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Abstract

The upper and lower jaws of some wrasses (Eupercaria: Labridae) possess teeth that have been coalesced into a strong durable beak that they
use to graze on hard coral skeletons, hard-shelled prey, and algae, allowing many of these species to function as important ecosystem engineers
in their respective marine habitats. While the ecological impact of the beak is well understood, questions remain about its evolutionary history
and the effects of this innovation on the downstream patterns of morphological evolution. Here we analyze 3D cranial shape data in a phyloge-
netic comparative framework and use paleoclimate modeling to reconstruct the evolution of the labrid beak across 205 species. We find that
wrasses evolved beaks three times independently, once within odacines and twice within parrotfishes in the Pacific and Atlantic Oceans. We
find an increase in the rate of shape evolution in the Scarus+ Chlorurus+Hipposcarus (SCH) clade of parrotfishes likely driven by the evolution of
the intramandibular joint. Paleoclimate modeling shows that the SCH clade of parrotfishes rapidly morphologically diversified during the middle
Miocene. We hypothesize that possession of a beak in the SCH clade coupled with favorable environmental conditions allowed these species

to rapidly morphologically diversify.
Keywords: evolutionary innovation, geometric morphometrics, coral reef

Introduction

Evolutionary innovations are adaptations that allow organ-
isms to expand into novel environments and access previously
unavailable ecological resources (Alfaro et al., 2009; Dumont
et al., 2011; Evans et al., 2021; Goffredi et al., 2005; Hunter,
1998; Simpson, 1944). These innovations allow organisms to
dramatically change the economy of their respective environ-
ments and alter the ecologies of the other organisms around
them.

In addition to evolutionary innovation, ecological opportu-
nity has the potential to promote rapid morphological diver-
sification and even adaptive radiation by relaxing sources of
natural selection that act on ecological traits (Yoder et al.,
2010). Ecological opportunity can present itself in the form
of a key innovation, dispersal into a novel habitat, or extinc-
tion of an antagonist species (Simpson, 1944). This oppor-
tunity can then promote ecological release that can manifest
in the form of increased trait variation, increased variation
in habitat or resource use, and increased population size.
Ecological opportunity, coupled with ecological release, has
been hypothesized to promote rapid speciation and morpho-
logical diversification (Yoder et al., 2010).

Coral reef ecosystems are hotspots for marine biodiversity
across disparate clades of organisms and have been shown to
promote rapid rates of speciation and morphological diver-
sification among their inhabitants, with marine fishes being
particularly impacted (Cowman & Bellwood, 2011; Fisher et
al., 2015; McCord et al., 2021; Nash et al., 2022; Price et
al., 2011). The speciation and proliferation of marine fishes
closely track patterns of coral diversification and prolifera-
tion (Alfaro et al., 2007; Bellwood et al., 2017; Cowman &
Bellwood, 2011; Evans, Williams, et al., 2019; Kiessling et al.,
20105 Price et al., 2011, 2013; Siqueira et al., 2019a, 2020).
Historically, global coral abundance has experienced several
expansions and contractions due to changes in climate and
tectonic activity (Bellwood et al., 2017; Budd et al., 1995;
Cahuzac & Chaix, 1996; Edinger & Risk, 1994; Johnson et
al., 2009; Klaus & Budd, 2003; Pomar & Hallock, 2007).
One of the major events that structured modern-day patterns
of coral reef distribution and diversity occurred during the
Oligocene-Miocene transition 23 million years ago (mya).
This was a period of dramatic cooling in global seas as well as
a period of tectonic activity in what is today the Indo-Pacific
as current-day India collided with the Asian continent, result-
ing in a dramatic expansion of warm, shallow water habitats

Received October 5, 2022; revisions received June 9, 2023; accepted June 20, 2023

Associate Editor: Tristan Stayton; Handling Editor: Tim Connallon

© The Author(s) 2023. Published by Oxford University Press on behalf of The Society for the Study of Evolution (SSE). All rights reserved. For permissions,

please e-mail: journals.permissions@oup.com

£20Z JaqWIBA0ON ZZ uo Jasn uojbuiysepn 1o Ausisaiun Aq ¥S6+02.2/0002/6/.L./21911He/iNjoAs/woo dno olwapeode//:sdiy Woll papeojumoc]


mailto:kory.evans@rice.edu?subject=

Evolution (2023), Vol. 77, No. 9

(Bellwood et al., 2017; Siqueira et al., 2019b). During this
time, there was an expansion of fast-growing hermatypic cor-
als and an increase in the abundance of coral outcrops. This
expansion of reef-building corals in the Indo-Pacific eventually
shifted the biodiversity hotspot for corals and other reef-asso-
ciated species from the Western Tethys to the Indo-Australian
Archipelago, where it remains today. Interestingly, while the
Oligocene-Miocene transition was a period of expansion and
diversification for corals in the Indo-Pacific, the opposite is
true for corals in the Atlantic. In the Atlantic Ocean, the ther-
mal isolation of Antarctica resulted in stronger patterns of
thermohaline circulation, which resulted in stronger nutrient
upwelling and increases in turbidity in shallow marine habi-
tats in the Atlantic (Budd et al., 19935; Edinger & Risk, 1994;
Johnson et al., 2009). During this time, we also see cooling
in the Mediterranean that is associated with a reduction in
coral size and diversity (Cahuzac & Chaix, 1996). These fac-
tors worked together throughout the Atlantic to drive the
extinction of several coral species and a large reduction in the
abundance of reef-building corals during the early Miocene.
Atlantic corals would experience a second extinction event
15 mya after the Miocene Climatic Optimum and throughout
the Miocene Climatic Transition, which cooled global ocean
temperatures continuously until today. These reefs would not
rebound until later during the Pleistocene (Klaus & Budd,
2003). The complex biogeographic histories of the coral reef
fauna in these two oceans may have also constrained or pro-
moted morphological diversification in the various clades of
fishes that have inhabited and associated with them through-
out deep time.

In addition to coral reefs, seagrass beds also function as
productive biodiverse ecosystems in shallow water coastlines
worldwide. Seagrasses represent a paraphyletic assemblage of
angiosperm plants that have adapted to marine life and form
vast aggregations. These valuable ecosystems function as
important structures and habitats for a wide range of organ-
isms that use these habitats as shelter, food, or nursery grounds.
Seagrass beds are also important carbon sinks because they
are immensely productive and store large amounts of biomass
in below-ground ungrazed detritus (Duffy, 2006). Unlike cor-
als, seagrasses are not calcified and thus have a much sparser
fossil record typically inferred by the carbonate sediments
that they trap or the organisms that associate with them. As a
result, it can be more challenging to reconstruct the historical
biogeography of seagrass distributions (Brasier, 1975; Duffy,
2006; Haig et al., 2020; Vélez-Juarbe, 2014). However, fossil
evidence, namely fossil beds of foraminifera that have been
known to associate with seagrasses, suggests that seagrass
beds originated in the Cretaceous and had reached a nearly
complete Tethyan distribution by the Eocene. While it has
been difficult to confirm with direct fossil observation, there is
indirect evidence that suggests that seagrass distributions may
have expanded during the late Oligocene and early Miocene
and established themselves in the temperate Western Pacific
Ocean (Conran et al., 2015; Haig et al., 2020). There has also
been additional evidence that the expansion of seagrass beds
in the Indo-Pacific during the Oligocene promoted the mor-
phological diversification of seahorses, which are known to
frequently associate with seagrasses (Teske & Beheregaray,
2009).

Among the fishes that inhabit coral reef and seagrass eco-
systems, some wrasses (Eupercaria: Labridae) have emerged as
critically important ecosystem engineers and bioeroders that
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play important roles as herbivorous grazers in their respec-
tive habitats (Alwany et al., 2009; Bellwood, 1995, 1996;
Bonaldo et al., 2014; Bruggemann et al., 1996; Grupstra et
al., 2022). In particular, the parrotfishes (labrid tribe: Scarini)
are microphages that feed on endolithic and epilithic autotro-
phic microbes living on and within coral skeletons, as well as
on the surface of macroalgae and other sessile marine organ-
isms (Clements & Choat, 2018; Clements et al., 2017). These
fishes are able to feed directly on hard corals and other hard
surfaces using their specialized “beaks,” which consist of den-
tition that has been coalesced into a strong, durable cutting
edge in the upper and lower jaws (Bellwood, 1994; Price et
al., 2010; Streelman et al., 2002). This beak is composed of
some of the strongest biological material on the planet and
allows many parrotfishes to scrape and excavate the calcium
carbonate skeletons of corals (Marcus et al., 2017). Studies
have shown that this constant grazing by some labrid species
exerts tremendous pressure on the growth rate of coral col-
onies and that the resulting calcium carbonate sediment that
is excreted during the grazing process forms the foundation
of shallow water tropical coastlines worldwide (Bellwood,
1995, 1996; Perry et al., 2015).

While the ecological implications of the beak are well rec-
ognized, the evolutionary history of this important innova-
tion remains poorly understood, as well as the effect of this
innovation on the tempo and mode of morphological evolu-
tion within the family Labridae. Phylogenetic hypotheses for
the family Labridae (Aiello et al., 2017; Westneat & Alfaro,
20035) and for the parrotfish tribe Scarini (Smith et al., 2008)
have suggested that the parrotfishes have radiated into their
present diverse assemblage quite recently, within the last 10
million years, although the latest time-calibrated trees and
phylogenomic analyses (Hughes et al., 2023; Larouche et al.,
2023) have pushed both the root Labridae age and the origin
of parrotfishes earlier in time.

Here, we examine the evolution of the labrid skull and
beak using three-dimensional geometric morphometric data
collected from high-resolution micro-computed tomography
(micro-CT) scans, a species-dense, time-calibrated phylog-
eny, and a phylogenetic comparative toolkit to reconstruct
the evolution of the labrid beak across both space and time.
We reconstruct the ancestral state of beaks in labrids to test
whether beaks have evolved multiple times within this clade.
We additionally use the latest time-calibrated phylogenetic
topologies to date the evolution of beaks within labrids to
examine whether the beak evolved as a response to changes
in global coral reef and seagrass cover during the Oligocene
and Miocene. Moreover, the beak in labrids (specifically par-
rotfishes) is often viewed as an evolutionary innovation (Price
et al., 2010); as such, we test for shifts in the rate of skull
shape evolution associated with the evolution of beaks across
the different taxa. If we recover increases in the rate of skull
shape evolution associated with the evolution of beaked den-
tition, this will suggest that this adaptation promoted rapid
rates of morphological diversification as these species moved
toward a specialized foraging ecology. Inversely, decreases
in the rate of skull shape evolution associated with the evo-
lution of beaks would suggest that the specialized foraging
ecology among beaked labrids may constrain rates of mor-
phological diversification. Lastly, the presence or absence of
ecological opportunity can shape the downstream effects of
adaptations on patterns of morphological diversification. The
Miocene was a period of rapid climatic and tectonic changes
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that strongly influenced global patterns of coral and seagrass
diversification, abundance, and proliferation. We therefore
also employ paleoclimate modeling to reconstruct the sea sur-
face temperatures of the tropical Atlantic and Pacific Oceans
during the middle and late Miocene to quantify changes in
paleoclimate temperatures. If shifts in paleoclimate created
ecological opportunities for labrids, we expect to see increases
in rates of morphological evolution that coincide with changes
in sea surface temperature across geological time scales.

Materials and methods

Phylogenetic hypothesis

To reconstruct the evolution of the labrid beak, we used a
recently published phylogenetic analysis of 410 species of
labrid fishes (Larouche et al., 2023; Supplementary Figure 1).
This phylogeny was built as a subset of a larger in-progress
study of 550 species using a set of 12 genes accumulated by a
series of recent studies (Aiello et al., 2017; Smith et al., 2008;
Westneat & Alfaro, 2005) and analyzed using the same fossil
calibration framework as the recent phylogenomic analysis
of the Labridae (Hughes et al., 2023). The resulting time-cali-
brated tree was then pruned down to the 205 taxa for which
we collected morphometric data using the drop.tip function
in the R-package ape (Paradis et al., 2004). We retained 100
randomly sampled tree topologies from the posterior distri-
bution of the BEAST (Bouckaert et al., 2019) run for down-
stream analyses.

Defining a beak

Across the vertebrate tree of life, the term “beak” has come
to refer to a broad range of dental and oral morphologies
ranging from the lack of dentition, coupled with the pres-
ence of a keratinous rhamphothecae in birds and turtles (Ingle
et al., 2023), to the coalescence of multiple generations of
teeth within an osteodentine mass in pufferfishes and their
relatives (Thiery et al., 2017). Within labrid fishes, several
distinct patterns of dental coalescence have been documented
among the genera ranging from completely uncoalesced in
Cryptotomus, various intermediate levels of coalescence in
Nicholsina, Calotomus, and Leptoscarus, to more completely
coalesced dentition in Sparisoma, Bolbometopon, Cetoscarus,
Hipposcarus, Scarus, Chlorurus, and the distantly related oda-
cine wrasses (Odacini: Labridae; Bellwood, 1994). Previous
studies have reconstructed the evolutionary history of
coalesced or “cutting-edge” dentition and have found varying
levels of support for multiple origins of coalesced dentition
among labrid fishes (Bellwood, 1994; Burress & Wainwright,
2018; Wainwright et al., 2018). In this study, we focus on one
particular form of coalescence in which the teeth of the pre-
maxilla and dentary are coalesced into a cutting edge forming
a unified dental wall with overlapping tooth rows, as opposed
to being completely isolated (as is the case for most non-par-
rotfish wrasses) or arranged into isolated oblique rows (as is
the case with Leptoscarus and to a lesser degree S. radians;
Bellwood, 1994; Viviani et al., 2022; Supplementary Figures
2 and 3). This pattern of coalescence (herein referred to as a
beak) is seen in several of the reef-associated parrotfish spe-
cies that exhibit durophagy and have been documented either
feeding directly on calcium carbonate coral skeletons (alive or
otherwise) or scraping algae from hard surfaces. In odacines,
this beak is used to feed on algae, seagrass, and shelled inver-
tebrates (Baker, 2011; Choat & Clements, 1992; Clements
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& Choat, 1993; Mountfort et al., 2002; Sogard et al., 1989).
The overlapping pattern of the replacement tooth rows has
been hypothesized to allow the beak to self-sharpen as indi-
vidual teeth are lost and replaced (Marcus et al., 2017). This
specific pattern of coalescence has also been documented in
the very distantly related oplegnathid fishes (referred to as
“jaw-tooth”), which also feed on hard-shelled invertebrate
prey (Kakizawa et al., 1980), further suggesting that beaks
can emerge convergently in fishes as adaptations to duroph-
agy. In this present study, we apply our specific definition
of a beak to 205 wrasse species to code for the presence or
absence of this character.

Shape analyses

For the analysis of skull shapes, we used three-dimensional
geometric morphometrics to quantify shape variation and
diversity among our labrid data set. We digitized the left side
of each specimen with 79 landmarks and 118 semilandmarks
(Supplementary Table 1; Supplementary Figure 4) following
the approach described in Larouche et al. (2023). Landmarks
encompassed the skull, jaws, hyoid region, and pharyngeal
jaws. The teleost fish skull exhibits immense biomechanical
complexity, with highly kinetic, articulating elements (Hulsey
et al. 2005; Westneat, 2004). This kinesis poses a challenge
to studies of shape change across the skull because preserva-
tional artifacts related to the relative positions of these indi-
vidual elements can strongly bias any downstream analyses
(Evans, Vidal-Garcia, et al., 2019; Vidal-Garcia et al., 2018).
To account for this rotation and translation of mobile ele-
ments, we performed a local superimposition to standard-
ize the position of the different skull elements (Rhoda et al.,
2021a, 2021b). Specimen positions were standardized to the
specimen that was closest to the mean shape (Ophthalmolepis
lineolata) using the findMeanSpec function in geomorph. To
study the shape evolution of the individual beak elements, we
subset our larger skull shape data set into smaller premax-
illa and dentary data sets, the raw coordinates of which were
individually superimposed. After the local superimposition, a
principal component analysis (PCA) was performed to assess
the primary axes of shape variation across all three of our
wrasse data sets. All geometric morphometric analyses were
performed in the R-package geomorph version 4.0.3 (Adams
et al., 2016).

Morphological sampling

Skull shape was sampled across 234 wrasse specimens repre-
senting 204 different species of wrasse (25% taxon sampling).
For most species, sampling was limited to a single adult indi-
vidual per species due to limitations associated with the over-
all size of many of the large parrotfish species and the time
associated with the data collection process (Supplementary
Table 2). For our shape analysis, we excluded a subadult
Bolbometopon muricatum specimen. The lack of intraspecific
sampling in our data set prohibits the ability to estimate mor-
phological variation within species and can inflate the esti-
mation of rates of morphological evolution between species.
However, studies using geometric morphometric data have
shown that across datasets where sample variance is high (as
is the case with our dataset) shape relationships between spe-
cies tend to be accurately estimated with even a low number
of individuals per species (Cardini & Elton, 2007). To further
demonstrate this, we performed an intraspecific analysis using
five individuals of Chlorurus spilurus that were all collected
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from the same place (Moorea, French Polynesia) around the
same time (within 3 weeks of each other, June 2021) and
show that the specimens of this species have significantly (p
= .006) less Procrustes variance (0.00015), than the other
species in our data set (0.00078; Supplementary Figure 5).
We used micro-CT scanning to collect three-dimensional
osteological data for each specimen. Scans were conducted at
Rice University, the University of Minnesota, the University
of Chicago and the University of Washington Friday Harbor
Labs in conjunction with the oVert initiative. Scans were seg-
mented in Amira to isolate the skull, and exported as three-di-
mensional mesh files. Mesh files were then imported into
Stratovan Checkpoint where they were digitized.

Phylogenetic comparative methods

We analyzed patterns of skull and jaw shape variation and
shape diversification using a phylomorphospace analysis
(Sidlauskas, 2008), which displays the principal component
scores of each species with an underlying phylogeny and esti-
mates the skull shapes at ancestral nodes.

Beaks are typically considered to be discrete characters and
defined by the fusion or coalescence of teeth in the upper and
lower jaws. However, for our analyses, we were also interested
in the overall shape of the beak among labrid fishes. To deter-
mine whether shape could predict the presence or absence
of beak morphology, we tested for the relationship between
beak presence and skull shape using a Procrustes analysis of
variance (ANOVA) and a Procrustes phylogenetic general-
ized least squares (PGLS; procD. pgls function in geomorph)
analysis to account for phylogenetic non-independence of our
shape data (Adams & Collyer, 2018). We performed these
analyses on the entire skull shape configuration, as well as the
individual dentary and premaxillary dataset. We recover sig-
nificant relationships across all Procrustes ANOVAs but not
for PGLS analyses suggesting that shape is strong predictor of
beak presence, but that this relationship is phylogenetically
restricted, which implies that some beaked species may have
evolved beaks that differ substantially in shape from other
beaked species in different clades (Supplementary Tables 3-8).

To reconstruct the evolution of beaks across space and
time in labrids and specifically parrotfishes, we estimated the
ancestral parrotfish skull shape by warping a mesh of the
specimen closest to the shape mean (Ophthalmolepis lineo-
lata) to the ancestral parrotfish node using geomorph.

Ancestral state reconstruction

The ancestral state of beaks for 205 wrasse species was esti-
mated using the R-package phytools version 1.0-1 (Revell,
2012). Species were designated as beaked or nonbeaked fol-
lowing visual inspections via micro-CT scans. We used sto-
chastic character mapping (Bollback, 2005; Huelsenbeck
et al., 2003) to reconstruct the evolutionary history of the
presence or absence of a beak. Stochastic character map-
ping was performed using the make.simmap function in the
R-package phytools (Revell, 2012). The maximum likelihood
Q-matrix was estimated from the data, and the prior for the
root state was determined using its stationary distribution,
conditional on the Q-matrix. We used the fitDiscrete function
from geiger to determine the best-fitting model of character
evolution between equal rate (ER), symmetrical (SYM), and
all-rates-different (ARD) models. To account for phylogenetic
uncertainty, we fit different models of discrete trait evolu-
tion across 100 randomly sampled trees from the posterior
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distribution of the BEAST run used to build the consensus
phylogeny. We also used these randomly sampled trees for
our stochastic character mapping analysis and estimated the
ancestral state at each node using posterior probabilities sum-
marized across 1,000 simulations for each of the 100 phylog-
enies. For the evolutionary history of the presence or absence
of a beak, the lowest AIC values were obtained for the ER
and SYM models (as transition rate matrices are identical for
binary characters); however, these models were not found to
be substantially better fitting compared with an ARD model
with a AAIC of only 0.93. We conservatively chose to perform
the stochastic character mapping for beak presence/absence
using an ER model of trait evolution.

Assessing convergent evolution hypotheses

After recovering support for multiple independent origins
of beaked dentition among labrids, we tested whether these
beaked species evolved similarly shaped skulls and beaks
via convergence or whether the shapes of the skull and beak
are entirely distinct among the different taxa. We used the
distance-based metrics of Stayton (2015; C1-C4) to test for
convergence between beaked wrasses. We also used these
metrics to quantify the degree of convergence between these
species. We ran our convergence analysis on the entire skull
configuration as well as on the premaxilla and dentary bones
separately.

Quantifying rates of shape evolution

To test the effect of beaks on rates of morphological diversifi-
cation, we used the compare.evol.rates function in geomorph,
which calculates the rate of shape evolution between groups
of specimens under a Brsownian motion model (Denton &
Adams, 20135). To account for phylogenetic uncertainty in our
rate estimates, we ran this analysis over 100 randomly sam-
pled phylogenies from the posterior distribution of the BEAST
run and used a paired #-test to test for differences in the mean
evolutionary rate between beaked and nonbeaked labrids fol-
lowing the approach of Evans, Vidal-Garcia, et al. (2019). We
also estimated the branch-specific rates of skull shape evo-
lution for 204 labrid species. Rates were estimated using a
variable-rates model implementation in the BayesTraitsV4
program (Venditti et al., 2011). This Bayesian method uses a
reversible-jump MCMC chain approach to estimate the prob-
ability of rate shifts in trait data across a phylogeny revealing
clade and species-specific rate shifts in trait data. To reduce
the dimensionality of our data, we used the first 23 princi-
pal components (PCs) because they accounted for 85% of
our total shape variance. While PC axes are mathematically
orthogonal, and thus uncorrelated, trait variation can still
be evolutionarily correlated. To account for this, we ran our
analyses using the “TestCorrel” function which constrains the
correlation between trait axes to zero. We used uniform, unin-
formative priors and ran four independent chains each for
200,000,000 generations discarding the first 60,000,000 as
burn-in. The chain was sampled every 1,400,000 generations
after convergence using a stepping stone. Model convergence
was evaluated for each model by running the analysis a sec-
ond time and visually assessing the trace of the marginal like-
lihoods using Tracer (Rambaut et al., 2018). We evaluated a
“variable rates” model that allows for rate heterogeneity and
identifies regions of the tree where evolutionary rates differ
across different branches and internal nodes (Venditti et al.,
2011). The resulting output of the variable-rates analysis is a
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set of phylogenies where each branch is scaled by its Brownian
motion rate of evolution. The BayesTraits analyses were run
for the entire skull shape configuration. Additionally, due to
the fact that many of the species in our analysis are repre-
sented by a single specimen, we ran the BayesTraits analysis
using a lambda transformation of 0.754 estimated from the
trait data, which lengthens the branches at the tips of a phy-
logeny, accounting for measurement error and within-species
variation (Baken et al., 2021; Goswami et al., 2022). We also
performed a variable-rates regression in BayeTraits following
the approach of Kubo et al. (2019) and Baker and Venditti
(2019) using the same parameters mentioned above. Briefly,
this method simultaneously estimates shifts in the rate of trait
evolution using the variable-rates model while also estimat-
ing the parameters of a phylogenetic regression. This method
has the advantage of accounting for background rates of trait
evolution, which has been shown to be important for accu-
rately estimating the effect of discreet characters on rates of
trait evolution (May & Moore, 2020).

Model simulations of the Miocene

To evaluate our evolutionary rate results alongside avail-
able paleoclimate simulations of the Miocene, we obtained
four time-slice simulations from the Hadley Centre Coupled
Model version 3 (HadCM3). While paleoclimate model sim-
ulations are sparse during time periods relevant to this study,
Bradshaw et al. (2012, 2021) produced coupled ocean—atmo-
sphere simulations from the Miocene, including the Miocene
Climatic Optimum (MCO, ~15.5 Ma, CO, ~850 ppm),
the Miocene Climatic Transition (MCT, ~13.9 Ma, CO,
~400 ppm), and the Late Miocene Tortonian stage (LMT,
~7.5 Ma, CO, ~400 ppm). A control simulation for the prein-
dustrial period provides a baseline for comparison with CO,
~280 ppm. We extracted annual mean sea surface tempera-
tures (SSTs) from the four simulations to examine key dif-
ferences in ocean habitats in the tropical Atlantic and Pacific
Sectors. Two key regions were defined in the model simula-
tions: Atlantic SST (ON:30N, 260E:330E) and Pacific SST
(30S:30N, 50E:240E). Differences in Atlantic versus Pacific
SSTs were determined using a two-tailed #-test of the distri-
butions in all three Miocene periods. Due to the limitations
of the model simulations before the MCO, we were unable to
reconstruct the paleoclimates for the odacine wrasses, which
have an Oligocene root age of ~32 million years (Hughes et

al., 2023).

Results

Wrasses and parrotfishes evolved beaks multiple
times independently

The ancestral state estimation analysis recovers three inde-
pendent evolutionary transitions to beaks across the wrasse
phylogeny (Figure 1; Supplementary Figure 6). The first
beak evolved within the odacine wrasses (Siphonognathus,
Neodax, Haletta, Olisthops, Heteroscarus, and Odax)
between 40 and 32 mya. In this clade, species evolved a fully
coalesced beak comprised of small teeth in both the upper
and lower jaws. Within parrotfishes, beaks have evolved
twice independently: once in the “reef” clade (Bolbometopon,
Cetoscarus, Hipposcarus, Chlorurus, and Scarus) between
37 and 28 mya and again within the “seagrass” clade in the
endemic Atlantic Ocean genus Sparisoma between 25 and
16 mya. Our analysis shows that parrotfishes evolved beaks
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from a nonbeaked ancestor and that this ancestral condition
was retained in some “seagrass” clade genera (Caloromus,
Leptoscarus, Nicholsina, and Cryptotomus).

Beaked wrasses exhibit divergent skull shapes

Geometric morphometric analyses indicate that the three
groups of beaked labrids explored independent evolution-
ary shape trajectories, resulting in a novel restructuring of
the feeding apparatus. We recover nonsignificant results for
the analysis of convergence in skull shape between the three
independent transitions to beaks (Table 1; Figure 2). Across
all four distance-based convergence metrics (and premaxil-
lary and dentary bones; Supplementary Tables 9 and 10), the
beaked labrids do not resemble each other more than expected
by chance, and their respective evolutionary trajectories have
not led them to become more similar in shape than expected.
These divergent morphologies can be seen in the results of
our PCAs. For overall skull shape, our first principal compo-
nent axis (PC1) corresponds primarily to variation in orbit
position, dentary width, skull width, urohyal depth, and the
length of the supraoccipital crest (Figure 2A). Along this axis,
parrotfishes possess the highest scores and exhibit wide skulls
with posteriorly displaced orbits and deep dentaries, while
non-parrotfish labrid species such as Symphodus rostratus
possess a narrow skull with an anteriorly displaced orbit and
exhibit the lowest scores along PC1. A clear division between
“seagrass” and “reef” clade parrotfishes is also apparent with
the “reef” clade species exhibiting wider skulls than their
“seagrass” clade counterparts, which more closely resemble
other labrids in skull shape. The odacines, however, possess
some of the narrowest skulls and exhibit the lowest values
along the PC1 axis. Along the second PC axis, variation corre-
sponds to skull depth, with the tube-snouted Siphonognathus
argyrophanes and other odacines exhibiting the shallowest
skulls and Xyrichtys martinicensis exhibiting the deepest
skull. Along this axis, parrotfishes exhibit intermediate scores.
The third and fourth PC axes reveal additional partial sepa-
ration in skull shape between the three beaked clades, corre-
sponding to variation in the position of the orbit, origin of
the supraoccipital crest, length of the neurocranium, and the
depth of the lower pharyngeal tooth plate (Figure 2B). Along
the third PC axis, the beaked labrids overlap entirely as they
all possess elongated neurocrania. Additional separation is
found along the PC4 axis, which corresponds to skull width,
parasphenoid depth, and the angle of the ascending process
of the premaxilla. We find that most of the “seagrass” par-
rotfishes and the odacines exhibit narrower, shallower skulls,
while most “reef” parrotfishes (except Hipposcarus) possess
wider, deeper skulls.

When we examine patterns of shape variation in the den-
tary and premaxillary bones separately, clear patterns of sep-
aration between the beaked labrids are apparent. For dentary
shape, “reef” clade parrotfishes are tightly clustered at the
higher extreme of PC1 and exhibit the shallowest dentaries
with expanded posterior margins, while the “seagrass” spe-
cies (including the beaked Sparisoma) exhibit more interme-
diate values with deeper dentaries and partially overlap with
non-parrotfish labrids. The odacines exhibit more disparate
values along the PC1 and PC2 axes with some species such
as Heteroscarus overlapping in shape with the “seagrass”
parrotfishes, while S. argyrophanes occupies a more distant
position along the PC1 axis relative to the other odacines.
Along the second PC axis (which corresponds to the length
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Figure 1. Wrasses evolved beaks three times independently. Ancestral state estimation of beak evolution across 205 wrasses showing posterior
probabilities of 1,000 character histories across 100 randomly sampled phylogenies from a posterior distribution of a BEAST run mapped onto the

time-tree.

Table 1. Similarity-based convergence metrics for skull shape among
beaked parrotfishes. Bold values indicate statistical significance.

Metric Value p

Cl1 0.055 478
C2 0.017 .066
C3 0.023 619
C4 0.000 .638

of the dentary) most beaked labrids (except S. argyrophanes)
exhibit intermediate scores and broadly overlap in shape
space (Figure 2C). In premacxillary shape, we recover a sim-
ilar pattern of partial separation among parrotfish clades
with odacines exhibiting broader distribution in shape space
relative to the other beaked labrids. Here, all beaked species

broadly overlap along the first PC axis, which corresponds to
the angle of the ascending process and the length of the cau-
dal tooth-bearing process, but exhibit more separation along
PC2, which corresponds to the length of the ascending pro-
cess and the curvature of the anterior region of the premax-
illa, coupled with the angle of the caudal process. Along this
axis, “reef” clade parrotfishes exhibit deeply anteriorly curved
premaxillae and truncate caudal processes, while “seagrass”
clade species exhibit less curved premaxillae and more elon-
gate caudal processes (Figure 2D). The odacines span most of
the PC2 axis indicating a broad diversity in premaxilla shape
among species.

Beaks alone do not promote rapid rates of
morphological evolution across wrasses
Evolutionary rate analyses indicate that beaked labrids
evolved at significantly (p < .001) faster rates than nonbeaked
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Figure 2. Beaked parrotfishes exhibit nonconvergent skull shapes. Phylomorphospace analysis of skull shape for PCs 1 and 2 (A) and PCs 3 and 4 (B),
dentary shape (C), and premaxillary shape (D) across 204 wrasse species showing the primary axes of shape variation across this clade. “Reef” clade
parrotfishes are colored in purple, and “seagrass” clade parrotfishes are colored in pink. Insets depict representative shapes for respective regions of

shape space.

labrids (Supplementary Figure 7). However, after taking into
account background rate variation using a variable-rates
regression, we recover a nonsignificant result (p = .15). The
conflict in these findings suggests that some beaked lineages
exhibit fast rates of morphological evolution, while many oth-
ers do not. When we examine branch-specific rates of evolu-
tion we find a more nuanced story (Figure 3A; Supplementary
Figure 8). Among the odacines, we observe a rapid increase
in the rate of skull shape evolution that coincides with the
origin of the beak in this clade ~32 mya and a subsequent
rate increase in the tube-snouted species S. argyrophanes.
Interestingly, among parrotfishes, we do not recover any rate
shifts associated with the evolution of a beak in either the
“reef” clade or the “seagrass” clade (Figure 3B). Instead, we
recover a rate shift in the branch leading to the SCH clade
during the Oligocene-Miocene transition ~24 mya and again

at the base of the Scarus+Cholrurus clade during the middle
Miocene ~15 mya. We also recover additional rate increases
in Scarus hypselopterus and in the S. spinus + S. viridifuca-
tus clade. Within the “seagrass” clade, we recovered a rate
shift during the early Oligocene ~32 mya, with no other rate
shifts present within this clade. These results suggest that the
morphological diversification dynamics differ substantially
among the beaked lineages and especially among the two par-
rotfish subclades.

When we combine our rate analyses with biogeographic
studies from the literature (Bellwood & Schultz, 1988;
Siqueira et al., 2019b; Streelman et al., 2002; Westneat &
Alfaro, 2005), we are able to reconstruct the evolution of
beaks across both space and time (Figure 4). We estimate that
the first beak appeared in the temperate West Pacific ~32 mya
within the odacines. Within parrotfishes, we estimate that
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evolution. Insets depict representative skull morphologies for major clades.
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Figure 4. The evolution of the labrid beak across space showing a map of the Tethys Sea 35 mya (copyright Ron Blakey, Colorado Plateau Geosystems,
Inc). (A) with the origin of parrotfishes in the Tethys Sea showing the estimated ancestral skull shape for Scarini, (B) the evolution of the beak in “reef”
clade parrotfishes in the Central Indo-Pacific, and (C) the independent evolution of the beak in Sparisoma in the Atlantic Ocean, (D) the origin of the
intramandibular joint in Scarus, Chlorurus, and Hipposcarus in the Central/Western Indo-Pacific, and (E) origin of the beak in odacine wrasses in the
temperate Western Pacific Ocean. Biogeographic designations follow reconstructions from Siqueira et al. (2019b) and Westneat and Alfaro (2005).

Insets depict representative skull shapes for each major clade.

the ancestral parrotfish originated in the Tethys Sea roughly
30-40 mya without a beak and colonized the Indo-Pacific
region westwards 10 million years later where they later
evolved beaks. Shortly thereafter, the “seagrass” clade spe-
cies colonized the Atlantic Ocean from the East Tethys. Our
ancestral state estimation indicates that the colonization of

the Atlantic by a nonbeaked “seagrass” clade lineage ~25 mya
was followed by a second independent evolution of a beak
~10 million years later in Sparisoma. There was also a sub-
sequent remodeling of the beak in the SCH clade when they
evolved an intramandibular joint ~24 mya in the Central/
Western Indo-Pacific.
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Figure 5. Paleoclimate model simulations of the Miocene from the HadCM3 coupled climate model (Bradshaw et al., 2012, 2021). Simulated annual
mean sea surface temperatures (SST) for the (A) Miocene Climatic Optimum (MCO), (B) Miocene Climate Transition (MCT), and (C) Late Miocene
Tortonian (LMT). (D) Boxplots of the simulated SST range (°C) for the tropical Atlantic (ON:30N, 260E:330E; blue) and tropical Pacific (30S:30N,
H50E:240E; red). A two-tailed t-test was used to establish significant differences between the distributions of Atlantic versus Pacific SSTs in all three

Miocene periods.

Miocene paleoclimates differed significantly
between the Atlantic and Pacific Oceans

Analysis of Miocene paleoclimate simulations for the Atlantic
and Pacific Ocean basins suggests that Sparisoma and the
Indo-Pacific “reef” clade evolved under significantly different
SST ranges (Figure 5); tropical Atlantic SSTs show a larger
range of temperature variability compared to Pacific SSTs,
and differences between annual mean SST ranges are signifi-
cant at the 95% level (p < .05, two-tailed #-test).

Discussion

Multiple origins of beaks within wrasses

The beak is a striking evolutionary innovation that enables
many labrid species to engage in durophagy. Our results indi-
cate three independent origins of beaked dentition within
labrid fishes: once in the odacines ~32 mya, another in the
“reef” clade of parrotfishes ~28 mya, which evolved beaks
in the Central and Indo-Pacific, and then again within the
endemic Atlantic “seagrass” lineage Sparisoma ~16 mya.
Previous studies that have reconstructed the evolution of
various forms of coalesced dentition in parrotfishes (but
not “beaks” specifically) have also recovered multiple inde-
pendent origins within labrids (Bellwood, 1994; Burress &
Wainwright, 2018). However, the ancestral state of coalesced
dentition in the upper and lower jaws for parrotfishes

has proven more difficult to estimate. An earlier study by
Wainwright et al. (2018) found ambiguous results at the
root of parrotfishes suggesting that coalesced dentition in
the upper and lower jaws either evolved once at the base
of all parrotfishes and was lost multiple times within some
of the “seagrass” clade lineages (Calotomus, Nicholsina,
Cryptotomus) or evolved three times independently in the
“reef” clade, “seagrass” clade, and Leptoscarus. This ambig-
uous result was likely recovered due to coding Leptoscarus
vaigiensis as having coalesced dentition. Leptoscarus is a
monotypic species and has an important and informative
position in the labrid phylogeny as previous studies have
shown that Leptoscarus is among the earliest branching
lineages of parrotfishes with a Tethyan origin (Aiello et
al., 2017; Cowman et al., 2009; Kazancioglu et al., 2009;
Siqueira et al., 2019b; Smith et al., 2008; Streelman et al.,
2002). In addition to its phylogenetic position, the coding
of Leptoscarus presents an interesting challenge because this
species exhibits a pattern of coalescence that is unique among
parrotfishes in which the teeth in the upper and lower jaws
are arranged in oblique, nonoverlapping rows (Bellwood,
1994; Viviani et al., 2022). This condition is further compli-
cated among sexually mature adults where the males exhibit
large canines that protrude anteriorly and laterally from the
premaxilla and contact the occlusal surface of the dentary,
giving the appearance of coalesced dentition in the lower
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jaws and incompletely coalesced dentition in the upper jaws
(Robertson et al., 1982; Viviani et al., 2022; Supplementary
Figure 9). This condition is apparently absent in females. In
our analysis, we coded Leptoscarus as not having a beak due
to the fact that the dentition in the upper and lower jaws
are nonoverlapping and arranged into oblique rows as has
been noted in Bellwood (1994) and Viviani et al. (2022). This
condition is also present to a lesser degree in S. radians but in
this case, we coded this species as having a beak because the
tooth rows overlapped more than in Leptoscarus. However,
out of caution, we reran the ancestral state estimation anal-
ysis with S. radians coded as not having a beak, and we still
recovered three independent origins of beaks within wrasses,
although with an additional reversal within S. radians. The
incomplete coalescence of teeth into a beak that we observe
in Leptoscarus coupled with the potential reversal to this
condition in S. radians suggests that Leptoscarus represents
a potential ancestral intermediate phenotype among “sea-
grass” parrotfishes.

Labrid beaks are nonconvergent and
morphologically distinct

Trophic ecology is known to be a strong driver of patterns
of convergent evolution (Kelley & Motani, 2015; Pigot
et al., 2020; Ritber & Adams, 2001). Beaked labrids have
been documented engaging in various forms of herbivory
and durophagy (Baker, 2011; Burkepile et al., 2019; Choat
& Clements, 1992; Clements & Bellwood, 1988; Clements
& Choat, 1993; 2018; Ezzat et al., 2020; Nicholson &
Clements, 2021). However, our results show that the skull
and beak shapes of these clades are nonconvergent and, in
some cases, differ dramatically. We hypothesize that these
shape differences may reflect differences in the usage of their
beaks among the different species. Within odacines, the beak
is used to graze on seagrasses and feed on hard-shelled prey
in different species, and the shape of the skull and individual
beak elements appears to differ substantially between even
closely related taxa. In “reef” clade parrotfishes, there is a
striking diversity in the shapes and functions of the beaks
ranging from robust beaks that are used in excavating feed-
ing behaviors (e.g., Cetoscarus) to more gracile beaks with
an intramandibular joint that allow for faster bites and sur-
face-scraping behaviors during feeding (Bellwood, 1994;
Bellwood & Choat, 1990; Bruggemann et al., 1994; Hoey &
Bellwood, 2008; Price et al., 2010). However, in Sparisoma,
we generally recover less shape diversity in beak morphology
and instead find that the overall shapes of the beak elements
more closely resemble some non-parrotfish wrasse species.
From a functional perspective, the beaks of Sparisoma appear
to be used in a more generalized fashion where species have
been reported to scrape and excavate hard coral substrates
as well as macroalgae and sponges (Bruggemann et al., 1994;
Dromard et al., 2015, 2017; Lobel & Ogden, 1981). The
lack of morphological diversity within Sparisoma relative to
“reef” clade parrotfishes has also been documented in “func-
tional” traits (Pombo-Ayora & Tavera, 2021; Wainwright et
al., 2018). These results suggest that beaks are a common
tool that labrid lineages employ to exploit grazing substrates
wherever and whenever they encounter them in search of
hard-shelled prey, algae, detritus, cyanobacteria, and other
microbes.

While the specific shapes of the skull and beak elements are
divergent among the labrid lineages, the evolutionary trait of

2009

coalescing teeth into a beak appears to be convergent. Studies
of trophic morphology among parrotfishes specifically have
also noted similarities in gill raker, pharyngeal mill, and soft
tissue morphology between Sparisoma and “reef” clade par-
rotfishes, suggesting that the convergence extends beyond
the beak in these species (Bellwood, 1994; Board, 1956;
Clements & Bellwood, 1988; Clements & Choat, 2018;
Evans, Williams, et al., 2019; Gobalet, 1989).

Complex climatic and biogeographic histories drive
distinct evolutionary trajectories across two oceans

Studies of reef fish evolution have recovered increases in
the rate of trait diversification and speciation during the
late Oligocene-Miocene period and have found close links
between patterns of reef fish diversification and patterns of
coral diversification and reef expansion (Bellwood et al.,
2017; McCord et al., 2021; Siqueira et al., 2019a, 2020). In
corals specifically, studies have shown that coral reef cover
expanded in the Indo-Pacific during the late Oligocene to
early Miocene in-part due to a decrease in global tempera-
tures and the expansion of shallow water habitat as a result
of tectonic activity that together created favorable conditions
for carbonate formation (Bellwood et al., 2017; Fulthorpe &
Schlanger, 1989; Perrin & Bosellini, 2012; Perrin & Kiessling,
2011). Meanwhile, in the Atlantic during the same time, cor-
als were experiencing one of many extinction events associ-
ated with changes in ocean temperature and water quality.
This historical pattern has recently been shown to be asso-
ciated with diversification rates and dietary ecotype patterns
in the damselfishes (McCord et al., 2021). Our evolutionary
rate analysis recovers mixed results for the effect of beaks
on the tempo and mode of skull shape evolution during this
period of time (Budd et al., 1995; Cahuzac & Chaix, 1996;
Edinger & Risk, 1994). Within the SCH clade of parrot-
fishes, we recover increases in the rate of evolution during
the Oligocene-Miocene transition and later in the middle
Miocene. The rate increases are likely associated with the evo-
lution and modification of the intramandibular joint in this
clade as previous studies have found similar increases in rates
of morphological evolution within parrotfishes associated
with this trait (Price et al., 2010). However, the evolution of
the beak in the “reef” clade predates the Oligocene-Miocene
boundary, which suggests that some parrotfishes already had
beaks before the expansion of coral reef cover that would
occur several million years later. We see the inverse pattern in
Sparisoma where this clade evolved a beak during the Middle
Miocene but is instead not associated with any change in the
rate of shape evolution. Indeed, skull shapes in Sparisoma
were generally found to overlap with other “seagrass” clade
species and even some non-parrotfish wrasses suggesting min-
imal divergence in overall skull shape. Our reconstructions
of paleoclimate temperatures show that during the middle to
late Miocene, the Atlantic Ocean experienced cooler tempera-
tures and more climatic variability than the Pacific Ocean.
The cooler temperatures of the Atlantic during the Miocene
may have selected more cold-tolerant coral species while driv-
ing the extirpation and extinction of other less-tolerant spe-
cies (Cahuzac & Chaix, 1996; Edinger & Risk, 1994).

We hypothesize that the differences in biogeographic his-
tories between the coral faunas of the Atlantic and Pacific
Oceans have played an important role in promoting or con-
straining patterns of morphological diversification among
the beaked parrotfishes. In the Indo-Pacific, the expansion of
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coral reef habitat during the Oligocene-Miocene boundary
likely presented ecological opportunity to the “reef” clade
of parrotfishes that were already in possession of beaks and
thus in prime position to take advantage of this expansion
of their trophic resource and grazing substrate. This ecolog-
ical opportunity may have provided ecological release and
spurred subsequent rapid morphological diversification and
specialization leading to the emergence of the intramandib-
ular joint within the SCH clade. In the Atlantic Ocean how-
ever, Sparisoma evolved beaks in a more variable climates
and during a prolonged period of decline in the abundance
and diversity of reef-building corals. Interestingly, while
reef-building corals declined during this time, solitary cor-
als proliferated in seagrass beds which were the likely hab-
itats of ancestral Sparisoma (Budd et al., 1995; Pomar &
Hallock, 2007). This may also explain the more generalized
diets in the Sparisoma species that include seagrass and other
macroalgae in addition to coral skeletons (Burkepile et al.,
2019; Clements & Choat, 2018; Wainwright et al., 2018).
Hermatypic corals would not see a distinct rebound in the
Atlantic until the Pleistocene (2.5 mya). But by the time these
corals began to rebound, Sparisoma would have been faced
with new competition by the “reef” clade parrotfishes that
invaded the Atlantic Ocean through the Isthmus of Panama
from the Pacific Ocean ~6.5 mya (Siqueira et al., 2019b) and
have been shown to compete for similar resources (Adam et
al., 2015; Burkepile et al., 2019; McAfee & Morgan, 1996).
In short, we hypothesize that the Atlantic Sparisoma never
had the ecological opportunity that the “reef” clade of par-
rotfishes experienced in the early Miocene because of when
and where they evolved their beaks and as a result we see
a reduction in the rate of skull shape evolution after evolv-
ing beaks and more generalized skull shapes and diets among
these species relative to “reef” clade species.

In the odacines, beaks evolved in the temperate West Pacific
during the Oligocene ~32 mya. Today, many of these species
are found in seagrass habitats where they either feed directly
on the seagrass or feed on the invertebrate prey that inhabit
the seagrass beds. Ancestral state estimations of diet in previ-
ous studies have found that the ancestral odacine likely fed on
hard-shelled invertebrate prey and some species later shifted
to more herbivorous diets (Burress & Wainwright, 2018;
Cowman et al., 2009). Unlike hermatypic corals, seagrasses
have a sparse fossil record which limits the reconstruction
of their paleobiogeography to the use of proxy species that
have been known to associate with seagrasses (Brasier, 1975;
Vélez-Juarbe, 2014). As a result, it is difficult to accurately
estimate the distribution of specific seagrass communities
during the Oligocene beyond the general expansion of shal-
low water habitat that occurred as a result of tectonic events
in the Indo-West Pacific around that time that may have pro-
vided suitable habitat (Brasier, 1975). However, recent studies
that examined the Trealla Limestone in Western Australia,
which contains the oldest evidence for seagrass communities
in Western Australia, have found evidence for widespread sea-
grass meadows during the early Miocene 19-16 mya (Haig
et al., 2020). It is therefore possible that seagrass communi-
ties were present in the region earlier and did not manage to
fossilize until later. Interestingly, studies of other seagrass-as-
sociated fishes (Syngnathidae) have also found dramatic mor-
phological changes during the Oligocene and hypothesized
that these adaptations arose in response to the expansion of
seagrass distributions during this time (Teske & Beheregaray,

Evans et al.

2009). It is therefore possible that the expansion of seagrass
habitats in the Oligocene spurred the evolution of the beak
in odacines and the rate shift that we observed in our shape
data.

Our findings show that evolutionary innovation alone may
not be enough to spur subsequent morphological diversifica-
tion and that the timing and ecological context of the innova-
tion may be equally important for determining the subsequent
evolutionary trajectories of the clades that possess them.
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