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Abstract
In a recent paper, the author examined a correlation affinity measure for select-
ing the coarse degrees of freedom (CDOFs) or coarse nodes (C nodes) in systems
of elliptic partial differential equations (PDEs). This measure was applied to a
set of relaxed vectors, which exposed the near-nullspace components of the PDE
operator. Selecting the CDOFs using this affinity measure and constructing the
interpolation operators using a least-squares procedure, an algebraic multigrid
(AMG)methodwas developed. However, there are several noted issues with this
AMG solver. First, to capture strong anisotropies, a large number of test vectors
may be needed; and second, the solver’s performance can be sensitive to the ini-
tial set of random test vectors. Both issues reflect the sensitive statistical nature
of the measure. In this article, we derive several other statistical measures that
ameliorate these issues and lead to better AMG performance. These measures
are related to aMarkov process, which the PDE itselfmaymodel. Specifically, the
measures are based on the diffusion distance/effective resistance for such pro-
cess, and hence, these measures incorporate physics into the CDOF selection.
Moreover, because the diffusion distance/effective resistance can be used to ana-
lyze graph networks, these measures also provide a very economical scheme for
analyzing large-scale networks. In this article, the derivations of these measures
are given, and numerical experiments for analyzing networks and for AMG per-
formance on weighted-graph Laplacians and systems of elliptic boundary-value
problems are presented.
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1 INTRODUCTION

We are interested in developing multigrid methods for weighted-graph Laplacians arising from sparse network mod-
els, and for systems of elliptic partial differential equations (PDEs). Moreover, as a by-product of this development, we
are additionally interested in applying components of the developed method to analyze large-scale graph networks. For
discrete weighted-graph Laplacians, the systems have the form

Lu = f, (1)

where

Lij =

{
−wij i ≠ j∑

j≠i wij i = j
(2)

for positive weights wij with wji = wij, and with the equations defined on a graph G = {V ,E,w} where V ,E,w are
respectively the vertices, edges, and weights of the graph. For systems of PDEs, the equations in continuum have the form

u =

⎡⎢⎢⎢⎢⎢⎣

11 12 · · · 1n

21 22 · · · 2n

⋮ ⋮ ⋮ ⋮

n1 · · · · · · nn

⎤⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎝

u1
u2
⋮

un

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

f1
f2
⋮

fn

⎞⎟⎟⎟⎟⎟⎠
, (3)

which are defined on a smooth spatial domain Ω ⊂ ℜd
, d = 1, 2, 3, and with each ij being a partial differential operator

of order at most 2 (higher-order operators can be reduced to lower-order operators by introducing auxiliary variables).
Together with (3) are boundary conditions that give us a system boundary-value problem (BVP), which we will assume
to be well-posed. We also assume that the component variables ui in the discretization of the system are defined nodally
in the sense that all the ui’s exist on each node of the grid (i.e., discretized on a non-staggered grid). Moreover, we will
consider only multigrid coarsenings that preserve this nodal structure on each level of the multilevel hierarchy. That is,
we will consider only nodal-based or point-based coarsenings.1-4

For both types of systems, a key procedure in developing a multigrid method is the selection of CDOFs/C nodes1
particularly a selection that leads to coarse grids that align with anisotropies in systems of PDEs. There are also other
procedures thatmust be carefully designed to handle issues that can prevent efficientmultigrid processing, some of which
will be examined in this article (e.g., construction of the interpolation operator).

For discrete weighted-graph Laplacian systems, one challenge is coarsening highly unstructured graphs with nodes
that dramatically vary in their degrees (i.e., the number of edges emanating from each node highly varies). This challenge
generally does not arise in discretizations of PDEs. For graph Laplacians, very successful multigrid methods that handle
this challenge have been developed in, for example, References 5–10 (see also References 11–13 for adaptive algebraic
multigrid (AMG) methods for Markov chains involving graph Laplacians). The developed schemes in this article provide
an alternative AMG approach that fuses multigrid with some of the trending techniques for analyzing weighted-graph
Laplacians in data analysis.14-16

For PDEs, especially systems of PDEs, issues that are more intrinsic to the PDE structure have to be addressed in
the multigrid construction. These issues include strong inter-variable couplings (i.e., ui is strongly coupled to uj for
i ≠ j) that not only can hamper the relaxation process but also can lead to inaccurate coarse-grid operators; and multidi-
mensional near-nullspaces that may require complex relaxation schemes and delicate construction of the interpolation
operators. Moreover, the inter-variable couplings may contribute to the coarse degree of freedom (CDOF) selection,
and inter-variable interpolation, where variables of different physical quantities interpolate to each other, may be
required.3

This article extends the results of Reference 3, which developed a nodal-based AMGmethod for systems of PDEs. This
method uses a relaxation approach for determining the coarse nodes,17-22 and a bootstrap AMG (BAMG) least-squares
procedure for constructing the interpolation operators.17 In this relaxation approach, the homogeneous system u = 0
is relaxed starting from a set of random vectors, the so-called test vectors. To select the coarse nodes, a correlation matrix
measure is applied to the relaxed test vectors to determine the affinity between each pair of nodes. This affinity measure
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generalizes the scalar correlation measure introduced in Reference 21 for graph Laplacian systems. For systems of PDEs,
this matrix measure is more appropriate than agnostically applying the scalar correlation to the discrete system since
the matrix measure acknowledges nodal features. Unfortunately, although this correlationmatrix technique can produce
coarse grids that capture the anisotropies in PDEs, there are twomajor issues with this method. First, due to the statistical
properties of the correlation, a substantially larger number of test vectors is generally needed for systems of PDEs than is
required for scalar PDEs, particularly in the presence of anisotropies. This issue can be slightly alleviated by applying a
Z Fisher transformation to the correlation, as was done in Reference 3. Second, the performance of the AMG solver can
be sensitive to the initial set of random test vectors. In this article, we develop several affinity measures that ameliorate
these issues.

Before continuing our discussion on the new affinity measures, we briefly summarize some additional literature on
closely related BAMGand relevant AMGcoarsening schemes applied to some of the scalar PDE examples to be considered
later. Of special interest are two recent papers byKahl and his collaborators23,24 that specifically take a statistical viewpoint
in the coarsening procedure, as taken in this article. These two papers illustrate some algorithmic advantages in using
statistical quantities other than the correlation in the coarsening procedure. In Reference 24, a least angle regression
(LARS) approach is used to determine the strength of connection between variables in a group rather than just a pair of
variables, which ismost often done. Determining the strength over groups of variables can both reduce the computational
cost and also reveal complex connections that are not easily exposed by sequentially comparing pairs of variables at a
time. The strength of connections are defined through the regression coefficients, and after repeatedly applying this LARS
approach to generate improved candidate coarse variables, the coarse variables are determined and the corresponding
regression coefficients are used in the interpolation. Alternatively, in Reference 23, a conditional probability distribution
(Gaussian) formula drives the coarsening approach, with realizable approximations of this formula constructed using
local sample mean and covariance estimators and local semi-variogram estimators. The selection of the coarse variables
and the interpolation weights are guided by a best linear unbiased predictor principle, a standard procedure used in
statistics. The potential of this method comes from the low computational complexity of this method in that only a few
test vectors may be needed when a semi-variogram estimator is used. Since a goal of this article is to base the coarse-node
selection in relation to accurately approximating the physical diffusion process, this article considers only strength of
connections between pairs of nodes at a time and will not exploit surrogate semi-variogram estimators. These advanced
techniques will be examined in the future.

Other literature on BAMG and relevant AMG coarsening schemes for scalar PDEs are References 25 and 26.
In Reference 26 introduces a smoothed aggregation scheme that effects long-distance interpolation suitable for
non-grid-aligned anisotropic diffusion. This long-distance interpolation is achieved by increasing the sparsity pattern
of the interpolation in the direction of the strong connections, which in turn is obtained via powers of the sparse
strength-of-connection matrix. Long-distance interpolation is also used in Reference 25. Here, strength of connection
between each pair of variables is given by an algebraic distance define through a local least-square interpolationmeasure.
This algebraic distance is used in a compatible relaxation and a least-squares procedure to select the coarse variables and
to construct the interpolation operator. Long-distance interpolation is obtained by extending the neighborhood of each
fine-grid variable for its interpolatory set, with this extended neighborhood via powers of the adjacency matrix. In this
article, we also perform long-distance interpolation and affinity measures computed using extended neighborhoods of
each node. We refer to these distances as pathlengths and the physical interpretation relates to the diffusivity over the
pathlength distance.

The new measures of this article are based on the diffusion distance and a closely related quantity, the effective resis-
tance. These two quantities reveal how information diffuses through the domain/network27-33 (see also monographs34,35
for other relevant network concepts related to the diffusion distance). They have, in fact, been used to analyze and
“coarsen” graphs (e.g., to perform graph clustering36). Ironically, AMG solvers have been used to compute estimates to
these quantities for network analysis, which is opposed to our goal of using estimates of these quantities to develop
an AMG solver. For example, in References 37 and 38, two similar strategies were developed for approximating the
diffusion distance/effective resistance for all pairs of nodes in large-scale networks. Unfortunately, to approximate the
distances/resistances between all pairs of nodes or just pairs of neighboring nodes, a large number of Laplacian systems
have to be solved, albeit the same solver can be used for each system. In Reference 37, the LEAN AMG method of Ref-
erence 21 was used, and in Reference 38, a unsmoothed aggregation method39,40 with the edge coarsening method of
Reference 10 was used. We note that these strategies for approximating the diffusion distance between all pairs of nodes
explicitly rely on the positivity of the weights in the Laplacian. Hence, these strategies cannot be applied to problems that
have a few negative weights, that is, near graph Laplacians that arise, for example, in power grid models.41
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The affinity measures of this article provide rough approximations to the diffusion distance/effective resistance with-
out actually solving Laplacian systems. The accuracy of these approximations is sufficient for relevant analysis of graph
networks. These measures also can be computed for near graph Laplacians with a few negative weights, and if more
accurate approximations of the diffusion distance/effective resistance are required, an AMG solver can be constructed
utilizing these measures in an adaptive AMG fashion.19

But computing approximations to the diffusion distance/effective resistance for network analysis is not the central
goal of this article. This goal is to develop measures for selecting the C nodes for AMG. Most strategies for selecting these
coarse quantities are based on either a strength-of-connection/affinity given by thematrix entries,4,39,42 the rate of conver-
gence of a basic relaxation scheme on subsets of nodes,20 or theDOFdependency defined through a correlation or distance
measure.3,21,22,41 All of these techniques do not provide an immediate physical interpretation. However, because the mea-
sures of this article will be based on the diffusion distance/effective resistance, a physical interpretation is now available.
Specifically, the measures will reflect a node’s ability to diffuse information, since the diffusion distance/effective resis-
tance between any pair of nodes measures the global or “steady state” diffusion between these nodes. Significant is the
fact that the diffusion distance/effective resistance can be used to extract a special set of nodes, the best spreader nodes,33
which have small effective resistances to all nodes of the network (i.e., there is low resistance to the flow of information
between the nodes of this set and the rest of the nodes in the network). If this set is sufficiently large, a good description
of the global diffusion in the problem can be represented through this set. Hence, to capture the physics on the coarse
grids, it is reasonable to expect the selected C nodes be good spreaders. Hence, the C node selection can be based on this
spreader feature, and such a selection can be achieved through affinity measures that reveal this feature. However, rather
than have these measures expose the global spread/diffusivity at each node, we will design them to expose the local dif-
fusivity. The reasoning behind this is that diffusivity over just a few pathlengths from a node provides a good gauge on
the node’s ability to diffuse information over larger distances since the latter is obtained by successively propagating the
local diffusion (in the discrete case, successively applying local random walks). In fact, since the global/steady-state ran-
dom walks can forget the paths taken between pairs of nodes, a local process can actually provide finer details on the
diffusion. Further, monitoring the local diffusion will lead to a more scalable algorithm and will align with the multigrid
philosophy of probing grid-scale features. Indeed, to capture this local diffusion feature, a relaxation-based approach on
a set of test vectors will be applied. Several sweeps of the relaxation scheme can unveil the local diffusivity, which then is
made observable through these measures. Moreover, since this relaxation approach can be used to detect the “diffusive”
nature in systems of PDEs, extensions of these measures can be developed to select the C nodes for systems of PDEs.

Once the C nodes are selected, the interpolation operator can be constructed. For networkweighted-graph Laplacians,
this can be affordably constructed using the entries of L. For PDEs, a BAMG local least-squares procedure17 can be used.
In particular, for systems of PDEs, since the coarsening is performed nodally, there is flexibility in choosing intra- or
inter-variable interpolation. For intra-variable interpolation, the weights also can be computed using the entries of the
diagonal ii’s. However, the effectiveness of the solver using the resulting interpolation may not be as good as applying
the least-squares approach, for example, when there are positive and negative off-diagonal entries in the ii’s such as in
stretched grid discretizations.

The article proceeds as follow. In Section 2, we review multigrid for scalar and systems of PDEs. This will
include a review on the relaxation-based procedure for generating a set of relaxed vectors, the strength-of-connection
and correlation-based measures for determining the C nodes, and the BAMG least-squares procedure for construct-
ing the interpolation weights. In Section 3, we review the diffusion distance/effective resistance in data analysis
and weighted-graph Laplacians, and the computational cost for approximating these global measures. In Section 4,
using different expressions for the diffusion distance/effective resistance, we derive the new local affinity measures
for weighted-graph Laplacians. We provide some numerical examples illustrating the effectiveness of these measures
for analyzing graph networks, and illustrating the performance of an AMG that utilizes these measures for solving
weighted-graph Laplacian systems. In Section 5, we develop extensions of thesemeasures for scalar and systems of elliptic
equations. Lastly, in Section 6, we give numerical results illustrating the performance of AMG using these newmeasures
for solving scalar and systems of elliptic equations.

We close this section bymentioning that the intent of this article is to present several affinitymeasures based onheuris-
tics, rather than developing multigrid theory for the resulting AMG derived from these measures, such as the accuracy of
interpolation or two-grid convergence theory like in References 43 and 44. These measures are based on statistical quan-
tities that can be used to approximate the diffusion distance/effective resistance, which have physical meanings. They
are also an alternative to the correlation measure, which has a relation to the accuracy of the interpolation error for the
special case when caliber 1 interpolation is used (i.e., each fine-grid points interpolates from only 1 coarse-grid point).21
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For higher-order interpolation, these new measures can lead to different views on the relationship between the selec-
tion of coarse-grid nodes and the interpolation error (see References 23 and 24 for two other approaches for coarsening
based on statistical quantities other than the correlation, which lead to algorithmic advantages as we have summarized
earlier).

2 MULTIGRID

It is well-known that multigrid is one of the most efficient methods to numerically solve scalar elliptic PDEs. Multigrid
achieves its efficiency by using a hierarchy of grids, where the computation on the coarser grids costs only a fraction
of the effort for computing on the original, finest grid. By carefully designing the grid-level computation to handle only
solution/error components on the scale of the level, the goal of the grid-level computation is to resolve only grid-scale
features. The solution/error components are thus handled levelwise.

To achieve this efficiency and to produce a scalable multigrid method, the complementary smoothing/coarse-grid
correction principle should hold, that is, what cannot be eliminated by relaxation must be eliminated by the coarse-grid
correction. The purpose of smoothing (e.g., a few sweeps of Gauss–Seidel, weighted Jacobi, or even a Krylov iteration) is
to “smooth” out the error in an approximate solution. In the geometric multigrid setting, for structured-grid discretiza-
tions of scalar elliptic PDEs, the smooth errors often correspond to geometrically smooth errors; in the AMG setting,
these errors correspond to the algebraic near-nullspace of the system operator, that is, eigenvectors associated with the
smaller eigenvalues. To be precise, as shown in the recent paper43 and initiated earlier in papers,40,44 these errors cor-
respond to the eigenvectors associated with the smaller eigenvalues of the generalized eigenvalue problem L𝜼 = 𝜆

̃M𝜼,

where ̃M−1 is the applied (symmetrized) relaxation scheme. However, in this article, we will follow earlier literature,
taking the near-nullspace to refer to eigenvectors associated with the smaller eigenvalues of the system operator. When
polynomial relaxation schemes are used, there is no discrepancy between the two, and when other relaxation schemes
are used, explicit knowledge of the system operator’s near-nullspace components can be used to construct efficient multi-
grid methods (e.g., see References 45 and 46 where multigrid methods are developed for the Helmholtz equation using
the planewave near-nullspace components).

The complementary coarse-grid correction procedure must eliminate the near-nullspace, which are slowly attenu-
ated by the smoother. To achieve this, the coarse-grid problem must be carefully constructed. This involves selecting
suitable CDOFs and then constructing the interpolation operator. The selected coarse CDOFs must permit an accu-
rate approximation of the near-nullspace components at all fine nodes. A measure that reflects the dependency of the
DOFs, and hence used to guide the aggregation of DOFs that can be represented by a smaller number of DOFs (i.e., the
CDOFs), must be designed. For scalar elliptic PDEs with discretizations leading to M matrices, this measure is given
by the strength of connection between the DOFs, and is determined from the entries of L. For example, in the classi-
cal Ruge-Stuben coarsening approach,4 the following strength-of-connection measure is used: DOF uj is said to strongly
influence DOF ui if

|Lij| ≥ 𝜃max
k≠i

|Lik| for 0 < 𝜃 ≤ 1. (4)

The CDOFs are essentially selected to be the DOFs that strongly influence the most number of fine DOFs (i.e., DOFs
that have not been selected to be CDOFs) and form a maximal independent set. Consider a scalar diffusion operator
[−∇ ⋅ a(x)∇] discretized by standard finite-difference on a regular grid and with much higher diffusivity between nodes
j and i than other neighboring nodes of i. Measure (4) would be able to detect this high diffusivity between j and i as a
strong influence because the diffusivity is reflected through a(x) and captured in Lij. Hence, physical reasoning can be
associated with this strength of connection measure. We will formalize this reasoning using more physical measures in
this article.

Once the selection of the CDOFs has been performed, the interpolation can be constructed using the entries of L.
This interpolation operator should be formed such that the near-nullspace is approximately in its range. For scalar elliptic
PDEs with discretizations leading to Mmatrices, a very successful interpolation formula was developed by pioneer AMG
researchers.4 Specifically, associating the nodes with the DOFs located on them (e.g., node i with ui), let Ω0 be the set of
DOFs to be partitioned into F (fine) and C (coarse) DOFs withΩ0 = C ∪ F and C ∩ F = ∅; letN(i) be the neighborhood of
node i (i.e.,N(i) =

{
j| Lij ≠ 0

}
); letCi be a subset of CDOFs that interpolates to a fine-node i; and letFsi andF

w
i respectively

be the set of neighboring F nodes that strongly influence andweakly influence node i. Then the interpolationweight from
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CDOF j to FDOF i is given by

wij = −
Lij +

∑
m∈Fsi

(
LimLmj∑
k∈Ci

Lmk

)
Lii +

∑
r∈Fwi

Lir
. (5)

References 4,42, and 39. wij is the ij′th entry of interpolation operator P.
Although strength of connection (4) and interpolation (5) have been highly effective for scalar diffusion equations

that are discretized into M matrices, their effectiveness can degrade for other discretizations and for other types of
PDEs. During the past few decades, there has been active research in developing more general CDOF selection proce-
dures and interpolation schemes to handle more challenging systems.17,19,20,22,40,44,47,48 Guided by the complementary
smoothing/coarse-grid correction principle, these methods are usually based on the near-nullspace components of the
system operator, and thus, having access to these components is essential. Good approximations to them can be deter-
mined by analyzing the PDE, disregarding the boundary conditions for simplicity.Moreover, whether analytic expressions
of these components are available or not, refined or rough approximations can be obtained using the relaxation. Specifi-
cally, when analytic expressions are available, discrete representations of the near-nullspace components can be refined
by applying several sweeps of relaxation on them; when analytic expressions are not available, rough approximations to
these components can be obtained by applying relaxation to a set of random vectors. Since the relaxed vectors provide
good profiles of the near-nullspace components, these vectors can expose candidates for the CDOFs, especially small sets
of them that can accurately represent the full poorly attenuated vectors. This is the basis of the BAMG, adaptive multigrid
schemes, and other relaxation-based schemes.17,19,20,22 For example, consider the BAMG approach. Let

{
v(𝛼)

}s
𝛼=1 denote

the set of relaxed vectors, that is, the relaxed test vectors. The set of CDOFs can be determined from
{
v(𝛼)

}s
𝛼=1 by apply-

ing a strength of connection measure to these vectors. For example, in Reference 21, a correlation-like measure is used
in determining the CDOFs for graph Laplacian systems. Specifically, with i, j being two arbitrary vector components of
vector v(𝛼) and the component inner product defined as

(
vi, vj

)
=

s∑
𝛼=1

v(𝛼)i v(𝛼)j ,

the measure is

cij =
|||(vi, vj)|||2

(vi, vi)(vj, vj)
. (6)

If the mean of the sample set is zero, then cij is indeed the correlation between DOFs i and j. With (6), i and j are said
to have close affinity if the measure is greater than a given threshold. DOFs that are close have a better chance of being
“aggregated” together,with one of them selected as the representativeCDOFor seed of the aggregate. The actual procedure
for determining the CDOFs associates to each DOF a projected volume that predicts how large the aggregate will be if this
DOF were selected as a seed: for DOF i, let 𝜋i be its volume, which is initially set to 1. The projected volume 𝜈i for i is
defined as

𝜈i = 𝜋i +
∑
j∈N(i)

𝜋j
cij∑

k∈N(j) cjk
. (7)

All DOFs that have projected volumes greater than a threshold factor (e.g., a threshold of 1.5) of the average projected
volume become CDOFs. This is the first pass for determining the CDOFs. The second pass can convert a fine DOF into
a CDOF if its affinity measure to other fine DOFs are relatively large or if its weighted graph connections in L with fine
DOFs are relatively large: that is, for some threshold Q and for fine DOF i, if

∑
j∈(C∩N(i)) cij∑
j∈N(i) cij

≤ Q or
∑

j∈(C∩N(i)) Lij∑
j∈N(i) Lij

≤ Q, (8)

then i becomes a CDOF.
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With the DOFs partitioned into C and F subsets, the interpolation operator can be formed. For weighted-graph
Laplacians, the interpolation weights can be computed using

wij =
Lij∑

k∈Ci
Lik

. (9)

Alternatively, especially for PDEs with near-nullspace components having complex algebraic structures, a BAMG
approach can be used to construct these weights by solving local least-squares problems: for i ∈ F, the local least-squares
problem is

{
wij|j ∈ Ci

}
= argmin

wij

s∑
𝛼=1

1‖‖v(𝛼)‖‖2L
(
v(𝛼)i −

∑
j∈Ci

wijv(𝛼)j

)2

(10)

for unknowns
{
wij|j ∈ Ci

}
.3,44,47

The above techniques can be used to select the CDOFs and construct P for scalar PDEs or graph Laplacians. Compli-
cations arise for systems of PDEs though. Because of cross-variable couplings in systems of PDEs, intra-variable (i.e., like
variable) and inter-variable (i.e., cross variable) procedures must be considered. In Reference 3, correlationmeasures that
expose the intra- and inter-variable dependencies in the DOFs were introduced. The discretizations and coarsenings are
assumed to be nodal based. With l and m indexing the nodes and q and r the variables, the correlation for quantities aql
and arm

corr(aql , a
r
m) =

∑s
𝛼=1

(
aq,(𝛼)l − aql

)(
ar,(𝛼)m − arm

)
√(∑s

𝛼=1

(
aq,(𝛼)l − aql

)2)(∑s
𝛼=1

(
ar,(𝛼)m − arm

)2) ,

where aql is themean of {a
q,(𝛼)
l }s

𝛼=1.A correlation-likematrix then can be defined at each pair of nodal points. For example,

for a two-variable system with test vector
(
v1
v2

)(𝛼)

,this matrix for nodes I, J is

corr

((
v1I
v2I

)
,

(
v1J
v2J

))

∶=

⎛⎜⎜⎜⎜⎜⎝

corr
(
v1I , v

1
I
)

corr
(
v1I , v

1
J
)

corr
(
v1I , v

2
I
)

corr
(
v1I , v

2
J
)

corr
(
v1J , v

1
I
)

corr
(
v1J , v

1
J
)

corr
(
v1J , v

2
I
)

corr
(
v1J , v

2
J
)

corr
(
v2I , v

1
I
)

corr
(
v2I , v

1
J
)

corr
(
v2I , v

2
I
)

corr
(
v2I , v

2
J
)

corr
(
v2J , v

1
I
)

corr
(
v2J , v

1
J
)

corr
(
v2J , v

2
I
)

corr
(
v2J , v

2
J
)

⎞⎟⎟⎟⎟⎟⎠
, (11)

and the measure is the Frobenius norm of this matrix, that is,

CIJ =
‖‖‖‖‖‖corr

((
v1I
v2I

)
,

(
v1J
v2J

))‖‖‖‖‖‖F . (12)

Matrix (11) contains inter-variable correlations. To involve only the intra-variable correlations, the inter-variable corre-
lations located in the off-diagonals blocks simply need to be zeroed off. Finally, rather than using a projected volume
approach for selecting the coarse nodes, the CIJ ’s are used as a strength-of-connection measure in a coloring algorithm:
lettingCI denote the Frobenius normof an average correlationmatrix for node I,node J is considered to strongly influence
I if

CIJ ≥ 𝜃CI , (13)
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8 of 29 LEE

where 𝜃 is a threshold parameter. A standard Ruge-Stuben coloring scheme that uses the number of nodes each node
strongly influences can be applied to determine the nodal CDOFs: Let F,C,U,G, StI respectively denote the fine nodes, C
nodes, unmarked nodes, total nodes, and nodes that I strongly influences. Then

CDOF coloring algorithm.
Set F ∶= ∅, C ∶= ∅, U∶= G
1. For I ∈ U, 𝜆I ∶= ||StI ∩ U|| + 2 ||StI ∩ F||
2. If 𝜆I ≠ 0 then

(a) pick I ∈ U with maximum 𝜆I and set C ∶= C ∪ {I}, U ∶= U∖{I}
(b) for all J ∈ StI ∩ U, set F ∶= F ∪ {J}, U ∶= U∖{J}
else break

3. Go to 1.

Extensions to least-squares interpolation (10) for systems of PDEs were also presented in Reference 3. For
inter-variable interpolation, the weighted least-squares problems have the same form but now with test vectors defined
for all the variable types, v =

(
v1, v2, … , vn

)t
. For intra-variable interpolation, the variable l block ofP are computedwith

a least-squares problem involving only the variable l subvectors of the test vectors. Specifically, let v(𝛼,l) be the variable l
subvector of v(𝛼) and ll denote the (variable l)-to-(variable l) submatrix of . Then the least-squares problem is

{
wl
IJ|J ∈ CI

}
= argmin

wl
IJ

s∑
𝛼=1

1‖‖v(𝛼,l)‖‖2ll

(
v(𝛼,l)I −

∑
J∈CI

wl
IJv

(𝛼,l)
J

)2

. (14)

The weights obtained using the above interpolation methods depend on the selection of C nodes, which in turn is
conditioned on the affinity measure and the relaxed test vectors. Hence, practical issues that must be considered are
the sensitivity of the measure to the initial set of random test vectors, and, closely related, the number of test vectors
required to stabilize this sensitivity. The relevancy of these issues is that high sensitivity can lead to poor robustness in the
constructed AMG solver. That is, high sensitivity can result in fluctuations in the solver performance for simulations that
conduct separate coarsening procedures, that is, perform separate AMG setup phases. For the above correlationmeasures,
such sensitivity is a reflection of slow convergence of the sample correlation. Unfortunately, since the number of samples
required to obtain good accuracy to the correlation can vary widely from problem to problem, these measures can suffer
from this sensitivity issue. Hence, we now consider measures based on the diffusion distance/effective resistance which
are not only less sensitive to the initial set of random vectors but also provide a physical basis to the CDOF selection.

3 DIFFUSION DISTANCE/EFFECTIVE RESISTANCE

The diffusion distance was introduced as a tool for extracting low-dimensional structures in data sets.14-16,28 The idea is to
view the data as evolving under a heat flow on amanifold and eventually settling into a low-dimensional organization
of the data. To measure the “similarities” between data points at any step of the evolution, the diffusion distance between
a pair of points is defined to be the probability of transitioning from one point to the other, transversing all available paths
between the pair at that evolutionary step. To be precise, for any 𝜏 ≥ 0, let k

𝜏
(⋅, ⋅) be a kernel defined on × which

provides a prior notion of the affinity/similarity between the data points at the start of the propagation, 𝜏 = 0. There are
several requirements on k

𝜏
:

• k
𝜏
is symmetric and non-negative on × for any 𝜏 ≥ 0,

• k
𝜏
satisfies the semi-group property

∫


k
𝜏1(x,u)k𝜏2(u, y)du = k

𝜏1+𝜏2(x, y) ∀x, y ∈ , ∀𝜏1, 𝜏2 ≥ 0,
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LEE 9 of 29

• k
𝜏
satisfies

∫


k
𝜏
(x, y)dx = 1 ∀y ∈ , ∀𝜏 ≥ 0.

Also, let

T
𝜏
g(x) ∶=

∫


k
𝜏
(x, y)g(y)dy.

In the finite-dimensional scenario, = ℜm and k0 is At for an (m ×m) matrix A with non-negative entries aij. At is a
Markov process with its column sum equal to 1, that is, the third property on k

𝜏
. Also, the matrix-vector product Atg is

the analogue of T
𝜏
g(x).

Returning to the continuum scenario, the diffusion distance d
𝜏
(x, y) at time 𝜏 between any pair x, y in is given by

[d
𝜏
(x, y)]2 = (T

𝜏
(𝛿x − 𝛿y),T𝜏

(𝛿x − 𝛿y))
= (T

𝜏
𝛿x,T𝜏

𝛿x) + (T
𝜏
𝛿y,T𝜏

𝛿y) − 2(T
𝜏
𝛿x,T𝜏

𝛿y)
= ||k

𝜏
(⋅, x)||22 + ||k

𝜏
(⋅, y)||22 − 2(k

𝜏
(⋅, x), k

𝜏
(⋅, y)), (15)

where 𝛿z is the L1() delta function satisfying

T
𝜏
𝛿z(w) =

∫


k
𝜏
(w,u)𝛿z(u)du = k

𝜏
(w, z),

and (⋅, ⋅) and || ⋅ ||2 are respectively the L2() inner product and norm. Interpreting (15), (𝛿x − 𝛿y) corresponds to taking
a unit source at x and unit sink at y, T

𝜏
(𝛿x − 𝛿y) corresponds to the heat flow at time 𝜏 given the source (𝛿x − 𝛿y), and

applying the L2() inner product accounts for transversing all possible paths between x and y in the flow at time 𝜏.
In the discrete setting, which is more relevant to this article, each step in the propagation corresponds to a

multiplication with At. With the data points indexed as i and j, the initial step is

[d0(i, j)]2 = (At(ei − ej),At(ei − ej))
= (Atei,Atei) + (Atej,Atej) − 2(Atei,Atej)
= [AAt]ii + [AAt]jj − 2[AAt]ij, (16)

where ei is the i’th canonical basis vector. At step 𝜏 = n − 1, we have

[dn−1(i, j)]2 =
[
An(At)n]

ii
+
[
An(At)n]

jj
− 2

[
An(At)n]

ij
. (17)

Now a question that arises is whether a steady-state case is obtained when n → ∞. In Reference 38, it is shown that if
L is a normalized graph Laplacian with A defined by

A = I − L,

then the sequence converges if A is row stochastic and irreducible. The limit is the effective resistance. Specifically,
denoting the effective resistance between i and j as r1,ij, we have

r21,ij = (ei − ej)tL†(ei − ej)

= L†
ii + L†

jj − 2L†
ij, (18)

where L† is the pseudo-inverse of L. (In existing literature, L is often an unnormalized graph Laplacian.) Given this
relationship between the diffusion distance and effective resistance, the latter describes the global or steady-state diffusion
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10 of 29 LEE

of the problem, with a smaller effective resistance implying better diffusion between the points. A smaller resistance
means that there are many paths between the nodes so that if some of the edges are disconnected, the nodes remain
connected through other paths.

We also have the total effective resistance of the network defined by

rG ∶=
m∑
i=1

m∑
j>i
r1,ij, (19)

and the best spreader defined as nodes i satisfying

min
i

m∑
j=1
r1,ij. (20)

In the analysis of networks (e.g., power grids), resistance rG is a good indicator on how robust the network is when edges
and nodes are deleted, that is, does the network system remain operational as nodes and edges are removed? Also, the
best spreaders are nodes where there is low resistance to the diffusion to other nodes.

Note that the diffusion distance is defined as the L2() norm of the action of T
𝜏
on L1()-normalized functions.

This inconsistency in norms can lead to scaling issues. In Reference 28, an example is given to illustrate the scaling issue
in the diffusion distance for kernel k

𝜏
(x, y) = e−|x−y|2∕4𝜏

(4𝜋𝜏)−n∕2
(the fundamental solution for the heat equation inℜn). Thus, they

suggest L2()-normalized sources and sinks of the form

𝜓z =
𝛿z||T
𝜏
𝛿z||2

in the continuum setting, and the l2(ℜm)-normalized sources and sinks of the form

êi =
ei||(At)nei||

in the discrete setting. With these changes the new distances are

[ ̂d
𝜏
(x, y)]2 = 2 − 2

(k
𝜏
(⋅, x), k

𝜏
(⋅, y))||k

𝜏
(⋅, x)||2||k𝜏(⋅, y)||2 , (21)

[ ̂dn−1(i, j)]2 = 2 − 2

[
An(At)n]

ij√[
An(At)n]

ii

[
An(At)n]

jj

. (22)

Noting that L†
ii is non-negative for weighted graph Laplacians,

33 we also introduce scaled sources and sinks of the form
êi =

ei√
L†
ii

to get the effective resistance

r22,ij = 2 − 2
L†
ij√

L†
ii

√
L†
jj

, (23)

when L†
ii and L

†
jj are positive.

The diffusion distance and effective resistance are physics-based measures describing the affinity between nodes in a
network. Also, the best spreaders are significant to the overall diffusion process in the network. The best spreader nodes
should be included in a coarsened graph so that an accurate description of the diffusion process in the full network is
retained. Thus, it is reasonable to require these nodes be retained on coarser levels in a multilevel or coarse-graining
method. However, determining these spreaders entails computing the effective resistance, and this computation can be
more expensive than performing this coarsening task. Consider the cost of computing the resistance. First, if only the
effective resistance r1,ij is needed, then the Laplacian system
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LEE 11 of 29

Lr1 = ei − ej

must be solved. An appropriate AMG solver can be constructed to optimally achieve this, but then it is not cost effective
in determining the coarse nodes using the resistances, that is, in an adaptive AMG procedure.19 In fact, to determine the
best spreaders, the resistances between all pairs of nodes are needed. One of the most efficient schemes to approximate
these uses the Johnson-Lindenstrauss lemma.49 To describe this approach, note that because the weightswij are assumed
positive, the Laplacian can be decomposed as

L = BtWB = BtW1∕2W1∕2B,

where W ∈ ℜ|E|×|E| is the diagonal matrix containing the weights of the Laplacian, and B ∈ ℜ|E|×|V | is the signed
edge-vertex incidence matrix

Bev =
⎧⎪⎨⎪⎩
1 v is the head of e
− 1 v is the tail of e
0 otherwise.

Clearly,

r21,ij = ||W1∕2BL†(ei − ej)||22. (24)

Now, the Johnson-Lindenstrauss lemma states that for a random matrix Q ∈ ℜ𝜅×|E|

Qij =
⎧⎪⎨⎪⎩

1√
𝜅

probability 1∕2

− 1√
𝜅

probability 1∕2,

with 𝜅 ≥
24 log |V |

𝜖
2 , we have

(1 − 𝜖)r21,ij ≤ ||QW1∕2BL†(ei − ej)||22 ≤ (1 + 𝜖)r21,ij

with probability of at least (1 − 1∕|V |).29,38 Thus, an approximation to the effective resistance matrix [
r21,ij

]|V |
i,j=1

can be
constructed by

1. form Y = QW1∕2B ∈ ℜ𝜅×|V |, which can be done in O(𝜅|E|) = O(|E|∕𝜖2) operations since B has only 2 entries per row;
2. for i = 1, … , 𝜅, with yi denoting the transpose of the i’th row of Y, construct the i’th row of matrix Z ∈ ℜ𝜅×|V | by

solving

Lzi = yi,

3. compute the approximation of r21,ij with ||Z⋅,i − Z⋅,j||22.
The major cost in this algorithm is solving the 𝜅 Laplacian systems in step 2. Although the same solver can be used

for each system, this algorithm is impractical for determining the coarse nodes, and the cost can be rather excessive for
other applications where the effective resistance is relevant. One such application is the “stability” analysis of networks,
where nodes that lead to major disconnections in the graph are sought, that is, removing these nodes will “destabilize”
the network. A reasonable assumption is that these nodes are best spreaders-physically, if the best spreaders are removed,
then the diffusivity of the problem is degraded, which can be taken as an indicator that a destabilization of the network has
occurred. To determine good candidates for the best spreaders, a more efficient method for approximating the effective
resistances is desired.
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12 of 29 LEE

The effective resistance may also provide an “imprecise” description of the diffusion in the network. It was shown in
References 30 and 31 that for some random graphs, with nodes i and j sufficiently far apart,

r21,ij ≈
(

1
deg(i)

+ 1
deg(j)

)
, (25)

where deg(l) is the degree of node l. This shows that the topology of the network does not participate in r21,ij since the
intermediate paths in the randomwalk do not contribute in (25). Intuitively, this can be seen in a large network, where the
intermediate paths are transversed in the Markov process. The steady-state diffusion between nodes i and j then depends
only on the immediate edges/paths emanating from i and j, that is, on deg(i) and deg(j). On the other hand, when the
nodes are close, more details of the diffusion process are retained, and hence, r21,ij canmore accurately reflect the diffusion
between these nodes.

4 NEW AFFINITY MEASURES

As brought out earlier, the diffusivity over a few pathlengths from a node provides a good gauge on the diffusion around
that node. This, with the fact that the effective resistance can be reliable for nodes that are close to each other, prods us
to an approach based on local diffusion. Consider a diffusion process in a local patch centered at node i, and picture the
diffusion from i to its neighboring nodes in the patch. Physically, diffusion means that there will be strong dependency
between the values of u at these neighboring nodes and its value at i. Hence, a measure of this dependency can be used
to estimate the strength of the local diffusion. One way to measure this is to take the correlation of these values over an
ensemble of diffusion states. In particular, the relaxation approach of References 22 and 21 can be used: relaxing using
pointwise Gauss–Seidel, or even more complex relaxation schemes, on an initial set of random test vectors simulates the
diffusion process and taking the local correlation of these relaxed vectors gives an estimate of the diffusivity in this patch.
However, as we have seen, slow convergence of the sample correlation can lead to sensitivity issues. Thus, instead of the
correlation, we develop measures based on the effective resistance, using effective resistance expressions (18) and (23).

To this end, consider the spectral decomposition of L†:

L† =
∑
p=1

1
𝜆p

𝜼p𝜼
t
p, (26)

where the 𝜆p’s are the positive eigenvalues in ascending order and the 𝜼p’s are their corresponding eigenvectors. A crude
estimate to L† is the first term of the sum, and a rough approximation to 𝜼1 is any one of the relaxed vectors

{
v(𝛼)

}s
𝛼=1.

Hence,

𝜆1r21,ij ∝
(
v(𝛼)i v(𝛼)i + v(𝛼)j v(𝛼)j − 2v(𝛼)i v(𝛼)j

)
(27)

for 𝛼 ∈ {1, 2, … , s}. Since 𝜆1 is independent of i, j, we can take the righthand side of (27) to reflect the strength of the
diffusion between nodes i and j. Moreover, since a set of test vectors is available, it would be beneficial to utilize the
whole set, which can lead to a more stable procedure. Thus, assume that the mean, v, of the relaxed vectors is 0. This is a
reasonable assumption since the initial set of random test vectors has mean 0, these vectors were obtained by relaxing on
the homogeneous equation, and the relaxation operator is linear. (In the actually computation, the sample mean of the
relaxed vectors can be used instead.) We have

[r̃1,ij]2 ∶=
1
s

s∑
𝛼=1

(
v(𝛼)i v(𝛼)i + v(𝛼)j v(𝛼)j − 2v(𝛼)i v(𝛼)j

)

= 1
s

s∑
𝛼=1

(
v(𝛼)i − 0

)2 + 1
s

s∑
𝛼=1

(
v(𝛼)j − 0

)2 − 2
s

s∑
𝛼=1

(
v(𝛼)i − 0

)(
v(𝛼)j − 0

)

= 1
s

s∑
𝛼=1

(
v(𝛼)i − vi

)2 + 1
s

s∑
𝛼=1

(
v(𝛼)j − vj

)2 − 2
s

s∑
𝛼=1

(
v(𝛼)i − vi

)(
v(𝛼)j − vj

)
= var(vi) + var(vj) − 2cov(vi, vj), (28)
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LEE 13 of 29

where var(⋅) and cov(⋅, ⋅) are the sample variance and sample covariance of the data, that is, for data sets
{
b(𝛼)1

}s

𝛼=1
and{

b(𝛼)2

}s

𝛼=1
,

var(b1) =
1
s

s∑
𝛼=1

(
b(𝛼)1 − b1

)2 cov(b1, b2) =
1
s

s∑
𝛼=1

(
b(𝛼)1 − b1

)(
b(𝛼)2 − b2

)
.

Finally, using the identity

var(b1 − b2) = var(b1) + var(b2) − 2cov(b1, b2),

we have

[r̃1,ij]2 = var(vi − vj), (29)

and hence, we define the measure

c1,ij =
1√

var(vi − vj)
and c1,ii = 0. (30)

Since the variance generally requires less samples to converge than is required in the correlation, the sensitivity issues
will be ameliorated for this new measure.

Another measure can be similarly developed using effective resistance expression (23). This gives

[r̃2,ij]2 = 2 − 2

√√√√√[
cov(vi, vj)√

var(vi)
√
var(vj)

]2

= 2 − 2|corr(vi, vj)|, (31)

and the measure is

c2,ij =
⎧⎪⎨⎪⎩

1√
2−2|corr(vi,vj)| |corr(vi, vj)| ≠ 1

large value |corr(vi, vj)| = 1
and c2,ii = 0, (32)

which is well-defined because |corr(vi, vj)| ≤ 1. For our computation, when |corr(vi, vj)| = 1, we fix the large value to
105. It can also be set to be several orders of magnitude larger than the average of

{
c2,ij

}
|corr(vi,vj)|≠1, for j’s in a neighbor-

hood of i. Note that although this measure involves the correlation, numerical experiments indicate that the nonlinear
transformation of the correlation in (32) can ameliorate the sensitivity issues.

Lastly, to further reduce the number of test vectors, a measure can be designed using a sample auto-correlation of the
relaxed vectors. Recall that given a times series sequence of multivariate data {b(𝜏)}m

𝜏=1, the sample covariance for offset
h is defined by

𝚪(h) = 1
m

m−h∑
𝜏=1

(
b(𝜏+h) − b

)(
b(𝜏) − b

)t
, (33)

where b is the time average b = 1
m

∑m
𝜏=1b

(𝜏) of the sequence. 𝚪(h) is a square matrix with its size equal to the number of
components in b, and its ij’th entry is given by

𝛾ij(h) = cov
(
b(𝜏+h)i ,b(𝜏)j

)
.
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14 of 29 LEE

The sample auto-correlation for {b(𝜏)}m
𝜏=1 is the matrix with ij’th entry

autocorr
(
b(𝜏+h)i ,b(𝜏)j

)
∶=

𝛾ij(h)√
𝛾ii(0)

√
𝛾jj(0)

. (34)

Note that because of the offset, this matrix is not symmetric.
A sample auto-correlation can be applied to any one of the test vectors, with the time series being the sequence

of relaxation iterates starting after a “spin-up” of the initial test vector is performed, that is, after a few relaxation
sweeps are performed to attenuate the randomness in the initial vector. Thus, taking h to be a small positive number,
this auto-correlation gives an average of how the nodal values of v(𝛼) auto-correlate through the relaxation sweeps, the
simulated diffusion process. Using effective resistance expression (23), we consider

c(𝛼)3,ij =
1||||2 − 2 autocorr
(
v(𝛼,𝜏+h)i , v(𝛼,𝜏)j

)||||
, (35)

and introduce the measure

c3,ij =

√√√√1
s

s∑
𝛼=1

c(𝛼)3,ij. (36)

The anticipation is that fewer test vectors will be needed since the node dependency is gleaned more thoroughly in each
relaxed vector.

Nowwith these measures, the local diffusivity within a neighborhood of each node can be approximated. Specifically,
for each i ∈ V , measure (30), (32), or (36) is computed between i and any node within a given pathlength distance to
it. The computed measures then are used in a strength-of-connection procedure to determine the directions of strong
diffusivity for each i ∈ V . To select the C nodes, a coloring scheme can be used: nodes that have strong diffusivity (i.e.,
strong influence) to the most number of nodes within the neighborhood are selected as C nodes. Alternatively, the total
diffusivity at each node can be used: with each node summing up its measures to all nodes within a pathlength-distance
neighborhood, nodes having larger sums are selected as C nodes. For measures (30) and (32), because they relate to the
effective resistance, this approach corresponds to choosing good spreaders for the C nodes. This strategy is particularly
appropriate for graphs with highly varying node degrees (see Sections 4.1 and 4.2).

4.1 Network analysis experiments

Measures (30), (32), and (36) provide efficient means for estimating the diffusion process in a network. Thus, we examine
their ability to detect the nodes that aremost relevant to the vulnerability/resiliency of a network, vulnerability in the sense
that the system operation (e.g., flow/distribution of electric power) define on the network degrades when these nodes
are removed, that is, the so-called percolation problem in network analysis.34 Given the physical significance of the best
spreaders, the best spreaders are the obvious choice. To assess the relevancy of a set of nodes to the network, we consider
the number of components the network is broken up into when the set is removed, the size of the largest or so-called giant
component of the severed network,2 and most importantly, the total effective resistance of the giant component (a large
total effective resistance indicates that the survivingmajor sub-network is itself vulnerable to instabilities, which increases
the relevancy of the set of removed nodes because the decomposed system is now closely unoperable). For comparison,
these quantities are also computed using the exact effective resistance and the Johnson-Lindenstrauss approximation.
For these two schemes, the best spreaders are determined using (20) with a post-processing step: (20) is used first to select
l2 nodes that give the smallest sums, and then from these nodes, l1 nodes (l2 > l1) with the most number of connections
satisfying r1,ij < 𝜃r1,i are selected as the candidate spreaders. Here, r1,i is the average of node i’s effective resistance with
all other nodes, and the post-processing step ensures that nodes with high and “balanced” diffusivity are selected. (Note
that a coloring scheme by itself should not be applied to V to select the spreaders because nodes that poorly fail (20) can
still strongly influence many nodes.)
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TABLE 1 Network analysis for the BA and WS network models using the exact effective resistance and Johnson-Lindenstrauss (JL)
approximation with 𝜅 = 200 samples.

# Spreaders Scenario Method # Comps
Size of
common Lg Comp RG Lg Comp

5 BA L† 84 424/159 225,706/32,306

JL 145 159/332 32,306/170,697

WS L† 1 995 156,176

JL 1 995 155,920

10 BA L† 129 339/159 138,480/32,306

JL 176 159/332 32,306/170,697

WS L† 1 990 157,005

JL 1 990 156,631

Note: Candidate spreader nodes are removed from the network, and the resiliency/vulnerability of the network is assessed by the number of components the
network is broken up into, the size of the most commonly selected largest component(s), and the total effective resistance of the largest component(s).

For measures (30), (32), and (36), we use an analogue of (20) to select the nodes:

max
i

∑
j
cl,ij, (37)

with the summation taken over nodes jwithin a given pathlength distance from i.Asimilar post-processing procedurewill
be used to select the nodes: given a set of l2 nodes that generate the largest sums

∑
j cl,ij, choose the l1 nodes of this set that

have the most number of connections satisfying cl,ij > 𝜃cl,i,where cl,i is the average of cl,ij in i’s pathlength neighborhood.
We examine networks coming from realistic DC power grid models. Although power grids sometimes have been dis-

cussed as small-world networks,50 there remains controversy onwhether this is indeed the case.51 Thus, before examining
the realistic DCmodels, we consider the Barabasi-Albert (BA) andWatts-Strogatz (WS) models,32,34,35 which respectively
represent scale-free (power-law) and small-world networks. We consider models consisting of 1000 nodes, with the WS
network having 4000 edges and an average node degree of 8. We also fix the networks for all the simulations so that the
same random graphs are used in all the methods. Table 1 provides results for the BA and WS networks using the exact
effective resistance and the Johnson-Lindenstrauss (JL) approximation (𝜅 = 200 samples) to select 5 and 10 spreaders that
are removed from the network. Given the statistical nature of the JL approximation, 10 simulations for this method are
performed and the average number of components the original network is broken up into and the size(s) of themost com-
monly selected giant component are tabulated. The second largest giant component for the BA model generated by the
exact effective resistance approach is also recorded. From Table 1, we see that the JL approximation is able to accurately
mimic the results obtained by the exact effective resistance for the WSmodel, but was only able to accurately capture the
second largest component for the BA model.

Table 2 illustrates the results for the BA and WS models using measures (30) and (32), and measure (36). Given the
statistical aspect of the test vector construction, 10 simulations are again performed. But whereas the statistical nature
of the Johnson-Lindenstrauss method affects the approximation to the pseudo-inverse, and indirectly the selection of
nodes, the statistical nature in the test vector procedure leads to an ensemble of snapshots of the diffusion process via the
relaxation. Each snapshot leads to a different set of relevant nodes, and hence, giving a more comprehensive assessment
of the nodes through the different observations of the diffusion process.

For measures (30) and (32), 20 test vectors with 5 relaxation sweeps are used. For (36) only 3 test vectors with 15
Gauss–Seidel relaxation sweeps are used, with a few of these sweeps used to spin up the sequence of iterates to attenuate
strong randomness in the initial test vectors. The number of relaxation sweeps is kept low in order to expose the diffusivity
over a large range of frequencies (i.e., since an AMG solver is not being constructed, the algebraically smooth frequencies
are not pertinent in these experiments). Finally, for all three measures, the affinity is taken over pathlength distances
of 5 and 3 for the BA and WS models, respectively. We see that all three measures were able to mimic the results of the
JL and exact effective resistance performance for the WS model. For the BA model, measures (30) and (32) were able
to accurately mimic the results of the JLT method, that is, accurately obtaining the second largest giant component and
roughly producing the samenumber of components as the JLTmethod.Measure (36),moreover, was able to produce giant

 10991506, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2539 by Southern M

ethodist U
nversity, W

iley O
nline Library on [03/11/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



16 of 29 LEE

TABLE 2 Network analysis using measures (32), (30), and (36) with pathlength distances 5 and 3 for the BA and WS graph models,
respectively, to determine the spreaders.

# Spreaders Scenario Measure # Comps
Size of
common Lg Comp RG Lg Comp

5 BA (pathln 5) (32) 146 159 32,306

(30) 148 159 32,306

(36) 86.8 332/401/159 170,697/213,227/32,306

WS (pathln 3) (32) 1 995 155,888

(30) 1 995 155,310

(36) 1 995 155,815

10 BA (32) 154 159 32,306

(30) 161 159 32,306

(36) 93.9 332/159 170,697/32,306

WS (32) 1 990 156,456

(30) 1 990 155,549

(36) 1 990 156,423

Note: The resiliency/vulnerability of the network is assessed by the number of components the network is broken up into, the size of the most commonly
selected largest component(s), and the total effective resistance of largest component(s). 5 smoothings and 20 test vectors are used for measures (32) and (30),
and 15 smoothings with offset h = 1 and 3 test vectors for measure (36).

components of sizes and RG’s more consistent to the ones produced by the exact effective resistance. Overall, from these
scale-free and small-world examples, measures (30) and (32), and measure (36) provide a promising efficient technique
to detect nodes that aremost relevant to the vulnerability/resiliency of a network without having to solve graph Laplacian
systems nor having to form L†.

We turn to the realistic DC power grid models, with the experiments conducted as in the BA/WS models. Table 3
gives the results for the exact effective resistance and JL approximation. For the JL approximation, we now consider
the average size of the largest giant components and their RG values over the 10 simulations. Perusing over this table,
we see again that more components are formed as more candidate spreaders are removed. Moreover, the total effective
resistance of the giant component is larger than the full network itself, indicating these nodes are highly relevant to the
network’s vulnerability/resiliency. Overall, both of these methods are able to detect relevant nodes, but at the expense of
forming/approximating the pseudo-inverse of the graph Laplacians.

Tables 4 and 5 illustrate the results using measures (30) and (32), and measure (36). For measures (30) and (32) we
again use 20 test vectors with 5 relaxation sweeps per vector; for (36) we now take 1 or 3 test vectors with 10 Gauss–Seidel
relaxation sweeps per vector, with a few of these sweeps used to spin up the sequence of iterates to attenuate strong ran-
domness in the initial test vectors. A pathlength distance of 5 is used for all scenarios andmeasures (a distance of 8 is also
used on the Texan power grid for measure (36 to illustrate that improvement can be obtained by varying the pathlength
sincewewould expect a longer pathlength tomore accurately reveal the global diffusivity).With the exception of theTexan
grid, all three measures decompose the original networks into a fair number of components that is somewhat reflective
of the exact effective resistance and JL approximation, although measure (32) often generates less components. The sizes
of the giant components produced by the measures are overall comparable to the sizes of the giant components produced
by the exact effective resistance and Johnson-Lindenstrauss approximation. However, the total effective resistances for
the surviving giant sub-networks produced by the three measures are almost always larger than their counterparts pro-
duced by the exact effective resistance and Johnson-Lindenstrauss approximation. Moreover, we see that measure (30) is
effective using only 1 test vector.

These results demonstrate that the local diffusivity, based on a posteriori observations via the relaxation and quan-
tified with these measures, can select nodes that are highly relevant to the vulnerability/resiliency of the networks.
Moreover, since the local diffusivity approach produces giant components with larger total effective resistances than
the ones produced by a direct effective resistance approach, the vulnerability/resiliency of a network can be assessed
more accurately from local diffusion interactions than from an analytic, steady-state description given by the effective
resistance.
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TABLE 3 Network analysis using the exact effective resistance and Johnson-Lindenstrauss (JL) approximation with 𝜅 = 200
samples.

# Spreaders Scenario Method # Comps
Size
Lg Comp RG Lg Comp RG full graph

5 European (1354 nodes) L† 3 1323 50,472 48,230

JL 3.2 1328 50,821 48,092

French (1888 nodes) L† 5 1877 203,966 198,461

JL 5.6 1871 202,022 198,533

Polish (3374 nodes) L† 1 3369 858,408 829,741

JL 1.1 3369 859,652 826,801

Texan (2000 nodes) L† 12 1984 271,524 248,725

JL 11.7 1984 252,835 248,145

10 European L† 4 1291 60,565 48,230

JL 5.2 1289 54,522 47,962

French L† 5 1874 212,973 198,461

JL 7.1 1850 206,235 197,717

Polish L† 1 3364 892,862 829,741

JL 2.3 3361 888,143 827,759

Texan L† 29 1962 271,646 248,725

JL 21.9 1969 264,009 248,741

Note: Candidate spreader nodes are removed from the network, and the resiliency/vulnerability of the network is assessed by the number of
components the network is broken up into, the size of the largest component, and the total effective resistance of the largest component.

4.2 Weighted-graph Laplacian experiments

Recall that a set of nodes that preserves an accurate description of the global diffusion of the problem is a reasonable
choice for the coarse nodes. Hence, we select the coarse nodes to be good spreaders, which is measured by the effective
resistance or an approximation to it. Specifically, measures (30), (32), and (36) will be used to determine coarse nodes
with low effective resistance, that is, we consider using these measures to construct an AMG solver for weighted-graph
Laplacians. We assume that the nodes of the graph can have large variations in their degrees (i.e., large variations in
the number of non-zero entries in the rows of the graph Laplacian). Because some nodes can have high diffusivity but
low degrees, a coloring scheme will not be used to select the C nodes—a coloring scheme will be partial to high degree
nodes since they have a better chance to strongly influence more nodes. Instead, nodes with higher local diffusivity will
be selected as C nodes. To describe the procedure, let

cl,i =
∑
j
cl,ij l = 1, 2, 3

denote the local diffusivity of node i using affinity measure cl. Here, the summation is performed over j’s within a given
pathlength distance from i. Then node i is taken to be a C node if

cl,i > 𝜃 cl,

where 𝜃 is a given threshold and cl is the average of the global set {cl,i}|V |
i=1. This is the first phase in constructing C. The

second phase moves any nodes in F to C that have sufficiently stronger affinity or matrix connections to other F nodes
than to its neighboring C nodes. This criterion is described by inequalities (8).

Since an AMG solver is now being constructed, the above cl measures are applied to relaxed vectors that sufficiently
approximate the near-nullspace. Thus, in comparison to the network analysis experiments, more relaxation sweeps must
be applied to the initial set of random test vectors, whichmeans that the above procedure considers the local diffusivity of
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18 of 29 LEE

TABLE 4 Network analysis using measures (32) and (30) with pathlength distance 5 to determine the spreaders.

# Spreaders Scenario Measure # Comps Size Lg Comp RG Lg Comp

5 European (32) 1.0 1349 51,633

(30) 4.0 1312 53,719

French (32) 1.6 1882 216,415

(30) 8.0 1871 211,741

Polish (32) 1.0 3369 854,431

(30) 1.3 3368 859,709

Texan (32) 2.0 1994 251,176

(30) 8.1 1988 248,226

10 European (32) 2.0 1322 55,759

(30) 4.6 1295 54,939

French (32) 7.7 1867 226,291

(30) 9.4 1864 223,512

Polish (32) 4.9 3357 878,935

(30) 1.6 3363 909,734

Texan (32) 5.4 1986 254,571

(30) 9.7 1981 250,212

Note: The resiliency/vulnerability of the network is assessed by the number of components the network is broken up into, the size of the largest
component, and the total effective resistance of largest component. 5 smoothings and 20 test vectors are used.

TABLE 5 Network analysis using measure (36) with pathlength distances 5 and 8 (only Texan) to determine the spreader
nodes.

# Comps Size Lg Comp RG Lg Comp

# Spreaders Scenario Pathlength 1 TV 3 TVs 1 TV 3TVs 1 TV 3 TVs

5 European 5 2.1 1.8 1347 1348 52,196 52,715

French 5 2.5 3.2 1881 1879 214,008 210,630

Polish 5 1.0 1.0 3369 3369 857,342 855,361

Texan 5 2.2 1.0 1994 1995 250,679 249,523

8 4.6 3.1 1991 1993 263,715 264,453

10 European 5 6.9 6.7 1308 1323 54,202 55,226

French 5 9.4 9.4 1863 1863 223,392 223,676

Polish 5 1.9 1.5 3363 3364 901,238 898,585

Texan 5 5.7 3.5 1985 1988 253,113 253,806

8 13.7 17.0 1977 1974 270,450 268,230

Note: The resiliency/vulnerability of the network is assessed by the number of components the network is broken up into, the size of the largest
component, and the total effective resistance of largest component. 10 smoothings with offset h = 1, and 1 test vector and 3 test vectors are used.
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LEE 19 of 29

TABLE 6 Convergence rates for 30 AMG V(1, 1) cycles applied to weighted-graph Laplacians arising from the BA
and WS graph models and DC power grid models.

Convergence rate

Scenario Measure Pathlength 1 Pathlength 3

BA (4000 nodes) (32) 0.48 0.17

(30) 0.55 0.18

(36) 0.52 0.29

WS (4000 nodes) (32) 0.08 0.07

(30) 0.08 0.08

(36) 0.09 0.09

European (32) 0.58 0.46

(30) 0.53 0.41

(36) 0.41 0.44

French (32) 0.54 0.52

(30) 0.62 0.47

(36) 0.46 0.38

Polish (32) 0.59 0.54

(30) 0.42 0.42

(36) 0.55 0.54

Texan (32) 0.34 0.33

(30) 0.33 0.33

(36) 0.37 0.38

Note: Measures (32) and (30) use 20 test vectors relaxed 20 sweeps. Measure (36) uses 1 test vector relaxed 20 sweeps, with 10 of these
sweeps used to spin-up the iterates for the auto-correlation. Caliber 2 interpolation is used in the BA and WS models, and caliber 3 in the
DC models.

just the algebraically smooth components. In the following experiments, 20 Gauss–Seidel sweeps are applied to each test
vector, and 20 test vectors are used for measures (30) and (32), and 1 for the auto-correlation measure (36). For measure
(36), an offset h = 1 and a spin-up of 10 Gauss–Seidel sweeps are used.

As for the interpolation and coarse-grid operator,P is constructed according to (9) and the coarse-grid operator accord-
ing to the Galerkin triplematrix productPtLP. Further,P is a 𝛽 caliber interpolation (i.e., each fine-grid value interpolates
from at most 𝛽 coarse-grid values) but with the 𝛽 C nodes restricted to the immediate neighborhood of the fine-grid node.
This prevents the coarse-grid operator from becoming too dense.

The experiments involve the weighted-graph Laplacians from the BA and WS networks with 4000 nodes and the DC
power grid models. To assess the solver’s efficiency, the convergence rate is taken over thirty V(1, 1) cycles applied to
a homogeneous system with a random initial guess. The rate is defined as ||u30||||u29|| and averaged over 10 simulation runs.
Table 6 tabulates results using pathlengths 1 and 3 in the affinity measures, and calibers 2 and 3 interpolation for the
BS/WS models and DC models, respectively. We see some dependency on the pathlength distance, but overall the rates
are decent. In particular, measure (36)’s performance is impressive since it required only 1 test vector, with its relaxation
iterates carefully gleaned through their auto-correlation.

5 MEASURES FOR AMG COARSENING OF SYSTEMS OF PDES

Although the effective resistance is defined for weighted-graph Laplacians, an extension to invertible scalar diffusion
operators readily follows by replacing the pseudo-inverse with the inverse in (18). In fact, the discretized operators for
these problems are weighted-graph Laplacians with most of the nodes having roughly the same degree and each node
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20 of 29 LEE

having a self loop. Because the nodes have roughly the same degree, a coloring scheme can be used to select the C nodes,
that is, the coloring is now more impartial to the graph structure. Utilizing (30), (32), or (36) as the affinity measure in
the coloring, the local diffusivity is used to determine the C nodes.

Unfortunately, extensions to systems of elliptic PDEs is more difficult. With respect to the effective resistance, rather
than using the individual entries of the inverse, we consider

r21,IJ ∶=
[
L−1]

II +
[
L−1]

JJ − 2
[
L−1]

IJ ,

which consists of submatrices of L−1 involving the rows and columns corresponding to all variables at nodes I and J. The
matrix r21,IJ integrates the nodal structure of the discretization (i.e., intra-variable and inter-variable connections between
I and J), and is obtained by an appropriate ordering of the unknowns and taking eI , eJ in (18) to be the submatrices of
the identity consisting of the columns corresponding to all variables at nodes I, J. Needless to say, r21,IJ is actually not
needed since only the local affinity measures will be used. Like in the correlation measure of Reference 3, these measures
will involve local matrices that incorporate the cross-variable coupling. Assuming an n-variable system, an analogue of
variance measure (30) is

C1,IJ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1√
var(v1I−v1J)

1√
var(v1I−v2J)

… 1√
var(v1I−vnJ )

1√
var(v2I−v1J)

1√
var(v2I−v2J)

… 1√
var(v2I−vnJ )

⋮ ⋮ ⋮ ⋮
1√

var(vnI −v1J)
1√

var(vnI −v2J)
… 1√

var(vnI −vnJ )

⎞⎟⎟⎟⎟⎟⎟⎟⎠

‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖F

I ≠ J

‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1√
var(v1I−v2I )

… 1√
var(v1I−vnI )

1√
var(v2I−v1I )

0 1√
var(v2I−v3I )

…

⋮ ⋮ ⋮ ⋮
1√

var(vnI −v1I )
1√

var(vnI −v2I )
… 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖F

I = J,

(38)

where the Frobenius norm is applied to incorporate contributions from all variable couplings between nodes I and J, and
from cross-variable couplings at node I to itself. With Il and Jm respectively indexing variable l at node I and variable
m at node J, when both I ≠ J and l ≠ m, the entries of (38) correspond to formula (28) evaluated at IlJm, that is, r̃2IlJm .
This formula is evaluated separately at each IlJm. Moreover, note that unlike in measure (12), where the cross-variable
couplings within nodes I and J contribute to the measure between nodes I and J when I ≠ J (i.e., CIJ for I ≠ J includes
contributions from corr(vlI , v

m
I ) and corr(v

l
J , v

m
J )), measure (38) correctly includes only couplings across I and J when I ≠ J.

An analogue to measure (32) is

C2,IJ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1√
2−2|corr(v1I ,v1J )|

1√
2−2|corr(v1I ,v2J )| … 1√

2−2|corr(v1I ,vnJ )|
1√

2−2|corr(v2I ,v1J )|
1√

2−2|corr(v2I ,v2J )| … 1√
2−2|corr(v2I ,vnJ )|

⋮ ⋮ ⋮ ⋮
1√

2−2|corr(vnI ,v1J )|
1√

2−2|corr(vnI ,v2J )| … 1√
2−2|corr(vnI ,vnJ )|

⎞⎟⎟⎟⎟⎟⎟⎟⎠

‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖F

I ≠ J

‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1√
2−2|corr(v1I ,v2I )| … 1√

2−2|corr(v1I ,vnI )|
1√

2−2|corr(v2I ,v1I )| 0 1√
2−2|corr(v2I ,v3I )| …

⋮ ⋮ ⋮ ⋮
1√

2−2|corr(vnI ,v1I )|
1√

2−2|corr(vnI ,v2I )| … 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖F

I = J.

(39)
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For (36), with v(𝛼,l,𝜏+h)I denoting the variable l component of the 𝛼’th test vector at relaxation iterate 𝜏 + h, we use

[r(𝛼)3,IJ]
2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

‖‖‖‖‖‖‖‖‖‖‖‖‖

⎛⎜⎜⎜⎜⎜⎜⎝

1|2−2autocorr(v(𝛼,1,𝜏+h)I ,v(𝛼,1,𝜏)J )| … 1|2−2autocorr(v(𝛼,1,𝜏+h)I ,v(𝛼,n,𝜏)J )|
1|2−2autocorr(v(𝛼,2,𝜏+h)I ,v(𝛼,1,𝜏)J )| … 1|2−2autocorr(v(𝛼,2,𝜏+h)I ,v(𝛼,n,𝜏)J )|
⋮ ⋮ ⋮
1|2−2autocorr(v(𝛼,n,𝜏+h)I ,v(𝛼,1,𝜏)J )| … 1|2−2autocorr(v(𝛼,n,𝜏+h)I ,v(𝛼,n,𝜏)J )|

⎞⎟⎟⎟⎟⎟⎟⎠

‖‖‖‖‖‖‖‖‖‖‖‖‖F
I ≠ J

‖‖‖‖‖‖‖‖‖‖‖‖‖

⎛⎜⎜⎜⎜⎜⎜⎝

1|2−2autocorr(v(𝛼,1,𝜏+h)I ,v(𝛼,1,𝜏)I )| … 1|2−2autocorr(v(𝛼,1,𝜏+h)I ,v(𝛼,n,𝜏)I )|
1|2−2autocorr(v(𝛼,2,𝜏+h)I ,v(𝛼,1,𝜏)I )| … 1|2−2autocorr(v(𝛼,2,𝜏+h)I ,v(𝛼,n,𝜏)I )|
⋮ ⋮ ⋮
1|2−2autocorr(v(𝛼,n,𝜏+h)I ,v(𝛼,1,𝜏)I )| … 1|2−2autocorr(v(𝛼,n,𝜏+h)I ,v(𝛼,n,𝜏)I )|

⎞⎟⎟⎟⎟⎟⎟⎠

‖‖‖‖‖‖‖‖‖‖‖‖‖F
I = J,

and take

C3,IJ =

√√√√1
s

s∑
𝛼=1

[r(𝛼)3,IJ]2. (40)

The above measures were derived by applying the measures of Section 4 at each IlJm coupling separately. We can also
derive a measure that takes all the couplings between nodes I and J together. To this end, let v(𝛼)I be the subvector of test
vector v(𝛼) at node I. Then as in the derivation of (28), we have

1
s

s∑
𝛼=1

[
v(𝛼)I

(
v(𝛼)I

)t
+ v(𝛼)J

(
v(𝛼)J

)t
− v(𝛼)I

(
v(𝛼)J

)t
− v(𝛼)J

(
v(𝛼)I

)t]

= 1
s

s∑
𝛼=1

[(
v(𝛼)I − 0

)(
v(𝛼)I − 0

)t
+
(
v(𝛼)J − 0

)(
v(𝛼)J − 0

)t
−
(
v(𝛼)I − 0

)(
v(𝛼)J − 0

)t
−
(
v(𝛼)J − 0

)(
v(𝛼)I − 0

)t]

= cov(vI , vI) + cov(vJ , vJ) − cov(vI , vJ) − cov(vJ , vI)
∶= ,

where each cov(⋅, ⋅) is an (n × n)multivariate covariance matrix. For example,

cov(vI , vI) =
[
cov(vlI , v

m
I )

]n
l,m=1,

where entries cov(vlI , v
m
I ) are scalar covariances. Expanding out each (n × n) multivariate covariance matrix, the lm’th

entry of the sum is

cov(vlI , v
m
I ) + cov(vlJ , v

m
J ) − cov(vlI , v

m
J ) − cov(vlJ , v

m
I ) = cov(vlI − vlJ , v

m
I − vmJ ).

Hence,

 =

⎛⎜⎜⎜⎜⎜⎝

var(v1I − v1J ) cov(v1I − v1J , v
2
I − v2J ) … cov(v1I − v1J , v

n
I − vnJ )

cov(v2I − v2J , v
1
I − v1J ) var(v2I − v2J ) … cov(v2I − v2J , v

n
I − vnJ )

⋮ ⋮ ⋮ ⋮

cov(vnI − vnJ , v
1
I − v1J ) cov(vnI − vnJ , v

2
I − v2J ) … var(vnI − vnJ )

⎞⎟⎟⎟⎟⎟⎠
. (41)

From (28), the diagonal entries of (41) approximate the effective resistances of the like-variables between nodes I and J.
The off-diagonal entries expose the cross-variable coupling, although their connection to the effective resistance is not
obvious. Lastly, instead of taking (41) as the measure, we define the measure
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C4,IJ =

‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1√
var(v1I−v

1
J )

1√
1−|corr(v1I−v1J ,v2I−v2J )| … 1√

1−|corr(v1I−v1J ,vnI −vnJ )|
1√

1−|corr(v2I−v2J ,v1I−v1J )|
1√

var(v2I−v
2
J )

… 1√
1−|corr(v2I−v2J ,vnI −vnJ )|

⋮ ⋮ ⋮ ⋮
1√

1−|corr(vnI −vnJ ,v1I−v1J )|
1√

1−|corr(vnI −vnJ ,v2I−v2J )| … 1√
var(vnI −v

n
J )

⎞⎟⎟⎟⎟⎟⎟⎟⎠

‖‖‖‖‖‖‖‖‖‖‖‖‖‖‖F

, (42)

so that a large C4,IJ means strong affinity between I and J.
Measure C4,IJ can be applied directly. However, because of possible disparity in the magnitudes of the variance and

correlation entries, a two-stage measure can be utilized instead. In the first stage, nodes that have strong affinity to I
are determined by comparing the Frobenius norm of the diagonal of the matrix in (42). In the second stage, nodes are
possibly added to this set by comparing the Frobenius norm of the off-diagonal of this matrix. For systems of PDEs with
weak cross-variable couplings, the first stage itself can be sufficient.

With the C nodes selected using a coloring scheme with any of the above measures, the interpolation weights can be
computed with the intra-variable least-squares scheme (14) or an analogous inter-variable scheme. The weights also can
be constructed with the indirect BAMG (iBAMG) technique of Reference 48 extended to systems of PDEs. Details on this
extension can be found in Reference 3.

6 NUMERICAL EXPERIMENTS

Since an AMG solver is being constructed, a sufficient number of relaxation sweeps must be performed on the initial
set of random test vectors to expose the near-nullspace components. With these relaxed vectors, measures (30), (32),
and (36) are applied to scalar PDEs, and measures (38), (39), and (42) to systems of PDEs. All the PDEs examined are
defined on a unit square with homogenous Dirichlet boundary conditions and discretized with bilinear finite elements
on uniform tessellations. Since the prototype software was implemented in Matlab, only spatial 2-d examples are consid-
ered. As for the relaxation, pointwise or point-based Gauss–Seidel is employed on the scalar and systems of PDEs. For
systems of PDEs, a point-based, rather than a nodal or blockwise relaxation, is chosen in order to more appropriately
simulate the diffusion process because the local solves in the nodal/blockwise schemes would describe a strong phys-
ical requirement on the diffusion process. Needless to say, these more complex schemes can still be used to simulate
the diffusion. In the point-based Gauss–Seidel scheme, each DOF located at a node is updated separately before moving
onto the DOFs on the next node. Although multiple updates can be performed on the DOFs at a node before moving
onto the next node, in the experiments, only 1 update is performed, that is, pointwise Gauss–Seidel is applied to nodally
ordered systems.

Because the chosen discretization leads to graphs with most nodes having equal degree, the coloring scheme of
Section 2 is used to select the C nodes. As for interpolation, we use the iBAMG scheme, but employ only intra-variable
interpolation for systems of PDEs since inter-variable interpolation was shown in Reference 3 to offer little improve-
ment for the PDEs examined. Again, thirty V(1,1) multigrid cycles are applied to problems defined with homogeneous
right-hand sides and random initial guesses. The convergence rate of the solver is defined as ||u30h ||

||u29h || , averaged over ten
simulations.

We also stress that very little effort was performed in adjusting parameters for optimal convergence, for example,
adjusting the number of test vectors and number of relaxation sweeps per vector, the caliber of interpolation, and the
strong-affinity threshold parameter 𝜃 in (13). More thorough parameter tuning can lead to better convergence. However,
parameter tuning is not considered in this article.

6.1 Scalar PDEs

The scalar PDEs we consider are the Laplace equation −∇ ⋅ ∇u(x, y) = 0, the random diffusion equation −∇ ⋅
D(x, y)∇u(x, y) = 0 where coefficient D(x, y) is normally distributed with mean 1 and standard deviation 0.05, and the
rotated anisotropic diffusion equation
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TABLE 7 Two-grid rates for 30 V(2, 2) cycles applied to discretized scalar PDEs.

2-grid rates: iBAMG 2-grid rates: (9)/iBAMG

Scenario # nodes Measure (30) Measure (32) Measure (36)-1TV/5TV

Laplace 202 0.09 0.07 0.21/0.16

402 0.13 0.12 0.24/0.24

802 0.17 0.22 0.30/0.34

Rand. Diff. 202 0.09 0.08 0.25/0.16

402 0.16 0.10 0.28/0.24

802 0.17 0.20 0.36/0.36

Rot. Diff. 𝜋

4
202 0.15 0.08 0.66/0.43

402 0.20 0.16 0.86/0.73

802 0.28 0.16 0.88/0.86

Rot. Diff. − 𝜋

4
202 0.16 0.11 0.69/0.36

402 0.38 0.16 0.89/0.72

802 0.46 0.17 0.86/0.85

Rot. Diff. 𝜋

8
202 0.31 0.15 0.73/0.68

402 0.38 0.49 0.86/0.82

802 0.44 0.66 0.88/0.91

Note: Measures (32) and (30) used 20 test vectors with 30 relaxation sweeps, and caliber 2 interpolation. Measure (36) used 1 or 5 test vectors with 50
relaxation sweeps of which 20 of these sweeps are used in the spin-up, and caliber 2 interpolation.

[
(cos2𝜙 + 𝜖 sin2𝜙)𝜕xx + (1 − 𝜖) sin(2𝜙)𝜕xy + (sin2𝜙 + 𝜖 cos2𝜙)𝜕yy

]
u(x, y) = 0

with rotation 𝜙. For the third PDE, when 𝜖 ≪ 1 and 𝜃 ≠
k𝜋
2
for integer k, the anisotropy is not grid aligned, which leads to

challenging systems for multigrid (for 𝜖 = 0.01 and 𝜙 = 𝜋

4
, an accurate V(1,1) two-grid rate of≈ 0.66 was computationally

obtained in Reference 52). We take 𝜖 = 0.0001. We first consider two-grid rates. For each equation, 20 test vectors with 30
pointwise Gauss–Seidel sweeps on each vector are used in measures (30) and (32). (The number of test vectors is a large
reduction in the amount used in the original correlation measure of Reference 3, that is, 80 test vectors with 15 smooth-
ing sweeps were used there.) For auto-correlation measure (36), only 1 and 5 test vectors are used with 50 smoothing
sweeps, of which 20 of these sweeps are used to spin-up each test vector. For the 1 test-vector case, operator-dependent
interpolation (9) is applied; for the 5 test-vector case, iBAMG interpolation is applied. Lastly, a pathlength-distance neigh-
borhood of 1 is used in each measure for the Laplace and random diffusion equations. For the anisotropic equation, we
take pathlength 1 for determining the strength of connection for measure (30) and extend the pathlength to 2 for the
interpolatory neighboring set for each fine-grid node25,26; and for (32), we take pathlength 2 for determining the strength
of connection and then extend the pathlength to 4 for the interpolatory neighboring set. For measure (36), a pathlength
of 1 was retained for the interpolatory neighborhood since extending this radius did not improve the performance for the
anisotropic problem.

Table 7 tabulates the two-grid V(2, 2) rates (as in Reference 25) for the AMG schemes constructed using the dif-
ferent measures using caliber 2 interpolation. These rates were relatively insensitive to the initial set of random test
vectors. We also see that “normalized” measure (32) gives the best overall performance. Unfortunately, although the
rates for the auto-correlation measure (36) when applied to Laplace and random diffusion equations are decent, the
rates are poor for the anisotropic problem and increasing the number of test vectors did not improve these rates.
Given the decent rates for the weighted graph Laplacian problems in Section 4.2 and for the Laplace and random
diffusion equations here, an immediate conjecture is that the anisotropy leads to colored randomness in the relaxed
test vectors and their iterates. This colored randomness implies a biasing, which may be affecting the auto-correlation
more substantially than the statistical variance and correlation. A thorough examination of this will be conducted in
the future.
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24 of 29 LEE

TABLE 8 Multigrid rates for 30W(2, 2) cycles applied to discretized scalar PDEs.

MGW(2,2)/V(2,2) rates: iBAMG
MGW(2,2)/V(2,2)
rates: (9)/iBAMG

Scenario # nodes Measure (30) Measure (32) Measure (36)-1TV/5TV

Laplace 202 0.10 0.12 0.37/0.13

402 0.17 0.20 0.51/0.23

802 0.21 0.26 0.51/0.33

Rand. Diff. 202 0.12 0.09 0.27/0.15

402 0.21 0.21 0.37/0.29

802 0.24 0.25 0.43/0.44

Rot. Diff. 𝜋

4
202 0.17 0.14 0.55/0.45

402 0.26 0.20 0.83/0.83

802 0.48 0.24 0.91/0.89

Rot. Diff. − 𝜋

4
202 0.21 0.16 0.65/0.40

402 0.43 0.21 0.84/0.79

802 0.62 0.24 0.92/0.90

Rot. Diff. 𝜋

8
202 0.33 0.19 0.75/0.73

402 0.43 0.49 0.88/0.87

802 0.61 0.69 0.92/0.92

Note: Measures (32) and (30) used 20 test vectors with 40 relaxation sweeps, and caliber 2 interpolation. Measure (36) used 1 or 5 test vectors with 50
relaxation sweeps of which 20 of these sweeps are used in the spin-up, and caliber 2 interpolation.

We turn tomultigrid rates.V(2, 2) cycles are applied to the Laplace and random diffusion equations, butW(2, 2) cycles
are now applied to the anisotropic equation, as in Reference 25. The setup is the same as in the two-grid simulations but
now 40Gauss–Seidel sweeps are performed on the test vectors when applyingmeasures (30) and (32). Table 8 provides the
results.We see that again (32) gives the best overall performance, and that themultilevel rates degrade from their two-grid
rates, particularly for the anisotropic problems. Such scaling issue has been observed in the past, and can be improved by
integrating amultilevel eigensolver into the BAMGprocedure to producemore accurate test vectors to the near-nullspace
components.17,25 Furthermore, for non-grid aligned anisotropies, as observed in Reference 25, scaling can be achieved
when these W-cycle solvers are used as preconditioners for a Krylov iteration. Lastly, we see that the auto-correlation
measure leads to decent multigrid rates only for the Laplace and random diffusion equations.

6.2 Systems of PDEs

We consider both strongly and mildly cross-variable coupled systems of PDEs. Because of the poor performance in the
auto-correlation measure for scalar PDEs, measure (40) will not be considered for the systems of PDEs.
Problem 1: Strongly coupled Laplacian system: Before looking at more interesting systems, we consider systems of
strongly coupled Laplace operators:

u =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 2Δ Δ 0 · · · 0

Δ −2Δ Δ 0 0

0 ⋱ ⋱ ⋱ 0

0 ⋱ Δ −2Δ Δ

0 · · · · · · Δ −2Δ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎝

u1
u2
⋮

un

⎞⎟⎟⎟⎟⎟⎠
= 0. (43)
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TABLE 9 Convergence rates for 30 AMG V(1, 1) cycles applied to discretized systems of strongly coupled Laplacians.

V (1, 1) Conv rates: Cal.2/Cal.4

Laplacian Sys # nodes Meas (38) Meas (39) Meas (42) Meas (42) diag

(2 × 2) 202 0.29/0.16 0.33/0.21 0.33/0.16 0.32/0.15

402 0.35/0.17 0.39/0.17 0.36/0.17 0.38/0.17

802 0.41/0.17 0.47/0.17 0.39/0.17 0.41/0.17

(3 × 3) 202 0.48/0.38 0.49/0.38 0.48/0.38 0.48/0.37

402 0.52/0.38 0.55/0.38 0.53/0.39 0.53/0.38

802 0.54/0.38 0.59/0.41 0.55/0.38 0.55/0.38

Note: For measures (38), (39), and (42) 20 test vectors are used with 20 relaxation sweeps, and and calibers 2 and 4 iBAMG interpolation.

(Although a Kronecker product preconditioner method can be used,53 we are interested in the new affinity measures’
ability to construct effective AMG solvers for these systems.)Measures (38), (39), (42), and the diagonal of (42) are applied
with 20 test vectors and 20 point-based Gauss–Seidel sweeps per vector, and the strength-of-affinity computation is per-
formed with pathlength distance 1. The interpolatory set is also kept to a neighborhood of pathlength 1 about a fine-grid
node. Table 9 gives the results. The rates are similar for each measure, and are again similar to the results obtained using
the correlation measure of Reference 3 but utilizing less test vectors (50 test vectors with 20 smoothing sweeps were used
in Reference 3). It is a bit surprising that the diagonal of measure (42) performed well. This may be due to the similar
structure of the diagonal and off-diagonal component operators in (43), that is, this similarity permits the diagonal of
(42) to be reflective of the whole measure. Overall, the rates have a slight dependency on the problem size when caliber
2 interpolation is used, but scaling is gained when the caliber is increased.
Problem 2: Elasticity: A relevant system of PDEs is the displacement formulation of linear elasticity:

𝜇Δu + (𝜆 + 𝜇)∇∇ ⋅ u = 0, (44)

where u is the displacement and 𝜆, 𝜇 are the Lamé constants of thematerial. The rigid bodymodes are the near-nullspace
components of this system, and for large 𝜆-to-𝜇 ratios, the system has a high-dimensional near-nullspace. That is, we have
𝜆

𝜇

= 2𝜈
1−2𝜈

, where 𝜈 is the Poisson ratio of the material. Hence, if this ratio is large, 𝜈 → 0.5 and we are approaching the
incompressible limit where the multi-scale divergence-free near-nullspace components arise. Since large near-nullspace
issues are out of the scope of this article, we will not consider this limiting scenario. However, in addition to taking a unit
square domain, we also consider an elongated beam of size (10 × 1). Keeping the number of nodes in the x and y directions
equal, the discretization leads to grid-aligned anisotropy, which makes the discretized systems more difficult for AMG.

Again, we use measures (38), (39), (42), and the diagonal of (42) to determine the affinity between the nodes. For the
square domain scenarios, 20 test vectors with 20 point-based Gauss–Seidel sweeps per vector are used in each measure;
for the beam scenarios, 20 test vectors with 10 Gauss–Seidel sweeps are used in themeasures. For the square, a pathlength
of 1 is used to determine the affinity and to circumscribe the interpolatory set. For the beam, for measures (38), (42), and
the diagonal of (42), a pathlength of 1 is used to determine the affinity but a pathlength of 2 is used to circumscribe the
interpolatory set; and for measure (39), a pathlength of 2 is used to determine the affinity but a pathlength of 4 is used
to circumscribe the interpolatory set. Table 10 summarizes the results forW(2, 2)multigrid cycles with caliber 2 iBAMG
interpolation. These rates are better than those using correlation measure of Reference 3, and required substantially less
test vectors (80 test vectorswere used there) andwith the performance less sensitive to the initial set of random test vectors.
Increasing the radius of the interpolatory set to effect long range interpolation to handle the grid anisotropy improved
the convergence in the beam scenarios, particularly for measures (39), (42), and the diagonal of (42). Although the rates
for (38) are not as good as the other measures, they are still impressive although slightly dependent on the problem
size. For the square scenarios, all the measures performed equally well and we observe more difficulty in handling the
larger 𝜆-to-𝜇 ratio case (there is now no grid anisotropy to ameliorate the strong cross-variable, cross-derivative coupling
in the second term of (44)). Overall, the rates are slightly dependent on the problem size but this issue can be removed
by integrating a multilevel eigensolver in the BAMG procedure or by simply wrapping these multigrid solvers with a
Krylov iteration.
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TABLE 10 Convergence rates for 30 AMGmultigridW(2, 2) cycles applied to a finite element discretization of (44).

MultigridW(2, 2) Conv rate: iBAMG

Scenario # nodes Meas (38) Meas (39) Meas (42) Meas (42) diag

Square:
(𝜆, 𝜇) = (1, 1)

202 0.12 0.13 0.15 0.14

402 0.20 0.21 0.20 0.20

802 0.26 0.26 0.26 0.26

Square:
(𝜆, 𝜇) = (10, 1)

202 0.51 0.48 0.49 0.49

402 0.60 0.58 0.59 0.59

802 0.64 0.64 0.62 0.61

Beam: (𝜆, 𝜇) = (1, 1) 202 0.21 0.05 0.05 0.06

402 0.23 0.05 0.05 0.07

802 0.28 0.06 0.07 0.08

Beam:
(𝜆, 𝜇) = (10, 1)

202 0.13 0.07 0.07 0.07

402 0.14 0.08 0.08 0.08

802 0.17 0.10 0.10 0.10

Note: For each scenario, 20 test vectors with 10 (for the beam) or 20 (for the square) point-based Gauss–Seidel sweeps per vector and caliber 2
iBAMG interpolation are used in each measure.

TABLE 11 Convergence rates for 30 AMGW(2, 2) cycles applied to the coupled rotated anisotropic diffusion system (45).

W(2, 2) Conv rate: iBAMG

Scenario: (𝝓1, 𝝓2) # nodes Meas (38) Meas (39) Meas (42) Meas (42) diag(
− 𝜋

4
,− 𝜋

4

)
202 0.21 0.18 0.11 0.12

402 0.36 0.20 0.28 0.27

802 0.49 0.22 0.29 0.37(
− 𝜋

4
,− 𝜋

6

)
202 0.34 0.33 0.29 0.29

402 0.44 0.42 0.42 0.40

802 0.65 0.47 0.58 0.54(
− 𝜋

4
,

𝜋

4

)
202 0.67 0.72 0.71 0.66

402 0.82 0.83 0.84 0.81

802 0.87 0.84 0.91 0.86

Note: Each measure used 20 test vectors with 20 relaxation sweeps per vector and caliber 2 interpolation.

Problem 3: Coupled anisotropic diffusion: An extension of the scalar rotated anisotropic diffusion problem is the
system

[

𝜖1𝜙1 𝛼𝜕xy

𝛼𝜕yx 
𝜖2𝜙2

]
u = 0, (45)

where 
𝜖i𝜙i = (cos2𝜙i + 𝜖isin2𝜙i)𝜕xx + (1 − 𝜖i) sin(2𝜙i)𝜕xy + (sin2𝜙i + 𝜖icos2𝜙i)𝜕yy with rotation 𝜙i. As we saw earlier, the

diagonal component operators themselves can be challenging for multigrid. Now the operators are coupled, which will
lead to additional challenges especiallywhen the rotations in the diagonal operators are not the same. Suchnon-alignment
can confuse the C-node selection because the different directions of anisotropies can disorient the detection of the nodal
affinities. For the cross-variable coupling, we take 𝛼 = 0.0001 in system (45). Several rotation pairs are considered, and
for each scenario, 20 test vectors with 20 point-based Gauss–Seidel sweeps per vector are employed in each measure.
Furthermore, the pathlength settings for the measures are the same as in the elasticity experiments.

 10991506, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2539 by Southern M

ethodist U
nversity, W

iley O
nline Library on [03/11/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



LEE 27 of 29

Table 11 tabulates the results formultigridW(2, 2) cycles.When𝜙1 = 𝜙2 = − 𝜋

4
, we see that themeasures performed as

well as its corresponding scalar problemwith𝜙 = − 𝜋

4
usingmeasures (30) and (32). The performance for all themeasures

degraded when diagonal operator rotations do not align, as illustrated when 𝜙1 = − 𝜋

4
and 𝜙2 = − 𝜋

6
and more so for the

larger non-alignment (𝜙1, 𝜙2) =
(
− 𝜋

4
,

𝜋

4

)
. This is to be expected since the non-aligned anisotropies are disorienting the

measures detection of the nodal affinities. Because of this, there are scaling issues, which will require future investigation
to resolve.

7 CONCLUSION

This article examines some new affinity measures for selecting the CDOFs/C nodes. They can be utilized in the efficient
analysis of networks and in the construction of AMG solvers for weighted graph Laplacians and systems of elliptic PDEs.
These measures are related to the diffusion distance/effective resistance of a Markov process, and thus they bring physics
into the coarse-grid selection procedure. These measures can construct AMG solvers that have better performance than
the solvers constructed with the original correlation measure of Reference 3. In particular, compared to this earlier mea-
sure, less number of test vectors are needed to provide comparable or better convergence rates, and the performance
behavior of AMG is less sensitive to the initial set of random test vectors. The results are encouraging, both for large-scale
network analysis and for AMG development for PDEs.
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ENDNOTES
1We will interchangeably use DOF and node to indicate either quantity.
2Although this assessment measure is often used in graph analysis, it can bemisleading. For example, a smaller giant component may indicate
high vulnerability than a larger giant component, that is, a more detrimental decomposition of the network has occurred. But if the system
operation in this giant component is relatively stable, then the vulnerability may not be as bad as this measure indicates it to be.
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