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Summary
This article develops an algebraic multigrid (AMG) method for solving sys-
tems of elliptic boundary-value problems. It is well known that multigrid
for systems of elliptic equations faces many challenges that do not arise for
most scalar equations. These challenges include strong intervariable couplings,
multidimensional and possibly large near-nullspaces, analytically unknown
near-nullspaces, delicate selection of coarse degrees of freedom (CDOFs), and
complex construction of intergrid operators. In this article, we consider only
the selection of CDOFs and the construction of the interpolation operator. The
selection is an extension of the Ruge–Stuben algorithm using a new strength of
connection measure taken between nodal degrees of freedom, that is, between
all degrees of freedom located at a gridpoint to all degrees of freedom at another
gridpoint. This measure is based on a local correlation matrix generated for a
set of smoothed test vectors derived from a relaxation-based procedure. With
this measure, selection of the CDOFs is then determined by the number of
strongly correlated connections at each node, with the selection processed by
a Ruge–Stuben coloring scheme. Having selected the CDOFs, the interpolation
operator is constructed using a bootstrapAMG (BAMG) procedure.We apply the
BAMGprocedure either over the smoothed test vectors to obtain an intervariable
interpolation scheme or over the like-variable components of the smoothed test
vectors to obtain an intravariable interpolation scheme. Moreover, comparing
the correlation measured between the intravariable couplings with the correla-
tion between all couplings, a mixed intravariable and intervariable interpolation
scheme is developed.We further examine an indirect BAMGmethod that explic-
itly uses the coefficients of the system operator in constructing the interpolation
weights. Finally, based on a weak approximation criterion, we consider a simple
scheme to adapt the order of the interpolation (i.e., adapt the caliber or maxi-
mum number of coarse-grid points that a fine-grid point can interpolate from)
over the computational domain.
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1 INTRODUCTION

We are interested in developing a multigrid method for the system of elliptic partial differential equations (PDEs)

u =
⎡⎢⎢⎢⎣
11 12 … 1n
21 22 … 2n
⋮ ⋮ ⋮ ⋮
n1 … … nn

⎤⎥⎥⎥⎦
⎛⎜⎜⎜⎝
u1
u2
⋮
un

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝
f1
f2
⋮
fn

⎞⎟⎟⎟⎠ , (1)

defined on a smooth spatial domain Ω ⊂ ℜd, d = 1, 2, 3, and where each ij is a partial differential operator of order at
most 2 (higher-order operators can be reduced to second- or lower-order operators by introducing auxiliary variables).
Together with (1) are boundary conditions that give us a system boundary-value problem (BVP), which we will take to be
well posed.

Developing a scalable and robust multigrid method for these systems is nontrivial. Issues include strong intervariable
coupling, multidimensional near-nullspace, inadequate revealing of the near-nullspace components through relaxation,
delicate construction of the interpolation operators even when computed near-nullspace components are used (e.g., in
an adaptive multigrid framework1), and others. Furthermore, additional concerns arise for algebraic multigrid (AMG),
such as the selection of coarse degrees of freedom (DOFs), which may lead to crossvariable, or intervariable, interpola-
tion where variables of different physical quantities interpolate to each other (see References 2-10 for research on AMG
for systems of PDEs, particularly for the equations of elasticity). This selection will involve a strength-of-connection or
affinity measure to determine which DOFs should be retained on the coarse level in order to achieve good coarse-grid
approximation using as few DOFs as possible. For scalar PDEs with discretizations leading to M-matrices, the concept of
strong connections can be used. For systems of PDEs, theM-matrix property is generally lost and other measures must be
developed (e.g., determinants of nodal submatrices, an option in the HYPRE software package,11 and for other measures,
see Reference 7). In this article, we examine a correlation-based measure first introduced in Reference 12 for unstructured
graph Laplacians, but in this article extended to systems of PDEs. One advantage of a correlation-based measure is that
it exposes dependencies (i.e., sensitivities) not just between individual DOFs but also between subsets of DOFs. These
subsets may include all the DOFs within a pathlength distance from a given node, or particularly for systems of PDEs,
the DOFs of all variable types located at a collection of gridpoints. In this article, we consider the correlation between all
the variable types located at each pair of neighboring nodes. Assuming that the fine-grid matrix is nodally ordered in the
sense that lexicographically streaming over the gridpoints, all the variable DOFs at a gridpoint are ordered continuously
before the DOFs at the next gridpoint, the pairs of neighboring nodes can be easily determined from the adjacency matrix
of the system. Hence, minimal grid information will be required in this scheme.

Once the CDOFs are selected, the interpolation operator will be constructed using a bootstrap algebraic multigrid
(BAMG) procedure that involves solving local least-squares problems to determine the interpolation weights.13,14 Since
the coarsening is performed nodally, there will be flexibility in constructing intravariable or intervariable interpolation,
or even a combination of the two that depends on how strongly the variables locally correlate.

The producedmethods are nodal-based or point-based.7,9,15,16 Thus, they can handle strongly coupled systems of PDEs
better than the unknown-based approach, which coarsens each variable separately leading to separate hierarchies for the
variables.9,15 The major difference between the methods of this article and other nodal-based approaches is in the selec-
tion of the CDOFs and the construction of the interpolation operator. Unlike other nodal-based approaches, an adaptive
process is used to achieve this selection and operator construction. This process can be applied to more general systems
of elliptic PDEs, but this comes at a large computational cost. Thus, the schemes of this article are more expensive than
other nodal-based methods. Nevertheless, the main goals of this article are to demonstrate that the statistical correlations
of relaxed vectors can expose dependencies in the DOFs and thus they can be used to determine the CDOFs and to explore
and extend some of the state-of-the-art AMG techniques for scalar PDEs13,14 to systems of PDEs.

The article proceeds as follow. In Section 2, we review multigrid for scalar PDEs and describe issues that compli-
cate the development of multigrid for systems of PDEs. We consider some approximation measures that can guide the
construction of the interpolation operator and some relaxation-based and BAMG techniques for constructing the interpo-
lation operators. Although these measures and relaxation-based/BAMG techniques have led to the development of new
schemes for scalar PDEs, their use in developing schemes for systems of PDEs have not been as systematically explored. In
Section 3, we examine the original correlation-based measure for graph Laplacians and its extensions to systems of PDEs.
Unlike the original method, which constructs a projected volume of the coarse agglomerate for each DOF to determine
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the candidate CDOFs, we use correlation matrix measures to determine which nodal DOFs strongly influences the most
number of nodal DOFs to determine the coarse nodal DOFs. This nodal coarsening, which retains all the variable types
located at a node, allows the nodal structure to be preserved on all levels, and thus preserves some of the PDE structure.
To determine whether a node is strongly or weakly connected to a given node, rather than using the arithmetic average
of the correlations at all the neighboring nodes, an average will be obtained by first applying a Z Fisher transformation
to the correlations.15,17,18 This transformation provides a variance stabilization in the sense that the set of transformed
correlations converges to a normal distribution faster than the original sample set of correlations,15 that is, fewer sam-
ples are needed. Having determined the coarse DOFs, in Section 4, we construct the values of the interpolation operator
using a BAMG least-squares approach. We consider intervariable and intravariable interpolation by appropriately form-
ing the local least-squares problem and a mixed intravariable/intervariable interpolation. Moreover, guided by a weak
approximation measure, we examine an adaptive interpolation caliber scheme that increases the caliber where the weak
approximation bound is likely to be locally large. Finally, we examine an indirect BAMG (iBAMG) scheme that explicitly
uses the coefficients of the system operator.14 In Section 5, we give some numerical results to illustrate the performance
of the new multigrid procedures.

2 MULTIGRID

One of the most efficient methods for numerically solving scalar elliptic PDEs is multigrid. Multigrid achieves its effi-
ciency by using a hierarchy of grids, where the computation on the coarser grids costs only a fraction of the effort of
computing on the original grid. By carefully designing the grid-level computation to handle only solution/error com-
ponents on the scale of the level, the goal of the grid-level computation is to resolve only grid-scale features. The
solution/error components are thus handled levelwise.

To achieve this efficiency and to produce a scalablemultigridmethod, the complementary smoothing/coarse-grid cor-
rection principle should hold, that is, what cannot be eliminated by relaxationmust be eliminated through the coarse-grid
correction. The purpose of smoothing (e.g., a few sweeps of Gauss–Seidel or weighted Jacobi iteration) is to “smooth" out
the error in an approximate solution. In the geometric multigrid setting, for structured-grid discretizations of scalar ellip-
tic PDEs, the smooth errors often correspond to geometrically smooth errors; in the AMG setting, these errors correspond
to the algebraic near-nullspace of thematrix operator (i.e., eigenvectors corresponding to the smaller eigenvalues). In fact,
for some of the basic relaxation schemes, these problematic smooth errors correspond to the near-nullspace components
of the differential operator.

Turning to the complementary coarse-grid correction, this process refers to the updating of the fine-grid approxima-
tion with the solution of the coarse-grid problem. The ideal situation is to have the coarse-grid correction resolves the
smooth error components. Such coarse-grid correction can be accomplished by carefully designing the intergrid interpo-
lation operators to have the property that these errors are in their range. Assuming that these errors are the near-nullspace
components of the differential operator, the interpolation operators are formed to capture error components that give
small energy norm. For scalar elliptic equations, this has been well analyzed, for example, if  is a scalar self-adjoint
operator, then the interpolation operator P is designed so that discrete approximations to components u that satisfy

|(u,u)|||u||2 ≪ 1

are well approximated in its range. For scalar elliptic operators, one near-nullspace component is the constant u = 1. Let
Lh denote the discretized operator, and assume a structured-grid, geometric multigrid setting. Then using the constant
vector, an operator-dependent P can be constructed by locally solving

LhP1 = 0 (2)

at the fine gridpoints. This may involve operator collapsing.19 However, in the AMG setting, even before the interpolation
operator can be constructed, the CDOFs must be determined. The CDOFs must be chosen to permit the formation of
accurate coarse-grid problems. Or, viewed differently, weighted sums of the error at selected CDOFs must be able to
accurately represent the error at fine DOFs that are not sufficiently handled by the smoother. To select these CDOFs, a
measure based on the operator is needed. For scalar elliptic PDEswith discretizations leading toM-matrices, thismeasure
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is given by the strength of connections between the DOFs, which is determined from the coefficients of Lh. For example,
in the classical Ruge=-Stuben coarsening approach,9 the following strength of connection measure is used: DOF j is said
to strongly influence DOF i if

|Lh,ij| ≥ 𝜃max
k≠i

|Lh,ik| for 0 < 𝜃 ≤ 1. (3)

The coarse nodes are essentially selected to be the DOFs that strongly influence the most number of fine DOFs (i.e.,
DOFs that have not been selected to be coarse nodes) and form a maximal independent set. With this selection and
taking the constant function a priori as the near-nullspace, the coefficients of P can be constructed to ensure that this
near-nullspace of Lh can be accurately represented.9,10

When Lh is not anM-matrix, theoretical measures that are expressed in terms of the intergrid and relaxation operators
may be used to guide the selection of CDOFs and the construction of the intergrid operator. For example, twomeasures3,20
are

M1(Q,uh) =
||(I − Q)uh||Dh||uh||Lh M2(Q,uh) =

(X(I − Q)uh, (I − Q)uh)||uh||2Lh , (4)

where Dh is the diagonal of Lh, Q = PR̂ for an operator R̂ that defines the coarse DOFs and with R̂P = I, the coarse iden-
tity, and X is a symmetric and positive-definite operator that defines the relaxation. Because Q is a projection onto the
range of P,M1 quantifies how well a given interpolation operator P for a set of given coarse DOFs defined through R̂ can
approximate uh. MeasureM2 further includes the effect of relaxation in the approximation. If uh is a good approximation
to the near-nullspace component, then these measures can be immediately used to guide the construction of P.

Unfortunately, the near-nullspace components often are not analytically available even for general scalar PDEs. This
implies that the discretized forms of them are not immediately available to select the CDOFs and form the interpolation
operator. In this case, rough approximations to the near-nullspace can be generated by applying a number of sweeps of an
appropriate relaxation scheme on a set of random vectors. From the complementary principle, algebraically smooth error
components that are poorly handled by the smoother must first be representable on the coarser level. Thus, what remains
after smoothing can themselves expose candidates for the CDOFs, especially small sets of them that can accurately rep-
resent the poorly handled error. This is the basis of the BAMG, adaptive multigrid schemes, and other relaxation-based
schemes.1,13,21,22 For example, consider the BAMG approach. Let

{
v(𝛼)

}s
𝛼=1 denote the set of relaxed vectors referred to

as the test vectors, and let Ω0 be the set of DOFs to be partitioned into F (fine) and C (coarse) DOFs with Ω0 = C ∪ F
and C ∩ F = ∅. Set C can be determined from

{
v(𝛼)

}s
𝛼=1 through a strength-of-connection measure such as the correlation

between theDOFs. Assuming that this partitioning has been performed, for i ∈ FwithCi denoting a subset of CDOFs that
is used to interpolate to i, the interpolation weights for DOF i are determined by solving the local least-squares problem

{
wij|j ∈ Ci

}
= argmin

wij

s∑
𝛼=1

(
v(𝛼)i −

∑
j∈Ci

wijv(𝛼)j

)2

. (5)

Weights {wij}j∈Ci are the coefficients of the ith row of P. This is the most basic least-squares formulation for deter-
mining the interpolation weights. To further conform to measureM1(Q,uh), a weighted least-squares formulation should
be used, with the weights being the reciprocal of the Lh norm of the test vectors.3,13 This weighted formulation, which is
used in the algorithms of this article (formulations (21)-(25)), provides heavier weighting to the algebraically smooth test
vectors.

Turning to system (1), issues arise that do not occur for scalar PDEs. Even in the simpler case when (1) is self-adjoint,
the relaxation process is complicated by the intervariable couplings in the system. In the scalar case, the relaxation locally
updates the DOFs using the spatial dependency described through the stencil patterns and coefficients of the discretiza-
tion. For systems of PDEs, the relaxation now has to handle both the spatial and intervariable dependencies. Achieving
this can require a special ordering of the variable updates reflected through the strengths of the intervariable couplings.23
However, evenwith this ordering, it is unclear howmany relaxation sweeps are needed to sufficiently expose the unknown
near-nullspace components.

Another issue in developing multigrid for (1) is the multidimensionality of the near-nullspace, whose analytic form
is generally unknown. These components can have a spatial global structure and/or a spatial local structure where the
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ellipticity degrades.Moreover, assuming that with a sufficient number of relaxation sweeps some of these components are
exposed, choices arise on how to choose the CDOFs and how to form the interpolation operator. In the ideal case, when
system (1) is diagonally dominant, orH1 equivalent (i.e., there exists positive constants c1, c2 such that c1||v||21 ≤ (v, v) ≤
c2||v||21 for all v ∈ H1), this dramatically simplifies. Now the near-nullspace can be approximated with the padded vectors

ui = (0,… , 0,ui, 0,… , 0)t,

where ui is the near-nullspace component of ii. The CDOFs can be selected separately for each of the variables, and an
appropriate interpolation operator is

P = diag(P11,P22,… ,Pnn), (6)

where Pii is the interpolation operator based on scalar operator ii and constructed using operator-collapsing or AMG
techniques to ensure that the padded near-nullspace components are in the range of P.5,7,9,10,24,25 This block-diagonal
interpolation leads to variables interpolating to like variables, that is, intravariable interpolation. With this interpolation,
the coarse-grid operator can be formed using the Galerkin coarse-grid procedure

l+1 = PtlP, (7)

where l and (l + 1) are, respectively, the fine and coarse levels.
When system (1) is not diagonally dominant, the near-nullspace will not have the above zero-padded form, and the

CDOFs must be carefully chosen using an appropriate strength-of-connection measure. Nevertheless, block-diagonal
interpolation (6) can still be applied to form the coarse-grid operator. Alternatively, the full-matrix interpolation

P =
⎡⎢⎢⎢⎣
P11 P12 … P1n
P21 P22 … P2n
⋮ ⋮ ⋮ ⋮
Pn1 Pn2 … Pnn

⎤⎥⎥⎥⎦ , (8)

or its nodally ordered form can be used (see Reference 7 for a nodally ordered form of this). This will produce intervariable
interpolation since the off-diagonal blocks lead to crosscoupling in the variables. AGalerkin coarseningwith this operator
produces the coarse-grid operator. This choice of interpolation may appear to be counterintuitive since the components
of the coarse-grid operator will correspond to PDE operators that are very different from the fine-grid component oper-
ators, for example, component l+1

ij =
∑n

s=1
∑n

t=1 Ptsi
l
stPtj, which combines all the component operators of the system, is

generally characteristically different from l
ij. However, viewed algebraically, the coarse-grid operator is an approximate

projection of the fine-grid operator onto the space spanned by the near-nullspace vectors. Thus, the coarse-grid problem
may be viewed as a transformed system. However, this viewpoint does not make the multigrid construction any easier.

3 CORRELATION-BASED MEASURES

To select the CDOFs for systems of PDEs, a general computable measure that exposes the strength-of-connection/affinity
in the DOFs is needed. One quantity that reveals this strength/affinity for general systems is the correlation between the
DOFs. In particular, suppose {v(𝛼)}s

𝛼=1 is a collection of smoothed test vectors obtained by applying a number of relaxation
sweeps to an initial set of random vectors. We can assume that the smoothed vectors are themselves random, although
colored by the relaxation, so that they form a sample set for the random test vectors. Given the statistical nature of this
sample set, the correlation is the natural quantity that can reveal the affinity between the DOFs.

One correlation-based measure for selecting the CDOFs is explored in Reference 12 for graph Laplacian systems (see
also the recent article,8 which uses a correlation measure for selecting the CDOFs for PDEs). With i, j being two arbitrary
vector components of vector v(𝛼) and the component inner product defined as

(
vi, vj

)
=

s∑
𝛼=1

v(𝛼)i v(𝛼)j ,
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the measure is

cij =
|||(vi, vj)|||2

(vi, vi)(vj, vj)
. (9)

If the mean of the sample set is zero, then cij is indeed the correlation between DOFs i and j.With this measure and
a given threshold, i and j are said to have close affinity if the measure is greater than this threshold. DOFs that are close
have a better chance of being “aggregated” together, with one of them selected as the representative CDOF or seed of the
aggregate. In fact, this affinity measure can be used to determine the CDOFs and the grouping of FDOFs with each CDOF
in a similarmanner to how the strength-of-connectionmeasure is used to achieve these goals in the Ruge–Stubenmethod.
Specifically, in a similar manner to how the strength-of-connection is used to “fractionally aggregated” the FDOFs (i.e.,
fractionally in the sense that each FDOF can interpolate from several specified coarse nodes), the affinity measure can be
used to fractionally aggregate the FDOFs with the coarse seeds. This will lead to an overlapping partitioning of the DOFs
since a FDOF can be part of several aggregates.

The actual partitioning of the DOFs in Reference 12 is performed by associating to each DOF a projected volume of
the resulting aggregate if that DOF was selected as a seed. This projected volume explicitly uses the affinity measure.
Specifically, for DOF i, let N(i) be its neighborhood (i.e., N(i) =

{
j| Lh,ij ≠ 0

}
) and let 𝜋i be its volume, which is initially

set to 1. The projected volume 𝜈i for i is defined as

𝜈i = 𝜋i +
∑
j∈N(i)

𝜋j
cij∑

k∈N(j) cjk
. (10)

AllDOFs that have projected volumes greater than a threshold factor (e.g., 1.5) of the average projected volumebecome
CDOFs. This is the first pass for determining C, the set of CDOFs. The second pass can convert a FDOF into a CDOF if its
affinity measure to other FDOFs is relatively large or if its weighted graph connections in Lh with FDOFs are relatively
large, that is, for some threshold Q and for i ∈ F, if∑

j∈(C∩N(i)) cij∑
j∈N(i) cij

≤ Q or
∑

j∈(C∩N(i)) Lh,ij∑
j∈N(i) Lh,ij

≤ Q, (11)

thenmove i toC. Interpreting, the first inequality holds if the cij's to its neighboringFDOFs,N(i) ∖ (C ∩ N(i)), are large com-
pared with the affinity measure to its neighboring CDOFs, (C ∩ N(i)). The second inequality has a similar interpretation
but in terms of the graph connections.

Since the correlation exposes the dependency between the DOFs, the correlation measure is suitable for systems of
PDEs, especially for exposing intervariable and intravariable DOF dependencies. However, a direct application of the
above strategy does not utilize nor preserve any of the PDE properties of the problem. Since the scheme is agnostic to
the variable type, the nodal structure is lost on the coarser levels, crossvariable interpolation generally will arise, and
some of the variable types can vanish on the coarser levels (see Figure 1, which illustrates a coarse aggregate consisting of
different variable types at different gridpoints). To avoid these issues and to provide the flexibility to produce intravariable
interpolation or to limit the intervariable interpolation towithin a radius of a FDOF,we generalize the correlationmeasure
to nodal degrees of freedom, that is, all variable DOFs located at a node. We also use the actual correlation involving the
sample mean and denote it by corr(⋅, ⋅), that is, for quantities xql and x

r
m

corr(xql , x
r
m) =

∑s
𝛼=1

(
xq,(𝛼)l − xql

)(
xr,(𝛼)m − xrm

)
√(∑s

𝛼=1

(
xq,(𝛼)l − xql

)2)(∑s
𝛼=1

(
xr,(𝛼)m − xrm

)2) ,

where x∗∗ is the mean of x∗∗ . For ease of presentation, assume that there are only two variable types so that we can denote

themultivariable test vector as
(
v1
v2
)(𝛼)

.Let I, J denote two nodes on the finest level, and consider the following correlation

matrix defined over the test vectors:



LEE 7 of 21

F I GURE 1 Possible coarse aggregates generated by vector-component measure (9) and a nodal-based correlation measure. Aggregate
Group 1, produced by vector-component measure (9), generally consists of different variable types at different spatial nodes. Aggregate Group
2, produced by a nodal-based measure, consists of all variable types at the same spatial nodes

corr
((

v1I
v2I

)
,

(
v1J
v2J

))
∶=

⎛⎜⎜⎜⎝
corr(v1I , v

1
I ) corr(v

1
I , v

1
J ) corr(v

1
I , v

2
I ) corr(v

1
I , v

2
J )

corr(v1J , v
1
I ) corr(v

1
J , v

1
J ) corr(v

1
J , v

2
I ) corr(v

1
J , v

2
J )

corr(v2I , v
1
I ) corr(v

2
I , v

1
J ) corr(v

2
I , v

2
I ) corr(v

2
I , v

2
J )

corr(v2J , v
1
I ) corr(v

2
J , v

1
J ) corr(v

2
J , v

2
I ) corr(v

2
J , v

2
J )

⎞⎟⎟⎟⎠ . (12)

Corresponding to each I is a set of correlation matrices, one matrix for each J within a selected pathlength distance
from I. The size of this set is then dependent on the selected pathlength distance. Now, taking the measure to be the
Frobenius norm of this matrix, that is,

CIJ =
‖‖‖‖‖corr

((
v1I
v2I

)
,

(
v1J
v2J

))‖‖‖‖‖F , (13)

both spatial and variable crosscorrelations contribute to this value. Alternatively, since the diagonal of matrix (12) is the
identity, a modified measure that better exposes the relevant contributions is the Frobenius norm of the off-diagonal
matrix of (12).

With either measures, the nodal CDOFs can be determined using the projected volume procedure, or with a
strength-of-correlation and coloring scheme similar to the Ruge–Stuben coarsening method. In this article, we consider
the second method.

The first step in the coloring scheme is to quantify strongly correlated connections. One way to do this is to take the
arithmetic average of the CIJ 's over all the graph connections within the selected pathlength distance to node I, and to
classify node K as strongly influencing I if CIK is greater than a threshold factor of this average. However, notice that even
for a scalar system, arithmetically averaging a set of correlations may not accurately produce an average correlation, that
is, since a correlation is the cosine of the angle between two vectors, correlations are not additive quantities and thus are
not suitable for arithmetic averaging. In fact, a by-product of arithmetic averaging, which was observed experimentally,
is a complication in the threshold-parameter tuning, that is, the range of parameter values to explore can be large. To
tighten this range, since the sample data are assumed to be approximately bivariate normally distributed, a statistical Z
Fisher transformation can be applied to the correlations.15,17,18 This transformation produces a variance stabilization that
results in the transformed correlations converging to a normal distribution faster than the original set of correlations.15
Let r denote the correlation between two quantities. The Z value of r is

Z = 1
2
ln 1 + r
1 − r

. (14)

These Z values are additive quantities, and thus, an arithmetic averagedZ can be computed and an average correlation
can be determined by inverting (14) back to r:

r = e2Z − 1
e2Z + 1

. (15)

With this averaging, nodes that are connected to I that have correlations larger than some threshold of this average
are classified as strongly influencing I.

To generalize this to systems of PDEs, a Z Fisher transformation is first applied to each matrix element of the corre-
lation matrices associated with node I. This will lead to an average correlation matrix for this node. Taking its Frobenius
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norm and comparing it with the CIJ 's, the nodes that strongly influence I can be determined. For example, denoting CI to
be the Frobenius norm of this average correlation matrix for node I, then node J is considered to be strongly influencing
I if

CIJ ≥ 𝜃C̄I , (16)

where 𝜃 is a threshold parameter. A standard Ruge–Stuben coloring scheme, which colors a node based on the number
of nodes it strongly influences, can be applied to determine the nodal CDOFs: Let F,C,U,G, StI , respectively, denote the
FNODEs, CNODEs, unmarked nodes, total grid points, and nodes that I strongly influences. Then

CDOF Coloring Algorithm
Set F ∶= ∅, C ∶= ∅, U∶= G

1. For I ∈ U, 𝜆I ∶= ||StI ∩ U|| + 2 ||StI ∩ F||
2. If 𝜆I ≠ 0 then
(a) pick I ∈ U with maximum 𝜆I and set C ∶= C ∪ {I}, U ∶= U∖{I}
(b) for all J ∈ StI ∩ U, set F ∶= F ∪ {J}, U ∶= U∖{J}
else break

3. Go to 1.

Determining the CDOFs depends on the pathlength radius that correlation matrix (12) is constructed for. For
anisotropic problems, a pathlength 2 or larger can better determine the CDOFs that follow the anisotropy. However, for
systems of PDEs, using even pathlength 2 can lead to a relatively large number of correlation matrices, which results
in a costly coarsening procedure. An alternative approach is to first determine the strong direct connections (i.e., strong
pathlength 1 connections) to I, and then construct correlations only for pathlength 2 nodes that are directly connected to
these strongly connected nodes. This is still a complex procedure. Fortunately, it was observed that correlation matrices
using pathlength 1 can sufficiently capture anisotropies.

Another observation is that correlation matrices involving only the intravariable connections can be constructed.
Comparing the Frobenius norm of one of thesematrices with its corresponding full correlationmatrix can help determine
whether intravariable or intervariable interpolation should be used. In fact, since this comparison can be performed at
each node, a mixed intravariable/intervariable interpolation can be performed over the grid. For example, taking (12) and
the intravariable correlation

ĉorr
((

v1I
v2I

)
,

(
v1J
v2J

))
∶=

⎛⎜⎜⎜⎜⎜⎜⎝

corr(v1I , v
1
I ) corr(v

1
I , v

1
J ) 0 0

corr(v1J , v
1
I ) corr(v

1
J , v

1
J ) 0 0

0 0 corr(v2I , v
2
I ) corr(v

2
I , v

2
J )

0 0 corr(v2J , v
2
I ) corr(v

2
J , v

2
J )

⎞⎟⎟⎟⎟⎟⎟⎠
, (17)

the ratio ‖‖‖‖‖ĉorr
((

v1I
v2I

)
,

(
v1J
v2J

))‖‖‖‖‖F‖‖‖‖‖corr
((

v1I
v2I

)
,

(
v1J
v2J

))‖‖‖‖‖F
(18)

can be used to determine whether intravariable or intervariable interpolation should be used at node I. Specifically, if
ratio (18) is approximately 1, then intravariable interpolation can be used at I; otherwise if (18) is small, intervariable
interpolation is used.
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4 BAMG WEIGHTED LEAST-SQUARES INTERPOLATION

With the selection of the CDOFs performed, a BAMG weighted least-squares interpolation can be applied to construct
P. This will be achieved using a modified form of local least-squares problem (5). To show this, we first note the close
connection between (5) and the global measureM1(Q,uh) of (4). The unweighted form of (5) simplifies the illustration of
this connection. Reordering the DOFs so that all the FDOFs are ranked before the CDOFs, and taking R̂ = [0 I] ,where 0
and I are, respectively, the (|CDOFs| × |FDOFs|) zero matrix and (|CDOFs| × |CDOFs|) identity matrix, problem (5) can
be viewed as approximately constructing row i of a P that minimizes a localM1-related measure. To be precise, consider
the global-grid problem

argmin
P

[
max
uh

M1(P [0 I] ,uh)
]
= argmin

P

[
max
uh

‖(I − P [0 I])uh‖Dh||uh||Lh
]
, (19)

whose solution is an ideal interpolation operator P. The ith row of (I − P [0 I])uh is

[(I − P [0 I])uh]i = uh,i −
∑
j∈Ci

wijuh,j. (20)

Now consider modifying (19) to consist of only its numerator and with the Dh norm replaced with the standard l2
norm. Then (5) can be viewed as a procedure for constructing an approximation to the ith row of P for this modified
problem, with the min–max problem minimized over the set of test vectors.

The ideal interpolation described through (19)must interpolate the near-nullspace components accurately, that is, the
maximum occurs when uh is a near-nullspace component of Lh, which are roughly exposed in the test vectors. Assuming
that the components of Dh are positive, a local weighted least-squares problem that better aligns with (19) is

{
wij|j ∈ Ci

}
= argmin

wij

s∑
𝛼=1

Dh,i‖‖v(𝛼)‖‖2Lh
(
v(𝛼)i −

∑
j∈Ci

wijv(𝛼)j

)2

. (21)

Of course, this minimization process is independent of Dh,i. However, this value can be used as an indicator for
adapting the caliber of interpolation. At locations i where Dh,i is substantial larger than at other locations, the caliber of
interpolation is increased. This will allow a uniform distribution of the interpolation error over the grid.

Problem (21) can be extended to systems of PDEs to allow intravariable and intervariable interpolation. Since a nodal
coarsening is performed, for intervariable interpolation, the only change in (21) is in the indicator for caliber adapta-
tion. For example, for node I, Dh,I can be the Frobenius norm of the submatrix of h involving the rows and columns
corresponding to node I. The least-squares problem will be

{wIJ|J ∈ CI} = argmin
wIJ

s∑
𝛼=1

Dh,I‖‖v(𝛼)‖‖2h

(
v(𝛼)I −

∑
J∈CI

wIJv(𝛼)J

)2

. (22)

For intravariable interpolation, the elements of block Pll of (6) are computed using a least-squares problem involving
only the variable l subvectors of the test vectors. Let v(𝛼,l) be the variable l subvector of v(𝛼) and h,ll denote the (variable
l)-to-(variable l) submatrix of h. Then the least-squares problem will be

{
wl
IJ|J ∈ CI

}
= argmin

wl
IJ

s∑
𝛼=1

Dh,I‖‖v(𝛼,l)‖‖2h,ll

(
v(𝛼,l)I −

∑
J∈CI

wl
IJv

(𝛼,l)
J

)2

. (23)

Here, the nodalDh,I is used, implying that the same caliber adaptation will be applied to each variable at a given node.

4.1 iBAMG Scheme

The interpolation weights generated by the BAMG procedures implicitly depend on the operator coefficients through the
smoothed test vectors. The indirect BAMG (iBAMG) technique of Reference 14 constructs the weights using an explicit
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dependence on these coefficients. Consider a fine node I. This explicit dependence is achieved by an indirect interpolation
that approximates some of the FDOF connections to I with CDOF connections to I. We extend this technique to systems
of PDEs. After a local relaxation update for this node, the residual of the homogeneous system is

rI = IIvI + IFI vFI + ICI vCI ≈ 0, (24)

where theI∗'s are block submatrices consisting of the rows and columns of corresponding to nodes I and ∗, and where
FI and CI are the FDOF and CDOF direct neighbors of node I. For simplicity, we assume that FI consists of only strong
connections. The first step of one variant of iBAMG is to approximate IFI vFI in terms of the vCI 's. This is done using a
least-squares procedure such as

{w̃IJ|J ∈ CI} = argmin
w̃IJ

s∑
𝛼=1

Dh,I‖‖v(𝛼)‖‖2h

(
IFI v

(𝛼)
FI

−
∑
J∈CI

w̃IJv(𝛼)J

)2

. (25)

Using this in (24), the interpolation weights for node I are

wIJ = −1
II
(
−w̃IJ − ICI

)
, J ∈ CI . (26)

Another variant of iBAMG, which aligns more with the original Ruge–Stuben approach, is to approximate each vFI in
terms of the vCI 's by solving a set of |FI| least-squares problems, for example,

{
w̃FIJ|J ∈ CI

}
= argmin

w̃FI J

s∑
𝛼=1

Dh,I‖‖v(𝛼)‖‖2h

(
v(𝛼)FI

−
∑
J∈CI

w̃FIJv
(𝛼)
J

)2

. (27)

Once this is done, using (24) leads to the weights

wIJ = −1
II
(
−IFI [w̃]FICI − ICI

)
, (28)

where [w̃]FICI is the matrix of indirect interpolation values obtained by solving the |FI| least-squares problems. However,
since this approach is rather expensive, we consider only the first approach.

4.2 Number of relaxation sweeps and test vectors

In the literature, determining the number of relaxation sweeps and test vectors in (i)BAMG is an unresolved problem
even for scalar PDE problems. For these scalar problems, most of this literature assumes that the grid hierarchy is given,
for example, by a geometric coarsening. With this hierarchy, ≈10 relaxation sweeps and 5–10 test vectors are often used
in the BAMG procedures.13,14 In this article, since statistical correlations are employed; a larger number of test vectors is
needed to capture the statistical DOF dependencies, and hence to determine the CDOFS. However, not all of these test
vectors are needed in the construction of the interpolation operator, that is, the least-squares problems can be defined
for only a subset of the v(𝛼)'s. Nevertheless, requiring more test vectors means that the BAMG method is more costly
for systems of PDEs, which should not be surprising. Moreover, more relaxation sweeps are generally needed to expose
the near-nullspace for systems of PDEs. However, rather than using ≈100 sweeps, which is often needed to sufficiently
capture the global nature of the near-nullspace, only O(10) sweeps will be used. Justification for this relaxation reduc-
tion can be extracted from the theory of optimal interpolation described originally in Reference 20 for the Richardson
iteration and later in Reference 26 for more general iterations. In Reference 20, it was shown that for an (m ×m) real sym-
metric positive definite matrix with orthonormal eigenvectors {pi} and eigenvalues {𝜆i}, 𝜆1 ≤ … ≤ 𝜆m, if R̂ is chosen
such that

R̂t = [p1,… , pc], c < m (29)
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then P = R̂t is the optimal interpolation in the sense that it is the argmin of

argmin
P

[
max
uh

M2(PR̂,uh)
]
. (30)

Furthermore, it was shown that

min
P

[
max
uh

M2(PR̂,uh)
]
= 𝜆n

𝜆c
, (31)

which leads to a two-grid convergence bound of
(
1 − 𝜆c

𝜆n

)
. R̂ then defines the CDOFS to be the coordinates of a vector

with respect to the eigenvectors {p1,… , pc}, and the coarse-grid operator obtained by a Galerkin coarsening is a Galerkin
projection of the fine-grid operator onto the span of these eigenvectors. The CDOFs should be selected to ensure that these
can be accurately accomplished for a reasonable number of eigenvectors. However, applying a lot of relaxation sweeps to
the test vectors generally produces only an accurate approximation to p1, leading to a CDOF selection that accurately rep-
resentsmainly this eigenvector. The range of P is then approximately the span of only p1 and hence, the resulting two-grid
method is approximately a 1-vector deflation scheme. Applying a few sweeps will produce a less accurate approximation
to p1, but will enrich the test vectors with components in more of the algebraically smooth eigenvectors. Selecting the
coarse nodes based on the correlations of these smoothed test vectors will lead to a better representation of more of these
smooth eigenvectors.

5 NUMERICAL EXPERIMENTS

In this section, we examine whether this correlation matrix method can detect the appropriate CDOFs and whether the
combination of this CDOF selection and theBAMG interpolation construction can lead to an effectivemultigrid algorithm
for systems of PDEs. Since the prototype software was implemented in MATLAB, we consider only systems in 2-d.

Before looking at some challenging systems of PDEs, we consider the approach's performance on a system of Laplace
operators defined in the unit square and with homogeneous Dirichlet conditions:

u =

⎡⎢⎢⎢⎢⎣
−2Δ Δ 0 … 0

Δ −2Δ Δ 0 0
0 ⋱ ⋱ ⋱ 0
0 ⋱ Δ −2Δ Δ
0 … … Δ −2Δ

⎤⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎝
u1
u2
⋮
un

⎞⎟⎟⎟⎠ = 0 (32)

(Although a Kronecker product preconditioner method16 can be used, we are interested in a stand-alone AMG solver
for tackling this system.) The system was discretized using finite elements with bilinear polynomials on a uniform grid.
We use the correlation/Ruge–Stuben coloring scheme to determine the CDOFs and consider BAMG with intravariable,
intervariable, andmixed-variable interpolation, and iBAMGwith intravariable and intervariable interpolation, which are
respectively denoted by iBAMG1 and iBAMG2. For the mixed-variable interpolation, denoted by “mixed,” intervariable
interpolation is used on all nodes except for nodes, where the intravariable correlation is dominant in the correlation
matrix (see Equation (18)), for which intravariable interpolation is used. The strength-of-correlation threshold 𝜃 in (16)
was set to 0.75, the number of smoothing sweeps and test vectors were set to 20 and 50, and the caliber of interpola-
tion was set to 8. Pointwise Gauss–Seidel was used since nodal Gauss–Seidel was observed to produce similar results. To
measure the convergence rate, 30 V(1,1) multigrid cycles were applied to a homogeneous problem with a random ini-
tial guess, and the rate was defined as ||u30h ||||u29h || . This measure was selected because the rate between the last two iterations
gave the slowest rate over the 30 cycles, that is, best reflected the spectral radius. Table 1 contains the results. For n = 1,
a scalar Laplace equation, we obtain fair rates although not as good as a standard AMG method. This is not usual since
standardAMG's strength-of-connectionmeasure and interpolation construction explicitly use the coefficients of the oper-
ator. For n = 2, 3, we see that the new method achieves reasonable rates for the intravariable BAMG schemes, while the
intervariable schemes do not. This can be explained by the structure of the coarser-level operators: when the component
operators have the same differential form, intravariable interpolationwith theGalerkin construction (7) of the coarse-grid
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n = 1

h Intra Inter Mixed iBAMG1 iBAMG2

1/25 0.23 — — 0.31 —

1/50 0.26 — — 0.22 —

1/100 0.23 — — 0.26 —

h n = 2

Intra Inter Mixed iBAMG1 iBAMG2

1/25 0.21 0.45 0.34 0.21 0.32

1/50 0.23 0.74 0.55 0.18 0.48

1/100 0.34 0.74 0.80 0.20 0.35

h n = 3

Intra Inter Mixed iBAMG1 iBAMG2

1/25 0.39 0.94 0.87 0.37 0.79

1/50 0.39 0.93 0.90 0.38 0.87

1/100 0.47 0.93 0.91 0.39 0.81

Note: For n = 1, a scalar Laplace equation, only the intravariable BAMG and iBAMG
methods are applicable.

TABLE 1 Multigrid rates for coupled systems of
Laplacians using the different BAMG schemes

operator preserves the PDE structure while intervariable interpolation generally does not.16 This also explains the poor
performance of the mixed-variable interpolation since intervariable interpolation was used on a substantial number of
nodes.

We now consider the following more difficult systems:
Problem 1: elasticity

𝜇Δu + (𝜆 + 𝜇)∇∇ ⋅ u = 0,

which has the rigid body modes as near-nullspace components, and for large 𝜆-to-𝜇 ratios, has a large near-nullspace.
That is, we have 𝜆

𝜇
= 2𝜈

1−2𝜈
, where 𝜈 is the Poisson ratio of the material. Hence, if this ratio is large, 𝜈 → 0.5 and we

are approaching the incompressible limit, where problematic divergence-free modes arise. Since large near-nullspace
issues are out of the scope of this article, we will not consider these scenarios. Nevertheless, even away from the
incompressible limit, developing an AMG solver for these equations is difficult. Indeed, these elasticity equations
have been the impetus for much of the AMG developments over the past two decades.2-4,7,8 The difficulty arises
from the multidimensional near-nullspace (i.e., rigid body modes) and the non-M matrix property of the discretized
system.

Problem 2: coupled anisotropic diffusion [
𝜖1𝜃1 𝛼𝜕xy
𝛼𝜕yx 𝜖2𝜃2

]
u = 0,

where 𝜖i𝜃i = (cos2𝜃i + 𝜖isin2𝜃i)𝜕xx + (1 − 𝜖i) sin(2𝜃i) + (sin2𝜃i + 𝜖icos2𝜃i)𝜕yy. By taking 𝜖i ≪ 1 and 𝜃i ≠
k𝜋
2
for integer k,

𝜖i𝜃i will lead to an anisotropic, nongrid aligned diffusion operator. We note that scalar anisotropic, nongrid aligned
diffusion problems are known to be challenging for AMG (e.g., in Reference 27, for 𝜖i = 0, 01, 𝜃i = 𝜋

4
, an accurate V(1,1)

two-grid rate of ≈ 0.66 was computationally obtained).
Problem 3: first-order system least-squares (FOSLS) for neutron transport

[
𝜎tI −

1
5𝜎t

Δ −
(
𝜎t
3
+ 1
15𝜎t

)
∇∇⋅

]
u = 0
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where 𝜎t is the total cross-section of the medium that the transport is occurring in. This is the notorious two–two block
of the FOSLS PN formulation of the Boltzmann transport equation, which describes the transport of a stream of neu-
trons/photons as these particles collide with the nuclei of the medium.28,29 When the cross-section is large, we see that
the grad-div component of the operator dominates, which implies a large near-nullspace.

For each of these problems, we assume homogeneous Dirichlet boundary conditions and a finite element discretiza-
tion with bilinear polynomials.

CDOF selection: We consider the elasticity and anisotropic diffusion problems to illustrate the CDOF selection, partic-
ularly the algorithm's ability to trace anisotropies. To obtain easy visualization of the CDOFs, the size of the finest mesh
was 502. For Problem 1, the chosen domains are a unit square and a beam of size [0, 10] × [0, 1], which leads to a stretched
grid. For the unit square, the Lamé constants (𝜆, 𝜇) were set to (1, 1), (10, 1), which correspond to Poisson's ratios of 0.25
and 0.4545, respectively. For the beam, (𝜆, 𝜇) were set to (1, 1), (5, 1). Finally, the strength-of-correlation threshold was
set to ≈ 1 for the nonstretched grid cases and ≈ 1.6 for the stretched grid case. The larger threshold value will ensure
that only the most highly correlated nodes will be selected as strongly influencing nodes, which for the stretched grid
case will ensure tracking of anisotropies. For Problem 2, only the unit square was considered. For this problem, we took
𝜖1 = 𝜖2 = 𝛼 = 0.01, ranged the angles 𝜃1, 𝜃2 over a set of values, and set the threshold parameter to 1.1. We note that these
problems are nontrivial for multigrid.

Figure 2 illustrates the CDOF selection for the first four coarser levels for Problem 1. From top to bottom and left
to right, the plots are for the unit square with (𝜆, 𝜇) = (1, 1), unit square with (𝜆, 𝜇) = (10, 1), beam with (𝜆, 𝜇) = (1, 1),
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F IGURE 2 CDOF selection for the elasticity problem: (𝜆, μ) = (1, 1), (10, 1) on the unit square and (𝜆, μ) = (1, 1), (5, 1) on the beam
[0, 10] × [0, 1] using 20 smoothing sweeps on 80 test vectors. From top to bottom and left to right, the plots are for the unit square with
(𝜆, μ) = (1, 1) then (10, 1), and then for the beam with (𝜆, μ) = (1, 1), (5, 1)
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and beam with (𝜆, 𝜇) = (5, 1). For the square domain, 20 smoothing sweeps on 80 test vectors were used; for the beam,
three smoothing sweeps on 80 test vectors were used. We observed that a full coarsening is appropriately obtained
in the unit square scenarios, and a coarse grid that follows the anisotropy is appropriately obtained in the beam
scenarios. Figure 3 illustrates the CDOF selection for the rotated anisotropic diffusion problem for angles (𝜃1, 𝜃2) =(
− 𝜋

4
,− 𝜋

4

)
,
(
− 𝜋

4
, 0
)
,
(
− 𝜋

4
, 𝜋
4

)
,
(

𝜋

4
, 𝜋
4

)
. Fifteen smoothing sweeps on 80 test vectors were applied. When 𝜃1 aligns with

𝜃2, the coarse grids are clearly appropriately chosen. When these angles are not aligned, the grids are suitably chosen, for
example, for the extreme case 𝜃1 = −𝜃2, a standard coarsening, which does not biased toward one of the anisotropies, is
obtained.

For comparison, we consider the CDOF selection when an arithmetic average is used to compute the average cor-
relation and when a projected volume approach is used instead of the correlation/Ruge–Stuben coloring scheme. We
consider only the rotated anisotropic diffusion problem. Because the arithmetic average produced approximately the same
CDOF selection for 15 smoothing sweeps on 80 test vectors, we consider only 40 test vectors. Since a Z Fisher transform
stabilizes the variance in the sample correlations, the CDOF selection for the Z transform should be more appropriate.
Figures 4 and 5 show the results. Except for angles

(
− 𝜋

4
, 0
)
, the Z transform method produces roughly the same CDOFs

when 40 and 80 test vectors were used. Using arithmetic averaging, we observe denser grids on the coarser levels for the(
− 𝜋

4
, 𝜋
4

)
case. Finally, for a projected volume approach with a second pass given by the left condition of (11) withQ = 0.5,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
θ

1
,θ

2
:-0.7854,-0.7854

level 1
level 2
level 3
level 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
θ

1
,θ

2
:-0.7854,0

level 1
level 2
level 3
level 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
θ

1
,θ

2
:-0.7854,0.7854

level 1
level 2
level 3
level 4

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
θ

1
,θ

2
:0.7854,0.7854

level 1
level 2
level 3
level 4

F IGURE 3 CDOF selection for the rotated anisotropic diffusion with angles (𝜃1, 𝜃2) =
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using Z

Fisher transformation of the correlations and 15 smoothing sweeps on 80 test vectors
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F IGURE 4 CDOF selection for the rotated anisotropic diffusion with angles (𝜃1, 𝜃2) =
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the Z Fisher transformation of the correlations and 15 smoothing sweeps on 40 test vectors

we obtain the CDOF selection given in Figure 6 for
(
− 𝜋

4
,− 𝜋

4

)
,
(

𝜋

4
, 𝜋
4

)
. Again 15 smoothing sweeps on 80 test vectors

were employed. Tracking of the anisotropies is not obtained, which follows because the projected volume smears away
any anisotropy detected by the correlations (i.e., the projected volume for node I involves a weighted average of all the
correlations between I and J ∈ N(I)).

Two-grid and multigrid performance: We now consider the two-grid and multigrid performance for the three test
problems. Fifty to 80 test vectorswere used for each problem, but only 30were used in the construction of the interpolation
operators, and only O(10) pointwise Gauss–Seidel smoothing sweeps were applied to these vectors (nodal Gauss–Seidel
generated similar results). As in the earlier experiments, 30 V(1,1)multigrid and two-grid cycles were applied to a random
initial guess and the convergence rate is measured as ||u30h ||||u29h || . Since the CDOFs are reasonably selected for the second level,
the computed two-grid rates will be the target rate for the multigrid schemes. We note that the multigrid rates may be
slightly better than the two-grid rates. This is due to the random features of the algorithm (the two-grid and multigrid
runs were conducted separately).

Problem 1: elasticity The strength-of-correlation threshold was set to 0.85 and 1.8 in the square and beam scenarios,
respectively. Also, the number of smoothing sweeps that are applied to the test vectors were 20 and 5 for the square and
beam scenarios, respectively, and caliber 3 interpolation was used (caliber 5 at points where ||Dh,I|| is large). Table 2 tab-
ulates the multigrid and two-grid rates with the two-grid rates in parenthesis. We observe that for the square domain
with (𝜆, 𝜇) = (1, 1), the intravariable BAMG and iBAMG schemes perform the best with the multigrid rates slightly
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with 15 smoothing sweeps on 80 test vectors
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TABLE 2 Multigrid and two-grid
(in parenthesis) rates for Problem 1
scenarios using different types of
interpolation

Problem 1:
square (𝝀, 𝝁) = (1, 1)

h Intra Inter Mixed iBAMG1 iBAMG2

1/25 0.33 (0.28) 0.34 (0.27) 0.42 (0.27) 0.36 (0.26) 0.31 (0.29)

1/50 0.29 (0.27) 0.39 (0.23) 0.44 (0.24) 0.35 (0.26) 0.34 (0.22)

1/100 0.39 (0.30) 0.37 (0.27) 0.54 (0.30) 0.36 (0.30) 0.40 (0.27)

h Square (𝜆, 𝜇) = (10, 1)

Intra Inter Mixed iBAMG1 iBAMG2

1/25 0.70 (0.66) 0.77 (0.61) 0.69 (0.64) 0.67 (0.65) 0.73 (0.61)

1/50 0.75 (0.66) 0.82 (0.65) 0.76 (0.65) 0.71 (0.65) 0.80 (0.65)

1/100 0.78 (0.66) 0.83 (0.65) 0.79 (0.66) 0.78 (0.66) 0.79 (0.66)

h Beam (𝜆,𝜇)=(1,1)

Intra Inter Mixed iBAMG1 iBAMG2

1/25 0.31 (0.22) 0.25 (0.22) 0.28 (0.21) 0.31 (0.14) 0.18 (0.15)

1/50 0.76 (0.31) 0.71 (0.33) 0.86 (0.86) 0.68 (0.16) 0.45 (0.19)

1/100 0.76 (0.36) 0.74 (0.37) 0.92 (0.91) 0.76 (0.25) 0.68 (0.25)

h Beam (𝜆, 𝜇) = (5, 1)

Intra Inter Mixed iBAMG1 iBAMG2

1/25 0.77 (0.25) 0.58 (0.33) 0.85 (0.85) 0.57 (0.09) 0.73 (0.16)

1/50 0.87 (0.36) 0.84 (0.34) 0.91 (0.91) 0.84 (0.19) 0.83 (0.20)

1/100 0.87 (0.44) 0.91 (0.41) 0.94 (0.94) 0.90 (0.25) 0.86 (0.25)

TABLE 3 Multigrid rates for the beam scenarios using a larger
strength-of-correlation threshold on the coarser levels

Beam (𝝀, 𝝁) = (1, 1)

h Intra Inter Mixed iBAMG1 iBAMG2

1/50 0.33 0.35 0.83 0.13 0.22

1/100 0.41 0.45 0.92 0.25 0.25

h Beam (𝜆, 𝜇) = (5, 1)

Intra Inter Mixed iBAMG1 iBAMG2

1/50 0.41 0.45 0.89 0.23 0.21

1/100 0.52 0.52 0.95 0.27 0.25

larger than the two-grid rates. For the square domain with (𝜆, 𝜇) = (10, 1), which is more difficult, we again see that
intravariable BAMG and iBAMG schemes perform the best with an acceptable increase in the multigrid rates over
the two-grid rates. The results, however, are different for the beam scenarios. Now the multigrid rates substantially
slower than the two-grid rates for all methods except for the mixed interpolation scheme, which already has a poor
two-grid rate. Except for the mixed interpolation scheme, the disparity between the two-grid and multigrid rates indi-
cates that the coarser grids/systems may have been poorly selected/constructed. This is verified by the improved results
in Table 3, which were obtained using a larger strength-of-correlation threshold of 2.5–3.0 on the coarser levels. As for the
mixed-variable interpolation, we now see that its performance does not reflect the performance of either the intravariable
and intervariable performance. This indicates that mixing the interpolation can lead to poor coarse-grid approxima-
tions, as illustrated by the poor two-grid rates in the beam scenarios. Further analysis of this will be conducted in the
future.

We note that the performance of these methods were about the same whether the near-nullspace components were
included or not in the set of test vectors. Moreover, to illustrate that applying a lot of smoothing to the test vectors can lead
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Square (𝝀, 𝝁) = (1, 1)

#Sweeps Intra Inter Mixed iBAMG1 iBAMG2

20 0.29 0.39 0.44 0.35 0.34

200 0.45 0.41 0.62 0.41 0.38

TABLE 4 Multigrid rates using 20 and 200 smoothing sweeps on the test
vectors

to slower convergence, we consider the square scenario with (𝜆, 𝜇) = (1, 1) for h = 1
50
and take 200 smoothing sweeps.

Table 4 shows that the convergence degrades with additional sweeps.
Problem 2: anisotropic diffusion The strength-of-correlation threshold was set to 1.1 in all cases except (𝜃1, 𝜃2) =(

− 𝜋

4
, 𝜋
4

)
, which was set to 0.7. The number of test vectors and smoothing sweeps applied on themwere 80 and 15, and the

interpolation caliber was 3. Table 5 illustrates the convergence rates. For 𝜃1 = 𝜃2, themultigrid rates is sufficiently close to
the two-grid rates for these difficult problems (recall that for the scalar anisotropic diffusion with 𝜃1 = 𝜋

4
, the AMGV(1,1)

two-grid27 rate is about 0.66), with iBAMG1 performing slightly better than the others. However, when 𝜃1 ≠ 𝜃2, issues
arise. This is not surprising since now a good CDOF selection is difficult to achieve because of the opposing anisotropies
in the diagonal operators. We also note that the performance of the mixed-variable interpolation scheme is reflective of
the performance of the intervariable interpolation scheme. Additional development/analysis of this will be conducted in
the future.

Problem 3: FOSLS for neutron transport The strength-of-correlation threshold was set to 0.85 in all cases, the number
of test vectors and smoothing sweeps applied to themwere 50 and 20, and the interpolation caliber was 3. Table 6 tabulates
the convergence rates. We see that as 𝜎t increases, the convergence does degrade because of the increasing dominance of
the grad-div operator.We also see a disparity between themultigrid and two-grid rates. Tuning the strength-of-correlation
threshold parameter may ameliorate some of this. Finally, again the performance of the mixed-variable interpolation
scheme is reflective of the performance of the intervariable interpolation scheme.

Problem 2: (𝜽1, 𝜽2) =
(
− 𝝅

4
,− 𝝅

4

)

h Intra Inter Mixed iBAMG1 iBAMG2

1/25 0.42 (0.26) 0.38(0.30) 0.45(0.31) 0.40 (0.24) 0.42 (0.28)

1/50 0.46 (0.40) 0.50(0.49) 0.46(0.40) 0.30 (0.27) 0.36 (0.32)

1/100 0.73 (0.73) 0.78(0.74) 0.74(0.71) 0.62 (0.57) 0.75 (0.63)

h (𝜃1, 𝜃2) =
(
− 𝜋

4
, 0
)

Intra Inter Mixed iBAMG1 iBAMG2

1/25 0.83 (0.75) 0.86 (0.84) 0.86 (0.85) 0.83 (0.82) 0.86 (0.80)

1/50 0.83 (0.78) 0.84 (0.73) 0.87 (0.84) 0.80 (0.80) 0.85 (0.76)

1/100 0.93 (0.88) 0.92 (0.87) 0.89 (0.87) 0.91 (0.91) 0.91 (0.87)

h (𝜃1, 𝜃2) =
(
− 𝜋

4
,
𝜋

4

)
Intra Inter Mixed iBAMG1 iBAMG2

1/25 0.59 (0.34) 0.59 (0.34) 0.57 (0.33) 0.58 (0.34) 0.62 (0.36)

1/50 0.73 (0.50) 0.72 (0.53) 0.70 (0.49) 0.66 (0.44) 0.69 (0.51)

1/100 0.85 (0.75) 0.89 (0.76) 0.86 (0.76) 0.88 (0.72) 0.89 (0.76)

h (𝜃1, 𝜃2) =
(

𝜋

4
,
𝜋

4

)
Intra Inter Mixed iBAMG1 iBAMG2

1/25 0.42 (0.27) 0.45 (0.29) 0.38 (0.26) 0.39 (0.21) 0.37 (0.28)

1/50 0.48 (0.44) 0.58 (0.48) 0.53 (0.42) 0.35 (0.30) 0.38 (0.37)

1/100 0.77 (0.71) 0.79 (0.75) 0.76 (0.71) 0.66 (0.62) 0.72 (0.62)

TABLE 5 Multigrid and two-grid
(in parenthesis) rates for Problem 2
scenarios using different types of
interpolation
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TABLE 6 Multigrid and two-grid
(in parenthesis) rates for Problem 3
scenarios using different types of
interpolation

Problem
3: 𝝈t = 1

h Intra Inter Mixed iBAMG1 iBAMG2

1/25 0.36 (0.35) 0.31 (0.30) 0.34 (0.31) 0.37 (0.31) 0.33 (0.28)

1/50 0.35 (0.27) 0.39 (0.23) 0.46 (0.29) 0.38 (0.28) 0.35 (0.25)

1/100 0.42 (0.30) 0.46 (0.27) 0.40 (0.31) 0.33 (0.30) 0.44 (0.25)

h 𝜎t = 2

Intra Inter Mixed iBAMG1 iBAMG2

1/25 0.62 (0.59) 0.60 (0.56) 0.62 (0.56) 0.60 (0.59) 0.56 (0.58)

1/50 0.59 (0.53) 0.65 (0.52) 0.57 (0.53) 0.62 (0.54) 0.65 (0.52)

1/100 0.71 (0.54) 0.77 (0.53) 0.70 (0.54) 0.66 (0.53) 0.73 (0.54)

h 𝜎t = 5

Intra Inter Mixed iBAMG1 iBAMG2

1/25 0.82 (0.80) 0.86 (0.83) 0.83 (0.81) 0.82 (0.82) 0.83 (0.83)

1/50 0.91 (0.89) 0.91 (0.89) 0.90 (0.90) 0.91 (0.89) 0.91 (0.88)

1/100 0.92 (0.92) 0.92 (0.92) 0.93 (0.91) 0.92 (0.92) 0.92 (0.91)

Summary of numerical results Summarizing the numerical experiments, we see that the correlation-based measure
can determine the appropriate CDOFs, even when there are anisotropies. However, the threshold parameter for defining
strongly correlated connectionsmay have to be tuned further on the coarser levels, as illustrated in the elasticity problems
defined on beams. Moreover, it is observed that intravariable interpolation, whether through BAMG or iBAMG, is suffi-
cient for most of the tested problems, and that iBAMGmay not dramatically improve the efficiency (of course, additional
testing on a larger selection of problems is needed to determine when iBAMG can lead to better convergence). Further-
more, locally mixing the intravariable and intervariable interpolation can lead to complex coarse-grid operators. This was
unexpected and will require more analysis to explain. Finally, given that these schemes are nodal-based and the exam-
ined systems of PDEs are strongly coupled, these numerical results are likely better than results obtained with standard
unknown-based approaches, although not as good as results for other nodal-based schemes that are designed for specific
PDEs (e.g., Reference 7 for elasticity).

6 CONCLUSION

This article is an initial attempt to develop an AMG method for solving general systems of elliptic PDEs. This attempt
involves extensions of some of the more recent developments of AMG techniques for scalar PDEs. In this article, we
examined a nodal coarsening scheme based on local correlationmatrices evaluated for a set of smoothed test vectors. The
Frobenius norms of these matrices provide a measure between the nodal DOFs, a measure that reflects the strength of
intravariable and intervariable coupling in the DOFs. With a Ruge–Stuben coloring, the CDOFs are reasonably chosen
even for anisotropic problems, andwith this selection of CDOFs, the interpolationweights are generated using extensions
of the BAMG and iBAMG schemes for systems of PDEs. Numerical experiments were performed to demonstrate the
performance of the resulting AMG method for some difficult systems. Although the results are encouraging, further
development of thismethod is needed. In particular, it is recognized that the algorithms in this article are computationally
expensive, due to their adaptive and statistical nature. However, one of the goals of this article is only to demonstrate that
the correlation matrices formed from the relaxed test vectors can expose dependencies in the nodal degrees of freedom,
andhence can be used to select the coarse degrees of freedom. This correlation procedure can be applied to general systems
of PDEs, particularly for systems where analytic forms of the near-nullspace components are not available. Moreover,
an immediate practical tool that this procedure provides is a measure on whether intravariable interpolation is sufficient
in a multigrid solver/preconditioner for a given system. Taking the correlation of the test vectors on the finest level can
reveal whether the degree of freedoms correlate most strongly through the intravariable couplings. If they do, then an
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efficient Ruge–StubenAMGcan be applied to the diagonal operators, and if only a preconditioner is desired, each diagonal
operator can be coarsened separately with the intervariable coupling handled only on the finest level. Furthermore, for
less general systems of PDEs, the correlation procedure can be applied to a small set of vectors (e.g., near-nullspace
components and their coarsened forms) to determine the coarse degrees of freedom. The interpolation operators then can
be constructed using existing efficient AMG procedure such as the system PDE technique of Reference 7. This, together
with improvement in the scalability of the algorithms presented in this article, will be examined in the future.
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