
The Correlated Arc Orienteering Problem

Saurav Agarwal(B) and Srinivas Akella

University of North Carolina , Charlotte, NC 28223, USA
{sagarw10,sakella}@uncc.edu

Abstract. This paper introduces the correlated arc orienteering problem
(CAOP), where the task is to find routes for a team of robots to maximize the
collection of rewards associated with features in the environment. These features
can be one-dimensional or points in the environment, and can have spatial cor-
relation, i.e., visiting a feature in the environment may provide a portion of the
reward associated with a correlated feature. A robot incurs costs as it traverses
the environment, and the total cost for its route is limited by a resource constraint
such as battery life or operation time. As environments are often large, we permit
multiple depots where the robots must start and end their routes. The CAOP gen-
eralizes the correlated orienteering problem (COP), where the rewards are only
associated with point features, and the arc orienteering problem (AOP), where the
rewards are not spatially correlated. We formulate a mixed integer quadratic pro-
gram (MIQP) that formalizes the problem and gives optimal solutions. However,
the problem is NP-hard, and therefore we develop an efficient greedy constructive
algorithm. We illustrate the problem with two different applications: informative
path planning for methane gas leak detection and coverage of road networks.

Keywords: Orienteering problem · Informative path planning · Arc routing

1 Introduction

Consider a scenario in the aftermath of a natural disaster such as flooding. A team of
unscrewed aerial vehicles (UAVs) with cameras is deployed to assess the accessibil-
ity of a road network for emergency services. The UAVs must traverse the line seg-
ments corresponding to the road network and use their cameras to capture images for
analysis. The correlated arc orienteering problem (CAOP), introduced in this paper,
answers the following question: How should routes for resource-constrained UAVs be
planned such that the information gathered by the team along linear features is maxi-
mized by exploiting correlations between features? The information related to the phe-
nomenon, e.g., flooding, being monitored is modeled as rewards, which can be spatially
correlated—flooding at a road segment may correlate with flooding of nearby low-lying
road segments. Furthermore, a UAV flying at a high enough altitude has a large cam-
era field-of-view, and traversing a road segment may simultaneously capture images of
nearby road segments. The CAOP formulation can take advantage of these correlations
to compute efficient routes for the robots. Power lines and oil and gas pipelines have
similar linear infrastructure, and such efficiencies can be exploited during inspections.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. M. LaValle et al. (Eds.): WAFR 2022, SPAR 25, pp. 402–418, 2023.
https://doi.org/10.1007/978-3-031-21090-7_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21090-7_24&domain=pdf
https://doi.org/10.1007/978-3-031-21090-7_24

The Correlated Arc Orienteering Problem 403

2

4

6

8

2 4 6 8

(a) CAOP route

2

4

6

8

2 4 6 8

(b) AOP route

Fig. 1. Coverage of a spiral network, composed of 77 line segments of unit length, using a
capacity-constrained robot. The rewards are the lengths of the edges, i.e., 1 for each constituent
segment. The lateral field-of-view is set to 2 units—traversing an edge can fully cover the edges
immediately parallel to it on both sides. The field-of-view models the correlation function. The
black square represents the depot location. The solid red lines represent servicing of edges, while
the dashed lines represent deadheading. Figure a shows the solution using the CAOP formulation.
Figure b shows the solution for the AOP formulation, which does not use correlation informa-
tion. With a resource capacity (budget) of 35 units, the AOP route covers 53 segments, while the
CAOP covers 69 segments.

The CAOP with multiple robots models the environment as a graph: (1) The linear
features in the environment are represented by edges in the graph and have rewards asso-
ciated with them. (2) The rewards are spatially correlated, i.e., traversing an edge pro-
vides a fraction of the reward from correlated edges. (3) The robots consume resources
such as battery life or operation time while traversing the environment, and the total
resource available to a robot is limited by a given budget or capacity. The task is to find
a set of routes for the robots that maximizes the total reward gathered while ensuring
the total cost incurred by each robot is less than its capacity. Since environments can be
large and operating the robots from a single site may not yield reasonable solutions, we
consider multiple sites where the robots can start and end their routes. These sites are
known as depot locations and are a subset of vertices in the underlying graph. A unique
characteristic of our formulation is that we consider two different modes of travel for
the robots—servicing and deadheading. A robot services an edge when it performs
task-specific actions such as taking images along the edge. A robot may traverse an
edge without performing the servicing tasks, referred to as deadheading. The robot may
traverse faster during deadheading to optimize the operation time. Having two modes
of travel allows cost functions that depend on the travel mode, enabling algorithms to
optimize the routes further. Figure 1 shows an example of the CAOP for maximizing
coverage of linear infrastructure with a capacity-constrained robot. The lengths of the
line segments model the rewards, while the sensor field-of-view models the correlations
between line segments.

404 S. Agarwal and S. Akella

Our inspiration to study this problem comes from the correlated orienteering prob-
lem (COP) proposed by Yu et al. [16]. However, the COP and related orienteering prob-
lems assume that the rewards are only available at the point features and, thus, are lim-
ited in their ability to model networks with linear features. When the features of interest
are one-dimensional linear features, they can be modeled as arcs or edges in a graph
rather than vertices. Such problems belong to the broader class of arc routing prob-
lems [7]. One such problem is the team orienteering arc routing problem (TOARP) [3],
where the task is to maximize the reward by visiting arcs and edges in a graph using a
team of vehicles. Both point and linear environment features can be conveniently mod-
eled in the CAOP formulation, and the CAOP considers the correlation between these
features. Thus, the CAOP generalizes both the COP and the TOARP. As the COP and
the TOARP are NP-hard, the CAOP is also NP-hard.

This paper introduces the CAOP and formally states it as a mixed integer quadratic
program (MIQP) that gives optimal solutions. The MIQP formulation models rewards
on the edges of a graph while incorporating spatial correlations between the edges. As
the problem is NP-hard, we develop a greedy constructive algorithm that generates solu-
tions efficiently. We illustrate the problem with two different applications: informative
path planning for methane gas leak detection and coverage of road networks.

2 Related Work

The correlated arc orienteering problem (CAOP) is related to orienteering problems, arc
routing problems, and informative path planning (IPP).

Orienteering and Related Problems: In the orienteering problem (OP) introduced by
Golden et al. [9], we are given a set of vertices with rewards (or scores) at each vertex
and a time budget. The task is to find a path from a start point to an endpoint through
a subset of vertices to maximize the total reward collected while respecting the budget.
The OP is usually modeled as a graph, where the edges are the segments that can be
used to form a path, and the edge weights model the time required to traverse the path.
A variant of the problem is to find a tour starting and ending at a given vertex. The prob-
lem has elements of the knapsack problem and the traveling salesperson problem (TSP).
Chekuri et al. [6] presented a (2 + ε)-approximation algorithm for the OP. In the team
orienteering problem (TOP), the task is to find K paths (or tours), each limited by the
time budget. There are three common themes to the solution approaches. Exact algo-
rithms are often based on mixed integer linear programs (MILP) and use methods for
branch-and-bound with cutting planes. Metaheuristic approaches use techniques such
as simulated annealing and memetic algorithms. Since the problem is NP-hard, various
heuristic and approximation algorithms have also been proposed. These approaches and
several other variants of the OP are covered in the survey by Gunawan et al. [10].

The OP and its variants (e.g., the set orienteering problem [14]) assume that the
rewards at the vertices are mutually independent. Yu et al. [16] considered applications
where the rewards may be spatially correlated, and introduced the correlated orienteer-
ing problem (COP). In addition to the rewards at the vertices, a correlation function

The Correlated Arc Orienteering Problem 405

is given as input, which encapsulates the idea that visiting a vertex can provide infor-
mation associated with a correlated vertex. More concretely, a quadratic relationship is
established through the correlation function, and the problem is termed the quadratic
COP; we refer to this problem as the COP. The advantages of using COP over OP were
established, and an application to persistent monitoring was described. A mixed integer
quadratic program (MIQP) was developed to obtain optimal solutions. The OP and the
COP are vertex-based problems as the rewards are only associated with the vertices.
However, in some robotics applications, the rewards may be associated with linear fea-
tures, modeled as edges in the graph. The CAOP can handle rewards on both vertices
and edges, thus generalizing the OP and the COP. We provide an MIQP formulation
and a greedy constructive algorithm, which also apply to the OP and the COP.

Arc Routing Problems: Routing on arcs and edges in a graph belongs to the class of
arc routing problems (ARPs) [7], widely studied in the operations research community.
The ARPs are used for planning vehicle routes for snow plowing, urban mail deliv-
ery, and salt spreading, where the linear features of the environment, such as road seg-
ments, are modeled as edges in a graph. Such tasks can be automated using autonomous
ground robots. The rural postman problem (RPP) for a single robot and the capacitated
arc routing problem (CARP) for multiple robots are two of the most widely used for-
mulations for such applications. Line coverage—coverage of linear infrastructure such
as road networks and powerlines—was addressed by Agarwal and Akella [1]. In these
problems, which are generally NP-hard, a set of required edges that must be traversed
is given. The task is to find routes that minimize the total cost of travel while respecting
the capacity constraint. The arc orienteering problem (AOP) [8] differs from these cov-
erage problems; the objective is to maximize the reward collected along the traversed
edges of the route, similar to the orienteering problem but on arcs and edges instead
of vertices. The team orienteering arc routing problem (TOARP) [3] is the multi-robot
variant of the AOP. Branch-and-bound with cutting planes and metaheuristic algorithms
have been widely used for ARPs [13]. However, fast and efficient heuristic algorithms
for robotics applications have not achieved a maturity comparable to vertex-based prob-
lems. The CAOP generalizes the TOARP as it additionally handles correlations between
the linear features.

Informative Path Planning (IPP) problems consider path planning for vehicles and
robots to characterize and monitor the environment. The information gathered using
sensors is associated with the phenomenon to be observed and analyzed. The task in
IPP is to find robot paths that maximize an information metric while respecting capacity
constraints. Information gain, mutual information, and expected entropy reduction are
commonly used information metrics. Hollinger and Sukhatme [11] proposed sampling-
based techniques, combined with branch-and-bound, to generate a trajectory for a sin-
gle robot for efficient information gathering with motion constraints. Singh et al. [15]
proposed a recursive greedy algorithm for IPP with a single robot and extended it for
multiple robots. The algorithm is exponential in the recursive depth and, therefore, can
be computationally expensive if the instance size is large. The IPP is closely related to
orienteering problems. Bottarelli et al. [5] use an algorithm for orienteering as a sub-

406 S. Agarwal and S. Akella

routine for IPP. Like Binney et al. [4], they discuss the advantage of continuous data
sampling along edges. These motivate formulating IPP as an arc routing-based CAOP.
Moreover, CAOP captures correlation, which is relevant for environmental monitoring
when a phenomenon is spatially correlated.

3 CAOP: Problem Statement

This section formally defines the correlated arc orienteering problem (CAOP). The
environment comprises linear features (line segments or curves) that contain informa-
tion that needs to be collected by a team of K robots. We model the environment as an
undirected and connected graph G = (V,E), where E is the set of edges representing
linear features and V is the set of vertices consisting of edge endpoints, edge intersec-
tions, and depot locations. If we also have point features Vf ⊆ V in the environment,
we add an artificial edge (v, v) for each point feature v ∈ Vf . The depots Vd ⊆ V are a
subset of vertices at which the robots start and end their routes.

The task is to compute a set of routes Π = {π1, . . . , πK} for K robots. A route
for a robot k must start and end at a specified depot vk

d ∈ Vd. There are two modes
of travel for a robot—servicing and deadheading. A robot is said to be servicing when
task-specific actions such as taking images are performed along an edge. We associate
two binary variables, skij and skji, with servicing an edge (i, j) ∈ E by robot k: if a robot
k services edge e in the direction i → j, then skij is 1 and 0 otherwise; similarly, for the
direction j → i. We define ske = (skij + skji) to denote whether an edge e = (i, j) ∈ E

is serviced by the robot k, and se =
∑K

k=1 ske for servicing by any of the robots. An
edge with a positive reward can be serviced at most once. If a robot traverses an edge
without servicing it, the robot is said to be deadheading. We associate two non-negative
integer variables, dkij and dk

ji, with deadheading an edge e = (i, j) ∈ E by robot k.
We define dke similar to the service variables to denote total deadheadings of an edge by
robot k. An edge may be deadheaded as many times as required.

Each robot is constrained by a resource such as travel time, total travel distance, or
battery life. Such a constraint is represented by a budget or capacity Qk for a robot k.
The consumption of resources is modeled by cost functions cs(e) for servicing and
cd(e) for deadheading an edge e ∈ E. A robot may need to travel slower while per-
forming task-specific actions such as taking images, resulting in a longer travel time
for servicing than deadheading. Thus, the two cost functions can differ. The total cost
incurred by a robot for a route πk must be less than its capacity Qk:

c(πk) =
∑

e∈E

(
cs(e) ske + cd(e) dke

)
≤ Qk. (1)

We follow the notation for correlated information in [16] and extend it to the CAOP.
A reward function r : E �→ R≥0 maps an edge to a non-negative measure of the infor-
mation associated with the edge. The spatial correlation between the edges is modeled
by weight function w : E×E �→ R≥0. A weight of w(e′, e) is the fraction of the reward
associated with an edge e that can be obtained by traversing an edge e′, ∀e′ ∈ E. It rep-
resents the effectiveness of obtaining information associated with the edge e by travers-
ing the edge e′. The weight of an edge to itself is 0, i.e., w(e, e) = 0, ∀e ∈ E. For each

The Correlated Arc Orienteering Problem 407

edge e ∈ E with r(e) > 0, the set N(e) is the set of edges with non-zero correlation
with the edge e, i.e., N(e) = {e′ ∈ E | w(e′, e) > 0}. In other words, the set N(e) is
the set of edges that can observe edge e through correlation. Note that w(e′, e) need not
be the same as w(e, e′), and e′ ∈ N(e) does not necessarily imply e ∈ N(e′). For now,
assume that the sum of the associated weights for an edge to be less than or equal to 1,
i.e., for each e ∈ E with r(e) > 0,

∑
e′∈N(e) w(e′, e) ≤ 1. We will relax this constraint

in the MIQP formulation and the constructive heuristic algorithm in Sect. 4. The total
reward collected over all the routes in Π is given by:

R(Π) =
∑

e∈E

R(Π, e) =
∑

e∈E

r(e)

⎛

⎝se +
∑

e′∈N(e)

w(e′, e) se′ (se′ − se)

⎞

⎠ . (2)

The quadratic term se′ (se′ − se) is 1 if and only if se′ = 1 and se = 0, for a pair
of edges e, e′. If the edge e is serviced, i.e., se = 1, the collected reward, associated
with edge e, is r(e), and the second term vanishes—there is no correlated contribution
from neighboring edges. If the edge e is not serviced, the collected reward comes from
servicing neighboring edges and is given by the second term. The total reward R(Π)
collected over a set of routes Π for K robots is to be maximized.

Definition 1. Correlated arc orienteering problem (CAOP):
Given a graphG = (V,E), a reward function r, and a weight functionw, the correlated
arc orienteering problem with K robots is to find a set of routes Π for the robots that
maximizes the total reward collected R(Π), while satisfying the capacity constraint for
each robot.

Relationship of COP and CAOP: In the above discussion, we modeled the linear
features as edges under the presumption that the information is distributed only over
the linear features. In applications such as inspection of oil and gas pipelines, the oil
wells may also be features of interest, i.e., point features. Such point features can be
conveniently incorporated into our formulation by creating an artificial edge for each
point feature with a cost equivalent to that of inspecting the point feature.

The expression for total reward collected for a set of routes (2) is similar to the
expression for COP in [16]. One may then ask: Can we model the linear features as
vertices in the graph and solve the COP? While modeling total reward can be conve-
niently done in the COP for both types of features, transforming the routing constraints
is challenging and leads to a substantial increase in the size of the instance [8]. Fur-
thermore, the graph structure is lost in the transformation, and the ability to incorporate
practical aspects of a robotics application, e.g., asymmetric costs and kinematic con-
straints, becomes severely restricted. Moreover, the original COP assumes that the sum
of the associated weights for an edge is no more than 1. The MIQP formulation and the
heuristic algorithm, as presented in Sect. 4, place no such restriction on the weights.

4 Exact and Heuristic Approaches for CAOP

In this section, we present two approaches for solving the correlated orienteering prob-
lem (CAOP) with multiple robots. We first develop a mixed integer quadratic program

408 S. Agarwal and S. Akella

(MIQP) to obtain optimal solutions. Thereafter, we develop a greedy constructive algo-
rithm to solve the problem efficiently.

4.1 Mixed Integer Quadratic Program for CAOP

A mixed integer quadratic program (MIQP) is a formulation for optimization problems
with integer and continuous variables, a quadratic objective function, and a set of linear
constraints. An MIQP provides a concise description of the CAOP, and solving the
MIQP gives an optimal solution. There are multiple solvers, e.g., Gurobi and CPLEX,
that can solve MIQPs efficiently for small to moderate instance sizes.

Variables: We have the following variables for the MIQP.

– Binary service variables skij , s
k
ji ∈ {0, 1} for each edge (i, j) and each robot k.

– Integer deadheading variables dkij , d
k
ji ∈ N ∪ {0} for each edge (i, j) and each

robot k.
– Integer flow variables zkij , z

k
ji ∈ N ∪ {0} for each edge (i, j) and each robot k. The

flow variables are used in connectivity constraints to ensure that routes are connected
to their respective depots.

– Real variables ωe ∈ R≥0 for each edge e ∈ E.

Objective Function: The objective is to maximize the total reward collected over the
entire set of routes as given in the expression for R(Π) in (2). The number of non-linear
terms in the expression is O(m2), where m is the number of edges. The non-linear
terms make it challenging to solve an MIQP, and therefore, we reduce the number of
non-linear terms to O(m) by adding m variables and constraints. These ωe variables
can be interpreted as the cumulative weights corresponding to the rewards obtained by
servicing the neighboring edges. The total reward is now expressed as:

R(Π) =
∑

e∈E

[
r(e)

(
se + ωe (1 − se)

)]

subject to ωe ≤
∑

e′∈N(e)

w(e′, e) se′ ≤ 1, ωe ∈ R≥0, ∀e ∈ E.
(3)

This formulation also allows us to remove the assumption that the sum of the weights is
less than 1, i.e., we no longer require

∑
e′∈N(e) w(e′, e) ≤ 1. Note that ωe will always

take the value given by the summation if the sum is less than 1, as the expression is part
of a maximization objective function.

We modify this expression by scaling the reward by a factor λ and subtracting the
total cost of the routes. Incorporating the total cost allows the algorithm to break ties
between routes with the same reward. The scaling factor λ is large enough to add an
edge if it provides a positive reward and the corresponding route is within capacity
limits. This criterion is satisfied by the ratio of the sum of the capacities and the mini-
mum positive reward. The scaling factor also ensures that the optimal set of routes have

The Correlated Arc Orienteering Problem 409

the maximum total reward. From equations (1) and (3), the objective function can be
written as:

Maximize: λ R(Π) −
K∑

k=1

c(πk), where λ =
max{Qk, ∀k}

min{r(e) | e ∈ E, r(e) > 0} .

Routing Constraints: The final piece of the MIQP formulation is the set of routing
constraints that ensures connectivity of a route for each robot to the corresponding depot
and the elimination of sub-tours. The routing constraints can be expressed as a set of
generalized flow constraints and symmetry constraints [1]. For ease of notation, we
define the following sets:

A =
⋃

(i,j)∈E

{(i, j), (j, i)}, H(A, v) = {(i, v) ∈ A}, and T (A, v) = {(v, j) ∈ A}.

Here, A is the set of all arcs, and H(A, v) is the set of arcs in A that have v ∈ V as the
head. Similarly, T (A, v) is the set of arcs that have v as the tail.

We have the following set of routing constraints for each robot k ∈ {1, . . . , K}:

flow from the depot:
∑

(i,j)∈T (A,vk
d)

zkij =
∑

(i,j)∈A
skij (4)

flow conservation:
∑

(i,j)∈H(A,v)

zkij −
∑

(i,j)∈T (A,v)

zkij =
∑

(i,j)∈H(A,v)

skij , ∀v ∈ V \ {vk
d} (5)

limits on the flow: zkij ≤
∑

(i,j)∈A
skij , ∀(i, j) ∈ A (6)

zkij ≤ |E|(skij + dkij), ∀(i, j) ∈ A (7)

vertex symmetry:
∑

(i,j)∈H(A,v)

(skij + dkij) =
∑

(i,j)∈T (A,v)

(skij + dkij), ∀v ∈ V (8)

The constraints (4)–(7) are generalized flow constraints that together ensure the con-
nectivity of the route to the depot and prohibit any sub-tours. The integer variables zkij
are flow variables for each edge direction. Constraint (4) defines the amount of flow
released from the depot vertex vk

d , which acts as a flow source. For any vertex v (other
than the depot vertex), a flow equal to the number of servicing arcs, with v as the head,
is absorbed by the vertex. This is expressed in constraints (5). The amount of flow
through an arc is limited by constraints (6) and (7). Finally, the vertex symmetry con-
straints (8) ensure that the number of arcs entering a vertex is the same as the number
of arcs leaving it.

410 S. Agarwal and S. Akella

MIQP Formulation for CAOP: We can now pose the CAOP as an MIQP:

Maximize: λ
∑

e∈E

[
r(e)

(
se + ωe (1 − se)

)]
−

K∑

k=1

c(πk) (9)

subject to:

se =
K∑

k=1

ske =
K∑

k=1

(skij + skji) ≤ 1, ∀e = (i, j) ∈ E (10)

ωe ≤
∑

e′∈N(e)

w(e′, e) se′ , ∀e ∈ E (11)

c(πk) =
∑

e∈E

(
cs(e) ske + cd(e) dke

)
≤ Qk, ∀k ∈ {1, . . . , K} (12)

routing constraints (4)–(8) for each robot k ∈ {1, . . . , K} (13)

0 ≤ ωe ≤ 1, ωe ∈ R, ∀e ∈ E (14)

skij , s
k
ji ∈ {0, 1}, ∀(i, j) ∈ E (15)

dk
ij , d

k
ji, z

k
ij , z

k
ji ∈ N ∪ {0}, ∀(i, j) ∈ E (16)

Anytime property of the MIQP: Similar to COP, the trivial solution with empty
routes is a feasible solution to the MIQP. Commercial solvers for MIQP maintain the
best feasible solution and a lower bound to improve the quality of the solution. Such a
solver has the anytime property—a feasible solution can be obtained by interrupting the
execution at any time. However, a substantial computational effort is spent in obtain-
ing a good lower bound by solving linear relaxations and applying cutting planes that
improve the quality of the polyhedron of the relaxation. It can take a long time before a
meaningful feasible solution is obtained, especially for large graphs with several robots.
Thus, the anytime property of the MIQP is often not valuable for robotics applications
that require rapid solutions. This motivates us to develop a fast heuristic algorithm.
We also use the solutions obtained from the heuristic algorithm to provide a good ini-
tial solution to the MIQP solver. Nevertheless, MIQP serves the essential purpose of
defining the problem concretely, obtaining optimal solutions for small instances, and
benchmarking heuristic algorithms by comparing the quality of the solutions.

4.2 A Greedy Constructive Algorithm

The correlated arc orienteering problem (CAOP) is NP-hard in general, and solving
the MIQP to obtain optimal solutions can take a long time. In this section, we develop
a greedy constructive algorithm, given in Algorithm 1. The algorithm has three main
steps performed iteratively: maintain a set of routes for the robots, greedily select an
edge to be added to a route, and efficiently construct a new route by adding the selected
edge. The input to the algorithm is a graph G = (V,E), the set of depots Vd ⊆ V , the
number of robots K, the reward function r, and the weight function w. The output of
the algorithm is a set of routes Π = {π1, . . . , πK}.

The Correlated Arc Orienteering Problem 411

Initialization: The routes are represented as a sequence of service arcs and are empty
initially. A set Pk of potential edges that can be added to a route k is maintained. For
each edge e ∈ E, two sets of edges—neighbors N(e) and co-neighbors N(e)—are
maintained (lines 3–4). An edge e′ is a neighbor of an edge e if servicing e′ can provide
some reward associated with e, i.e., e′ ∈ N(e) if w(e′, e) > 0, as discussed in Sect. 3.
An edge ē is a co-neighbor of e if servicing e provides some reward associated with ē.
We define utility U as the net reward that can be obtained by servicing an edge due to
its own reward and correlated rewards from its co-neighbors (line 5). Next, we iterate
over the edges and compute the route for servicing an edge, i.e., the cost of going from
the depot vertex vkd to the tail te of the edge, servicing the edge, and coming back to
the depot from the head he of the edge (line 8). If the cost of the route is less than the
capacity of the robot k, we add the edge to the list of potential edges Pk (line 9).

Greedy Construction: To dynamically compute the scaling factor λ, we maintain
the minimum utility umin and the maximum incremental cost cmax of adding edges
to the routes (lines 12–13). The core part of the algorithm is to iterate over the poten-
tial edges Pk for each route k and find the edge that gives the best value based on
a greedy criterion (lines 15–21). The criterion for selecting the optimal edge to add
to a route is the difference between the scaled utility and the cost of adding the edge
(line 20). The scaling factor ensures that if an edge has a positive utility, the value u is
non-negative, and the edge can be added to the route. We dynamically update the value
of λ instead of setting it to a large value to ensure the scaled utility does not dominate
the cost of adding an edge. If no edge with a non-negative value is found, the algorithm
terminates (line 22); otherwise, the edge with the largest value based on the greedy
criterion is selected. The service variable se for the selected edge is set to 1, and the
corresponding route is updated (line 23). As we have serviced the selected edge, the
neighboring edges N(e) cannot get any reward associated with e through correlation.
Hence, the utility of the neighboring edges is reduced by the reward they could obtain if
the selected edge were not serviced (lines 24–25). Similarly, servicing the selected edge
gave us rewards through the correlation of co-neighbors. If it so happens that an edge
from the co-neighbors is selected in the future, the correlated reward would be received
twice. Therefore, the utility of the co-neighbors is appropriately reduced (lines 26–27).
Additionally, the neighbors of the co-neighbors may require an update depending on
the correlation function (line 28). Finally, the updated route needs to modify the set of
potential edges and compute new potential routes (lines 30–32). Any edge that cannot
be added to the route under the capacity constraint is removed from the list of potential
edges.

Complexity Analysis: Let m be the number of edges in the graph. The initialization
of the neighbors, co-neighbors, and utilities take O(m2) computation time (lines 2–5).
In lines 6–9, the computation of routes for a single edge takes constant time, and the
complexity of initializing potential edges is O(Km).

Using a linked-list for the potential edges Pk, neighbors N(e), and co-neighbors
N(e), the removal of an element can be done is constant time while iterating through
the list (line 18). In each iteration, selecting an edge with the optimal value based on

412 S. Agarwal and S. Akella

the greedy criterion can be done in O(Km) computation time (lines 15–21). Similarly,
updating neighbors and co-neighbors can be done in linear time O(m) (lines 24–27),
and in time O(m2) if line 28 is required. Finally, updating potential edges involves
calling COMPUTEROUTE at most m times in each iteration. The complexity of this
step thus depends on the complexity of the algorithm for computing routes. As we will
discuss in the next section, we develop an algorithm that can construct a new route by

Algorithm 1. A greedy constructive algorithm for CAOP
Data: Graph G = (V, E), depot Vd ⊆ V , K, reward r(·), weight w(· , ·)
Result: Routes Π = {π1, . . . , πK}

1 πk ← ∅, Pk ← ∅, k = {1, . . . , K};
2 for e ∈ E do
3 N(e) ← {e′ ∈ E | w(e′, e) > 0}; // Neighbors of e

4 N(e) ← {e′ ∈ E | w(e, e′) > 0}; // Co-neighbors of e
5 U(e) ← r(e) +

∑
e′∈N(e) w(e, e′) r(e′); // Utility of e

6 for e ∈ E do
7 for k = 1 to K do
8 c(ρk

e) ← c(vk
d , te) + c(e) + c(he, v

k
d); // Route with edge e

9 if c(ρk
e) ≤ Qk then Pk.PUSH(e); // Potential edges Pk

10 while TRUE do
11 u∗ ← −∞;
12 umin ← min {U(e) | e ∈ E, se �= 1}; // Min utility

13 cmax ← max{c(ρk
e) − c(πk) | e ∈ Pk, se �= 1, ∀k}; // Max cost

14 λ ← cmax/umin; // Scaling factor
15 for k = 1 to K do
16 for e ∈ Pk do // Iterate over potential edges
17 if se = 1 then
18 Remove e from Pk;

19 else
20 u ← λ U(e) − (

c(ρk
e) − c(πk)

)
; // Greedy criterion

21 if u > u∗ then u∗ ← u; k∗ ← k; e∗ ← e;

22 if u∗ < 0 then break;

23 se∗ ← 1; πk∗ ← ρk∗
e∗ ; // Update route πk∗

24 for e′ ∈ N(e∗) do
25 U(e′) ← max{0, U(e′) − w(e′, e∗) r(e∗)}; // Update neighbors

26 for ē ∈ N(e∗) do
27 U(ē) ← max{0, U(ē) − w(e∗, ē) r(ē)}; // Update co-neighbors
28 Update neighbors of ē, if required;

29 Remove e∗ from the list of neighbors and co-neighbors for all edges;

30 for e ∈ Pk∗
do

31 ρk∗
e ← COMPUTEROUTE(G, πk∗

, vk∗
d , e); // Compute new routes

32 if c(ρk∗
e) > Qk∗

then Remove e from Pk∗
;

The Correlated Arc Orienteering Problem 413

adding an edge to an existing route in O(l) computation time, where l is the number of
edges (or arcs) in the existing route. Using such an algorithm for computing routes, the
complexity of updating potential edges is O(m2). If the capacity is large enough, all m
edges could be added to the set of routes. Thus, the main while loop (line 10) may be
executed m times, and the overall complexity of the algorithm is O(m3).

4.3 COMPUTEROUTE: Constructive Edge-Insertion Routing Heuristic

An efficient routing algorithm is essential for generating routes for the CAOP greedy
constructive algorithm. Given an existing route and an edge, the constructive edge-
insertion heuristic inserts the edge in the route in time that is linear in the size of the
route. We represent a route π by a sequence of l service edges, and te and he represent
the tail and the head for an edge e. We observe that there are four ways of inserting an
edge at either end of an existing route, as shown in Fig. 2. When the existing route has
only one service edge and a new edge is added, there are four ways of forming a route
and the algorithm will give the optimal solution. When the existing route has two or
more service edges and a new edge is added, there are eight possible ways of forming a
route with the new edge inserted in the interior of the route. Three of these eight ways
are illustrated in Fig. 3. In essence, the algorithm iterates over the edges of the route
and splits the route into two halves, around the depot. These two halves and the new
edge form three pieces of the new route to be formed. All the eight possible ways to
combine the three pieces are checked. The position and the combination that gives the
least deadheading cost is selected. Note that the cost of servicing the edges will be the
same irrespective of which combination is selected. Computing the eight combinations
is done in constant time using the cost function. As there are l − 1 positions where an

vd

tπ[1] hπ[l]

he te

π

e

Fig. 2. Four different ways of adding an edge e at either end of an existing route π.

vd

tπ[1]

hπ[i]

te he

tπ[i+1]

hπ[m]

e

Fig. 3. Three of the eight different ways of adding an edge e in the interior of an existing route π.

414 S. Agarwal and S. Akella

edge can be inserted, the computational complexity is O(l), where l is the number of
service edges in the route.

5 Application Scenarios for CAOP

We demonstrate the correlated arc orienteering problem (CAOP) on two applications.

5.1 Gas Leak Estimation

We solve the CAOP for the problem of planning routes for estimating gas leak
rates [2,12]. Consider an oil field with multiple oil wells that may leak methane gas
with different leak rates. A ground robot is to efficiently traverse a road network in the
oil field and gather methane gas concentration data to estimate gas leak rates; this can be
viewed as an informative path planning problem. Albertson et al. [2] used a gas disper-
sion model to compute the posterior distribution of the leak rates given the methane gas
concentration data. They used the expected entropy reduction (EER) information met-
ric to find maximally informative paths. For our simulation, each oil well is assigned a
random leak rate, assumed to be constant for the duration of the experiment. Following
Kalvik and Akella [12], we assume Gaussian priors for the leak rates, which they show
lead to an analytical EER and posterior for the leak rates.

For a single oil well, the EER of an edge is a measure of the mutual information
provided by gas concentration measurements along the edge about the leak rate of the
well. For a set of wells, we use the sum of their EERs as the reward for the edge. We
wish to find routes that maximize their total EER.

 0

 1

 2

 3

 0 1 2 3 4

Y
-a

xi
s

(x
 1

03 m
)

X-axis (x 103 m)

(a) AOP: optimal MILP route

 0

 1

 2

 3

 0 1 2 3 4

Y
-a

xi
s

(x
 1

03 m
)

X-axis (x 103 m)

(b) CAOP: optimal MIQP route

 0

 1

 2

 3

 0 1 2 3 4

Y
-a

xi
s

(x
 1

03 m
)

X-axis (x 103 m)

(c) CAOP: greedy route

Fig. 4. Routes for methane gas leak detection: The selected routes are drawn bold red, and the
underlying road network is shown in gray. The blue dots show the locations of the oil wells,
and the black square is the depot location. The CAOP routes select edges that are less correlated,
resulting in a larger total reward. The optimal MIQP and the greedy routes are comparable. (Color
figure online)

We construct the correlation function w based on the expected squared distances
between edges. Specifically, the square root of the expected squared distance between
points on a pair of edges is computed, denoted by d. To ensure the correlation matrix

The Correlated Arc Orienteering Problem 415

20 40 60 80 100

0

20

40

Number of edges

R
ew

ar
d

di
ff

er
en

ce
%

Fig. 5. Comparison of the solutions generated using the greedy heuristic algorithm with the solu-
tions obtained from the MIQP formulation for an application of estimation of gas leaks from oil
wells. The dataset consists of 100 road networks from the Permian Basin, Texas, USA.

values are clamped to a maximum of 1, the distance values for pairs of edges that are
very close to each other, i.e., with d < 1, are replaced by 1. The inverse of the distance d
is then computed for each pair of edges. The largest of these inverses is then used to
normalize the entire correlation matrix. This correlation matrix captures the idea that
edges close to each other are highly correlated as they are likely to contain similar
information, and the correlation decreases as the distance between two edges increases.

We compared the solutions generated using the greedy heuristic algorithm with the
MIQP optimal solutions for a dataset [12] of 100 road networks from the Permian Basin,
Texas, USA. The road networks are composed of up to 100 segments each. Figure 4
shows routes for a road network comprising 33 segments. The heuristic solutions were
within 0% and 43% of optimal, and on average were within 9% of the optimal solutions
(see Fig. 5). The heuristic algorithm was executed on a standard laptop with an Intel
i7-1195G7 processor, and it computed solutions within 8 ms for each instance.

5.2 Coverage of Road Networks

We now illustrate the use of the CAOP for coverage of road networks with a team of
uncrewed aerial vehicles (UAVs). The task is to maximize the coverage of road seg-
ments while respecting the battery-constrained flight time of the UAVs. Since UAVs
flying at high altitudes have a large sensor field-of-view, portions of nearby road seg-
ments can be observed while traversing a road segment. The fraction of the road seg-
ment observed is used as the correlation function, while the length of the road segment
models the associated reward. The UAVs are modeled to fly at the speed of 3 m/s when
servicing an edge. As UAVs can fly from one vertex to another, an edge that can only be
used for direct deadheading is added for each pair of vertices. Since the sensors are not
used during deadheading, UAVs can fly at higher speeds without concerns of motion
blur and sampling rate associated with taking images. The deadheading speed is set
to 5 m/s, and the flight time for each UAV is set to 600 s. Figure 6 illustrates exam-
ple solutions with three UAVs for two urban road networks. The Delhi road network
comprises 467 vertices, 491 road segments, and 108, 320 direct edges for deadheading.

416 S. Agarwal and S. Akella

These numbers for the Paris road network are 452 vertices, 494 edges, and 101, 432
directed edges for deadheading. The depot locations were computed by clustering the
edges using k-medoids clustering. The routes were computed by the greedy construc-
tive algorithm, along with clustering for depots, in less than 1.3 s for each road network.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Y
-a

xi
s

(x
 1

03 m
)

X-axis (x 103 m)

(a) Delhi, India

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
Y

-a
xi

s
(x

 1
03 m

)

X-axis (x 103 m)

(b) Paris, France

Fig. 6. Routes for three UAVs, for coverage of urban road networks. The computed route for
each robot is bold and colored, and the underlying road network is shown in light gray. The
deadheading traversal is shown with dashed lines. The CAOP exploits correlations, defined by a
field-of-view of 80 m, to generate routes that cover edges further away from each other. (Color
figure online)

6 Conclusion

This paper introduced the correlated arc orienteering problem (CAOP)—the task of
finding routes for multiple resource-constrained robots such that the total reward gath-
ered while traversing environment features is maximized by exploiting correlations
between features. The problem can handle linear and point environment features, mul-
tiple robots with individual depots and capacities, and two distinct modes of travel—
servicing and deadheading. The CAOP is suitable for applications in coverage of envi-
ronments, where rewards are associated with the value of the gathered feature data,
and the sensor field-of-view determines the correlations. Similarly, in informative path
planning, rewards are information metrics such as mutual information, and correlations
arise from the observed underlying phenomenon. The CAOP generalizes the correlated
orienteering problem (COP) and the team orienteering arc routing problem (TOARP),
as the COP considers rewards only on the vertices and the TOARP does not consider
the correlations of features. Furthermore, we relax the constraint in COP that the sum
of the weights of neighboring edges is no greater than one. We developed an MIQP
formulation for the CAOP to obtain optimal solutions. Since the problem is NP-hard,
we designed a greedy constructive algorithm. The greedy and constructive nature of the
algorithm makes the algorithm fast. The algorithm can also be used to obtain a good

The Correlated Arc Orienteering Problem 417

initial solution for the MIQP. We demonstrated the MIQP and the algorithm on two
applications: methane gas leak detection and environment coverage.

The algorithm is versatile, enabling extensions to several problem variations. The
routing algorithm takes a depot location as input; hence, each potential depot location
can be checked to find the depot assignment with the lowest cost in each algorithm
iteration. The routing algorithm can also incorporate nonholonomic constraints without
affecting the computational complexity. In the algorithm, we recomputed the utility
for only the neighbors and the co-neighbors of the added edge. The algorithm can be
modified to recompute the utility for all the edges by modifying the correlation matrix to
enable higher-order correlations. Since the CAOP generalizes the COP and the TOARP,
with minor modifications, the algorithm can be applied to their corresponding variants.

Acknowledgments. We thank Kalvik Jakkala for providing methane leak data and for helpful
discussions. This work was supported in part by NSF Award IIP-1919233.

References

1. Agarwal, S., Akella, S.: Coverage with Multiple Robots. In: IEEE International Conference
on Robotics and Automation, pp. 3248–3254. Paris, France (2020). https://doi.org/10.1109/
ICRA40945.2020.9197292Line

2. Albertson, J.D., Harvey, T., Foderaro, G., Zhu, P., Zhou, X., Ferrari, S., Amin, M.S., Modrak,
M., Brantley, H., Thoma, E.D.: Mobile Sensing Approach for Regional Surveillance of Fugi-
tive Methane Emissions in Oil and Gas Production. Environ. Sci. Technol. 50(5), 2487–2497
(2016). https://doi.org/10.1021/acs.est.5b05059A

3. Archetti, C., Speranza, M.G., Corberán, A., Sanchis, J.M., Plana, I.: The team orienteering
arc routing problem. Transp. Sci. 48(3), 442–457 (2014). https://doi.org/10.1287/trsc.2013.
0484

4. Binney, J., Krause, A., Sukhatme, G.S.: Optimizing waypoints for monitoring spatiotem-
poral phenomena. Int. J. Robot. Res. 32(8), 873–888 (2013). https://doi.org/10.1177/
0278364913488427

5. Bottarelli, L., Bicego, M., Blum, J., Farinelli, A.: Orienteering-based informative path plan-
ning for environmental monitoring. Eng. Appl. Artif. Intell. 77, 46–58 (2019). https://doi.
org/10.1016/j.engappai.2018.09.015

6. Chekuri, C., Korula, N., Pál, M.: Improved algorithms for orienteering and related prob-
lems. ACM Trans. Algorithms (TALG) 8(3), 1–27 (2012). https://doi.org/10.1145/2229163.
2229167

7. Corberán, A., Laporte, G. (eds.): Arc Routing: Problems, Methods, and Applications. Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2014). https://doi.org/10.
1016/j.engappai.2018.09.015

8. Gavalas, D., Konstantopoulos, C., Mastakas, K., Pantziou, G., Vathis, N.: Approximation
algorithms for the arc orienteering problem. Inf. Process. Lett. 115(2), 313–315 (2015).
https://doi.org/10.1016/j.ipl.2014.10.003

9. Golden, B.L., Levy, L., Vohra, R.: The orienteering problem. Naval Res. Logist.
(NRL) 34(3), 307–318 (1987). https://doi.org/10.1002/1520-6750(198706)34:3〈307::AID-
NAV3220340302〉3.0.CO;2-D

10. Gunawan, A., Lau, H.C., Vansteenwegen, P.: Orienteering problem: a survey of recent vari-
ants, solution approaches and applications. Eur. J. Oper. Res. 255(2), 315–332 (2016). https://
doi.org/10.1016/j.ejor.2016.04.059

https://doi.org/10.1109/ICRA40945.2020.9197292Line
https://doi.org/10.1109/ICRA40945.2020.9197292Line
https://doi.org/10.1021/acs.est.5b05059A
https://doi.org/10.1287/trsc.2013.0484
https://doi.org/10.1287/trsc.2013.0484
https://doi.org/10.1177/0278364913488427
https://doi.org/10.1177/0278364913488427
https://doi.org/10.1016/j.engappai.2018.09.015
https://doi.org/10.1016/j.engappai.2018.09.015
https://doi.org/10.1145/2229163.2229167
https://doi.org/10.1145/2229163.2229167
https://doi.org/10.1016/j.engappai.2018.09.015
https://doi.org/10.1016/j.engappai.2018.09.015
https://doi.org/10.1016/j.ipl.2014.10.003
https://doi.org/10.1002/1520-6750(198706)34:3<307::AID-NAV3220340302>3.0.CO;2-D
https://doi.org/10.1002/1520-6750(198706)34:3<307::AID-NAV3220340302>3.0.CO;2-D
https://doi.org/10.1016/j.ejor.2016.04.059
https://doi.org/10.1016/j.ejor.2016.04.059

418 S. Agarwal and S. Akella

11. Hollinger, G.A., Sukhatme, G.S.: Information gathering algorithms. Int. J. Robot. Res. 33(9),
1271–1287 (2014)

12. Jakkala, K., Akella, S.: Probabilistic gas leak rate estimation using submodular function
maximization with routing constraints. IEEE Robot. Autom. Lett. 7(2), 5230–5237 (2022).
https://doi.org/10.1109/LRA.2022.3149043

13. Mourão, M.C., Pinto, L.S.: An updated annotated bibliography on arc routing problems.
Networks 70(3), 144–194 (2017). https://doi.org/10.1002/net.21762

14. Pěnička, R., Faigl, J., Saska, M.: Variable neighborhood search for the set orienteering prob-
lem and its application to other orienteering problem variants. Eur. J. Oper. Res. 276(3),
816–825 (2019). https://doi.org/10.1016/j.ejor.2019.01.047

15. Singh, A., Krause, A., Guestrin, C., Kaiser, W.J.: Efficient informative sensing using multiple
robots. J. Artif. Int. Res. 34(1), 707–755 (2009). https://doi.org/10.5555/1622716.1622735

16. Yu, J., Schwager, M., Rus, D.: Correlated orienteering problem and its application to persis-
tent monitoring tasks. IEEE Trans. Robot. 32(5), 1106–1118 (2016). https://doi.org/10.1109/
TRO.2016.2593450

https://doi.org/10.1109/LRA.2022.3149043
https://doi.org/10.1002/net.21762
https://doi.org/10.1016/j.ejor.2019.01.047
https://doi.org/10.5555/1622716.1622735
https://doi.org/10.1109/TRO.2016.2593450
https://doi.org/10.1109/TRO.2016.2593450

	The Correlated Arc Orienteering Problem
	1 Introduction
	2 Related Work
	3 CAOP: Problem Statement
	4 Exact and Heuristic Approaches for CAOP
	4.1 Mixed Integer Quadratic Program for CAOP
	4.2 A Greedy Constructive Algorithm
	4.3 ComputeRoute: Constructive Edge-Insertion Routing Heuristic

	5 Application Scenarios for CAOP
	5.1 Gas Leak Estimation
	5.2 Coverage of Road Networks

	6 Conclusion
	References

