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Reduced axion abundance from an extended symmetry
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In recent work we showed that the relic dark matter abundance of QCD axions can be altered when the
Peccei-Quinn (PQ) field is coupled to very light scalar/s, rendering the effective axion mass dynamical in
the early universe. In this work we develop this framework further, by introducing a new extended
symmetry group to protect the new particles’ mass. We find that with a new global SO(N) symmetry, with
large N, we can not only account for the lightness of the new scalars, but we can reduce the axion relic
abundance in a technically natural way. This opens up the possibility of large PQ scales, including
approaching the grand unified theory (GUT) scale, and still naturally producing the correct relic abundance
of axions. Also, in these models the effective PQ scale is relatively small in the very early universe, and so
this can help toward alleviating the isocurvature problem from inflation. Furthermore, instead of possible
overclosure from cosmic strings, the extended symmetry implies the formation of nontopological textures

which provide a relatively small abundance.
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I. INTRODUCTION

The QCD axion continues to be one of the most well-
motivated particles beyond the Standard Model (SM). It
first emerged as a dynamical solution to the strong CP
problem of QCD [1], explaining the smallness of the
otherwise allowed 0,GG term in the SM action. This
occurs by postulating a new singlet scalar (axion ) with an
approximate shift symmetry. Such a scalar is allowed to
couple to the SM by the dimension 5 operator #GG. By
carefully studying the ensuing dynamics one finds the
effective 0 is driven toward zero. Because such a scalar is
electrically neutral and long-lived [2,3], it has been iden-
tified as a viable dark matter (DM) candidate, possibly
explaining the missing ~85% of the mass of the universe.

In its basic UV completion, this scalar, axion, arises
through the spontaneous breakdown of a new postulated
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global Peccei-Quinn (PQ) symmetry [1] at some high scale
fa- The axion acquires a small potential and mass from
QCD instantons. For generic initial conditions, the axion
will be displaced away from the minimum of its potential in
the early universe, then later rolling, oscillating, and red-
shifting toward zero at late times. This dynamical relax-
ation toward zero resolves the strong CP problem, while
the oscillations themselves behave as nonrelativistic matter
in the late universe [4-6]. In standard cosmologies, the
abundance of axions at late times is determined by the

symmetry breaking scale, f, as
7
) e 0

fa
2 (1012 GeV

with (6?) denoting the spatial average of the square of

the initial displacement angle. For the axion to account

for the observed DM (2, =~ 0.25), one needs f, around

2 x 10" GeV (unless (#?) is fine-tuned to a small value),

giving a mass

A2 (2 x 1011 GeV)
m, =028 pev(— T 2
fa fa @)

(where Ay = 90 MeV is related to the QCD scale and quark
masses). In the so-called “standard axion window,” the
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upper bound on the breaking scale is f,, < 10'> GeV. This
follows from taking (6?) ~ 1 and then toward the end of
this window, the axion will make up all (or most) of the
dark matter of the universe, and beyond this upper bound
the axion would be too abundant and would overclose
the universe. The lower bound of the standard window is
fa=10° GeV, from demanding that the axion-photon
coupling and axion-nucleon couplings in standard con-
structions do not produce large effects in stellar physics
(e.g., stellar cooling, supernovae cooling, etc.).

There exist theoretical motivations, however, to prefer
values for the PQ symmetry-breaking scale much higher
than this standard axion window. It may be more plausible
for the physics associated with PQ symmetry breaking to
occur at a higher scale suggested by fundamental physics,
for instance in grand unified theories (GUT) or string
theory [7]. However, this seems to significantly overproduce
the dark matter. There are ways around it by invoking
unnaturally small initial misalignment angles 6; during
inflation; although such models tend to in turn overproduce
isocurvature modes in the CMB (see, e.g., [§-13]).

In our previous work [14], we discussed a new frame-
work in which to expand the window of viable f,; both to
higher and lower values. We proposed a dynamical PQ
scale mechanism, wherein the PQ field ® is coupled to an
additional scalar field y, which allows the effective PQ
scale to evolve with time. This evolution alters the predicted
abundance of axions and consequently widens the axion
window. However, the lightness of the y field was left
unexplained.

In this work, we develop this framework further, by
addressing the issue of the lightness of the y field. We do so
by introducing an extended symmetry group, involving the
PQ field @ and an additional N, scalars y;. This new
enlarged PQ sector has a total of N, + 2 scalar degrees of
freedom (two from @ and N, from the y;), which organize
into an approximate SO(N,, + 2) symmetry. As is standard,
QCD instantons explicitly break the U(1) subgroup involv-
ing the complex @, leaving behind a SO(N,) symmetry.
With typical initial conditions, this model has only one free
parameter, the number of additional fields N,, which
determines to which degree the abundance of the axion is
suppressed as compared to the standard QCD axion. Finally,
there is also the introduction of a mass of y, which is allowed
to be small as it represents a small breaking of the original
SO(N, +2) symmetry; so its lightness is technically
natural. By making the mass nonzero, the y fields eventually
relax to the bottom of their potential, and if their mass is
small, their abundance is small too. As we will show, for a
sufficiently large symmetry group, this scenario can accom-
modate £, > 10'> GeV while keeping the axion abundance
below the upper bound Q, < 0.25 to avoid overclosing the
universe. For some other interesting mechanisms that alter
the axion’s dynamics and abundance, see, e.g., [15-27].

For such high f,, one is normally concerned about the
symmetry being broken before the end of inflation, which
could generate appreciable isocurvature modes. But in the
presence of many fields, the symmetry can be restored,
avoiding this problem.

The outline of our paper is as follows: In Sec. I we
briefly review the standard QCD axion and our previous
dynamical PQ model. In Sec. III we introduce the model
with an extended symmetry group. In Sec. IV we discuss
the basics of the cosmic evolution. In Sec. V we perform a
numerical analysis of the equations of motion in the
homogenous approximation. In Sec. VI we discuss con-
straints from isocurvature bounds during inflation, defects,
unitarity bounds, and the plausibility of this construction.
Finally, in Appendix A we give some more details of the
effective action, in Appendix B we describe the eigenm-
odes from inhomogeneities, and in Appendix C we study
possible resonance into such inhomogeneities.

II. STATIC AND DYNAMIC
PECCEI-QUINN MECHANISMS

A. Static recap

The starting point for the canonical Peccei-Quinn (PQ)
mechanism involves a complex PQ scalar field ® = pe™,
which enjoys a global U(1)pg symmetry. The axion is the
angular degree of freedom & which becomes a (pseudo-)
Goldstone boson when the symmetry is spontaneously bro-
ken. The effective Lagrangian density for this axion is given by

£==g|5 100l - (0P - 22 -V(e.7)|. ()

Interactions with the Standard Model give the axion a
potential, V(0,T)~ A(T)*(1 —cos@) (in fact there are
O(1) corrections to this shape, but they will not be
important here). Consequently the axion acquires a mass,
which depends on temperature. Its low temperature value
m, is related to A = f2m32, where f,, the PQ scale, is the
vacuum expectation value (VEV) of the radial PQ field p
after symmetry breaking. The choice of the scale f, for the
symmetry breaking dictates the quantity of axions pro-
duced by the misalignment mechanism in the early universe
according to Eq. (1).

Rather than discussing €,, which is time dependent,
it is convenient to use a more fundamental abundance
parameter [13]

(4)

with T the temperature of the universe. At late times, this
tends to a constant as both the numerator and denominator
redshift together as 1/a. The observed DM abundance
(Q, =~ 0.25) at late times is the value
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Eops 2.9 eV. (5)

For further details on the standard axion setup and
evolution, see Ref. [14] and others (e.g., [26,28] and
references therein).

B. Dynamic recap

In our recent work [14], we proposed a mechanism to
alter the abundance of axions produced by the misalign-
ment mechanism. We introduced a new scalar degree of
freedom y which couples to the axion in a way that makes
the PQ scale f, effectively dynamical. This can result in
viable abundance predictions for axions outside of the
standard allowed window for f,. For instance, in the
unaltered misalignment mechanism, one can place an upper
bound on f, < 10'> GeV to avoid over-closing the uni-
verse with too large a density of axions. However, with the
increasing-PQ-scale model discussed in [14], we can
accommodate f, ~ 10' GeV, motivated by physics at
the GUT scale.

The action of Eq. (3) was modified to be

£ = V=3 3100F =4 (0P - £(PF = V(o7

3@ =3 ©

where the function f(y) determines how the new field y
couples and thus the time-dependent behavior of the now
dynamical PQ scale. As in Eq. (1), the energy density of the
axions p, < fZ/ ® and it is also proportional to the axion
mass. Since the mass is inversely proportional to f,, as the
effective f, increases with time, the effective m, decreases,
and the abundance is suppressed by an overall factor of
1 4+ 7/6 powers of the effective initial f; = f(y;)

\ 13/6
o (1) @

where &, 4 is the abundance of the standard QCD axion
and &, is that of the axion in the dynamical PQ scale model.

III. EXTENDED SYMMETRY

Although our work [14] had nice phenomenological
success, it left the question of the lightness of y unex-
plained. In particular, in the above action there is no
symmetry protecting the y from being heavy, and so its
lightness appears tuned.

A. New class of models

In this work, we wish to stay within this overarching
framework, but provide a concrete example in which the
mass of y is protected by a new global symmetry. It will

turn out that in order to alter the axion abundance
appreciably, we will need many new scalar fields.
Correspondingly, we will need to appeal to an extended
symmetry group involving all N, + 2 degrees of freedom
in the new enlarged axion sector (N, new fields and 2
components of the complex PQ field).

We will consider the following updated action, involving
N, new scalars y;

£ = =35 (08P + Y (01,
=

‘% <|<1>|2 + i:xf —f3>2 - V(0.x;. T)} - (8)

Apart from the potential V, which will be self-consistently
taken to be very small, this action is invariant under an
SO(N, +2) transformation between the two degrees of
freedom of ® = pe’ (real and imaginary) and the N , New
scalars.

In the very early universe, all of the scalars participate in
the SO(N, + 2) symmetry. At low energies, the potential
term in eq. (8) proportional to /4 spontaneously breaks the
symmetry to a residual SO(N,, + 1) group, leaving N, + 1
Goldstone bosons. This results in the field p (the radial
mode of @) acquiring a vacuum expectation value (VEV)
(p) = fi» while the remaining scalars 6 and y; obtain
random initial values ¢; and y;,; and are prevented from
evolving by Hubble friction. The initial value of the
“effective” PQ scale

NZ
== 4<r 9)
J

is thus smaller at early times than the vacuum value f .

B. Induced masses

As the temperature of the universe begins to approach the
QCD phase transition, QCD instantons induce a potential
for the axion, explicitly breaking the U(1) subgroup of the
above extended symmetry group, leaving a residual unbro-
ken SO(N,). This leaves N, Goldstone bosons, which we
can identify as the y particles. With this mass for the axion,
it begins to roll down its potential when 3H ~ m,, at a
temperature T . as is usual. Its oscillations behave as cold
dark matter (CDM).

Also, the residual SO(N,) symmetry can allow for a
mass term for y. We can write this as (note that in Eq. (8),
both of these potentials are represented by V)

| =

N)(
V(0.x;. T) m-m2 Y x3 + A(T)*(1 = cosd) (10)
J
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where m,, is the same mass for each y ;. The presence of this
mass, means that eventually the y will relax to zero.
However, we would like to assume that m, < m, (T ,.)
such that the axion begins its oscillations first, and the
presence of y alters in a crucial way the axion evolution. (If
the y were very heavy, we could just integrate it out, and it
would play no important role for the axion).

Note that since our theory began with an SO(N, + 2)
symmetry at leading approximation, which prevents a y
mass, it is technically natural for y to be light as it
represents a small explicit breaking of this extended
symmetry. Since the axion’s small mass explicitly breaks
the extended symmetry, then so too it will generate a small
mass for y. By considering a one-loop diagram provided by
the interaction AL = — " ¥7(00)*/2 (see Appendix A for
the relevant action of the low energy theory), one can
compute this mass. It can be readily estimated as
m2 ~m2AYy/((47)?f2), where Ayy is a cutoff on the

V4
loop integral; this should be taken to be of the order

the mass of the radial PQ mode Ayy ~ mpg = V24 fa- So
the induced mass is m} ~Amj/(4x)*. As discussed in
Sec. VIC we already know that we need to take A
somewhat small to maintain perturbative unitarity, so this
self-consistently implies m, < m,, as we assume in
this work.

The above QCD axion potential is taken to be of the
standard form AV = A(T)*(1 — cos §). However, we note
that this should not be used when the magnitude of the PQ
field p happens to be very small or vanish, since in that
regime 6 is not well defined. In this paper, we will generally
assume that p is not particularly small. In fact as we will
explain in the next section, the initial condition is naturally

on the order v/2f,//N , T2 and its late time value is f,.

However, one can consider the case in which p is
accidentally much smaller. Here one should alter the
potential AV accordingly. A parametrization of an
anticipated potential that incorporates both the angular
dependence and the radial dependence is of the form
AV = (p?/(M? + p*))A(T)*(1 — cos ). In this paramet-
rization, when p — O then indeed AV — 0, and the
dependence on @ disappears. On the other hand, for large
values of p > M the effective potential becomes nonzero
and the generation of the potential for 6 from QCD
instantons becomes standard. Hence as long as M, the
characteristic cross-over scale, is somewhat smaller than f,
(depending on N,,), then one expects our upcoming primary
results to be unaltered.

We also note that the construction in this paper has some
overlap with the very interesting Ref. [29]. As is seen in that
paper, the final abundance is reduced for many fields; we
shall find compatible results here.

An important question is whether this all has an
embedding within a UV complete model, with heavy
fermions, etc. (requiring a significant extension beyond

the minimal models [30-33]); but we leave this for future
consideration.

IV. COSMOLOGICAL EVOLUTION

After the spontaneous breaking of the extended
symmetry group (occurring well before the QCD phase
transition since f, is very large), the value of p is
frozen as

(11)

Using |®| = p and |[0®|* = (dp)? + p*(00)?, we insert this
into the above action and obtain a kind of nonlinear o
model for the remaining N, + 1 light degrees of freedom;
see Appendix A for this action.

It is straightforward to vary the action and obtain its
classical equations of motion (since these light fields are
typically at very high occupancy, the classical field
approximation should suffice here). To write down the
equations of motion, we work with dimensionless variables
defined by

(12)

T=m,t, sz%, U=
a

A(T)* My

m,
In the equations of motion, we can, to first approximation,
ignore spatial variations and focus on the zero modes of the
fields. A study of inhomogeneities in the fields is given in
Appendices B and C, where we check for possible
instabilities or resonance in the system. Also, a discussion
of defects is given in Sec. VI B.

It suffices to ignore anharmonicity of the potential and
write sin @ ~ 0. Also, we write H = 1/(2¢) in the radiation
era treated in the Friedmann-Robertson-Walker (FRW)
approximation. The temperature dependence of the axion
potential can be estimated as L(T) ~ (T .q/T)* for T >
T,qand L(T) = 1for T < T,., where T ;s ~ 100 MeV is
of the order of the temperature of the QCD phase transition.
While this temperature dependence has been confirmed by
recent lattice studies, the n = 8 exponent is only approxi-
mate and may take a slightly different value.

In general there are N, independent new fields. However,
due to the residual SO(N,) symmetry, they all evolve in a
similar way, only possibly differing by their initial con-
ditions. For simplicity, here we mention the case in which
their initial conditions are all equal, giving a set of identical

equations of motion Y=Y, =Y, = .Yy, as
3  2N,YY, L(T
O+ (52— “ N ( >29:O (13)
2t 1-N,Y 1-N,Y
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3 N, YY
Y I A
wt <2T+1—N1Y2> ‘

+(1=NY)(U*+62)Y =0 (14)

where each subscript 7 corresponds to a derivative in 7 (i.e.,
0.=d0/dr,Y, = dY/dr, etc.). At early times, the scalars
are Hubble friction dominated, so we pick initial conditions
for their velocities to be 6, ; = Y, ; = 0, which is consistent
with the underlying SO(N,) symmetry and the discrete
Y; - —Y; symmetry.

The extension to random initials conditions is analyti-
cally simple, though numerically much more complicated.
So we shall use this special case, which we believe
suffices to illustrate the essential behavior. Nevertheless,
it would be useful to extend our analysis to more generic
initial conditions.

A. Initial conditions

For the canonical axion, involving only the complex field
®@, the initial condition for 0 is typically taken to be O(1).
In the scenario when PQ symmetry is broken before the end
of inflation, this can be understood as a random typical
angle between [—rz,7z]. In the case of PQ symmetry
breaking after the end of inflation, our observable universe
is a huge collection of regions acquiring different € values
at symmetry breaking; this necessarily means that the
average of (0?) = 7?/3 is O(1).

With the new extended symmetry group, one anticipates
that the symmetry is broken in a random way; the N, + 2
degrees of freedom each have an equal chance of taking on
some value, but the sum of their squares is constrained by
the symmetry breaking potential. Let us briefly recast the
complex PQ field as ® = ¢ + i¢h,, such that the symmetry
breaking results in the constraint

N)(
G+ +> 0 =12 (15)
J

The symmetry ensures that each of the N, + 2 scalars takes
on a random initial value with equal probability distribu-
tion. The unconditional probability distribution for each
individual random variable y (where y can be ¢, ; or ¢, ; or
Xj.i) can be shown to be

1
plw) =57 (- y?) N2 (16)

where M is a normalization factor; whose value is M =
Val((14+N,)/2)fa*/T(1 + N, /2). For large N, this
becomes a Gaussian distribution with vanishing mean.
Its variance is [which can also be inferred from Eq. (15)]

W) =) =) =) =7 ()

We choose the initial conditions for each field to be exactly
the root mean square for simplicity. This is equivalent to
fixing p? = ¢?, + 3, = 2f2/(N, +2), and taking 0, =
n/4and Y;; =1/,/N, + 2. Then, as the y; evolve once
Hubble drops below their mass, the effective VEV of p
(=v/¢? + ¢3) shifts according to Eq. (15).

One may have noticed that the equations of motion (13)
and (14) may be rendered independent of N, under the
change of variables ¥ = WY. Then, for N, > 1, the
initial conditions become Y;; = /N,//N, +2~1 and
the parameter N, naively appears to drop out of the model
altogether. However, to properly analyze the large N,
regime, one should Taylor expand ¥;; = (1 +2/N,)™/? ~
(1-1/N,), meaning terms involving (1—N,Y?) are
initially (1 — ¥ %;) ®2/N,, which is clearly sensitive to N,.

The key phases of the evolution are as follows: first, the
effective friction terms proportional to 8, in Eq. (13) and Y,
in Eq. (14), respectively, become canonical (i.e.,
3/2t = 3H) at early times. Next, the effective mass term
for the axion is approximately N,L(z)/2 which becomes
very large with large N, ; this implies an earlier onset of
oscillations and suppressed abundance of axions. Further,
the effective mass of ¥ becomes proportional to 2/N,,, and
thus shrinks with growing N,, delaying the onset of
oscillations for the Y field with larger N,. This predicted
behavior from examining the equations of motion is
verified in the numerical solutions presented in Figs. 2-5.

B. Analytical estimates for relic abundance

These initial conditions result in the initial effective PQ
scale from Eq. (9) to be

2\ 12
fi=1(573) (19

Making the same estimate as in Eq. (7), we make the
following analytical prediction &, ,,, for the suppression of
the axion abundance at late times

Eaan  (F\P° 2 13/12
o) )T @

Thus, the fractional change in the axion abundance com-
pared to the standard theory should depend solely on the
number of additional fields N,.

The relic abundance of y is more involved to estimate.
However, as we showed in our previous paper [14], the case
of a single y field has an estimated relic abundance &, ,, of
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: 2/3
g)(,an _ gj{/4gs* TQCD ftll/3 \//7<Y12> (20)
Sastd g*/lzgw /\2/3 M]],l/3 Ch

(where we have taken Eq. (41) of Ref. [14] and replaced
F — 1, as is appropriate to match onto the model here).
Now in order to account for the total energy density
stored in all of our N, fields, we simply sum over N,.
And to account for our initial conditions, we choose
(Y?) =1/(N, +2). Hence the total is

3/4 2/3 1/3
fx.an,total g)(/ s QCD / \/_ N)( (21)

fos g, A M G Ny 2

Interestingly, this shows that for large N, the abundance is
fixed. Hence in order to ensure the y abundance is small, we
only need to assume a small y mass, which suppresses this

through the factor /u = /m,/m,. Since the y mass is
protected by our original symmetry, a small y abundance is
plausible within the effective theory.

We note that this simple analytical estimate for &, tends
to overpredict the abundance of y. This is because the
estimate relies on the mass term y? in Eq. (14) controlling
the onset of oscillations of y. However, in the regime when
0% > u?, this hierarchy causes the y field to oscillate a bit
earlier, and therefore have a smaller abundance than
predicted here. These formulas for &, become more
accurate when 62 < y> when H ~ my . Crucially, this
ambiguity does not influence the prediction for the abun-
dance of the axion because, regardless of the time of y
oscillations, the axion always oscillates first and thus its
abundance is determined appropriately.

1g
0.100 ¢ —— Analytical
2 ®  Numerical
Uj 0.010§
~
o8 [
0.001 §
10 ¢
1 10 100 1000 10
Ny
FIG. 1. The numerically computed ratio &,/&, iq is shown for

various values of N, in the orange points, indicating that the
abundance is suppressed with growing N,,. It can be seen that the
analytical prediction (solid black) for the abundance suppression
is accurately reproduced by the numerical solution. In this plot,
the numerical solutions correspond to f, ~ 10 GeV, but the
behavior is expected to be the same for any large f,.

V. NUMERICAL ANALYSIS

The dynamics of the model can be solved for numeri-
cally. Recall that the N, additional fields are treated as
having identical histories, and therefore one needs only to
solve the two coupled differential equations (13) and (14).
Below, we present the time-evolution and the effects of
choosing different numbers N,. We show first the behavior
of the altered abundance compared to a standard axion
£./¢asa in Fig. 1. We see good agreement between our
analytical prediction for the axion relic abundance (solid
line) and the numerically obtained abundance.

Next, we display the detailed numerical results for the
case f, ~ 10'* GeV as an example, choosing N, = 1, 10,
100, 1000 in Figs. 2-5. We see in these examples too that
the analytical estimate (dashed line) matches well with the
numerical solution.

To raise toward simple estimates for the grand unified
scale, one could strive for f, ~ 109-10'® GeV. However,
numerically solving for the dynamics of these choices for
large N, presents challenges. To capture the behavior of the
light y; fields, one needs to integrate through large amounts
of time, at which point the rapid oscillations of the axion
become difficult to handle numerically. Though we are
confident that the results presented for f, ~ 10'* GeV can
be used to infer results for larger f,, it remains important to

1.0+ q
i — a6, |

< 0 — Xl ]
2 osf ]
@® L — Bs/6;
(e»} r 4
” L 4
k] r J
@ 00
L r 4
—_— 104 = fa — fx — ga,sld - ga,an fDM,obs
>
2,
—
~
bn
O]
o
C
©
©
C
=}
QO
<

10 100 1000 10% 10° 108

Time 7= m,t

FIG. 2. The results of numerical solutions of the field equations
are shown for f, ~ 10" GeV with N, = 1 and m,/m, = 107°.
Top: the time evolution of the & and y; fields. Bottom: the
abundances of ¢ and y;.
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Fields 6 and x

100 = fa — f)( — fa,std - fa,an e fDM,obs
S
9,
e EEEE T
> 1oor
©
o
(= Y R AT A A Y . T Y
g
C
=}
2
<

0.01F

10 100 1000 10% 10° 108
Time 1 = m,t
FIG. 3. The results of numerical solutions of the field equations

are shown for f, ~ 10'* GeV with N, = 10 and m,/m, = 107°.
Top: the time evolution of the & and y; fields. Bottom: the
abundances of ¢ and y;.

verify this explicitly with more sophisticated numerical
methods. Furthermore, the effects of inhomogeneities may
be important. We discuss these effects in Appendix B,
arguing that the homogeneous analysis is sufficient to
capture the behavior of the model.

In any case, our existing numerics shows that for large
N,, the final axion abundance is reduced as anticipated.

Extending to larger f,, we need larger N,; f, ~ 105 and
10'® GeV require N, ~ 10* and 10°> new species, respec-
tively, with corresponding huge symmetry groups.

VI. DISCUSSION

There are many interesting points to discuss within this
framework. We shall discuss several key points in this
section.

A. Isocurvature fluctuations

As is well known, if there are light fields present during
cosmic inflation, they acquire a de Sitter temperature and
fluctuate as 6¢p ~ T yg = H;ye/(27) per Hubble time. If such
fields go on to provide a significant fraction of the dark
matter, then this translates into significant isocurvature
fluctuations at early times, which leave an imprint on the
CMB (e.g., see Refs. [12,13].) Then if the Hubble scale of

05
6sta/ 6;

0.0

Fields 6 and x

104 = fa — fx — fa,std - fa,an fDM,obs

100

Abundance §(1) [eV]

0.01F

10 100 1000 10* 10° 108
Time 1= m,t

FIG. 4. The results of numerical solutions of the field equations
are shown for f,, ~ 10'* GeV with N, = 100 and m,/m, = 107>.
Top: the time evolution of the & and y; fields. Bottom: the
abundances of 0 and ;.

inflation is large, the amplitude of these isocurvature modes
is large, and ruled out by current constraints.

In standard axion models with very high f,, the PQ
symmetry is spontaneously broken during inflation, as
Tus = Hyye/(27) < f,. This results in the light axion
forming during inflation and giving rise to large isocurva-
ture fluctuations. However, in the presence of our new class
of models the situation is altered. In the presence of many
fields, the condition for symmetry breakdown depends on
the combined fluctuations of our N, + 2 fields

N)(
A2 = (5¢))% + (82)> + > ()% (22)
j=1

Symmetry breakdown occurs when these fluctuations are
smaller than the PQ sale f,, i.e., A < f,. Since each field
acquires the de Sitter fluctuations ¢ ~ T 5, the condition is

fa
VN, +2

This condition is much more difficult to satisfy when N, is
large, as we are assuming here. Therefore it is much more
plausible that the symmetry remains unbroken during
inflation. Currently inflation has its Hubble scale bounded

Tys < (23)
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FIG. 5. The results of numerical solutions of the field equations

are shown for f,~10'* GeV with N, = 1000 and m,,/m, = 107°.
Top: the time evolution of the & and y; fields. Bottom: the
abundances of 0 and y ;.

by the lack of detection of B-modes in the CMB. This
corresponds to a bound on the tensor to scalar ratio of r <
0.04 [34,35]. Converting this to a Hubble scale and in turn a
de Sitter temperature, we have 7,5 < 10" GeV. Hence
even if we push f, toward ~10'* GeV, we can plausibly
violate inequality (23) with N, ~ 10°. In this case, there are
no appreciable isocurvature modes generated, which is
compatible with current data. Then, pushing to even higher
fa requires larger N, to suppress its abundance, and this
larger N, in turn alters the condition in Eq. (23). For
fa~10" GeV, the required N, ~10* is sufficient to
obtain symmetry-breaking after inflation, while for
fa~10'" GeV, one needs more than the required N, ~
10° to avoid isocurvature bounds.

On the other hand, as the scale of inflation (and the de
Sitter temperature) are lowered, the condition for symmetry
breakdown is easier to obey and appreciable isocurvature
modes can arise. We note that in our setup here, this is
primarily carried by the axion, as the abundance of the y
fields are small. Other ideas to suppress the isocurvature
modes include [36].

B. Defects

When spontaneous symmetry-breaking occurs after the
end of inflation, as is argued in the previous section, there

can be the creation of topological defects. For the standard
PQ models, cosmic strings arise from the Kibble mecha-
nism where super horizon regions of space acquire a
different (0;), connecting in configurations with nontrivial
winding. When the U(1)pq is explicitly broken by QCD
instantons, the number of degenerate vacua in the perio-
dicity of 6 € [0, 2z) dictate the number of domain walls
attached to each string (Npy) in the string-domain-wall
network of topological defects.

If Npw > 1, the network is stable and dominates the
universe, over-closing it. If Npy = 1, there are no stable
domain walls, only cosmic strings. After the QCD phase
transition, the would-be domain walls are pulled together and
decay, producing an additional source of axions. It has been
debated in the literature whether this enhances the final
abundance compared to the misalignment value by a factor of
a few or dozens (see, e.g., Refs. [37,38]). Regardless, the
standard axion requires the consideration of this topological
defect network to accurately predict the axion abundance.

In contrast, when the classical symmetry of the
scalar sector has been promoted from U(1) = SO(2) to
SO(N, + 2), the story is quite different. When the sponta-
neous symmetry breaking occurs, a string network will not
form via the Kibble mechanism, since there is now multiple
Goldstone bosons. For example, if N, =1, the sponta-
neously broken SO(3) leaves behind two Goldstones,
leading to the creation of monopoles. For larger N,,
textures can be formed. For N, > 3 these are nontopolog-
ical and collapse when entering the horizon and so they
have a small relic abundance. Outside the horizon, they
enter a kind of scaling solution for large N, [39-42]. Any
residual imprints from textures, would be a signature of this
construction. However, the presence of the axion and y
masses will suppress textures at later times by making
0 = y; = O apreferred value. In any case, for Npy = 1, the
theory is safe from over-closure from defects.

For Npw > 1, there are still potentially dangerous
domain walls from the axion’s Npy discrete minima.
However, now the remaining SO(N,) symmetry, which
is unbroken by QCD instantons, enhances the vacuum
manifold to a N,-sphere. This prevents the stability of such
domain walls. This is because even if locally the axion is
trapped in one of its discrete minima, it can shed energy
into this degenerate N ,-sphere until it reaches another
discrete vacuum, removing a domain wall. However,
eventually the small but nonzero y mass becomes relevant
and suppresses this process. A full analysis of this process
is beyond the scope of the current work.

C. Unitarity bounds

A concern in the model is that with a very large number
of scalars, one should check that the theory remains unitary.
Our fields have quartic interactions with one another of the
form
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(24

~—

p
AL==) 20
7

So for example, if we compute the annihilation cross
section of a pair of particles “1” into any final state at
energies above the PQ radial mass mpgy = v 24f,, we have

22(N, + 10)

8rE? (25)

OlAN R

For large N, we risk violating the unitarity bound
o < (2n)/EZ%,. Thus, we need to scale down 1<
(4m)//N, + 10 to avoid this problem. So if N, ~ 10%,

we need to impose 4 < 107!, or so, to maintain perturbative
unitarity. However, this does not appear to be a huge
problem. In fact it self-consistently reinforces the lightness
of y, as discussed in Sec. III B.

D. Future work and plausibility

A very important question for future consideration is the
plausibility of this new (large) symmetry group. Ideas
within unification often involve large groups, such as
SO(10), etc., but we are making a case for potentially
even much larger groups. Can this fit in and improve ideas
within unification, or does it make the situation more
difficult?

Relatedly, it is important to develop microscopic models
with fermions. In standard axion models, there are addi-
tional heavy fermions that are charged under the U(1)pq
symmetry. Naively this breaks our starting SO(N, + 2)
symmetry already. So it remains an open question to
develop alternate models with fermions that may account
for this altered symmetry structure. As it stands, we have
a consistent effective field theory for a collection of
scalars, one of which—the axion—is assumed to couple
to gluons with a dimension 5 coupling 6GG; QCD
instantons still generate a potential for this and it still
solves the strong CP problem, as the standard axion models

|

Z%(Ejayj)z

2(]% - N)(X%)
X5/ 1

2(1=N,x3/f3)

L 1, .
;:§|0Y|2+

XoX0
(fg - N)()((z))

While this action looks somewhat complicated, things
are significantly simplified by identifying the normal
modes of the system, which we can decompose into an
adiabatic mode and a collection of isocurvature modes.

1
(2 = Nd) 0e)

s WA= N 7+ 12

do. A full UV completion though is an important direction
for future work.
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APPENDIX A: REDUCED ACTION

After eliminating the radial mode p = |®|, we obtain a
reduced action for the remaining N, + 1 light degrees of
freedom. Let us organize the y; into a vector y to express it.
We obtain

1 (7 7)°
212 7P

1
— A(T)*(1 = cos ) —Em§|;?|2 .

1. 1 -
N (72 - 17P) 00y

(A1)

From this low energy action, all the results of the paper can
be derived.

APPENDIX B: INHOMOGENEITIES

Let us expand around our homogeneous background
fields as
Hzeo(t)+8(t,x), ){j:ZO<t)+y](t’X) (Bl)
We wish to work to quadratic order in the action. The zeroth
order terms were already solved for numerically in this
paper; the first order terms will vanish by the Euler-
Lagrange equations. The second order Lagrangian for
the perturbations is found to be

) 1 PRI |
2= 2000y vjé— 7 (m} + 6)|7 - §A4(T)82
J

2
[0 mairr () + M - v
J

+ Nx5) (Zyi}"j)] : (B2)
ij
1. Adiabatic mode
The adiabatic mode has
YEV=r2=..=7n, and e #0. (B3)
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The corresponding equations of motion in this case are

2

\Y% 2N xoX0 .
Fosr <3H+ 2X0X0 )

fi_N;(Z(z)

T ((1 3N (2 + )

R
(f% - N)()(%)z

+ 2x0(1 = N;()((z)/ﬁ)éoé =0 (B4)
V2 2N xox AT

E——set <3H— . MM%)é . (1) se
a fa_N)()(O fa_N)(ZO

aa(f%z _N;()((Z)) B

In the equation for y, we see that at early times when y,
takes its initial value of y; = f,//N, + 2, the coefficient
of (m?+ 63)y is negative. This represents a tachyonic
instability. The instability is tempered by the presence of
Hubble friction and the other effective mass term, however
there is still an instability. This is seen in Fig. 6. This affects
the homogeneous mode for y the most, as any derivatives
only enhance the mass by k?/a”. Hence this means that the
system may shift slightly to a different homogeneous mode.
Plausibly, this instability will lead to a small shift in the
final relic abundance. This has been verified numerically
in the case worked out in Fig. 6, but this deserves further
consideration.

/\ |

[ vIXi \/ ]
-0.02 B
[ — (X=Xo)/Xi ]

—0.04} ]

o

o

N
T

Adiabatic Perturbation

10 100 1000 10t 10° 106

Time 7= m,t

FIG. 6. A homogeneous adiabatic perturbation in the y; fields
by y; = xo +v for f, ~ 10" GeV and m,/m, = 1073, We take
N, = 1000 and the initial perturbation value y; = 10~*y; with
Xi = fa/ /N, +2. Note this y; is only 1 order of magnitude
smaller than the maximum value allowed for an adiabatic
perturbation to be well defined given the constraint
P>+ 32,27 = f& The yellow curve is the result from the linear
theory, while the red curve is from solving the full equations.

2. Isocurvature modes

For new qualitative behavior, we need to explore the
remaining set of possible perturbations. The remaining
N, —1 eigenmodes are all of the isocurvature form in
which every fluctuation in a y; is compensated by an equal
and opposite fluctuation in another y,;, i.e.,

> 7;=0 and e=0. (B6)
J
As an example, we can have
y=yi=-ry and y3=---=yy =e=0. (B7)

The equation for this y is of the relatively simple form

2

"——2}/+3H]'/
a
N)((z)) 02 Nf(%
+((1--&=)(m2+65) + 2> |r=0. (BY)
(( )T TN

Here we see that there is no tachyonic instability. Here the
coefficient of m)% + 9(2) is the positive factor

_Nx)((%
f

At early times with y = y; = f,/\/N, + 2 this takes on
the small value & = 1/(1 + N, /2). At later times, once
has rolled down, then one has a ~ 1.

Since there is no tachyonic instability here, the homog-
enous mode is essentially stable. However, as 6, oscillates
there could be resonance into y modes of finite wave
number. We now turn to study this possibility.

a=1 (B9)

APPENDIX C: RESONANCE

1. Parametric resonance

The driving term 9%7/ can potentially give rise to para-
metric resonance. As a starting point, let us ignore Hubble
expansion for the moment (we will compare to it soon).
Once the axion is oscillating, we can approximate its
background behavior as

60 = ea Sin(mefft)7 (Cl)
where the axion’s effective mass mq; = m,/+/ais controlled
by a. The amplitude of oscillation 6,, is initially 8, ~ 1, and
we shall treat its decreasing over time adiabatically.

With y either frozen at y; at early times or negligible at
late times, the k-space isocurvature mode equation (B8) is

V4 (m2a+k* +m202 /2 +m205cos(2megt) /2)7=0.  (C2)
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This is of the form of the Mathieu equation. For 8, < 1 and
m, < m,, we can focus on the narrow resonance regime, in
which the maximum Floquet exponent can be shown to be
given by (e.g., see Ref. [43])

m26>
— a”a C3
Mmax Smeff ( )

_ 2 2 202
near the wave number k., = \/ Mg — myo — mgly /2.

Now we would like to include expansion in a simple
adiabatic way. Here things appear complicated since the
amplitude of oscillations 8, is decreasing, while the axion
mass increases due to its temperature dependence, until
well after the QCD phase transition. However, there is a
nice simplification: the axion number density is n, =
Ime f20% and due to entropy conservation, it redshifts
in the usual way as n, o 1/a®. Since megf2; o \/a this
implies that 4 o 1/a> also. We can compare this to Hubble;
in a radiation era we have H « 1/a”. Recall that oscil-
lations begin when 3H = m. So the ratio of the Floquet
exponent to Hubble can be expressed over time as

/umax ~ a3_ezzaosc
H 8 a

(C4)

where a,,. is the scale factor when the axion starts
oscillating. This means that when oscillations begin and
0; ~ 1, the ratio piy, /H ~ ; = 1/(1 + N, /2). So for large
N, the condition for resonance iy, /H 2 1 is not satisfied.
At later times, when y, has itself decreased and a =1,
the ratio a,,./a is small and the resonance condition
Umax/H = 1 is still not satisfied.

2. Forced resonance

By causality, fields will tend to be inhomogeneous on
superhorizon scales. As modes enter the horizon, they will
acquire a wavelength of the order Hubble momentarily.
This provides a type of inhomogeneous background of y
waves y; = y,(t,x). These can be inserted back into the y;
equation to act as a source for itself

Xi=Xs T (CS)
By subtracting out the static piece of the axion (63) to
remove possible secular growth, we have

2

.V ) N . .
Py v+ 3H + gy = —a(05 — (05)r,  (C6)

~2 __ 2 N2 P .
where 7, = m,a + a(fy). Let us again ignore expansion

and write the axion as 6, = 0, sin(meg?). Then we have

i — V2 + mly; = —02m3 cos(2megt)y /2. (C7)

We can expand the waves in terms of its Fourier trans-
form as

[ &k
As = (2r)3

(Cke—iwkt + Cikeiw"[)eikx

(C8)

with @, = /M2 + k*. For w; ~ mey this gives rise to

resonant behavior from a forced oscillator. By imposing the
initial condition y,(0) = 7;(0) = 0, we can readily solve
this equation. By passing to Fourier space and focusing on
the near resonance wave numbers we find

_im203 (cpe™en! — ¢t e et ) sin(1(mgge — wy) )
7/~ =
! 8meff(meff —wy)

(C9)

Now the energy can be written as an integral over a kind
of k-space density as

3
£ - %pk (C10)
with
(C11)

1 5 1 -
Pk = Z(E 7,1? +§0’i|7j|2>-
J

By inserting the above solution, and again staying near
resonance, we have

Z (Je* + [e_i|*)ma0s sin® (t(megr — wy)) ‘

12
64(meff - wk)2 (C )

Pk =
J

At late times we can simplify the time dependence by using
the identity

sin? (t(megr — wy))
(Megr — )

- ﬂ't5(meff - a)k) (C13)

which is the standard simplification that leads to Fermi’s
golden rule. This shows that the energy is growing linearly
in time, as anticipated from a forced oscillator near
resonance. We can insert into the energy integral, immedi-
ately carry out the radial integral using the delta function,
giving the rate of change of energy into y as

B -3

J

where k, = |/mZ; — .’ is again the resonant wave number

and V is the volume of some large box in which we perform
this computation. Here we have defined the occupancy
number

V(Nk, + N—k,)méeékr
2567

(C14)
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_ 2, Py,

Ny, =—,— (C15)

It can be readily checked that the total number of particles
of each species is given by

- (27)

so this definition of A/, makes sense.
Now we are in a regime in which the energy density of
axions is dominant and approximated as

(C16)

1
pu =5 S 1)
with total energy E, = p,V. By energy conservation, the
energy that is going into y must come from the axion; so we
have Ea = —Ey. The corresponding relative rate of change
of energy is

r,=

i, Ny + Ny ym262k,
|E I ok & . (C18)
a J

1287 f2
On the other hand, we can compare this to the perturba-
tive annihilation rate of 2 axions into 2y particles via the

quartic coupling AL = —|7>(d¢)?/(2f%;). For nonrela-
tivistic axions, this can be readily shown to be

I, =n E civ=n g Megikr
2-2 — Ita jv¥ — "a 4
j j 16”feff

where k, = {/mZ; —m; is the on-shell wave number in

vacuum.

(C19)

Then noting that the axion number density is

1
_ 2 N2
ng, = 5 mefffeffga

(C20)

we see that the energy rate of change is (ignoring the tiny
difference between k, and k,)

Fa ~ (IZZ(Nkr =+ ./\/'_kr)naajv. (CZI)
J

So we get the standard annihilation rate, but enhanced
in the classical field regime by the y; occupancy numbers
of the resonant modes N k, and N —k, (reflecting the fact
that the particles are pair produced back to back) and
suppressed by the factor a® due to the dynamics being
noncanonical.

At the time at which the axion begins oscillating
megr ~ 3H, one can anticipate the relevant y modes have
typically wave number k~ H due to causality; this
means they are near resonance. The occupancy is then
N~k ~ [ /m2e = a® f2/m2. This gives an initial
rate

Fa,i ~ aszmeffé’%. (C22)

Since >N, ~ 1/N,, for large N,,, then this is much smaller
than Hubble H ~ mgg at this time.

Furthermore, this redshifts very quickly, because not
only is there a factor of 1/a® from the axion’s number
density. But also the resonant occupancy numbers are
depleting due to redshifting. At later times, it is difficult
to find y waves with high occupancy at the axion’s mass.
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