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Abstract. We derive some of the central equations governing quantum fluctuations in grav-
itational waves, making use of general relativity as a sensible effective quantum theory at
large distances. We begin with a review of classical gravitational waves in general relativity,
including the energy in each mode. We then form the quantum ground state and coherent
state, before then obtaining an explicit class of squeezed states. Since existing gravitational
wave detections arise from merging black holes, and since the quantum nature of black holes
remains puzzling, one can be open-minded to the possibility that the wave is in an interesting
quantum mechanical state, such as a highly squeezed state. We compute the time and space
two-point correlation functions for the quantized metric perturbations. We then constrain
its amplitude with LIGO-Virgo observations. Using existing LIGO-Virgo data, we place a
bound on the (exponential) squeezing parameter of the quantum gravitational wave state
of ¢ < 41.
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1 Introduction

All the interactions of the Standard Model are known to arise from the behavior of quantum

particles: photons, gluons, W/Z bosons, and Higgs bosons (e.g., see [1]).

There is clear

experimental evidence for all these particles, along with all the fermions of the Standard
Model. In contrast we do not have direct observations of the behavior of gravitons that
underpin gravitation. Consistency between quantum mechanics and relativity implies that
gravitons exist, and explains the structure of general relativity at long distances [2-10]. So
it is a very worthwhile goal to search for observational consequences of quantum effects
in gravitation. The inclusion of quantum effects can be done reliably at large distances,
since general relativity is a well behaved effective theory for scales much larger than the
Planck length.



Recent observations of gravitational waves (GWs) by LIGO-Virgo are known to be
broadly consistent with the predictions of classical general relativity [11-15]. Quantum cor-
rections to the waves are ordinarily thought to be exceedingly small [16, 17]. This is because
the occupancy number of gravitons in a detectable wave is huge, and quantum corrections,
or “graviton shot noise”, is suppressed. This conclusion is reliable under the assumption that
the GW is in a coherent state, or similar, which are the most classical states. In such a case,
we have essentially no chance to see any quantum behavior in the foreseeable future.

On the other hand, GWs that are detectable have arisen due to black hole mergers (and
neutron stars). The quantum character of black holes remains mysterious. So, while it is
very plausible that the resulting GW is indeed in a coherent state, or similar, we can have
an open mind to the possibility that the wave produced is in a much more striking quantum
state, such as a highly squeezed state. In fact, squeezed states are naturally produced when
quantum degrees of freedom are affected by a time dependent background (e.g. the production
of squeezed state gravitons in the early universe, see ref. [18]). This is indeed the case for
the background when one considers quantum fluctuations in the gravitational field that are
being acted on by the extreme spacetime evolution of merging black holes or neutron stars.
Furthermore, it has been suggested that black holes may be highly quantum mechanical
objects. Therefore while there is no known complete calculation of the production of squeezed
state gravitons from mergers, as far as we are aware, it is worthwhile to first suppose squeezed
states are produced and constrain the amount of squeezing that could have taken place in
this process using existing data (we comment on important future work in section 7). As the
wave propagates from the merger to the earth, it is possible that a highly quantum state will
not undergo appreciable decoherence, since gravitation is so weak. (There are related issues
for dark matter, which may only have gravitational interactions [19-21].)

In this work, we shall build the relevant formalism to describe GWs in squeezed states,
compute their correlation properties, and perform a direct comparison to LIGO-Virgo data.
We shall find a bound on the squeezing that seems rather weak; it only constrains a very
large amount of squeezing. Nevertheless, if the merger produces squeezing at a rate that
is analogous to how cosmic inflation produces extremely squeezed states [22, 23], then this
may in fact be a useful bound. We note that in the context of cosmic inflation, this ex-
treme “squeezing” means the states are typically described as “classical”, since the field and
momentum are closely correlated and matched well by stochastic methods. However, in the
present context, this squeezing would render the observed gravitational waves from a merger
different than the classical general relativistic prediction, so we refer to it as “quantum”
(irrespective of whether some stochastic method might be able to reproduce it).

There has been very important earlier work on the topic of quantum fluctuations in
gravitation. In particular, a sequence of very significant works appears in refs. [24-26].
Here the authors calculate in detail how quantum fluctuations in gravitational waves lead
to corresponding fluctuations in the arms of detectors. They provide the equations for the
geodesic motion of the detectors, which include a kind of stochastic term, as well as a kind of
radiation reaction term. These authors in refs. [24-26], along with others in refs. [27, 28], also
make significant progress in computing correlation functions of the gravitational field and the
response. In this work, we build off the above foundational literature and provide a natural
follow up. Other interesting prior work includes refs. [29-39]. In particular, our focus here is
to compute specific details of the structure of a class of squeezed modes, the corresponding
spacetime correlation functions, and a comparison to LIGO-Virgo data. After developing
the necessary formalism, we compute correlations of squeezed quantum gravitational waves,



whose standard deviation is then compared to the residual of existing data. This allows us
to put a bound on the size of quantum fluctuations in observed gravitational waves.

The outline of this paper is the following: in section 2 we recap the form of the weak
field metric for gravitational waves and the corresponding Hamiltonian. In section 3 we
construct a family of wave functions, including squeezed states. In section 4 we determine
their correlations in space and time. In section 5 we analyze the detector response for a
coherent state. In section 6 we analyze the detector response for a squeezed state and place
an observational bound on the squeezing parameter. In section 7 we discuss. In the appendix
we provide the details of the conceptually simpler case of the single harmonic oscillator for
pedagogical purposes.

2 Weak field Hamiltonian
Let us begin with a quick review of the basics of weak gravitational fields.

2.1 Metric for gravitational waves

We will write the metric perturbation h,, around flat spacetime 7, as

G (X,1) = N + b (x,1) . (2.1)

We will use units ¢ = 1, and our signature is (+, —, —, —). Although the gravitational field
may be extreme near the merging black holes, once it is near the earth, we know that it has
entered the weak field regime, with metric fluctuations hy, that are small, i.e., |, | < 1.

For gravitational waves propagating through the vacuum, we can go to transverse-
traceless gauge in which the metric fluctuations h,,, are found to take the form hg, = 0 and
the spatial components we denote h;;. In this gauge, we have 9;h;; = 0 (transverse) and
6“hij = 0 (traceless).

We will label the two gravitational wave polarizations by p = (4, x). For example, for
a wave traveling in the z-direction, the spatial metric is of the form

hi(z,t) hx(z,t) 0
hij = | hx(z,t) —h4(2,t) 0 |. (2.2)
0 0 0

2.2 Energy in gravitational waves

Consider a wave traveling through space. In this gauge we can define the local energy density
paw(x,t). We can write this as a sum over the 2 polarizations p as

paw(x,t) = > 32;0 ((hp)2+(Vhp)2), (2.3)
p=-+,X

The total energy is given by integrating the energy density over space as
E:i/fxmﬂWny (2.4)
By lifting the fields to operators, the corresponding Schrédinger equation is

L0 -
i ¥ =HV (2.5)



where the Hamiltonian operator H is equal to the above energy E under the replacement to
conjugate variables (h, )

hp(x,t) = hp(x,1),  hy(x,t) = (167G) 7p(x, 1) (2.6)
which obey standard (equal time) commutation relations
[hp(x,), 7 (3, 8)] = i 8 83 (x — y) T (2.7)

The corresponding probability density for a gravitational field configuration is [¥|2.

2.3 Energy in each mode

It is convenient to discuss the properties of the waves in k-space. Let us define the Fourier
transform as

() = / P hy(x, ) e (2.8)

By writing the energy in terms of the Fourier transform of h,, we have

Bk 1 -
E 2y k:2|hk,p|2) . (2.9)

5= 3 |G meg (i

p=+,X%

It will also be convenient to define the theory in a finite size box of volume V. In this
case, the modes become discrete. We can replace the integral over k by a discrete sum as

d*k 1
/W 5 > (2.10)

k

Then the energy can be written as the sum over modes and polarizations as

E=Y" Y Ex, (2.11)

k p=+,X

where

_ 1 T2 217 |2
By = oz (hol” + K1, ) (2.12)

is the energy in each mode.

3 Quantum gravitational wave

For a gravitational wave, the mathematics per mode is similar to the simple harmonic oscilla-
tor described in the appendix. The reason being that the energy per mode of a gravitational
wave of eq. (2.12) is of the same structure of the energy of a simple harmonic oscillator of
eq. (A.1). The only difference is that the variable now is complex &, and we need to combine
all the modes. (One can make direct comparison to the appendix to provide further clarity,
with the replacement mwg/2 — (327V G) ™'k when comparing the two systems.)



3.1 Coherent and squeezed states

Of particular interest to us will be squeezed states, which can have enhanced fluctuations;
while coherent states are the most classical, having minimal fluctuations that are too small
to detect. Previously, refs. [24—29] made progress on studying these states. Our work here is
to examine a particular class of squeezed states in more detail and its associated correlations.

To find the squeezed state wave function for a field, it is useful to compute in Fourier
space with ﬁkyp. Since this is complex, it is useful to decompose in terms of its real izlkyp and
imaginary ngp parts as

iL . hlk,p +1 h2k,p _ Tik,p — 7;7r2k,p
kzp - \/i ) Trk:p - \/§ ‘

A form of the squeezed state wave function for each component is

(3.1)

. i ~ kSakp(t) - -
@bs(h, t) X 1_1[21;[ _1_[ exp [l €ak,p + ﬁﬂ'ac,k,phak,p - m(hakp - hac,k,p(t))2 (32)
a=1, p=+,X
(cf. eq. (A.17)). )
In this expression hgex (%) is a solution of the classical equation of motion, i.e.,

ﬁac,k,p = _inLac,k,p . (33)

Note that back in position space, this is the classical wave equation

hep=V?hep. (3.4)

Note that if we take S,k ,(t) = 1 for all k and both polarizations, then this becomes a
coherent state.

More generally, we can include a family of squeezing functions S, ) for each mode k
and polarization p, which can in principle be different between the real and imaginary parts
a (though we shall soon specialize to the case in which they are the same). By solving the
Schrédinger equation, we find its time dependence is

Sakp(t) = Tanh (Tanh ™ (Bac,) + k) (3.5)
which are specified by the choice of initial squeezing parameters

Sak,p(o) = 5ak,p (36)

which in principle can be different for each wave-vector k and each polarization p = +, x.
The wave function also includes the function

k [t 1-
6ak,p(t) = _4/0 Sak,p(T)dT - Ehac,k,p(t)ﬂ'ac,k,p(t) (37)

to consistently include a 8 # 1 and evolve according to the Schrédinger equation. Note in
eq. (3.2) that the €,k () term only changes the phase of the wavefunction, and therefore
drops out of the distribution p(h,t) o |[vs(h,t)|%.

Importantly, the conjugate momentum 7y, is given from the Hamiltonian eq. (2.11) as

8E 1 LT
= - hk P
i p 167VG ™

(3.8)

Tk,p =



and both obey the reality condition

Bk,p = ET—k,p’ Tkp = ﬂ—T—k,p' (39)

While the real and imaginary components obey

ﬁl,k,p = }Nll,—k,p; }NLQ,k,p = _}NLQ,—k,pa (310)

Tikp = T1,—kp: Tokp = ~T2,~kp- (3.11)

3.2 Equal time fluctuations

If we take the continuum limit (as we may always choose to do since the effective theory is
only valid on large distances), then the distribution of the wavefunction eq. (3.2) gives us
the probability distribution for the field as p(h,t) o< [¢s(h,t)|?. For simplicity, let us report
on results for a pair of identical squeezed functions Sy, = Sikp, = Sakp. In this case it
is simplest to express results directly in terms of the complex fields lthyp. From taking the
modulus squared of the above wave function, we have

@k RSO
— : — 12
p(hvt) & J_[ exXp [ /(27T)3 167Gh ’hk,p hc,k,p(t)| (3 )
p=-F,x
where R[S] is the real part of S.
The mean and variance are given by
~ ~ V8rGh
<hk,p> = hc,k,p(t)7 Ul%,p = Tfk,p@) (3.13)
where
Jrp(t) = 51;117 cos?(kt) + P sin(kt) . (3.14)

In fact it is useful to define the departure from the mean as
Ohy = hy — (hy) . (3.15)
We can then form the 2-point correlation function in k-space as

= = V8rGh
(6P p S py) = Tfk,p(t) Ok, K/ Op.p/ (3.16)

where i i is the Kronecker delta function (= 1 if k = k’ and = 0 if k # k') and similarly
for 5p,p"
In the continuum limit we can write this in terms of the Dirac delta function §%(k—k’) as

<5Bk,p 5Bik<’,p/> = (21)°0*(k — k') Opp Pp(k; 1) (3.17)

where the “power spectrum” is given by

Pp(k,t) = P,(k) fk7p(t) (3.18)
where 5
Py(k) = 8775 (3.19)

is the power spectrum of vacuum fluctuations.



It is important to return to position space, since we are ultimately interested in the
motion of mirrors in interferometers which are well localized in position space. By taking the
inverse Fourier transform we obtain

&k el
(0hy (3, 1) By (3. 8)) = 8y [ 555 Pl ) 20, (3.20)

Although it can be useful to see correlations in space at a fixed time, the interferometer
experiments are sensitive to something else. In particular, one watches a mirror swing back
and forth over time. Therefore it is important to understand correlations in time as well, as
we now compute.

4 Correlations in space and time

Here we report on the correlation functions at different times and space. It is convenient to
perform the calculation in Fourier space, where we find an extension of eq. (3.17) to

(6l p(t) Shfer (1)) = (27)° 8 (k = K') 60 Qp(k, 1,1') (4.1)
where the mixed time power spectrum @ is given by
Qp(k,t,t') = Py(k) Fxp(t,t) (4.2)

where P, is the power spectrum of vacuum fluctuations eq. (3.19). By using the Heisenberg
equation of motion (an illustrative example is given in the appendix), we find that F' is
given by

Fyp(t,t) = 51:;) cos(kt) cos(kt') + B p sin(kt) sin(kt’) + i sin(k(t' — 1)) . (4.3)
Returning to position space, this becomes

&y ) = (hp(x,8) hy(y, 1) = (hp(x, 1)) (A (v, )

=, il Q,(k,t, 1) ek x=Y) (4.4)
- UDpp (27_‘_)3 pity by . .

4.1 Monochromatic squeezing function

If, for simplicity, we assume there is only a single mode k* that is significantly squeezed, then

we can write
eQCpk*Zi
(2m)3 (83 (k — k*) 4+ 63(k + k¥)) (4.5)

Bk,p =1+

where ¢, is the dimensionless strength of the squeezing. Note that we added a pair of delta-
functions to ensure the reality condition is obeyed, i.e., we need By ;, = Bik’p. Also note that
we added 1 to every mode, which corresponds to no-squeezing.

With this form for £, we have

1 [ sin(k|x —y|) _ipe—v
Ly, ) =46 —/ dk k? P, (k) == LU o—ik(t—t")
f(X y ) p,p 27I‘2 0 ( ) k‘]x—y] €

ok g 3 3 ik
8 / APk Py (k) (5 (k — &) + 6 (k + k*)) x sin(kt) sin(kt )™ )]

(4.6)




We can then use the following fact

00 Isin(kr) _pq_y 1
2+ ik(t—t") _ 4
/0 dkk Eokr r2—(t—1t)2 (4.7)

and we can trivially carry out the delta-function integrals. Hence the full 2-point correlation
function is

1 8mGh
tt)=0ppy—
gp(X7Y7 ) ) p,p 22 ‘X—Y|2—(t_t/)

5+ Opp 8TGR ek sin(k*t) sin(k*t') cos(k* - (x —y)) -

(4.8)
Note the sinusoidal oscillations in both ¢ and #; this is a property of the very restrictive
monochromatic squeezing; this will be altered when we move to more realistic squeezing
functions, as we turn to now.

4.2 Smoothed out squeezing function

Let us consider squeezing a range of modes, rather than only a unique value k*. Since a
gravitational wave involves a continuum of modes, this seems more realistic, and we may
retain the feature of squeezing a unique primary mode to be later identified with an observed
gravitational wave peak frequency. Suppose the wave is heading in the (positive) z-direction,
with its mean wavenumber of k* = k*Z and standard deviation k. We smear out eq. (4.5) to
become

eQCp k*Qk

=1

(2m)35(ka)3(ky) X \/2172{6(192k*)2/2”2+€(kz+k*)2/2n2]. (4.9)
TR

Note that we also smoothed out the prefactor k*3 — k*2k for convenience (for narrow smooth-
ing, the correction is small, but the integrals become simpler with this choice). By carrying
out the above integrals, and taking the large ¢ and ¢’ limit, we obtain

1 87Gh 2(p 7.%2
§p(x,x’,t,t/) — 5p,p'ﬁ |X - X/|2 — (t — t’)Q —+ (5p7p/27TGh€ Cpk
x 3 e (TN cog k(2 — ') F (1 — 1)) (4.10)
:F

Note that having performed the smoothing, we have removed the oscillations in eq. (4.8) and
obtained a result with time translation invariance, being only a function of ¢ — /. Since the
physical scenario we have in mind is an earth based detector, with gravitational waves sourced
by a merger hundreds of millions of lightyears away, we may always take the late time limit.
In this limit, the above result is intuitively more physically reasonable than eq. (4.8) with
monochromatic squeezing. A version whose fluctuations “hit” in the region of the classical
wave itself can be obtained, as we now discuss.

4.3 Classical wave modulation

A more realistic smoothing function should lead to the second line in eq. (4.10) being appre-
ciable at the center of the classical wave packet h., whose state one is taking to be squeezed.
This can be accommodated by taking this modulation to be adiabatic, i.e., to suppose that
the above high frequency modes are modulated by a relatively low frequency mode, whose



corresponding wavelength is of the order of the size of the classical wave packet. So in this
adiabatic approximation the second line should be re-scaled by an overall factor pu,(z,t), with

17 |Z_t_¢c|<<)\c

(4.11)
0, |z—t— o>\

:U’P(Z7t) = {

where ¢, is the phase of the center of the classical wave packet (i.e., h.(z = t + ¢,t) is
large) and A, is the overall size of the wavepacket. An example modulation function could

be pp(z,t) = exp(—(z — t — ¢¢)?/A\2).
5 Detector response for coherent state

Let us first focus on the most classical possible state, i.e., a coherent state. So in this section
we set

Prp =1 (5.1)

(we consider B, # 1 in the next section).

Now despite the fact that this is essentially the “most classical” state, nevertheless,
the above result seems to indicate that as x — y the quantum fluctuations become infinite!
However, we should note that this is only true if we really integrate the wave-numbers all
the way up to k£ — oo. But this is unrealistic. The reason is that any detector, such as
LIGO-Virgo, cannot resolve arbitrarily high frequencies. The frequencies of the wave are

related to the wave-number by
k

w
- = — 5.2

/ 2r 2w (5:2)
Let’s introduce a “response” function R(k), defined such that R = 1 when the detector can
resolve easily and R = 0 when the detector cannot. We can insert this into our above result

as follows .
d°k ~ , /
f(xa Y, ta t/)R = 5p,p/ /(2)3 Pv(k) elk.(x_y)_’tk(t_t )R(k) (53)
T
where the subscript “R” notation indicates we take into account the detector response.
If we consider the variance of fluctuations at a single spacetime point x — y we obtain
the “autocorrelation” function

dgk‘ —3 —t
(6hy(t)hyp(t)) R = /(27r)3 Py(k)e ™= R(k) . (5.4)
A simple choice to suppress high frequency modes is
k
R(k) = exp {_k: ] (5.5)

where kmax sets the maximum characteristic wavenumber the detector can resolve. Carrying
out the above integral with this R(k) leads to

4 [k 1
Shp(t)0h(t' ) r = — [ —= 5.6
(om0 ) = = () = (56)
where we have introduced the “Planck frequency”
1
wp] = \/ﬁ ~1.9 x 108 sec™!. (5.7)
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Figure 1. (Normalized) autocorrelation function of vacuum fluctuations, defined with some cut
off kmax-

Note that in general this autocorrelation function is complex, as the above is not a hermi-
tian operator. However, to connect to a physical observable, we can symmetrize over the
arguments to define a hermitian operator as follows

f(X’ Yt t/)S = (é(X, Yt t/)R + §(y7 X, tlv t)R)/2 : (58)
This gives
(5.9)

, 4 (kmax \2 1—Kk2, (t —t)?
(6hp(t)SR(t))s = p ( ool ) 1+ k2 ((t = t’))2)2 :

max

The standard deviation (¢ — t’) in the fluctuations is therefore

4 (k
= /{(0hy)? :[(ma") 5.10
7 = (0, = (T (5.10)
A plot of this symmetrized autocorrelation function is given in figure 1.

5.1 Detector limits and comparison

In the LIGO-Virgo detector, the maximum frequency that the interferometer can respond to
reliably is on the order of

k;:‘ = fmax = O(10*) Hz. (5.11)

This gives a standard deviation in quantum fluctuations on the order of

op = 010719, (5.12)

We should compare the size of these quantum fluctuations to the size of the classical gravita-
tional waves detected at LIGO-Virgo from merging binary black holes. From the LIGO-Virgo
paper, we see that the measured amplitude of the wave is

he = O(10721). (5.13)

~10 -



Putting this altogether we see that the relative size of the quantum fluctuations in a coherent

state to the classical value is

IR _ 010719y, (5.14)
he

This is far too small to detect; as previously noted [24-26]. The current capability of LIGO-

Virgo to detect fluctuations is about an order of magnitude below the classical value from

mergers; certainly it cannot detect 19 orders of magnitude below.

For the pure Minkowski vacuum state fluctuations, there is a theoretical question of
whether such fluctuations are detectable even in principle. More appropriately, since the
world is actually built out of particles, one needs to construct the dressed state of the detector.
Once this is constructed, it is unclear that any directly physical consequences of the vacuum
fluctuations remain. After all, one needs to study interactions between materials (like the
interactions between plates in the Casimir effect) to see physical consequences. This point
seems to have been missed in some previous analyses of gravitational vacuum fluctuations in
Minkowski space in the literature.

On the other hand, for the coherent state, this should manifest itself as physical shot
noise. In any case, since the effect is so small, we do not pursue this further here.

6 Detector response for squeezed state

Since the coherent state fluctuations are far too small, we can turn to the squeezed state,
with strength of squeezing parameter (.

In this case we only need to pay attention to the second term in eq. (4.8) or eq. (4.10).
Then the fluctuations are well behaved as x — x’ and we expect to resolve these modes, which
only apply for k = k* since that is already anticipated to be a mode of the classical wave.

Focussing our attention on the case of the smooth squeezing function, the fluctuations
are then

(5hy(1)Shy(t')) = Ae™ 12 cog(k* (t — 1)) (2, 1) (6.1)

where the overall amplitude is defined as
A= 4nGhe*v k2 (6.2)

At the center of the classical wave packet, where y, — 1, the remaining shape exhibits the
nice features of time translation invariance, as it is only a function of t—#'. The corresponding
correlation is shown in figure 2.

6.1 Constraints from LIGO-Virgo

Let us consider the amplitude of fluctuations at each moment in time. To do so, we take
t — t', and we evaluate y;, — 1 as we are interested in the maximum fluctuation. We wish
to compare this to the noise seen at LIGO-Virgo.

Writing the wave-number in terms of the frequency of the wave k* = 27 f*, sending
t — t/, and taking a square root gives the standard deviation og = /((0h;,)?) in the squeezed
state of

og = VAT e <27Tf*> : (6.3)

Wpl1

The scaling here is broadly consistent with the scalings estimated in prior works [25-27, 29].

- 11 -
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Figure 2. (Normalized) autocorrelation function for squeezed modes from a smoothed distribution.
Here we took k = k* and evaluated z at t + ¢.; the center of the wave packet.

Let us compare this to the first observation of merging black holes seen by LIGO-Virgo
GW150914 [11]. As is well known, the response by the interferometer is in good agreement
with the predictions of classical general relativity. There does exist a residual noise, i.e.,
a residual difference between observation and theoretical prediction. Using data from the
event GW150914, we computed the standard deviation of the residual from LIGO-Virgo at
Hanford (H) and Livingston (L), which are roughly equal

on ~ op, ~ 0.16 x 10721, (6.4)

Very reasonably, this residual can be mostly accounted for from various well known effects,
such as thermal noise, photon shot noise, etc. So at the very least we can use this as a definite
upper bound on the size of the quantum gravitational fluctuations og in our squeezed state.
To evaluate og as above, we need a value of f*, a central frequency of the (classical) wave.
From GW150914 data, the frequencies of largest support in the wave occurred for

f* ~200Hz. (6.5)

By inserting this value into eq. (6.3) and demanding og < op = o, we obtain a bound
on (p of
Cp < 41 (6.6)

(for each mode) which is our primary finding. By estimating residuals from known effects,
one could improve this bound a little. Furthermore, one could analyze more carefully the
ringdown and/or inspiral phases. We leave these considerations for future work.

6.2 Temporal correlations

The existing LIGO-Virgo data does not exhibit any known unexplained correlation. So
drawing from these correlated fluctuations, the bound should approximately reproduce the
¢p S 41 found above. The reason being that the above correlations in the squeezed state fall
off beyond the inverse characteristic frequency of the signal (see figure 2), so these are rather
short ranged correlations. Nevertheless for further precision, one can run the autocorrelation
function on the data to potentially improve the bound on ¢, marginally.
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7 Discussion

At large distances, gravity is a consistent quantum effective theory. In this work we have
computed the properties of a gravitational wave in a quantum mechanical squeezed state. We
paid particular attention to the two-point correlation function of the gravitational wave in
both space and time. By considering a smooth range of modes, we obtained the correlation
function in eq. (4.10) (along with the modulation function p,), in which the fluctuations are
nicely separated into a vacuum piece, which is not directly measurable, and an enhanced
squeezed piece, which could in principle correct the motion of detectors in an interferometer.
By using existing LIGO-Virgo data of event GW150914, we placed a bound on the (exponen-
tial) squeezing parameter of ( < 41. Although this is a relatively weak bound, it is interesting
to be able to use existing data to place real constraints. Further detailed constraints from
combining all LIGO-Virgo data of its many events is useful future work.

An important topic for future work is to compute from first principles the actual state
set up by the merger of black holes. The usual assumption is that the state is close to clas-
sical, i.e., close to a coherent state, in which case the quantum fluctuations are predicted
to be negligibly small. In this case, a future detection of quantum fluctuations would be
unexpected and of profound significance as it would render gravitation incompatible with
standard quantum mechanics with a universal uncertainty bound. Alternatively, if the black
hole merger creates huge squeezing and/or if the individual black holes are intrinsically very
quantum, as some speculative models have suggested, the state could be highly squeezed. It
would then also become important to know what configurations of black holes and mergers
produce the most squeezing. This all deserves further analysis. To complement this theo-
retical work, future work should also improve upon the statistical method of this paper in
order to produce more rigorous observational bounds using all of the available gravitational
wave data. We are now in the era of gravitational wave astronomy, with several detectors,
including LIGO, Virgo, GEO600, KAGRA. So any information that we can use to glean even
the smallest clues about quantum gravity may be useful.
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A Simple harmonic oscillator

This appendix is for pedagogical purposes; for any reader who is new to this subject. By
understanding the results here for the simple harmonic oscillator, one can extend them to
the case of a quantum gravitational wave, as we did in the main part of the paper.
The standard simple harmonic oscillator is a body of mass m, oscillating on a spring
with natural frequency wg. The energy is a sum of kinetic and potential energy as
L oo, 1 5,
Esno = gmd + oMWz (A.1)
But this basic structure appears much more generically, including the form seen earlier for
each mode of a gravitational wave in eq. (2.12).
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A.1 Ground state

Classically, a harmonic oscillator would sit at rest at the bottom of the potential with minimal
energy of zero. But this is not allowed by the Heisenberg uncertainty principle. Instead the
quantum ground state wave function is given by

U, (x,t) o exp { iFot/h — ! mwozﬂ (A.2)

2h

where Ey = %hwo is the ground state energy.
The probability density distribution for where the particle can be found is

pg(x,t) = [¥y(z,1)|* o exp {ilimwoxﬂ . (A.3)

This is a type of Gaussian distribution as it fits the standard form

pla, 1) o< exp [~ (2 = (2))?/(20%)] . (A4)

Here the mean and variance of position is

(z) =0, = T (A.5)
While the mean and variance of momentum is
B =0, of= " (A.6)
Note that the product of uncertainties is
Oz 0p = g (A.7)

which is the minimum value allowed by the Heisenberg uncertainty principle.

A.2 Coherent state

A coherent state is considered the “most classical state”: like the ground state, it minimizes
the Heisenberg uncertainty principle at all times. However, unlike the ground state, it also
has a mean value that undergoes familiar classical motion.

The wave function is given by

Ye(x,t) < exp |ie(t) + ipo(t)x/h — —mwg(x — a:o(t))2 (A.8)

where the phase is given by

1 1
€(t) = —-wot —

St = ro(O)polt). (A.9)

Here 2((t) is a solution of the classical equation of motion, i.e.,
fo = —wiz,. (A.10)

Its solutions are given by
xo(t) = Acos(wot — @) (A.11)
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where A is the amplitude of oscillation and ¢ is the phase. Also, po(t) = mao(t) is the
classical momentum.

The corresponding probability distribution that is in fact the same as the ground state,
except it is displaced as follows

pe(x,t) x exp —%mwo(:r — x0(t))?]. (A.12)

Hence the coherent state is also a Gaussian distribution with mean and variance

() = 20(1), ol = 27:% (A.13)
(n) = polt), o3 = . (A14)

So just like the ground state, it too saturates the uncertainty principle

Oy 0p = g (A.15)

while allowing for large oscillations. This makes it especially classical.

A.3 Squeezed state

A squeezed state is similar to a coherent state, except that the product of variances does not
saturate the uncertainty principle limit, nor is it time independent. The initial wave function
is taken to be

0s(2,0) x exp [ 10 0)e = Lomin(z — 20(0)? (A1)

where 3 is the “squeezing parameter”. If 8 = 1 then this returns to the above coherent
state. While for § # 1 we have a so-called squeezed state. By solving the time dependent
Schodinger equation, the time evolved state can be shown to be

] t
s(x,t) o< exp [z e(t) + %po(t)x - 52(h)mwo(x - xo(t))ﬂ . (A.17)
Here the function €(t) can be represented as
1 t 1
e(t) = —=wp / dt'S(t') — —ao(t)po(t) (A.18)
2 0 2h

Importantly, we now have the time evolved squeezing function S(t). In general it is complex
valued; it found to be given by

S(t) = Tanh (Tanh_l(ﬁ) +iwg t) . (A.19)
Note that initially (t = 0) we have
5(0)=5. (A.20)
The probability distribution is
R
ps(x,t) x exp [—wh(t)}mwo(x - xo(t))Q} . (A.21)

where R[S(¢)] means the real part of S(t).
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Figure 3. Variances vs. time for a squeezed state with squeezing parameter 8 = 4. Red curve is
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The mean of position and momentum is as usual: (x) = xo(t), (p) = po(t). However,
the variances are not the usual values from the ground state. They are given by

= 2T:w0 (B_l cos®(wot) + ﬁsinz(wot)) (A.22)
012) = hn;wo (6 cos?(wot) + 77 sin2(w0t)) . (A.23)

These are plotted in figure 3 for the case of § = 4. The product of the standard deviations
does not saturate the uncertainty limit. Instead it is given by

ho[1+682+ 5% — (52 —1)2 cos(4wot)
This oscillates between the minimum and maximum values of
h h/
(JI Up>min = 57 (Uz Up)max = Z (5 1 + ,3) . (A25)

So by either taking 8> 1 or § < 1 we obtain very large oscillations in the variances.

A.4 Correlations in time

Here we report on the correlation functions in time. To compute this we operate in the
Heisenberg picture with

2(t) = 2(0) cos(wot) + :;(23) sin(wot) (A.26)
p(t) = p(0) cos(wot) — mwp Z(0) sin(wot) (A.27)

where #(0), p(0) are standard operators evaluated at ¢ = 0. We then define the temporal
correlation function as

§(t,1") = (2(t) 2(t)) — wo(t)xo(t). (A.28)
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By computing this expectation value with the above Heisenberg operator results, we obtain

h
2mwy

) = (6_1 cos(wot) cos(wot') + B sin(wot) sin(wot’) + 4 sin(wo(t’ — t))) (A.29)

Note that by directly going from ¢ to t’, another way of writing this is

h

) = 5 RSO

(cos(wo(t’ = 1))+ S(t) sin(wo(t’ —1))). (A.30)

We note that in eq. (A.29) this is manifestly invariant under the interchange of ¢ <+ ¢’ and
complex conjugation, though this fact becomes obscured in eq. (A.30). This information is
restored when S(t) is written using eq. (A.19).
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