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Abstract

Though Paleozoic ray-finned fishes are considered to be morphologically conserva-
tive, we report a novel mode of fang accommodation (i.e., the fitting of fangs inside
the jaw) in the Permian actinopterygian tBrazilichthys macrognathus, whereby the

teeth of the lower jaw insert into fenestrae of the upper jaw. To better understand

Email: rtfiguer@umich.edu how fishes have accommodated lower jaw fangs through geologic time, we synthesize

Funding information the multitude of ways living and extinct osteichthyans have housed large mandibular
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. - dentition. While the precise structure of fang accommodation seen in tBrazilichthys
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has not been reported in any other osteichthyans, alternate strategies of upper jaw
fenestration to fit mandibular fangs are present in some extant ray-finned fishes—the
needlejaws Acestrorhynchus and the gars of the genus Lepisosteus. Notably, out of
our survey, only the two aforementioned neopterygians bear upper jaw fenestration
for the accommodation of mandibular fangs. We implicate the kinetic jaws of neop-
terygians in this trend, whereby large mandibular fangs are more easily fit between
the multitude of upper jaw and palatal bones. The restricted space available in early
osteichthyan jaws may have led to a proliferation of novel ways to accommodate large
dentition. We recommend a greater survey of Paleozoic actinopterygian jaw morphol-
ogy, in light of these results and other recent reevaluations of jaw structure in early

fossil ray-fins.
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1 | INTRODUCTION many times since, including body elongation (Lund & Poplin, 2002),

body deepening (Gill, 1925; Sallan & Coates, 2013), and vari-

The late Paleozoic (359.3-251.9 million years ago (mya) (Aretz
et al., 2020; Henderson, Dunne, & Fasey, 2022)) represents an im-
portant interval for understanding the evolution and diversification
of actinopterygians, the ray-finned fishes. During this time, ray-
finned fishes first evolved a series of innovations that have arisen

ous changes to feeding ranging from adaptations for durophagy
(Friedman et al., 2018) to changes in jaw articulation (Argyriou
et al., 2022). Despite the important morphological innovations tak-
ing place in the Carboniferous-Permian interval, few ray-finned
fishes of this age have been studied in detail (Argyriou et al., 2022;
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Figueroa et al., 2019), suggesting that many additional functional in-
novations remain unrecognized.

Classic studies established basic aspects of the jaw-closing
mechanism of early ray-finned fishes (Lauder, 1982; Schaeffer &
Rosen, 1961), and the relationship between the palate, suspenso-
rium, and neurocranium is well understood for a handful of artic-
ulated and three-dimensionally preserved specimens (Argyriou
et al., 2018; Figueroa et al., 2019; Friedman et al., 2018; Giles
et al, 2015). However, little is known regarding jaw closing in
Paleozoic ray-finned fishes that bear greatly enlarged, fang-like den-
tition on the upper and lower jaws.

With some notable exceptions, Paleozoic ray-finned fishes gen-
erally exhibit conservative body shapes (Friedman, 2015; Sallan &
Coates, 2013). Similar structural homogeneity is generally assumed
for the jaws and palate, with most taxa interpreted as bearing some
variety of pointed teeth on both the upper and lower jaws, and
finer denticulation on the palate and inner surface of the mandi-
ble. Nevertheless, several Paleozoic ray-finned fishes show mor-
phology related to a highly predatory habitus, such as large conical
teeth on upper or lower jaws, conical dentition present in multiple
rows on labial and lingual sides of the jaws, a modified symphyseal
series of teeth, and curvature of the lower jaw toward the symphy-
sis (Choo, 2009; Dunkle & Schaeffer, 1973; Figueroa et al., 2021,
Stamberg, 1991, 2006, 2018). Of these, the most common adaptation
is the presence of large fangs (Choo, 2009; Dunkle & Schaeffer, 1973;
Figueroa et al., 2019, 2021; Stamberg, 2006), with fangs here being
defined as large canine-like teeth (Olson, 2017). However, little is
known regarding the interactions between the mandibular fangs and
the palate in most of these taxa. Taxa with these attributes appear
to be dispersed through the stem of the ray-finned fish tree rather
than united as a monophyletic lineage of large-fanged fossil taxa
(Argyriou et al., 2022; Figueroa et al., 2019; Giles et al., 2017; Stack &
Gottfried, 2021). Few of these fishes are sufficiently well preserved
to determine how jaw closing accommodated enlarged dentition.

Extant actinopterygians have evolved a multitude of ways to
house their lower jaw dentition. The large fangs and wide gape of
some taxa, such as the deepwater-dwelling stomiids and the tra-
chichthyiform Anoplogaster, have been interpreted as being uti-
lized in prey retention after capture via suction feeding (Germain
et al., 2019; Greven et al., 2009; Kierdorf et al., 2022). However, in
the majority of marine and freshwater fishes with large fangs, it is
more common for jaw closure to be complete and for the purpose of
prey capture via ram feeding - with mandibular teeth accommodated
between the bones of the upper jaw and suspensorium.

Here, we describe a novel strategy for interaction between jaw
fangs, palate, and palatal dentition in the Lower Permian (298.9-
274.4 mya (Henderson et al., 2020)) tBrazilichthys macrognathus
(Cox & Hutchinson, 1991), one of the few Paleozoic large-toothed
actinopterygians known from remains that permit investigation of
the interaction between upper and lower jaws dentition. We com-
pare the morphology of tBrazilichthys to other bony fishes—both
fossil and living—in order to better understand the diversity of jaw-
closing strategies in fang-bearing ray-finned fishes.
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2 | MATERIALS AND METHODS
2.1 | |Institutional codes

Institutional codes follow those of Sabaj (2020). DGM, Colecéo de
Paleontologia do Museu de Ciéncias da Terra, Servico Geoldgico do
Brasil, Ministério de Minas e Energia, Rio de Janeiro, Brazil; JFBM,
James Ford Bell Museum of Natural History, University of Minnesota,
Minneapolis, Minnesota, U.S.A.; ROM, Royal Ontario Museum,
Toronto, Ontario, Canada; UF, University of Florida, Gainesville,
Florida, U.S.A.; UMMZ, University of Michigan Museum of Zoology,
Ann Arbor, Michigan, U.S.A.; UW, University of Washington, Seattle,
Washington, U.S.A.; YPM, Yale University, Peabody Museum of

Natural History, New Haven, Connecticut, U.S.A.

2.2 | Comparative materials

Acestrorhynchidae. Acestrorhynchus falcatus UF:Fish:189596.
ark:/87602/m4/M159116.

Alepisauridae. Alepisaurus ferox YPM:lch:025451. ark:/87602/
m4/426485.

Amiidae. Amia calva UMMZ 235291.

Brazilichthyidae. tBrazilichthys macrognathus. DGM 1061-P.
doi:/10.6084/m9.figshare.7600103.

Channidae. Channa marulius UF:Fish:241571. ark:/87602/m4/
M170165.

Cynodontidae.  Hydrolycus  armatus ~ ROM:Fishes:88356.
doi:10.17602/M2/M97833.
Gempylidae.  Promethichthys prometheus UF:Fish:231977.
ark:/87602/m4/M95620.

Lepisosteidae. Lepisosteus oculatus UMMZ 196974.

Muraenesocidae. Muraenesox cinereus UW:UWFC:021142.
ark:/87602/m4/M114084.

Percidae. Sander vitreus JFBM:Fishes:35995. ark:/87602/m4/
M57862.

Polypteridae. Polypterus senegalus UMMZ 195008.

Sciaenidae. Cynoscion regalis UW:UWFC:004152. ark:/87602/
m4/M117179.

Sphyraenidae. Sphyraena sphyraena UF:Fish:137529. ark:/87602/
m4/M81241.

Trichiuridae. Trichiurus lepturus UW:UWFC:014888. ark:/87602/
m4/M91552.

One adult specimen per species was examined via microcom-
puted tomography (see Section 2.4 below). Standard lengths of dig-
ital specimens are infrequently uploaded along with other metadata
- as such, these measurements are unknown.

2.3 | Analyzed specimen

The predatory Permian stem actinopterygian tBrazilichthys macrog-
nathus was originally described based on a single specimen (DGM
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1061-P) collected in the Pastos Bons locality of the Pedra de Fogo
Formation (Cox & Hutchinson, 1991; Figueroa et al., 2019), which
is considered to be Artinskian-Kungurian (290.1-273.01 mya
(Henderson et al., 2020)) in age based on palynological and verte-
brate fossil data (lannuzzi et al., 2018).

2.4 | Microcomputed tomography (nCT)

uCT data for tBrazilichthys macrognathus was obtained from
Figueroa et al. (2019) and processed using the software Mimics v
19.0 (Materialise, Belgium) to extract upper and lower jaw mod-
els. Comparative extant materials were acquired either from
MorphoSource (for JFBM, ROM, UF, UW, or YPM specimens; see
DOI and ARK identifiers for specific files), or via pCT scanning on
a Nikon XT H 225 ST industrial CT scanner at the University of
Michigan CT in Earth and Environmental Sciences (CTEES) facility.
Scanned specimens are deposited in the collection of the University
of Michigan Museum of Zoology (UMMZ). See Table S1 for more

detailed information on comparative material used in this study.

2.5 | Modeling and visualization

Using Blender 3.2 (blender.org), .ply objects of the left jaws of
TBrazilichthys were rendered using a simple shading and lighting
scheme. For visualization of the jaw closing mechanism, the lower jaw
was repositioned in relation to the upper jaw to better reflect the ex-
pected life orientation. Setting a single articulation point on the glenoid
fossa of the lower jaw permitted simple animation of jaw movement

(File S1) and observation of the interaction between fangs and palate.

2.6 | Abbreviation list

ac.v - accessory vomer; ad.f - adductor fossa; ang - angular; cor
- coronoids; de - dentary; de.fa - dentary fangs; de.la.te - dentary
labial dentition; gle - glenoid fossa; mx - maxilla; mx.fa - maxillary
fangs; mx.fa.so - maxillary fang sockets; mx.la.te - maxillary labial
dentition; part - prearticular; pmx - premaxilla; pq - palatoquad-
rate; pqg.s - palatoquadrate suborbital lamina; pq.te - palatoquadrate
teeth; psp - parasphenoid; te.fe - fenestra for teeth on the palate.

The obelus (1) indicates extinct taxa, following Patterson and
Rosen (1977).

3 | RESULTS AND DISCUSSION
3.1 | Jaw closing in 1Brazilichthys macrognathus
Although tBrazilichthys was originally compared to acrolepids and

birgeriids, due to the large fangs on both upper and lower jaws (Cox
& Hutchinson, 1991; Romano & Brinkmann, 2009), micro-computed
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tomography (uCT) revealed anatomical structures that contra-
dict these placements. Instead, a formal phylogenetic analysis
places tBrazilichthys as part of an unresolved group that includes
most late Paleozoic (Carboniferous and Permian) actinopterygians
(Figueroa et al., 2019). Like many other Paleozoic ray-finned fishes,
tBrazilichthys bears multiple rows of teeth on the upper and lower
jaws, associated with the premaxilla, maxilla, palatoquadrate, den-
tary, and coronoids (Figueroa et al., 2019). Thus, three rows of teeth
are present on each jaw—two on the labial surface (maxilla and den-
tary), and one mesially (palatoquadrate and coronoids). The teeth
from both rows (labial and lingual) in the maxilla and dentary are
conical, but the lingual row is formed by large curved fangs. The
dentition on the coronoids and palatoquadrate is similar, formed by
numerous closely-spaced conical teeth forming a continuous row.

With the jaw closed, the dentition of the upper jaw overlies the
lateral surface of the dentary, while the dentition of the lower jaw
lies mesial to the external surface of the maxilla (Figure 1). Anterior
to the maxilla, the premaxilla bears a single row of three small conical
teeth. Since the dentition of the lower jaw also includes large fangs,
closure of the jaw is only possible due to the presence of fenestrae
for the insertion of the lower jaw fangs into the mesial surface of
the maxilla, lingual to the maxillary dentition and labial to the den-
tition of the palatoquadrate (Figure 1b,c). The most anterior portion
of the maxilla lacks fenestration, as the mandibular fangs nearer to
the symphysis are smaller than those more proximal. The way these
fenestrae develop is not clear from the CT-data alone, but their posi-
tioning suggests they are formed by U-shaped serial fenestration of
the maxilla in contact with the lateral margin of the palate. The pres-
ence of these fenestrae permits the complete closure of the jaws
so that the dentition of the coronoids and the palatoquadrate can
contact each other when the jaws are completely closed. We discard
the hypothesis that these fenestrae could be associated with the re-
placement of maxillary fangs, as the fenestrae are not aligned with
the maxillary teeth, which are positioned labially to the fenestrae.
Additionally, in between the upper jaw fangs, there are depressions
that correspond to sockets for fang replacement (Figures 1c and 2).
Similar sockets are present in other Paleozoic taxa, including several
sarcopterygians (Downs & Daeschler, 2020) and fang-bearing acti-
nopterygians (Dunkle & Schaeffer, 1973; Stamberg, 1991). Similar
sockets for tooth replacement are present in extant actinoptery-
gians such as the dentary and maxilla of the bichir Polypterus senega-
lus (Clemen et al., 1998; Wacker et al., 2001) and the lateral dentition
of the cutlassfish Trichiurus lepturus (Bemis et al., 2019).

The fenestrae of the maxilla are filled with fangs from the lower
jaw in an alternate manner, meaning that one fenestra is filled with
a fang while the subsequent one remains empty. These empty
fenestrae seem to align with empty tooth sockets on the dentary
(Figure 2). Some of these tooth sockets bear fangs in the early
stages of development (Figure S1). Thus, it is likely that the fangs
of tBrazilichthys were replaced in an alternate pattern. However, on
the right jaws of tBrazilichthys, the tooth sockets that are empty in
the left jaw are filled with fangs. These fangs are poorly attached to
the dentary bone and only partially pierce the fenestration of the
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FIGURE 1 Leftjaws of tBrazilichthys macrognathus (DGM 1061-P). (a) Upper and lower jaws in left lateral view; (b) upper jaw in dorsal
view; (c) upper jaw in ventral view; (d) distal end of the upper jaw in ventral view; (e) left lower jaw in dorsolateral view. Scale bar = 10mm.

maxilla (Figures 1 and 2). This indicates that tooth replacement in
tBrazilichthys was done in an alternate manner on each dentary and
that this process would occur separately on each jaw, meaning that
replacement is bilaterally asymmetrical.

Similar alternate pattern of tooth replacement is known in ex-
tant actinopterygians. Many predatory actinopterygians show
replacement of teeth by filling empty sockets between the older
teeth set (Bemis et al., 2005, 2019). However, information on tooth

development and replacement is lacking for most teleosts (Bemis
etal,, 2005, 2019; Kolmann et al., 2019; Morgan & King, 1983; Stuart
et al., 2021). In terms of asymmetrical replacement of teeth of the
lower jaw, extant examples include macropredatory characiforms,
such as serrasalmids (Kolmann et al., 2019; Stuart et al., 2021). The
presence of both alternate and asymmetrical tooth replacement in
tBrazilichthys further corroborate the macropredatory habitus of
this species.
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FIGURE 2 Leftjaws of tBrazilichthys macrognathus (DGM 1061-P) in mesial view. Palatoquadrate sectioned to expose the fenestration of

the maxilla and the fangs of the lower jaw (in red). Scale bar = 10mm.

The morphology of the adductor mandibulae muscle in Paleozoic
ray-finned fishes is still poorly understood. In Paleozoic ray-finned
fishes, this muscle bundle appears to have been constrained within
the maxillary-palatoquadrate chamber of the lower jaw, attaching to
the palatoquadrate and the hyomandibula, as in living non-teleost ray-
finned fishes(Datovo & Rizzato, 2018; Lauder, 1980). Lauder (1980)
proposes that the anterior adductor mandibulae muscle would attach
to the anterior portion of the palatoquadrate, following the subor-
bital blade of the upper jaw. If this is true, then the presence of lower
jaw fangs inserting into the maxilla-palatoquadrate chamber would at
least partially constrain the placement and size of the anterior adduc-
tor mandibulae muscle. Further, a cartilaginous or membranous tissue
layer would be needed to protect musculature from being punctured
by the lower jaw fangs. Thus, there are two potential muscle mor-
phologies to cope with the presence of the fangs accommodation:
(1) the anterior adductor mandibulae muscle being shortened and
terminating more proximal to the adductor fossa, leaving the sub-
orbital blade of the upper jaw free for fang accommodation; (2) the
anterior adductor mandibulae muscle would remain fixed to the an-
teriormost portion of the palatoquadrate, but strongly dorsoventrally
constrained and protected from the fangs by a cartilaginous or mem-
branous tissue. Unfortunately, due to the lack of more specimens of
TBrazilichthys and the absence of soft-tissue preservation in the holo-
type it is not possible to favor either of these hypotheses.

3.2 | Other Paleozoic osteichthyans

The mode of fang accommodation presented above is unique among
Paleozoic actinopterygians. Other predatory taxa with similar
dentition—such as 1Tegeolepis, TProgyrolepis, and tNematoptychius—do
not show evidence of fenestration on the palate for fang insertion
(Dunkle & Schaeffer, 1973; Poplin, 1999, fig. 2; Stamberg, 2018, figs.7,
9, 11b). In these, taxa there seems to be only partial closure of the jaws,
limited by the size of the dentary fangs, while fangs from the maxilla

lay labially, along the outer surface of the lower jaw. In some Devonian
sarcopterygians—such as tEusthenopteron (Figure 3b), THeddleichthys,
TTristichopterus, tMegalichthys (Downs & Daeschler, 2020; Jarvik, 1980;
Parfitt et al., 2014; Snitting, 2009)—there is evidence of fossae on the
lower jaw to fit the large palatal fangs, while the dentary dentition
lays more dorsal over an elevated lateral jaw margin. This is evident
in rhipidistians, which bear intercoronoid and precoronoid fossae on
the lower jaw (Ahlberg & Clack, 1998). The most similar morphology
to that of tBrazilichthys (Figure 3c) is found in 1Onychodus (Figure 3a),
where there is a large groove between the maxillary and palatal
detention that fits the extent of the dentary fangs. However, there
is no fenestration within this palatal groove for individual fangs
(Andrews et al., 2005; Schaeffer & Rosen, 1961).

3.3 | Extant actinopterygians

The following descriptions focus on fangs and how they are accom-
modated within the closed jaws of the taxa mentioned. For brief de-
scriptions of how the other teeth of the low jaw are accommodated
within the mouth, refer to Table S1.

3.3.1 | Tooth arrangements at the anterior
margin of the jaws

Along the anterior margin of the gape, several extant actinop-
terygians house their mandibular teeth posteromesial to the pre-
maxillary bone or alongside the premaxillary teeth, including the
lancetfish Alepisaurus ferox, the bowfin Amia calva, the snakehead
Channa marulius, the bichir Polypterus senegalus, the snake mackerel
Promethichthys prometheus, the walleye Sander vitreus, and the cut-
lassfish Trichiurus lepturus.

S. vitreus bears elongate anterior mandibular fangs that insert
into a soft tissue cavity between the premaxilla and vomerine head.
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FIGURE 3 Transverse sections through the jaws of selected fanged osteichthyans showing various methods of fang accommodation,
arranged phylogenetically (Dornburg & Near, 2021). (a) T1Onychodus (based on Andrews, 2005); (b) tEusthenopteron (based on Jarvik, 1980);
(c) TBrazilichthys (DGM 1061-P); (d) Polypterus (UMMZ 195008); (e) Lepisosteus (UMMZ 196974); (f) Muraenesox (Morphosource
UW:UWFC:021142); (g) Acestrorhynchus (Morphosource UF:Fish:189596); (h) Hydrolycus (Morphosource ROM:Fishes:88356); (i) Alepisaurus
(Morphosource YPM:Ich:025451); (j) Promethichthys (Morphosource UF:Fish:231977); (k) Channa (Morphosource UF:Fish:241571). Dark gray
indicates bone, light gray areas indicate continuity of the bone behind a tooth in a fenestra.

Other fishes, such as C. marulius, bear anterior lower jaw dentition
that interdigitate with the dentition of the upper jaw.

The vampire fish Hydrolycus armatus (Figure 3h) employs an al-
ternative strategy, housing its massive anterior mandibular dentition
within a void between the ethmoid, ectopterygoid, and maxilla pos-
teromesially, and the premaxilla at the anterolateral margins.

The pike conger Muraenesox cinereus (Figure 3f), have large man-
dibular teeth anteriorly that are accommodated by a cavity along the
posterior margin of the vomerine head.

3.3.2 | Tooth arrangements along the lateral gape

Most frequently, the mandibular teeth contributing to the lat-
eral gape are accommodated between the premaxilla and the
often tooth-bearing ectopterygoid, as in the sampled taxa A. ferox
(Figure 3i), A. calva, the weakfish Cynoscion regalis, P. prometheus
(Figure 3j), S. vitreus, and the barracuda Sphyraena sphyraena. Along
the most posterior margin of the lateral gape, the mandibular denti-
tion of these fishes slots between the maxilla and the ectopterygoid.
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In P. senegalus (Figure 3d), the large mandibular teeth along the
lateral gape are accommodated by a fossa on the ventral surface of
the maxilla, lateral to the ectopterygoid and mesial to the upper jaw
dentition.

Alternatively, the large teeth along the gape of the dentary of
C. marulius (Figure 3k) are housed between the premaxilla, max-
illa, and lachrymal on the lateral margin, and the ectopterygoid
on the mesial margin, while becoming smaller and more conical
posteriorly.

The more posterior lateral dentition of H. armatus is accommo-
dated by a notch along the mesial margin of the maxilla and another
notch along the lateral margin of the ectopterygoid.

In M. cinereus, the larger mandibular dentition along the anterior
margin of the lateral gape is bounded by soft tissue. Along the pos-
terior portion of the gape, the mandibular dentition slots into small
depressions along the ventral margin of the maxilla, mesial to the
maxillary tooth row.

None of the aforementioned extant taxa possess a jaw morphol-
ogy or fang accommodation scheme comparable to that found in
TBrazilichthys.

3.3.3 | Fangs penetrating bones of the upper
jaw and palate

Extant actinopterygians possessing fenestrae in the upper jaw for
the accommodation of dentary dentition are quite rare. Only two
of the neopterygians sampled possessed a condition comparable in
function to that found in tBrazilichthys, despite the clade account-
ing for nearly 99.9% of all extant actinopterygian species richness
(Fricke et al., 2022) and possessing a wide breadth of phenotypic
and ecological diversity (Nelson et al., 2016). This is most likely due
to neopterygians having an upper jaw no longer firmly bound to the
palate, as is found in other actinopterygians (Friedman, 2015).

The holostean Lepisosteus (Figure 3e) can possess fenestrae in
the most anterior lacrimomaxillary bones and spaces between a
lacrimomaxilla and the premaxilla, with variation ranging from com-
plete absence to possessing one or two fenestrae depending on
species (Grande, 2010). These fenestrae are restricted to the ante-
rior of the snout and, like 1Brazilichthys, accommodate teeth of the
dentary. In L. oculatus, the posteriormost mandibular teeth along the
lateral gape interdigitate with the teeth of the lacrimomaxillae (see
Grande (2010) for illustration).

In the characiform Acestrorhynchus falcatus (Figure 3g), a singular
mandibular fang at the anterior of the lateral gape is accommodated
by the foramen for the dentary canine in the premaxilla (see Toledo-
Piza (2007) for illustration). The remainder of the anterior dentition
of the dentary fits along the posteromesial margin of the premaxilla,
while the more posterior dentition fits into grooves along the ven-
trolateral margin of the maxilla. The dentition along the most poste-
rior portion of the dentary is small and conical, fitting between the

ectopterygoid and makxilla.

i Anatomy RATSRTSABIPES

4 | CONCLUSIONS

The mode of jaw closing of tBrazilichthys—especially in terms of
interaction between the lower jaw and palate—is unique among
osteichthyans when considering osteological features. Several
Paleozoic sarcopterygians adopt a similar strategy but with fenes-
tration being present in the lower jaw rather than the palate. While a
fenestrated upper jaw is present in Acestrorhynchus and Lepisosteus,
it is never as sequential fenestrations of a single ossification, as the
neopterygian palate is formed by multiple differentiated ossifica-
tions. Other predatory sarcopterygians, such as porolepiforms and
onychodonts, bear paired internasal cavities on the anterior end of
the mouth roof that accommodate teeth from the lower jaw tooth-
whorls (Lu et al., 2016; Yu, 1998). Similarly, megalichthyids bear an
apical fossa on the ethmosphenoid surface of the braincase (Downs
& Daeschler, 2020) that might be associated with fitting anterior
fangs of the lower jaw. Thus, the unique mode of jaw closure seen in
tBrazilichthys further supports previous interpretations of a macro-
predatory habitus for this taxon.

The presence of these maxillary fenestrae to accommodate the
teeth of the lower jaw in tBrazilichthys adds to the list of characters
of late Paleozoic actinopterygians. As noted by Figueroa et al. (2019),
despite the abundance of ecomorphologically similar taxa and many
families united by the presence of large fangs (e.g., acrolepids, rhab-
dolepids, cosmoptychids, etc.), there is little evidence to support
these assignments, with most of the characteristics defining these
groups being of weak systematic value. Further studies on the jaws
of these predatory Paleozoic actinopterygians might shed light on
their affinities and help us understand whether macropredatory
ecomorphologies emerged multiple times along the actinopterygian
stem.

Non-neopterygian actinopterygians account for only 43
extant species across 3 families (Polypteridae, Acipenseridae,
and Polyodontidae) (Fricke et al., 2022), though their fossil rich-
ness is considerably higher in the Paleozoic (Henderson, Dunne,
& Giles, 2022). While a more in-depth analysis is needed, the
bound nature of the upper jaw and palate of non-neopterygians
may have acted as a ‘spandrel’ of sorts (Gould & Lewontin, 1979),
forcing novel ways of storing teeth in a physiologically-
constrained space to emerge. Neopterygian fishes have more
kinetic upper jaws—decoupling their maxilla and preoperculum
(Friedman, 2015)—thereby allowing for the accommodation of
mandibular teeth between the numerous bones of the jaw and pal-
ate that has led to a proliferation of novel ways to house dentition
in the extraordinarily species rich and ecomorphologically diverse
extant actinopterygian assemblage.

Although superficially similar in terms of skull dermal bone anat-
omy, early ray-finned fishes show considerable variation in body
shape, fin morphology, and habitat (Friedman, 2015). Thus, we an-
ticipate that strategies for coping with large fangs might be more
diverse than previously thought, and a greater survey of Paleozoic

actinopterygian jaws, coupled with anatomical revisions of poorly
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known taxa, will increase our understanding of the feeding mecha-

nisms employed by early ray-finned fishes.
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