proteins that initially
repress transcription [24]. A similar model is possible for
GGA, as even before the first cell division (PMI) several
features of microspore development potentially alter the
N/C ratio (Figure 3a). Another possible trigger for GGA
may be DNA replication (Figure 3b), perhaps by
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Potential mechanisms to initiate GGA. a) GGA may be triggered after a
hypothetical inhibitor or activator is titrated by changing N/C ratios during
microspore development. The microspore increases in size and becomes
filled with a large vacuole, both of which affect the free cytosolic volume
available to proteins in opposite directions. The nuclear DNA content
doubles during DNA replication. b) DNA replication itself may trigger GGA
by resetting epigenetic marks or displacing histones and other proteins. c)
Post-transcriptional regulation may activate a factor to set off a wave of
gametophytic transcription.

displacing nucleosomes or a repressive factor at the
replication fork. Finally, post-transcriptional regulation
may play a particularly important role prior to GGA.
Translation regulation and RNA processing affect genes
important for meiotic exit [50] and pollen development
[51,52]; similar regulation may serve as a trigger for
GGA (Figure 3c).

Conclusions and future perspectives

Widespread haploid expression in the gametophyte has
significant consequences on plant genetics and evolu-
tion [9,25]. It is now clear that the gametophyte can be
provisioned with pre-meiotic gene products for a sub-
stantial portion of its life cycle [3]. The ability to
perform genomics on single-cells makes it possible to
distinguish  haploid from diploid gene products
throughout gametophyte development. The timing of
haploid expression in plants is only beginning to come
into focus, and many open questions remain. First, how
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www.sciencedirect.com


www.sciencedirect.com/science/journal/13695266

is translation regulated during the SGT? In maize, there
are substantial changes to the proteome at PMI [53],
and it will be important to determine how the protein
complement changes during the shift to gametophytic
expression. Second, when does the SGT occur in the
female gametophyte? Is this also during the first mitotic
division and does it occur as suddenly as in maize pollen?
Third, how do mutants with known gametophytic de-
fects disrupt the SGT? This information will help place
existing pollen developmental genes into the SGT
pathway. Finally, there is need for molecular biologists,
evolutionary biologists, and breeders to collaborate to
better understand the consequences and opportunities
for haploid selection in plants.
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