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DNA methylation in plants is depleted from cis-regulatory elements in and near genes but is present in some gene bodies, including 
exons. Methylation in exons solely in the CG context is called gene body methylation (gbM). Methylation in exons in both CG and 
non-CG contexts is called TE-like methylation (teM). Assigning functions to both forms of methylation in genes has proven to be chal
lenging. Toward that end, we utilized recent genome assemblies, gene annotations, transcription data, and methylome data to quantify 
common patterns of gene methylation and their relations to gene expression in maize. We found that gbM genes exist in a continuum of 
CG methylation levels without a clear demarcation between unmethylated genes and gbM genes. Analysis of expression levels across 
diverse maize stocks and tissues revealed a weak but highly significant positive correlation between gbM and gene expression except in 
endosperm. gbM epialleles were associated with an approximately 3% increase in steady-state expression level relative to unmethylated 
epialleles. In contrast to gbM genes, which were conserved and were broadly expressed across tissues, we found that teM genes, which 
make up about 12% of genes, are mainly silent, are poorly conserved, and exhibit evidence of annotation errors. We used these data to 
flag teM genes in the 26 NAM founder genome assemblies. While some teM genes are likely functional, these data suggest that the 
majority are not, and their inclusion can confound the interpretation of whole-genome studies.
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Introduction
DNA methylation (5-methylcytosine) is one part of a multilayered 
chromatin-based method of repressing transcription and accessi
bility of repetitive DNA in plants. The mode of repression depends 
in part on the 2 or 3 nucleotide sequence context of the methy
lated cytosine, generally categorized as CG, CHG, and CHH, where 
H = A, T, or C. DNA methylation is not restricted to repetitive DNA, 
however. In most flowering plants, a large fraction of genes can 
have methylation in the CG context (mCG) in exons [reviewed in 
Bewick and Schmitz (2017) and Muyle et al. (2022)]. Such genes 
are referred to as gene body methylated genes, gbM genes for short. 
Genes that have TE-like methylation, both mCG and non-mCG, in 
their exons are referred to as teM genes. The third and most abun
dant group of genes is unmethylated in their exons and referred to 
as UM genes (these and other key terms are defined in Table 1). All 3 
methylation groups have signature expression patterns: gbM genes 
tend to be broadly expressed across tissues, UM genes tend to be 
tissue-specific, and teM genes tend to be poorly expressed [reviewed 
in Bewick and Schmitz (2017) and Muyle et al. (2022)].

The mCG in gbM genes is maintained by methyltransferases of 
the MET1 family (Stroud et al. 2013). However, there is no dedi
cated mechanism to establish gbM on genes where it is absent: 
Genes that have lost gbM in met1 mutants do not reacquire gbM 
after MET1 is returned at least over a period of 8 generations 
(Reinders et al. 2009). Instead, establishment of mCG in gbM genes 

is hypothesized to occur slowly and infrequently through inter
mediate teM-like states mediated by spurious DNA methylation 
by MET1 and chromomethyltransferases of the CMT family 
(Niederhuth et al. 2016; Wendte et al. 2019). Although the direct 
output of CMTs is mCHH or mCHG, they can also lead to mCG 
by downstream recruitment of MET1 in Arabidopsis (Lyons et al. 
2023). According to this hypothesis, histone demethylation by 
the Jumonji C histone demethylase leads to loss of CMT activity 
and associated mCHG (Saze et al. 2008). Continued activity of 
MET1 coupled to DNA replication causes mCG to persist, leading 
to an epigenetically stable gbM state. Supporting this view are 
data showing that CMTs can target gbM genes in Arabidopsis 
(Zhang et al. 2020, 2021; Papareddy et al. 2021). Expression of 
Arabidopsis CMT in Eutrema salsugineum (which normally lacks 
both CMT and gbM) can induce mCG in gene bodies, which per
sists after CMT is removed (Wendte et al. 2019).

Since cytosine methylation increases the frequency of G:C to A:T 
transitions (Ossowski et al. 2010), mCG in coding DNA might be 
harmful rather than beneficial, unless it provides other benefits 
that outweigh its mutagenic tendency. Gene body methylation is 
absent from the vast majority of fungal genomes, even in genomes 
with methylation at repetitive elements (Bewick et al. 2019). The ex
istence of gbM in diverse animals, however, is evidence that benefi
cial functions likely exist. In fact, some insect genomes have 
extensive gene body methylation but little methylation of repetitive 

GENETICS, 2023, 225(2), iyad146 

https://doi.org/10.1093/genetics/iyad146
Advance Access Publication Date: 9 August 2023 

Plant Genetics and Genomics

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/225/2/iyad146/7240088 by U

niversity of G
eorgia Libraries, Serials D

epartm
ent user on 22 N

ovem
ber 2023

mailto:kdawe@uga.edu
mailto:gent@uga.edu
https://creativecommons.org/licenses/by/4.0/


elements (Bewick and Schmitz 2017). Vertebrates have gene body 
methylation as well as a dedicated mechanism for establishing it: 
recruitment of DNMT3 methyltransferases coupled to trimethyla
tion of histone H3 lysine 36 (H3K36me3) (Baubec et al. 2015; Bröhm 
et al. 2022). In plants, H3K36me3 seems to be unrelated to gbM 
(Wollmann et al. 2017). The functional significance of gbM in ver
tebrates is unclear but may prevent internal transcriptional initi
ation (Neri et al. 2017; Teissandier and Bourc’his 2017). In some 
cases, gbM also impacts splicing (Yearim et al. 2015; Shayevitch 
et al. 2018). Function of gbM could be compared to the repression 
of transposons and other repetitive elements by DNA methyla
tion: Although they are strongly methylated in some eukaryotes, 
they are poorly methylated or not methylated at all in others, in
cluding nematodes, fruit flies, yeasts, and honeybees [reviewed in 
Schmitz et al. (2019)]. Another appropriate comparison might be 
the centromeric histone variant CENP-A, which is essential in 
most eukaryotes but absent in some (Drinnenberg et al. 2014).

Whether mCG in gbM genes has a biologically significant effect 
on steady-state mRNA levels in plants is not clear. Comparisons of 
gene expression in E. salsugineum (without gbM) with Arabidopsis 
thaliana (with gbM) have yielded conflicting evidence both for 
and against gbM-promoting gene expression (Bewick et al. 2019; 
Muyle and Gaut 2019). Experiments using methylation data 
from the Arabidopsis 1001 Genome Consortium (Kawakatsu 
et al. 2016) found evidence of selection on gbM epialleles as well 
as small increases in expression in gbM over UM epialleles 
(Shahzad et al. 2021; Muyle et al. 2021). Older studies based on 
other sets of Arabidopsis accessions also revealed small but posi
tive correlations between gbM and gene expression levels 
(Schmitz et al. 2013; Dubin et al. 2015; Meng et al. 2016). 
Expression analysis of genes that lost gbM through met1 mutation 
in Arabidopsis in theory should provide the most direct evidence 
for a causal effect of gbM on gene expression. However, such stud
ies have produced conflicting results both for and against gbM 
promoting gene expression (Shahzad et al. 2021; Bewick et al. 
2019). The fact that gbM genes tend to be expressed more broadly 
through development than UM genes raises the possibility that 
gbM may function in stabilizing gene expression across develop
ment, with subtle activating (or repressing) functions depending 
on the cell type (Takuno and Gaut 2012, 2013; Niederhuth et al. 
2016). It is also possible that gbM has a function unrelated to 

normal gene regulation—for example, inhibiting ectopic initiation 
of transcription in gene bodies. The evidence for such a function is 
mixed in plants (Choi et al. 2020; Le et al. 2020). One might also 
speculate functions for gbM unrelated to transcription.

DNA glycosylases, which demethylate DNA through the base 
excision repair pathway, provide strong evidence that DNA 
methylation can function in gene regulation. For example, DNA 
glycosylases can function to activate genes upon bacterial infection 
(Halter et al. 2021), in response to abscisic acid hormone signaling 
(Kim et al. 2019), and in pollen tube development (Khouider et al. 
2021). In endosperm, DNA glycosylases act on maternal alleles of 
some genes to cause genomic imprinting, which is essential for 
endosperm development [reviewed in (Anderson and Springer 
2018)]. In the microgametophyte, including mature pollen, demethy
lation by DNA glycosylases has been proposed to take on a larger role 
in gene regulation than in sporophytic cells (Borg et al. 2021). While 
TE-like methylation of TEs themselves is generally stable across 
sporophytic development (Crisp et al. 2020), TE-like DNA methyla
tion in coding DNA might indicate a function in gene regulation.

Similar associations between gene body methylation with 
broad gene expression patterns, conservation, and gene struc
tural features in Arabidopsis also hold true in other plants 
(Takuno and Gaut 2013; Niederhuth et al. 2016; Seymour and 
Gaut 2020; Martin et al. 2021). Whether the positive correlation be
tween gbM epialleles and gene expression holds true in other 
plants has not been rigorously tested. Maize in particular provides 
an interesting test case because of its different genome and epi
genome structure, including DNA methylation patterns and 
much higher repeat content near genes (Gent et al. 2013; 
Hufford et al. 2021). In addition, its genome contains 2 subge
nomes, which allows for large changes in methylation and expres
sion of many genes to be compensated for by unchanged, 
second-subgenome copies (Woodhouse et al. 2010). The promo
ters of most functional maize genes are constitutively demethy
lated, and methylation in promoters is a strong indicator of 
silencing (Hufford et al. 2021). Recently, improved genome assem
blies and annotations were produced for the B73 inbred line and 
25 other diverse inbred lines known as the NAM founders 
(Hufford et al. 2021). Transcriptome data for 10 tissues and 20 ×  
coverage methylome data for developing leaves for each genome 
provide an opportunity to better characterize gene methylation 
trends in maize. We made use of this resource to identify natural 
epialleles and explore the relationships between methylation 
(UM, gbM, and teM) and gene expression on a pan-genome scale.

Materials and methods
Categorizing genes by methylation epiallele and 
metagene methylation analysis
CGmap files produced in the NAM founder study were used as the 
input for all DNA methylomes analyses (Guo et al. 2013; Hufford 
et al. 2021). The source Enzymatic Methyl-seq reads are available 
at ENA ArrayExpress E-MTAB-10088. Each methylome was ana
lyzed relative to its own reference genome, as opposed to the sim
pler but less accurate method of using B73 as the reference for all. 
The CGmapTools v0.1.2 mtr tool was used to calculate the average 
methylation values of each gene using the “by region” method 
after filtering the CGmaps specifically for coding DNA sequence 
(CDS) using the CGmaptools select region tool (Guo et al. 2013, 
2018). Version 1.0 gene annotations produced by the NAM assem
bly project were obtained from https://download.maizegdb.org. 
Only canonical gene annotations were used in defining CDS, as 
well as for all other genic features. Only genes with at least 40 

Table 1. Usage of key terms.

UM Unmethylated in coding DNA sequence (CDS)
gbM Gene body methylation, only mCG in CDS
teM TE-like methylation, mCG and mCHG in CDS
Epiallele type Methylation status of genes: UM, gbM, or teM
Tissue-specific 

gene
Expressed in at least 1 tissue and not expressed 

in at least 1 other tissue
Constitutive gene Expressed in all tissues examined
Silent gene Not expressed (silent) in all 10 tissues
NAM founders Set of 26 diverse maize inbred stocks including 

B73
Core gene Present at syntenic position in all NAM 

founders
Pangene Set of homologous genes at a syntenic position 

in different genomes
1-to-1 pangene Pangene that has 1 intact copy in all NAM 

founders
1-to-N pangene Pangene with intact tandem duplicates in NAM 

founders
Stable pangene Represented by only 1 epiallele in NAM 

founders
Unstable pangene Represented by more than 1 epiallele in NAM 

founders
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cytosines in the CG context and 40 cytosines in the CHG context 
spanned by EM-seq reads were assigned methylation epialleles. 
UM epialleles were defined by both mCG and mCHG less than 
0.05, gbM epialleles by mCG higher than 0.2 and mCHG less 
than 0.05, and teM epialleles by both mCG and mCHG methylation 
levels higher than 0.4. The metagene methylation values over 3 kb 
upstream and downstream of genes and 1.5 kb within genes were 
produced using the CGmapTools mfg tools with 100 bp intervals 
and minimum coverage of 1 (-c 1 parameter). First, however, the 
CGmapTools bed2fragreg tool was used in combination with an 
awk command to convert input gene annotations from BED for
mat to the fragreg format used as input for the mfg tool.

Identification of core genes and quantification of 
genic structural features
Gene IDs for core genes are provided at https://github.com/dawelab/ 
Natural-methylation-epialleles-correlate-with-gene-expression-in- 
maize/tree/main/patterns%20of%20gene%20methylation/pangene_ 
class. To identify core genes, which were annotated as genes in 
B73 and in all other 25 NAM founders, we made use of the pangene 
table that lists every gene in all 26 genomes with each row corre
sponding to a single pangene and each column as a single NAM 
founder (Hufford et al. 2021). The pangene table was downloaded 
from https://de.cyverse.org/anon-files//iplant/home/shared/NAM/ 
NAM_genome_and_annotation_Jan2021_release/SUPPLEMENTAL_ 
DATA/pangene-files/pan_gene_matrix_v3_cyverse.csv. Tandem 
duplicate genes are included as multiple genes within a single cell. 
“NA” indicates a missing gene. Genome coordinates instead of a 
gene name indicate the presence of homologous DNA but insuffi
cient evidence for a gene annotation. These loci were not included 
in our analyses because they lack gene annotations, but correspond
ing genes in other genomes were still counted as core genes.

To calculate the length of genic structural features, we used 
awk commands using start and end coordinates in annotation 
files, and we summed the individual lengths per gene using 
the R aggregate(length∼gene, data, FUN=sum) function or sum
marize(sum(length)) function in gene unit. Intronic repeat 
lengths were obtained using the BEDTools v.2.30 (Quinlan and 
Hall 2010) intersect tool with -wo -wa -a (introns) -b (repeats). 
Zm-B73-REFERENCE-NAM-5.0.TE.gff3 repeat annotations are 
from https://download.maizegdb.org. The intersected repeat an
notations were merged using the BEDTools merge tool to prevent 
overlapping repeat annotations from being counted twice. Since 
the gene annotation files in gff3 format lack intron annotations, 
an intron file for B73 was obtained using GenomeTools v.1.6.1 
“-addintrons -retainids -sortlines” command. Exon coordinates 
were obtained from B73 annotation using the awk command to se
lect the gene ID and exon column. Core genes were selected from 
the complete set using merge(coregene, input, all.x=T) in R, 
and the exon count for each obtained using aggregate(data, 
gene∼exon, FUN=length) in R.

To calculate the numbers of genes with TE insertions, we used 
the Python pandas package (Python-3.7.4 environment) to gener
ate simplified bed files for TE superfamilies. The BEDTools inter
sect tool with -wa -wb -a (intron) -b (TE) was used to identify TEs 
in introns. The R unique function was used to count each gene 
only once even if multiple annotations of the same TE superfamily 
were present. The R merge function was used to associate each 
gene with an insertion with its methylation epiallele status. The 
R table function was then used to count numbers of genes with 
at least 1 insertion for each superfamily.

To calculate the extents of overlap between CDS and repetitive 
elements, we used the BEDTools intersect tool with -wo -a (CDS) -b 

(repeats). The R aggregate function was used to sum the 
CDS-overlapping repeat lengths per gene. The R merge function 
was used to associate each gene with its methylation epiallele sta
tus. “NA” was replaced with 0 for genes with no overlap between 
CDSs and repeats. The R table function was then used to count 
numbers of genes with CDS-overlapping repeat lengths that 
were greater than 100 bp.

Calculating gene transcripts per million values 
and assigning expression categories
To quantify gene expression, we mapped mRNA-seq reads from 
the NAM assembly project using similar methods to the NAM as
sembly project (Hufford et al. 2021). RNA-seq reads are available 
at ENA ArrayExpress E-MTAB-8633 and E-MTAB-8628. Briefly, 
STAR v2.7.2 software (Dobin et al. 2013) was used to map reads 
to each of the 26 genomes assemblies and their reference gene an
notations. Unlike the NAM assembly project, however, gene anno
tations were used to guide read mapping with the –sjdbGTFfile 
and –twopassMode Basic parameters. Prior to read mapping, 
Cufflinks v2.2.1 (Trapnell et al. 2010) was used to convert gff3 
gene annotations into gft format. As in the NAM assembly project, 
transcripts per million (TPM) value, were obtained based on read 
counts per genes from featureCounts software v.1.6.0 (Liao et al. 
2014) using uniquely mapping reads only (default method). For 
tissues with 2 mRNA-seq replicates, both replicates were merged.

To define the gene expression categories, we compared TPM va
lues across the 10 tissues (leaf tip, leaf middle, leaf base, root, 
shoot, ear, anther, tassel, endosperm, and embryo). We defined 
tissue-specific expression as TPM ≥ 1 in at least 1 tissue and 
TPM < 1 in at least 1 tissue, constitutive expression as TPM ≥ 1 
in all 10 tissues, and silent as TPM < 1 in all 10 tissues. TPM values 
from all 10 tissues were combined into 1 matrix, and the 
matrixStats package in R was used to identify each expression 
category.

Identification of genes with syntenic homologs in 
sorghum
A table (NAM_subgenomes_vs_Sorghum_from_Hufford-2021.txt) 
linking maize genes to the 2 maize subgenomes and to their syn
tenic sorghum homologs was obtained from Maize Genetics and 
Genomics Database (MaizeGDB) (https://ars-usda.app.box.com/ 
v/maizegdb-public/file/1091055382617). It was produced by 
Margaret Woodhouse using data from the NAM Founders 
Project and updated on December 14, 2022. More details on its der
ivation are found in the same link and in the NAM Founders pub
lication (Hufford et al. 2021). The R merge function (by=“gene”, 
all = T) was used to combine sorghum synteny information with 
other B73 gene information into a single table, and the R unique 
function was used to remove duplicated rows. Core genes were se
lected using the R filter function from the tidyverse package, and 
the numbers of genes with syntenic sorghum homologs were 
counted using the R table function.

Conceptual summary of pangenes analysis
A schematic summary of our pangene methods is shown in 
Supplementary Fig. 1. In brief, the 3 major input data sources— 
DNA methylomes, RNA transcriptomes, and gene annotations— 
were used to create a series of gene matrices, where the row 
coordinate indicates the pangene and the column coordinate 
indicates the NAM founder. The matrices included values such 
as CDS length, TPM, and epiallele status. Tandem duplicate genes 
were represented by lists of values within single cells. The initial 
matrices were intersected with each other using specific criteria 
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such as CDS length to produce filtered matrices representing 
subsets of genes of particular interest. Values in these filtered 
matrices were then extracted and used as inputs for plotting 
distributions (such as TPM) or numbers of genes with specific 
features like stable epialleles.

Identification of genes with intact CDS
For all pangene analyses, to exclude both annotation artifacts and 
genes with large structural changes in their CDSs, we required 
that the CDS length vary by less than 10% from the median of 
each pangene. Only singletons were included in determining the 
median length. Since CDS lengths for tandem duplicates were 
represented by lists of values within individual cells, the R 
rowMedians function was used to determine median lengths 
(rowMedians ignores values in lists). Both singletons and tandem 
duplicates were compared to the same singleton-defined median 
length and unqualified genes were removed using R logical opera
tors. Removing genes by this criterion did not affect their core 
gene status, only whether they were included in subsequent ana
lyses. Input gene sets for all pangene analyses were limited by this 
CDS length restriction.

Identification of 1-to-1 and 1-to-N pangenes and 
counting epialleles
To identify pangenes with and without tandem duplicates, we cre
ated a pangene matrix of tandem duplicate counts, where a value 
of 1 indicated a singleton, a value of 2 indicated 2 copies, etc. The R 
rowMins and rowMaxs function were used to identify a set of pan
genes with both singletons and duplicates. The R rowSums func
tion was used to count numbers of singleton genes of each defined 
epiallele type (UM, gbM, and teM) for each pangene. Pangenes that 
had more than 1 singleton epiallele type or had only 1 singleton 
gene with a defined epiallele were removed to produce the final 
1-to-N pangene matrix. To count epialleles among tandem dupli
cates, the singleton epialleles (any cells not containing lists) were 
first converted to nulls. Then, all cells containing lists were com
bined with the R unlist function and the epialleles counted with 
the R table function.

The stable 1-to-1 pangenes matrix was produced similarly as 
the 1-to-N pangenes, except it was derived from singleton-only 
pangenes. The unstable 1-to-1 pangene matrix was also derived 
from singleton-only pangenes, but only included pangenes repre
sented by at least 2 epiallele types, where each epiallele type was 
represented by at least 2 genes. This produced 4 types of unstable 
1-to-1 pangenes: UM-gbM, UM-teM, gbM-teM, and UM-gbM-teM.

Comparison of epiallele expression levels in 
unstable pangenes
To compare epiallele expression values among unstable 1-to-1 
pangenes, we calculated the mean TPM value for each epiallele 
type in each pangene individually using the following formula:

trace{DTij × IT(DEij)} ⊘ trace{1ij × IT(DEij)} 

Variables are as follows: i is the pangene index and j is the gen
ome index. DTij (tissue) is a matrix of TPM values, 1 for each tissue. 
DEij is a matrix of epialleles. I(DEij) is an indicator matrix of 0s and 
1s, 1 indicator matrix for each of the 3 epiallele types. DTij (tissue) 
times the transpose of I(DEij) and divide sum of the transpose of 
I(DEij) over j was used to create 3 pangene lists for each tissue, 
where each list contains the mean TPM value for 1 epiallele type 
for that pangene. These lists were then used to calculate TPM 

differences for each epiallele type. To measure mean expression 
values of epiallele types in unstable 1-to-1 pangenes across the 
whole set, the R unlist function was used to make lists of TPM va
lues for each epiallele type using the TPM matrices and epiallele 
matrix as inputs. The R summary function was used to calculate 
summary statistics from these lists. Pangenes had to have at least 
2 genomes with each epiallele to be included in the unstable 1-to-1 
pangenes set.

mCG and TPM correlation coefficient calculations
To test for correlations between mCG and gene expression levels 
independently of epiallele category, we generated a pangene ma
trix of mCG values. Values for low confidence genes were replaced 
with “NA”. Low confidence was defined in the same way as other 
analyses: either CDS length varying by greater than 10% from 
the median of each pangene, or less than 40 cytosines in the CG 
context and 40 cytosines in the CHG context spanned by EM-seq 
reads. While there was no constraint on mCG, genes with mCHG 
values greater than 0.05 were excluded to avoid confounding ef
fects of TE-like methylation. In addition to enrich for pangenes 
with variable mCG, the differences in mCG between the most ex
treme 2 genes of each pangene had to at least equal 0.2. The R 
functions rowMins(na.rm=T) and rowMaxs(na.rm=T) were used 
to calculate the minimum and maximum mCG values for each 
pangene. For the TPM matrices, positions matching “NA” in the 
mCG matrix were also replaced with “NA”. Pearson correlations 
were calculated for each pangene using the R function cor.text(). 
The correlation coefficient was set to “NA” if the standard vari
ation of a pangene was 0 or if there were less than 3 available 
genes in a pangene to be tested. The mean and median of the cor
relation coefficients were calculated by the R summary() function.

Other P-value calculations
To test whether the proportions of epiallele types differed be
tween tandem duplicates of 1-to-N pangenes with minimum of 
2 copies and 1-to-N pangenes with a minimum of 4 copies in 
Fig. 3, b and c, we applied Chi-square tests on epiallele counts 
using the R function chisq.test (x, y, correct=F). To test whether 
the direction of TPM differences between epiallele types was 
significantly different (gain or loss of expression in Fig. 4, b–d), 
we applied both binomial sign tests and Wilcoxon signed rank 
tests on each set of pangene counts. Binomial sign tests were 
done using the R function binom.test(sum(gbM>UM), n, P = 0.5, 
alternative=“two.sided”) and the Wilcoxon signed rank test using 
the R function wilcox.test().

Results
We first surveyed the landscape of gene methylation in maize 
using the B73 genome and a DNA methylome from developing 
seedling leaves as a reference (Hufford et al. 2021). Introns often 
have TE-like methylation that is distinct from flanking exons 
simply because they contain TE insertions (Seymour and Gaut 
2020). The very 5′ and 3′ end of UTRs are typically unmethylated 
when they are correctly annotated, but UTR annotations are of
ten imprecise and sometimes overlap with nearby TEs. Thus, we 
excluded both UTRs and introns in measuring genic methyla
tion. For each gene with sufficient read coverage (reads span
ning at least 40 CGs and 40 CHGs), we assigned a single mCG 
value and mCHG value as the average methylation in its CDS. 
These values are measured as a proportion of methylated cyto
sines to total cytosines, and range from 0 to 1. To produce a vis
ual summary of gene methylation trends, we represented each 
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gene by these 2 values. A clear bimodal trend was evident, 
where the larger group of genes had low mCHG methylation 
and a continuous range of mCG but heavily skewed toward 0 
mCG (Fig. 1a). A second, smaller group of genes had both high 
mCG and mCHG (Fig. 1a). We divided the first group into UM 
genes and gbM genes, where UM had less than or equal to 0.05 
mCG and gbM had at least 0.2 mCG. Both UM and gbM had 
less than or equal to 0.05 mCHG. We defined genes in the second 
group as teM genes based on at least 0.4 mCG and 0.4 mCHG. 
This produced 14,393 UM genes, 8,134 gbM genes, and 3,402 
teM genes. The remaining 4,277 genes with intermediate 
methylation values were left uncategorized, along with 9,550 
genes with insufficient methylome sequencing read coverage 
to confidently assign methylation epiallele status.

To enrich for functional genes over gene annotation artifacts, 
we made use of the core gene categorization scheme previously 
developed by comparison of the 26 NAM founder genomes 

(Hufford et al. 2021). Core genes are the subsets that are present 
at syntenic positions in all 26 genomes, based on sequence hom
ology. These include all copies of tandemly duplicated genes 
and gene fragments. Core genes are enriched for synteny with 
Sorghum and for detectable RNA expression relative to the com
plete set of annotated genes (Hufford et al. 2021). 28,292 of 
39,756 annotated B73 genes are core genes. Repeating the above 
gene methylation categorization scheme with only core genes 
had little effect on the numbers of UM and gbM genes and retained 
the continuum of mCG in these categories, but it produced a 78% 
decrease in the proportion of teM genes, down from 3,402 to 710 
(Fig. 1b). This decrease in the number of teM genes among core 
genes suggests that many are pseudogenes or mis-annotated 
TEs. For all subsequent analyses, we included only core genes, un
less otherwise indicated. While we defined teM genes solely based 
on methylation in CDS, they also had high mCG and mCHG 
at their annotated transcription start sites (TSSs) and 

(a) (b)

(c) (d) (e)

(f) (g)

Fig. 1. Methylation patterns in genes. a, b) Scatter plots of mCG vs mCHG for all B73 genes a) and core B73 genes b). These values are measured as a 
proportion of methylated cytosines to total cytosines, and range from 0 to 1. Values indicate methylation of coding DNA sequence (CDS) only. Histograms 
outside axes indicate gene counts in each range of methylation values. Only genes with sufficient coverage of EM-seq reads were included in this analysis 
(at least 40 cytosines in each context spanned by reads). c–e) Metagene mCHH, mCHG, and mCG for core UM, gbM, teM B73 genes. Genes were aligned at 
transcription starts sites (TSSs) and polyadenylation sites (polyA). The plots show 3 kb upstream, 3 kb downstream, and 2 kb of internal sequence. 
Methylation values are measured in 100-bp intervals. f) Distribution of mCHH, mCHG, and mCG for the upstream 100-bp regions for UM, gbM, and teM 
B73 core genes. Whiskers indicate 1.5 interquartile range (IQR). g) Schematic of gene methylation (epiallele) types. Lollipops indicate methylated 
cytosines, color coded by context.
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polyadenylation sites. This was evident both from metagene 
methylation profiles (Fig. 1, c–e), as well as the distribution of 
methylation levels in the first 100 bp upstream of TSSs (Fig. 1f). 
mCHH upstream of TSSs is a common feature of genes (Gent 
et al. 2013; Martin et al. 2021). In contrast to UM and gbM genes, 
teM genes showed no enrichment for mCHH upstream of genes 
(Fig. 1, c–e). Figure 1g provides a simplified summary of methyla
tion profiles for the 3 gene methylation types.

Consistent with longer lengths of Arabidopsis gbM genes 
(Zhang et al. 2006; Zilberman et al. 2007; Takuno and Gaut 
2012), comparison of structural features of the genes in each 
methylation category revealed that all components of maize 
gbM genes (UTRs, CDSs, introns, and intronic TEs) were longer 
than UM genes, producing an average 2.9-fold longer total-gene 
lengths (Fig. 2a). Differences were significant for all features 
(P-value < 10−9, two-tailed Wilcoxon rank sum test). The total- 

(a)

(c)

(f) (g)

(d) (e)

(b)

Fig. 2. Structural and expression patterns in B73 core genes according to methylation categories. a) Distributions (left to right) of total UTR length, intron- 
overlapping TE length, CDS length, exon length, and intron length in UM, gbM, and teM genes. Lengths are cumulative such that individual elements in a 
gene are summed to yield a single value for the gene. Whiskers indicate 1.5 IQR. Length differences between UM, gbM, and teM genes were significant for 
all features (P-value < 10-9, two-tailed Wilcoxon rank sum test). b) Proportion of genes containing at least 1 TE insertion overlapping introns. All 9 TE 
superfamilies are significantly different between UM and gbM (P-value < 0.01, one-tailed Mann–Whitney test). c) Proportion of genes with at least 1 
annotated UTR. d) Proportion of genes with at least 100 bp overlap of CDS and annotated TEs. e) Proportion and number of genes in each gene expression 
category. Each pie represents all genes with a defined epiallele type (UM, gbM, and teM), with the number of genes in each expression category indicated 
for each slice. These are arranged clockwise starting with tissue-specific expression at 12 o’clock, then constitutive expression, then silent. f) Distribution 
of TPM values for UM, gbM, and teM genes across tissue types. Log base 10 of TPM values (plus a pseudocount of 1 to avoid problems with 0 values) are 
shown, and Y-axis is truncated at +5 and −5. g) Percent of genes with syntenic homologs in Sorghum bicolor. The differences between each category (UM 
gbM, and teM) were significant for all genes and core genes (P-value < 10−10, 2 sample Z proportion test).
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gene length differences were at least partly explained by the num
ber of exons and introns: The mean number of exons was 3.2 for 
UM genes, 9.8 for gbM, and 3.4 for teM (Supplementary Fig. 2). 
Introns had the largest difference in length: the average cumula
tive intron length of gbM genes was 4,437 bp longer than UM genes 
(5,481–1,144 bp). 1,576 bp of this difference in length could be ac
counted for by TEs in introns (1,965 bp in gbM, 390 in UM average 
cumulative lengths of TEs in introns). Introns of gbM genes were 
more likely to contain TEs of all superfamilies (Fig. 2b). teM genes 
were also distinguished from both gbM and UM genes by short or 
absent UTRs (Fig. 2, a and c). 59.1% of teM genes lacked both 5′ and 
3′ UTRs, compared to 0.38% of gbM and 6.3% of UM genes. teM 
genes had relatively short CDSs (816 bp for teM genes, compared 
to 1,858 bp for gbM and 1,079 bp for UM genes) and tended to over
lap annotated TEs: 34.6% of teM genes had at least 100 bp of over
lap between CDS and TEs, compared to 5.3% of gbM and 3.4% of 
UM genes (Fig. 2d).

To investigate expression patterns for each category of gene 
methylation, we used RNA-seq data from 10 tissues for each 
NAM founder inbred (Hufford et al. 2021). UM genes had larger 
expression ranges in each tissue than gbM genes, showing both 
higher and lower extremes in TPM values, consistent with 

tissue-specific expression (Fig. 2, e and f). In contrast, gbM genes 
were consistently expressed at moderate levels across the 10 tis
sues, consistent with constitutive gene expression (Takuno and 
Gaut 2012, 2013; Niederhuth et al. 2016). This moderate expres
sion across tissues results in an average higher expression of 
gbM genes than UM genes (Fig. 2f). In ear for example, the average 
gbM expression was 40.7 TPM and UM was 25.7 TPM. teM genes 
were poorly expressed across all tissues. Anther, tassel, and endo
sperm had more extreme outlying teM TPM values than the other 
7 tissues, suggesting that a number of teM genes are highly ex
pressed in these tissues. We categorized genes as tissue-specific 
based on a TPM value of less than 1 in at least 1 but not all tissues, 
as constitutively expressed based on a TPM value of at least 1 in all 
10 tissues, or as constitutively silent based on a TPM value of less 
than 1 in all tissues. This expression categorization scheme corre
lated with methylation categories, where UM genes were most 
tissue-specific, gbM most constitutive, and teM most silent 
(Fig. 2e).

Even though we only included core genes in these analyses, the 
poor expression of teM genes, frequent absence of UTRs, and high 
overlap with TEs raised the question of whether they are con
served outside of maize. To test this, we asked how many had 

(a)

(b)

(c)

(d)

(e)

Fig. 3. Epiallele stability in NAM founders. a) Schematic of the relationship between a hypothetical 1-to-N pangene and its individual genes. b) Abundance 
of each epiallele type among tandem duplicate genes. Each pie represents all tandem duplicates with 1 singleton epiallele type, and the number listed in 
each slice indicates the number of tandem duplicates with UM, gbM, or teM epialleles: These are arranged clockwise starting with UM epialleles at 12 
o’clock. c) Abundance of each epiallele type among tandem duplicate genes, but only including tandem duplication genes with a copy number of at least 
4. Asterisks indicate a significant difference in proportion from the corresponding value in (b) (P-value < 10−3, Chi-square test). d) Relative abundance of 
1-to-N pangenes. 1-to-N pangenes were categorized by their singleton epiallele type, and the total number divided by the number of stable 1-to-1 
pangenes of the same epiallele type. e) Percent of 1-to-1 pangenes with stable epialleles. The number of 1-to-1 stable pangenes of each epiallele type was 
divided by the total number of unstable and stable 1-to-1 pangenes with that epiallele.
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unambiguous homologs at syntenic positions in sorghum and 
could be assigned to 1 of the 2 maize subgenomes (Woodhouse 
et al. 2010; Hufford et al. 2021). While 75% of gbM genes and 
70% of UM genes had syntenic homologs, only 14% of teM genes 
did (Fig. 2g). When including the entire set of B73 genes rather 
than just core genes, 74% of gbM genes and 67% of UM genes 
had syntenic homologs, but only 4% of teM genes did.

We applied the same methods used in B73 to categorize genes 
as UM, gbM, or teM to the 25 other NAM founder genomes. 
Specifically, we used the methylome data previously analyzed, 
where each set of EM-seq reads was mapped to its own genome 
and analyzed with respect to its own gene annotations (Hufford 
et al. 2021). For this analysis, we included all gene annotations, 
not just core genes. The abundance of identified UM genes varied 
from 51% of total genes annotations with sufficient EM-seq read 
coverage in CML247 to 44% in M37W (Supplementary Fig. 3). The 
abundance of gbM genes varied from 18% in CML247 to 28% in 
M37W. The higher abundance of UM genes and lower of gbM 
genes in CML247 is consistent with the low genome-wide mCG 

previously observed in CML247 (Hufford et al. 2021). The abun
dance of teM genes hardly varied, from 11% in Ky21 to 13% in 
Ki3. Although some teM genes may be demethylated as a means 
to regulate gene expression, most are likely mis-annotations or 
pseudogenes. The teM genes are displayed as genome browser 
tracks for all 26 genomes hosted by the MaizeGDB (Woodhouse 
et al. 2021). For example, see Supplementary Fig. 4. The teM genes 
are also listed along with UM and gbM genes for all 26 genomes 
at https://github.com/dawelab/Natural-methylation-epialleles- 
correlate-with-gene-expression-in-maize/tree/main/patterns%20 
of%20gene%20methylation/epiallele.

When genes are duplicated, their methylation or expression 
states may change. To specifically test for epiallele switches asso
ciated with tandem duplication, we looked for genes that were 
present as singletons in at least 2 genomes but as tandem dupli
cates in at least one other. For this purpose, we used the pangene 
system to link genes across genomes (Hufford et al. 2021). All 
genes that have homologous sequence at a syntenic position in 
the genomes share the same pangene name. For all analyses, we 

(a)

(c) (d)

(e)

(b)

Figure 4. Gene expression and methylation change among NAM founders. a) Distribution of differences in TPM between gbM and UM epialleles for each 
1-to-1 unstable pangene. b) Proportion of 1-to-1 unstable pangenes with differences in TPM between gbM and UM epialleles that were either greater or 
less than 0. c) Proportion of 1-to-1 unstable pangenes with differences in TPM between UM and teM epialleles that were either greater or less than 0.
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included only the subset of 27,910 of the 103,033 pangenes which 
are core pangenes (pangenes with genes in all 26 genomes). Some 
core pangenes have more than 26 genes because multiple tandem 
duplicate genes are linked to single pangenes (Fig. 3a). However, 
tandem duplications often capture only a fragment of the gene. 
Also, a single gene can also appear to be a tandem duplicate be
cause 5′ and 3′ portions are incorrectly annotated as separate 
genes. To avoid both these issues, we included only intact tandem 
duplicates for all pangene analyses. We defined intact tandem du
plicates as those whose cumulative CDS lengths differed by no 
more than 10% from the median length of all singletons for a given 
pangene. Since gene dosage effects provide a strong constraint on 
gene copy number (Birchler and Veitia 2012), and singletons pre
dominate over tandem duplicates in plant genomes, we assumed 
for the purposes of this analysis that singletons best represent an
cestral epialleles and tandem duplicates best represent derived 
ones. Of the 27,910 core pangenes, 6,695 exist as tandem dupli
cates in some inbreds and singletons in at least 2 other inbreds. 
Among these 6,695 pangenes, 725 of the singletons were present 
in more than 1 epiallele state. We excluded these from further 
analysis to avoid ambiguity about which epiallele represents the 
singleton state. The remaining 5,970 pangenes, represented by 
singletons of 1 epiallele type in at least 2 genomes, were repre
sented by arrays of up to 47 duplicates in other inbreds. We refer 
to these as “1-to-N” pangenes.

Comparing the singleton epialleles with their corresponding 
duplicate epialleles in other genomes revealed that epiallele 
states of the singletons were normally maintained in the dupli
cates (Fig. 3b). In the case of UM singletons, 98% of duplicates 
were also UM. These are surprisingly high percentages because 
a change in mCG value as small as 0.15 is enough to switch be
tween UM and gbM. A larger change of 0.35 in both mCG and 
mCHG is required for changing between UM and teM, yet switches 
of this type were more common than UM to gbM (1.5% teM dupli
cates vs 0.7% gbM duplicates for UM singletons). Abundance of 
teM duplicates was higher (5.9%) in the subset of cases with a min
imum copy number of 4 (Fig. 3c). This increase in teM duplicates in 
the minimum-four-copy set was highly significant (P-value <  
10−10, Chi-square test). In the case of gbM singletons, 89% of dupli
cates were also gbM, with 6.9% UM duplicates and 3.6% teM dupli
cates. These numbers were nearly identical in the set of duplicates 
with a minimum copy number of 4.

Of the 5,970 1-to-N pangenes, 4,149 had UM singleton epial
leles, 1,589 had gbM singleton epialleles, and 232 had teM single
ton epialleles. To put these numbers in perspective, we compared 
the numbers to stable 1-to-1 pangenes, which had only singletons 
and only 1 epiallele type. As with 1-to-N pangenes, partial duplica
tions were ignored in determining singleton vs duplicate status. 
After excluding pangenes that had fewer than 2 genes with 
defined epialleles, 7,001 of the stable 1-to-1 pangenes had only 
UM epialleles, 5,992 had only gbM, and 277 had only teM. 
Normalizing the numbers of 1-to-N pangenes by the numbers of 
stable 1-to-1 pangenes suggests that UM singletons are 2.2-fold 
more likely to be associated with gene duplications than gbM sin
gletons (Fig. 3d). gbM epialleles may be less susceptible to tandem 
duplication or have more severe fitness consequences than dupli
cates derived from UM epialleles.

An additional 964 core pangenes occurred as singletons in all 
genomes but were present in more than 1 epiallele state. We 
called these unstable 1-to-1 pangenes. There were 897 UM-gbM 
unstable 1-to-1 pangenes, 27 UM-teM, 30 gbM-teM, and 10 
UM-gbM-teM. To be included in one of these unstable 1-to-1 pan
gene groups, we required that at least 2 genomes contain each 

epiallele. The remaining 7,706 core pangenes did not meet the 
stringent requirements for 1-to-N, stable 1-to-1, or unstable 
1-to-1 pangenes. A total of 13% of the UM, 15% of the gbM, and 
19% of the teM epiallele-containing pangenes were unstable (cal
culated as unstable 1-to-1 pangenes divided by stable plus un
stable 1-to-1 pangenes) (Fig. 3e).

Maize is a pseudotetraploid where many genes have 2 copies 
with potentially redundant functions (Woodhouse et al. 2010; 
Hufford et al. 2021). Thus maize offers an opportunity to test rela
tionships between epialleles and gene expression changes that 
would not be tolerated in plants where most genes are single 
copy. For each of the 897 unstable 1-to-1 UM-gbM pangenes, we 
calculated the differences in the mean TPM for UM epialleles 
and gbM epialleles, which we refer to as the gbM-UM TPM differ
ences. Epialleles with large TPM values create a broad distribution 
of gbM-UM TPM differences. Nonetheless, the distribution of dif
ferences would be expected to center on a value of 0 if UM-gbM 
epiallele switches are not associated with gene expression change. 
We found that the median gbM-UM TPM difference was above 0 
for all 10 tissues (Fig. 4, a and b). These differences were significant 
by binomial sign tests for all tissues except endosperm (P-value <  
10−10 except endosperm P-value = 0.07). The differences were also 
significant by Wilcoxon signed rank tests (P-value < 0.05 except 
endosperm P-value = 0.16). Normalizing the median gbM-UM 
TPM differences by mean UM TPM values for the same set of pan
genes in each tissue produced highly consistent results. The me
dian gbM-UM TPM differences indicate that gbM epialleles are 
expressed about 3% higher than UM epialleles. The differences 
were lowest in endosperm (at 0.5%) and highest in leaf tip (at 
4.3%). We used median values for these analyses because the 
means are skewed by epialleles with large TPM values, where 
very minor changes in expression manifest as very large changes 
in TPM value. For example, a 10% change in expression of a gene 
with a TPM value of 1,000 would give a gbM-UM TPM difference of 
100 TPM. Even so, all tissues but root yielded mean gbM-UM TPM 
difference of greater than 0. As comparisons, we also examined 
epiallele expression in the 27 UM-teM and 30 gbM-teM unstable 
1-to-1 pangenes. The small numbers of these pangenes preclude 
meaningful quantification of expression changes for teM epial
leles, but there was a clear trend for teM epialleles to have reduced 
expression relative to UM or gbM (Fig. 4, c and d).

As an alternative means of testing for a correlation between 
gbM and expression, we treated mCG as a quantitative variable ra
ther than using the binary system of UM vs gbM. This also allowed 
us to include genes with intermediate mCG levels (between 0.05 
and 0.2). All other criteria were unchanged, such as exclusion of 
genes with mCHG levels above 0.05 and requirement for read 
coverage of at least 40 CGs and 40 CHGs per gene. As there are 
limitless factors that could in theory contribute to gene expres
sion changes, of which mCG is likely to be a very minor one, we 
only included the potentially informative pangenes with variation 
in mCG. Specifically, we required that all pangenes have at least 1 
pair of genes whose mCG difference exceeded 0.2. For example, if 
the gene with the lowest mCG value was 0.1, another gene would 
need to have a value greater than 0.3 for that pangene to be in
cluded in the analyses. In total, 8,547 pangenes met these criteria. 
We then calculated correlation coefficients between mCG and 
TPM for each pangene. While we expected that correlation coeffi
cients for individual pangenes would vary hugely, the distribution 
of values would reveal whether there was an overall positive 
trend. Indeed, both the median and mean correlation coefficients 
were positive for 9 of the 10 tissues (Supplementary Fig. 5, a and b). 
The interesting exception was endosperm, a tissue which is 

Natural methylation epialleles | 9
D

ow
nloaded from

 https://academ
ic.oup.com

/genetics/article/225/2/iyad146/7240088 by U
niversity of G

eorgia Libraries, Serials D
epartm

ent user on 22 N
ovem

ber 2023

http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad146#supplementary-data


known to be epigenetically distinct from other tissues examined, 
including maternal DNA demethylation at thousands of loci 
(Batista and Köhler 2020; Gent et al. 2022). We also carried out a 
parallel analyses using mCHG as a quantitative trait instead of 
mCG to compare with TPM values. In this analysis, we entirely ig
nored mCG, but we retained the requirement for at least 40 CGs 
per gene to ensure a similar starting set of genes. 927 pangenes 
met the required criteria, including having at least 1 pair of genes 
whose mCHG difference exceeded 0.2. In all tissues, the ratio of 
positive to negative correlation coefficient values was less than 
1 (Supplementary Fig. 5, c and d). These results confirm the posi
tive correlation between gbM and expression as well as the nega
tive correlation between teM and expression.

Discussion
Gene body methylation defines a continuum of 
genes, while TE-like methylation defines a 
distinct group that is enriched for annotation 
artifacts
Examining CG methylation alone reveals a clear bimodal distribu
tion, with most genes having either near-zero CG methylation or 
greater than 70% methylation (Fig. 1, a and b). After removing 
the set of genes with high CHG methylation, which is characteris
tic of heterochromatin, the remaining genes show a range of CG 
methylation heavily weighted toward zero CG methylation. 
Thus, a categorization of non-CHG methylated genes as either un
methylated (UM) or gene body methylated (gbM) is a simplifica
tion of a continuously distributed feature. Despite the 
limitations of simplified UM-gbM binary categorization schemes, 
they do correlate with structural and expression features and 
may reveal hints of both the origins and consequences of gene 
body methylation [reviewed in Bewick and Schmitz (2017) and 
Muyle et al. (2022)].

Examining both CG and CHG methylation together, however, 
reveals a distinct TE-like methylation (teM) category. We found 
multiple lines of evidence that this category is dominated by non
functional genes and annotation artifacts. First, they are poorly 
conserved among maize lines, with 79% of the teM gene annota
tions in B73 being absent from at least 1 of the other 25 genomes 
(Fig. 1, a and b). Even more strikingly, only 4% had syntenic homo
logs in sorghum (Fig. 2g). Second, their methylation extends into 
their 5′ and 3′ flanking sequences, suggesting a lack of functional 
cis regulatory sequence (Fig. 1, c and d). Third, they frequently 
lack both 5′ and 3′ UTRs, have short CDSs, and their CDSs overlap 
with annotated TEs (Fig. 2, a, c, and d). Fourth, they are very poorly 
expressed, even the 21% of teM genes in B73 that were annotated 
as genes in all 26 NAM founders (Figs. 2, e, f and 4, c, d). These 
data strongly suggest that most teM genes are nonfunctional. 
They are likely pseudogenes, fragmented tandem duplications, 
TEs, or other annotation errors.

Multiple lines of evidence suggests that keeping gene regula
tory elements constitutively free of TE-like methylation keeps 
them competent for activation, even when they are currently in 
repressed states. In some cases where TEs have inserted into 
regulatory elements, DNA methylation can result in developmen
tally responsive repression of functional genes. FLOWERING 
WAGENINGEN (FWA) and REPRESSOR OF SILENCING 1 (ROS1) 
are well-studied examples in Arabidopsis (Fujimoto et al. 2008; 
Williams et al. 2015). Some functional genes also utilize TE-like 
methylation as a means of developmental gene regulation inde
pendently of TEs, as demonstrated by several genomically im
printed genes. For example, MEDEA and FERTILIZATION 

INDEPENDENT ENDOSPERM2 are both activated in endosperm 
by DNA demethylation in Arabidopsis (Batista and Köhler 2020). 
FWA is also in this category, as are a small number of genes in pol
len (Borg et al. 2021; Khouider et al. 2021). We expect that the sub
set of teM genes that are present in all 26 genomes is enriched for 
functional teM genes, though still making up only a small fraction. 
For the vast majority of genes, developmentally responsive 
repression is mediated not by DNA methylation, but by 
polycomb-related mechanisms (Baile et al. 2022).

Based on our findings, we suggest flagging genes that as having 
TE-like methylation. Based on this information, they can be given 
lower priority when identifying gene candidates for functional 
studies or omitted from genomics studies where their inclusion 
would introduce too much noise, not just in maize but in any plant 
genome. Annotation tracks showing teM genes from our study are 
now available on the NAM founder genome browsers hosted by 
MaizeGDB to make this information easily accessible. We also 
provide the IDs of all teM genes in all 26 genomes. Gene annota
tion remains a difficult and error-prone task. Not alone, but along 
with other data such as synteny, expression, and known gene 
structural features, TE-like methylation can provide a valuable 
means of correcting faulty annotations.

Gene body methylation is associated with stable 
gene copy number
We found that gbM genes were strongly underrepresented among 
tandem duplications (Fig. 3d). Since gbM genes tend to have stable 
expression over a broad range of cell types (Fig. 2, e and f), we 
speculate that increased gene dosage of gbM genes tends to be 
more disruptive than that of UM genes. This would be consistent 
with prior work showing stronger genetic conservation of gbM 
genes across species (Takuno and Gaut 2013; Niederhuth et al. 
2016; Seymour and Gaut 2020). Perturbing conserved processes 
that function in most cells is more likely to harm the plant than 
dispensable ones that function in a minority of cells.

Gene body methylation epialleles are associated 
with weak but significant increases in expression
The maize NAM founder genomes, methylomes, and transcrip
tomes provide a powerful resource for studying relationships be
tween methylation and gene expression. The quality of the 
genome assemblies and associated annotation allowed us to filter 
out genes whose CDS had diverged too much for useful compari
sons, to accurately call methylation epiallele states in each gen
ome; and to accurately access gene expression levels in each 
genome. We found that gbM epialleles correlate with expression 
increases relative to UM epialleles (Fig. 4, a and b), indicating 
that Arabidopsis is not an anomaly in this regard (Shahzad 
et al. 2021; Schmitz et al. 2013; Dubin et al. 2015; Meng et al. 
2016; Muyle et al. 2021). The fact that the expression changes 
were small, with gbM genes showing ∼3% higher expression 
than UM genes, is consistent with the fact that gene body methy
lation is dispensable in some plants (Bewick et al. 2016). Maize, 
with its relatively high levels of genetic redundancy (Woodhouse 
et al. 2010) may be more tolerant of epiallele changes in individual 
genes than species such as Arabidopsis with more streamlined 
genomes.

On the theoretical importance of gene body 
methylation
While the fact that similar studies in a dicot and a monocot spe
cies yield similar results points toward biological significance, it 
does not indicate that gbM is the causal factor in the correlation. 
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It is conceivable—in fact, almost certainly true in some cases— 
that changes in gbM are a consequence of other factors that also 
affect expression. That gbM itself can positively affect gene ex
pression is supported by recent unpublished data that genes 
that lose gbM in an Arabidopsis mutant also have reduced expres
sion (Shahzad et al. 2021). One possibility for how gbM could affect 
transcription is that it prevents internal transcription initiation 
that would interfere with normal transcription, as has been re
ported in Arabidopsis and in animals (Neri et al. 2017; 
Teissandier and Bourc’his 2017; Choi et al. 2020). However, DNA 
methylation and other linked chromatin modifications affect 
more than transcription. In theory, any process that involves en
zymes making contact with DNA could be inhibited or facilitated 
(e.g. DNA repair, recombination, replication, and transposon 
integration).

Data availability
Scripts, R methods, and data produced in this study are available 
at https://github.com/dawelab/Natural-methylation-epialleles- 
correlate-with-gene-expression-in-maize. Enzymatic Methyl-seq 
reads are available at ENA ArrayExpress E-MTAB-10088. 
RNA-seq reads are available at ENA ArrayExpress E-MTAB-8633 
and E-MTAB-8628. Maize subgenomes gene lists and syntenic sor
ghum homologs are available at https://ars-usda.app.box.com/v/ 
maizegdb-public/file/1091055382617. The pangene table is avail
able at https://datacommons.cyverse.org/browse/iplant/home/ 
shared/NAM/NAM_genome_and_annotation_Jan2021_release/ 
SUPPLEMENTAL_DATA/pangene-files/pan_gene_matrix_v3_cyverse. 
csv.
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