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Abstract. The idea of ultralight scalar (axion) dark matter is theoretically appealing and
may resolve some small-scale problems of cold dark matter; so it deserves careful attention.
In this work we carefully analyze tunneling of the scalar field in dwarf satellites due to the
tidal gravitational force from the host halo. The tidal force is far from spherically symmetric;
causing tunneling along the axis from the halo center to the dwarf, while confining in the
orthogonal plane. We decompose the wave function into a spherical term plus higher harmonics,
integrate out angles, and then numerically solve a residual radial Schrédinger-Poisson system.
By demanding that the core of the Fornax dwarf halo can survive for at least the age of the
universe places a bound on the dark matter particle mass 2 x 10722eV <m < 6 x 10722 eV.
Interestingly, we show that if another very low density halo is seen, then it rules out the
ultralight scalar as core proposal completely. Furthermore, the non-condensed particles likely
impose an even sharper lower bound. We also determine how the residual satellites could be
distributed as a function of radius.
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1 Introduction

The mystery of the nature of dark matter (DM) remains a central puzzle in modern cosmology.
Some popular candidates for the DM, such as weakly-interacting massive particles, have
faced increased pressure over the years through the lack of direct detection. Perhaps the
most well-motivated remaining possibility is a kind of “axion” [1-6]. In its original form, it
is a new light scalar (¢) that is postulated to carry a shift symmetry. It therefore has no
couplings to the Standard Model (SM) at dimension 4, but can couple to gluons through the
dimension 5 operator ~ ¢ G G. Careful analysis reveals it resolves the strong CP problem and
also picks up a small but nonzero mass and is a DM candidate. Beyond this, there are many
related possibilities; including string inspired axions, many of which are typically “ultralight”,
perhaps many orders of magnitude lighter than a neutrino. Some axions acquire a mass
through gravitational instantons with action S on the order m ~ Mp A exp(—S/2)/F, where
My, = 1/v/87G is the Planck mass and F' is some high symmetry breaking scale. Typical
instanton actions have S ~ 27 /a, so for a ~ 1/25 as anticipated in unification, the axion’s
mass would be incredibly small.

Independently, observations have accumulated suggesting that the vanilla cold dark
matter (CDM) paradigm may need refining. These observations include the missing satellites
problem, suppression of small scalar power, and the presence of cores instead of cusps at the
centers of galaxies [7]. All of this could conceivably point towards the need for an ultralight
scalar as the DM, with a mass perhaps on the order of m ~ 10722eV or so. For such a
mass, the corresponding de Broglie wavelength for virialized scalars in the galaxy, with
velocities v ~ 107 3¢, would be A\gg ~kpc; on the order the size of galactic cores. For an
ultralight axion formed from the misalignment mechanism (field initially displayed away from
the vacuum and then rolls when H < m), its relic abundance can be readily shown to be



Qg ~ 0.2(F/(10'7 GeV)? (m/(107226V)/2. So the required abundance  ~ 0.25 is achieved
for m ~ 10722 eV and F' ~ 10'7 GeV, which is compatible with the above relation between m
and F'; this is the “fuzzy miracle” [8].

In this work we carefully analyze a novel phenomenon that puts serious pressure on
the viability of ultralight scalars. Since these scalars are so light and have such a huge de
Broglie wavelength, one may wonder if there can be interesting quantum behavior on the
relevant macroscopic scales. One such interesting phenomenon is the formation of solitons at
the cores of galaxies, which is observationally enticing. On the other hand, another possible
phenomenon is quantum tunneling, which may cause satellite galaxies and dwarfs to deplete
their abundance over time and essentially disappear. If this happens too quickly, it would
prevent ultralight axions from providing any dwarfs from existing today. The tunneling
phenomena can occur because there are two gravitational effects at play. On the one hand,
a dwarf galaxy will tend to hold the DM in with its self gravity. On the other hand, the
host halo provides a tidal potential that leads to a local maximum in the effective potential.
While classical particles would always remain within the corresponding tidal radius, quantum
particles with very large de Broglie wavelengths could tunnel across this barrier.

In previous work [9], one of us studied this tunneling, finding a bound on the scalar’s
mass and it was also studied in the appendix of ref. [10]. In these previous works a simplifying
assumption of spherical symmetry was used to describe the effective potential. Detailed
numerical analysis of the problem was performed in ref. [11]. In this work, we will develop the
analytics and compare to data. We will describe the high asphericity of the tidal potential; it
is destabilizing along the axis from halo center to dwarf, but stabilizing in the orthogonal
plane. We will also generalize the analysis to a proper treatment of the halo’s potential,
which deviates from a 1/r potential within the halo. We use this analysis to place both a
lower and upper bound on the axion mass, as well as a bound on dwarf’s core densities to
avoid tunneling.

The outline of our paper is as follows. We first recap the standard way to study light
bosons at very high occupancy, interacting gravitationally, by deriving the Schrédinger-Poisson
system. For an orbiting dwarf galaxy, we move to a rotating coordinate system. We then
break up the gravitational term into a self-gravitational piece for a dwarf galaxy and an
external piece from the host halo which is decomposed into a tidal term to second order.
We then break up the wave function into a spherical piece plus spherical harmonics, then
integrate out angles. By determining the inner and outer asymptotic behavior, a residual
radial differential equation is solved numerically for the profile and the tunneling rate. We
also compute how the tunneling is altered when the satellite is within the halo, finding a
maximal tunneling rate near the halo’s radius.

2 Schrodinger Poisson system

We begin by considering a massive scalar ¢, minimally coupled to gravity. The full relativistic

action is given by (signature + - - - and units h =c = 1)
4 1 v 2 2

S=[dz\/— + g“ 0,90, — -m~¢ (2.1)
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(A more precise treatment for the axion involves a periodic potential, such as V(¢) =

m?F%(1 — cos(¢/F)); but expanded to quadratic order, gives the above V(¢) = $m?¢* which

suffices in the galaxy where densities are low.) A typical axion has incredibly small couplings



to matter and so they can be ignored when considering motion in the galaxy, as we shall
do here.

Within a galaxy, the matter has approximately virialized to speeds v ~ 107 — 1073 and
so a non-relativistic approximation may be employed. To capture this, we make the standard
decomposition of the rapidly oscillating ¢ in terms of a slowly varying “wave function” ¢ as

¢(t,X) =

\/iim [e_zmtw(t,x) + ezmtw*(t,x)} . (2.2)
In the high occupancy regime, this ¢ is more precisely the non-relativistic (Schrodinger) field,
rather than the many particle wave function. But since it captures the coherent quantum
physics of the underlying particles, the name “wave function” is suggestive. We note that
from the particle point of view, the upcoming tunneling is indeed a quantum phenomenon
which can be called “quantum tunneling”, while from the field point of view it is captured by
classical field theory.

By inserting this decomposition of ¢ into the above action, operating in Newtonian gauge,
integrating out the rapidly varying parts, we can obtain a non-relativistic (more precisely, a
Galilean relativistic) effective action

. *, 2
s= [at [MMJ* YV gt~ ) (2.3)

(one takes the real part). The corresponding equations of motion are the Schédinger-Poisson

system
2

i) = _v27m +monty, Vién = 4nGmap*. (2.4)

We note that this is not simply the single particle Schréodinger equation, because the potential
term m@n is to be solved self-consistently with the Poisson equation, and so this system
is in fact nonlinear. This accurately captures a system of bosons in the high occupancy
condensed limit. In fact the normalization of the wave function is the total number of particles

N = [ d3z ™).

3 Orbiting dwarf galaxy

Consider a dwarf galaxy in circular orbit around the center of a galactic halo with central
location. Let the center of the dwarf be at a radius a with orbital angular frequency w = 27 /T’
so Kepler’s 3rd law gives w? = G'Meye/a®. Tts center is taken to move clockwise in the zy-plane
with location z. = a cos(wt), y. = —a sin(wt), z. = 0.

Our goal is to compute the behavior of the bosons within the dwarf. It is therefore
convenient to switch to a rotating coordinate system by defining

7' = x cos(wt) — y sin(wt), (3.1)
y' =y cos(wt) + x sin(wt),
Y=z t=t (3.3)

In these new coordinates, the x’ axis is always aligned from the halo center to the dwarf, i.e.,
xl, = a and y. = 2z, = 0. We now insert these new coordinates into the Schrodinger-Poisson



system, use the rotational symmetry of the Laplacian V’? = V2 and careful application of the
chain rule to the time derivative, to obtain the slightly modified Schrédinger equation

b . 2
z'(%j =wl, -~ zmw + m(¢pe + ¢u)V, (3.4)
V2¢pe = ArGmap* . (3.5)

Here L, = iy % — iz’ 8%, is the angular momentum operator around the z-axis; this is a

kind of Coriolis force term. The Poisson equation is still structurally the same in these new
coordinates, however, we have indicated that we break up the Newton potential into two pieces
ON = ¢pe + O, where ¢pg is the potential from the dwarf, to be solved self-consistently,
while ¢ is the potential from the halo, which we will treat as a fixed external potential.

4 Tidal potential

We treat the host halo as spherically symmetric for simplicity ¢y = ¢g(r). The satellite
is assumed to be much smaller in extent that the distance to the center a. This permits a
Taylor expansion of the external potential ¢ in the vicinity of the halo as

ou (Vfla+ D 42+ ) = bu(a) + 26y (a)

o (@@ + (2 + P)la) +o (41)

where & = 2’ — a is the distance from center of satellite along the rotated axis. Truncating at
quadratic order will suffice to obtain a tidal potential.

When inserted into the above Schrodinger equation, the linear term Z ¢, (a) seems to
indicate we are not expanding around a local minimum of the potential. But in fact it simply
represents the fact that we are expanding around an orbiting solution with angular momentum.
We extract this out by removing a phase factor in the wave function as

)= eima2w2t’—imawy’\p (42)

which absorbs the orbital 3/ momentum m a w of the dwarf’s center. The resulting Schrodinger
equation for ¥ is found to be (after dropping an irrelevant constant and for ease of notation
we replace & — z, y' =y, 2/ = 2z, /' = t)

A V20

i 5 =Wl — S —+ (Mée + Vi (X)) ¥, (4.3)
with V2¢pa = 4rGmU*¥. Here we have identified the tidal potential
1
Vitaar (X) = —gm w2(2’y$2 . 22). (4.4)
The prefactor « is a dimensionless property of the halo at the location of the dwarf
a ¢y (a)
N | (4.5)
2¢7y(a)
If the satellite is sufficiently far from the halo center that the enclosed mass Mg, &~ Moy is
the total mass of the halo, then we know ¢ = —G Mo /r and v = 1. However, if we are still

partially inside the halo, then v < 1. In this work, we will often be interested in the case
v ~ 1, but we will also consider the more general case.

We note that the corresponding single particle Hamiltonian H = p?/2m +w(xpy —ype) +
mope + Viaa generates the classical equations of motion for a point particle.



5 Mode decomposition

We see that this tidal potential is always highly aspherical; it gives rise to a potential instability
along the z-axis between the halo and the dwarf, while it is confining in the orthogonal
yz-plane. Furthermore the coefficient of the 2 term is not parametrically larger than the y or
z directions. So if we take a spherically symmetric ansatz for the wave function and integrate
over angle, we will completely miss the tunneling. For instance, if v = 1 and we integrate
over solid angle, we have [ d?Q (222 — y? — 2%) = 0, and the effects of the tidal term are lost.

To search for an exact solution, one should in principle, decompose the wave function
into a sum of an infinite set of spherical harmonics

U =e "M Wo(r) + VAT D CimWim(r)Yim(0,9) | (5.1)
[>0,m

These will be coupled to each other leading to an infinite chain of coupled mode functions; we
return to the effects of this shortly. Here we have included a temporal phase factor in search
of an eigenstate, with chemical potential . A true stationary state has real p. But tunneling
will be encoded in an imaginary part of . This formally indicates exponential decay in the
number N, however, this can be interpreted as the dwarf decaying and axions leaking out of
the system.

To illustrate, let us describe a truncated ansatz for the solution by decomposing the
wave function into a spherical piece (which will be dominant near the dwarf’s center) and
a quadrupolar [ = 2 piece to capture the quadratic aspherical potential (which will be
comparable in the tail). The theory carries an x — —z symmetry and so we anticipate the
ground state to carry this too. So we set the m = +1 terms to vanish; c1; = 0. Furthermore,
we should extremize the integral over the tidal term. This means picking the quadrupole
term to have maximal support in the z-direction and minimal support in the yz-plane. This
occurs by taking co = c_9 = \/3/8, co = —%. (One can setup a straightforward extremization
problem over these coefficients and check that indeed these values extremize the support in the
x-direction versus the orthogonal plane.) The normalization is N = 47 [ dr r?(|¥o|? + |¥2|?).

We then insert the above decomposition into an effective Hamiltonian which generates
the above Schodinger-Poisson system. We integrate over angle [d2 and then we need to
extremize the Hamiltonian with respect to the radial mode functions Wy and Wy. This leads
to the following coupled system of radial ODEs

V20U,  mw?r?

p¥o = =2~ 5 (bW + baW2) + M Vo, (5.2)
\VZA\ mw?r? - 3v

iy = -2 (do®o + d2W2) + M Vs + 2, (5.3)
2m 2 mr

where V20 = U” + 20’ designates the radial Laplacian and the final term in eq. (5.3) arises
from the [ = 2 angular momentum of the W5 mode. The coefficients by, bo, dg, do arise from
carrying out the angular integrals of the tidal potential. (Their values in this truncated
ansatz are by = 2(y — 1), by = do = 2(1 + 27)/(3V5), d2 = 2(11y — 5)/21.) Also, having
integrated over angle, we can approximate the Newton potential for the dwarf as the solution
to VZ¢pe = 4nGm(|Wo|? + |¥s|?).



6 Asymptotic behavior and weak external potential

Let us begin by examining the large r regime of the above pair of equations. Here we know
that the Newtonian potential will die off as ~ 1/r, etc, while the tidal term will be most
important as it grows as r2. In this regime, we can ignore all terms, except the tidal and
Laplacian terms. The pair of coupled equations possess an oscillatory solution and a decaying
solution. Since we are interested in tunneling, we can focus on the oscillatory one, which is
found to be (also see ref. [10] for the single mode case)

VBmw 2
A

1 .
Uo(r) = aPy(r) « 373 OXP (z 5

> (at large r) (6.1)
with o = (3v/6 — /5)/7. This asymptotic behavior governs the tunneling. By inserting this
relation between mode functions into eq. (5.1) we can check the angular dependence of the
solution for large r. The wave function in the truncated ansatz is self consistently large in
the asymptotic regime along the z-axis and small in the yz-plane; in fact it is ~ 58.5 times
smaller than along the z-axis. Ideally it would strictly vanish in both the yz-plane and at
any ray that is not aligned with the x-axis, as this is the direction of tunneling.

More precisely then, taking into account self-rotation, and allowing for a full sum over
spherical harmonics, one anticipates the value of the exponent in the tail to be § ~ 2v + 1;
we shall use this going forwards.

For small r, we cannot use the above relation, and it appears we need to solve the full
coupled system. However, there is a simplification that occurs when the tidal potential is
small, as measured by w. For small w and at small r, the theory is spherically symmetric
and so we know Wy (and higher harmonics) will be negligible compared to ¥. This suggests
setting U; = 0 for [ > 0 in the above equations. This suffices until we are at very large r
when we must track the corrections from the tidal term. But the latter we just solved above,
finding a simple scaling in this regime (V3 = ¥/ in the truncated ansatz). So we can simply
make this replacement in eq. (5.2) knowing that it works precisely in the regime in which the
relevant term matters, giving a single ODE. Taking this all into account gives

V2o  mw?r?

o 5 B Uy + ngBDG\I’Q. (62)

p¥o = —

Furthermore, we can simplify the Poisson equation to VZ¢pg = 4mGm|¥o|?, since in the
weak tidal regime, we know that the integral of the spherical piece will dominate over the
a-spherical piece in the bulk of the dwarf. We note that for v = 1 (point source halo regime)
then S ~ 3. While deep within the halo v is smaller and so too is 3; we return to this later.

7 Numerical results

We have solved the above ODE (6.2) numerically for different values of the orbital frequency
w and halo parameter ~. It is useful to define the dimensionless frequency wam, = w/v/G pc,
where p. = m |¥((0)|? is the central density. In fact the only remaining tunable parameter is
the combination Bw?,  that appears in the tidal term.

For v =1 and wy;,, = 0.43, we display the result for the wave function versus radius in
figure 1. The upper plot gives the real part and the lower plot gives the imaginary part. We
also indicate the unperturbed solution in black, which it matches well for small . We have
matched onto the large r asymptotic behavior of eq. (6.1).
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Figure 1. Top: Real part of ¥y. Bottom: Imaginary part of ¥y. Here wgy, = 0.43, v = 1. The solid
blue (top) and solid red (lower) is from solving the radial equations numerically. The black curve is
the wave function without tidal force.

This procedure requires numerically searching for the correct value of y, both real and
imaginary parts g = ug + ¢ pu7. The imaginary part is related to decay. Since the wave
function changes in time as |¥| oc e~ I#lIt (using yu; < 0), then the number density changes
as n o e 211t and so in turn does the integrated mass M = m [ d®zn associated with the
bound state. Naively, the corresponding instantaneous decay rate from tunneling is given by
I'=|dM/dt|/M = 2|ur|. However, as one tracks the adiabatic evolution of the soliton, as the
density decreases, the radius increases as R o< el*111/2 5o the net rate is altered to T = |yuz]/2.

We can define a dimensionless density ratio pe/pu.ae = 47/(3w2,), where

36 _ 31 _ 3Menc (7.1)
ArG  GT? 47 a3

pH,ave -

is defined as the density of the halo averaged to a (Mene/V'). Then if we measure the decay
rate in units of orbital frequency, at fixed v we obtain a unique curve. This is given in figure 2
for y =1.

Numerically, we find the approximate exponential fitting function for the decay rate

'~ Tyexp (—B pe/pu.ave) (7.2)
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Figure 2. Instantaneous decay rate I' (in units of inverse orbital period T—! = w/(27)) as a function
of dwarf central density p. (in units of average halo density py.a.. = 3w?/(47G)), or equivalently
as a function of soliton mass M2 (in units of py ave/(g1 G3MY)) or soliton radius R;? (in units of
Gm® pyave/g2). Here vy = 1.

with 5

Ty~ 0.77/fw, B~ 0‘53. (7.3)
(We obtain partial numerical agreement with ref. [11]. However, unlike the formula in ref. [11],
this has the physical properties that it is decreasing for arbitrarily large p./pu.av. and is a
function of the combination /3w only). Note that when expressed in these variables the
axion mass m has dropped out. This means that the observation of any long lived dwarf
galaxy with a sufficiently small core density would falsify the proposal that its core is provided
by condensed scalars of any mass m.

In order to see an explicit dependence on axion mass, we need to switch variables. For
sufficiently small wg;,,, the solution in the bulk is approximately that of the usual soliton
(except of course in the large r tunneling regime). The relation between core density p. and
half mass of the soliton Mg and radius containing half mass Rs; can be shown to be

g2

_ 3. 673754
pe= g1 G My = g

(7.4)
where the dimensionless coefficients g1 o are found to be g1 = 0.07, g2 = 1.04. By substituting
this into the decay rate formula (7.2), we see a strong dependence on the axion mass and
soliton mass M or radius Rs. This is also indicated on the top axis of figure 2.

8 Application to dwarfs and bounds

As an example, consider the “Umi” spheroidal dwarf. This has a central density and orbital
period of [12]
pe ~ 0.15 My /pc®, T ~ 1.6Gyr. (8.1)



This corresponds to the density ratio of p./pu .. ~ 183. Then by inserting this into the above
tunneling rate formula with v = 1, we obtain I" ~ 10~* /tuni, where tyn; ~ 13.8 Gyr is the
current age of universe. This is a very small rate and therefore we would not expect this to
be observable.

On the other hand, for any dwarfs with a density ratio even a factor of a few smaller
(either smaller core density or closer to host) would lead to appreciable tunneling on the
lifetime of the universe. We can translate this into a bound

pC/,OH,ave 2 70 (82)

Any long lived dwarf with a density below this would falsify the soliton proposal. We can
also convert this into a bound on the axion mass by using eq. (7.4), which we find is

2/3
4 % 107 M, . 1/3
m>1.8 x 10726V (W) (3 9;}”) (8.3)
_ 0.71kpc\2/ T
< 6.0 x 10722 v( ) ( ) 8.4
M DR X ¢ R, 3.9Gyr)’ (8-4)

where we have re-scaled the variables by reference values: soliton mass of 4 x 107 My, period
of 3.9 Gyr, and radius of Rs = 0.71kpc, which are the values for Fornax [12]. Note that the
lower bound on m arises from using the relationship between core density p. and the soliton
mass M, in eq. (7.4). While, the upper bound on m arises from using the relationship between
core density p. and the core radius R. in eq. (7.4) and noting that this involves the axion
mass tnversely. This reflects the fact that soliton as core proposal is quite restrictive. Our
tunneling bound squeezes the axion mass into a narrow range. Any observed dwarf with a
moderately smaller mass or moderately larger radius would falsify the proposal that axions in
a condensed state form the cores. We also note that this upper bound is already in tension
with a lower bound on the ultralight axion mass from Lyman-alpha forest [13—16]. We note
that Lyman-alpha bounds often assume the axion is all the DM or at least a substantial
fraction of it, while our tunneling bounds do not need this requirement; only that axions
provide an appreciable fraction of dwarf centers.

9 Corrections within halo

For satellites that are not entirely outside the halo, we can consider corrections from ~ = 1.
To model this we use an NFW profile for the halo as

pu(r) = r/R (ITT/R )2’

(9.1)

where pg is central density of halo and Ry is the “scale radius” which is typically an order of
magnitude smaller than the virial radius. The NFW density can be integrated to give the
halo potential as

¢H:

For tunneling, we need the halo parameter defined earlier in eq. (4.5), which is found to

4 3
_%ma +1/R). 9.2)

be
1

1+ Ry/a)((1+ Rs/a)In(14+a/Rs) — 1)




For a > Rs, we have v~ 1 —1/(2In(a/Rs)), while for a < R, we have v ~ 2a/(3Rs). This
has important implications for the tunneling parameter 5 wim. At large radii a > R, the
tunneling parameter is fw2,  ~ 127(po/pe)(Rs/a)®log(a/Rs), while at small radii a < Rj
the tunneling parameter is w2, ~ 27(po/pe)(Rs/a). So although the tunneling increases as
we go to smaller radii, it only grows as 1/a, rather than 1/a®. So sufficiently dense dwarfs
could still be present at small radii.

10 Discussion

In this work we have focussed on the soliton state. However, as shown in ref. [17], the
soliton’s prediction for the relationship between core density and core radius over a range
of galaxies does not fit the data well. Therefore, one should consider the possibility that a
significant fraction (most) of the particles are not in the soliton state, but are instead in some
higher energy excited state within the satellite, and that the core is provided by some other
explanation. However, higher energy states are expected to tunnel even more quickly than
our above estimates. This is expected to appreciably raise the lower bound on the axion mass
in eq. (8.3), further restricting the ultralight axion as DM proposal.

For sufficiently small orbital radii, the system will be torn apart classically. However, for
moderate to large radii the above pattern could be an interesting signature of ultralight DM.
For a refined prediction, one should compute corrections from non-circular satellite orbits,
which we leave for further work.

It would be of interest to search for evidence of, or further constrain, satellites that
obey the above mentioned tunneling rate as a function of radius. Furthermore, it would
be important to explore all possible dwarfs to see if the inequalities in egs. (8.3), (8.4) are
incompatible for some. If all dwarfs obey the inequalities, then it would be an intriguing
success. Any clues we can gather on the nature of DM is essential to progress in cosmology.

Acknowledgments

We thank Lam Hui and Matt Reece for helpful discussions. M.P.H. is supported in part by
National Science Foundation grant PHY-2013953. The work of A.L. is supported in part by
the Black Hole Initiative, which is funded by grants from the John Templeton Foundation
and the Gordon and Betty Moore Foundation.

References
[1] R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett.
38 (1977) 1440 [NSPIRE].
[2] S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223 [INnSPIRE].

[3] F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev.
Lett. 40 (1978) 279 [nSPIRE].

[4] J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the Invisible Azion, Phys. Lett. B 120
(1983) 127 [INSPIRE].

[5] L.F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Azion, Phys. Lett. B 120
(1983) 133 [INSPIRE].

[6] M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett. B 120 (1983) 137 [INSPIRE].

~10 -


https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://inspirehep.net/literature/119084
https://doi.org/10.1103/PhysRevLett.40.223
https://inspirehep.net/literature/122138
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1103/PhysRevLett.40.279
https://inspirehep.net/literature/5997
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90637-8
https://inspirehep.net/literature/179499
https://doi.org/10.1016/0370-2693(83)90638-X
https://doi.org/10.1016/0370-2693(83)90638-X
https://inspirehep.net/literature/12562
https://doi.org/10.1016/0370-2693(83)90639-1
https://inspirehep.net/literature/179461

[7]
8]

[9]

J.S. Bullock and M. Boylan-Kolchin, Small-Scale Challenges to the ACDM Paradigm, Ann. Rewv.
Astron. Astrophys. 55 (2017) 343 [arXiv:1707.04256] [INSPIRE].

T.C. Bachlechner, K. Eckerle, O. Janssen and M. Kleban, The Azxidental Universe,
arXiv:1902.05952 [INSPIRE].

A. Loeb, Quantum Tunneling of Fuzzy Dark Matter out of Satellite Galaxies, Res. Notes AAS 6
(2022) 120 [INSPIRE].

L. Hui, J.P. Ostriker, S. Tremaine and E. Witten, Ultralight scalars as cosmological dark matter,
Phys. Rev. D 95 (2017) 043541 [arXiv:1610.08297] INSPIRE].

X. Du, B. Schwabe, J.C. Niemeyer and D. Biirger, Tidal disruption of fuzzy dark matter subhalo
cores, Phys. Rev. D 97 (2018) 063507 [arXiv:1801.04864] [INSPIRE].

J.I. Read, M.G. Walker and P. Steger, Dark matter heats up in dwarf galaxies, Mon. Not. Roy.
Astron. Soc. 484 (2019) 1401 [arXiv:1808.06634] [INSPIRE].

V. Irsi¢ et al., First constraints on fuzzy dark matter from Lyman-« forest data and
hydrodynamical simulations, Phys. Rev. Lett. 119 (2017) 031302 [arXiv:1703.04683| [INSPIRE].

E. Armengaud et al., Constraining the mass of light bosonic dark matter using SDSS Lyman-c
forest, Mon. Not. Roy. Astron. Soc. 471 (2017) 4606 [arXiv:1703.09126] INSPIRE].

T. Kobayashi et al., Lyman-a constraints on ultralight scalar dark matter: Implications for the
early and late universe, Phys. Rev. D 96 (2017) 123514 [arXiv:1708.00015] [INSPIRE].

K.K. Rogers and H.V. Peiris, Strong Bound on Canonical Ultralight Axion Dark Matter from the
Lyman-Alpha Forest, Phys. Rev. Lett. 126 (2021) 071302 [arXiv:2007.12705] [INSPIRE].

H. Deng, M.P. Hertzberg, M.H. Namjoo and A. Masoumi, Can Light Dark Matter Solve the
Core-Cusp Problem?, Phys. Rev. D 98 (2018) 023513 [arXiv:1804.05921] [INSPIRE].

- 11 -


https://doi.org/10.1146/annurev-astro-091916-055313
https://doi.org/10.1146/annurev-astro-091916-055313
https://arxiv.org/abs/1707.04256
https://inspirehep.net/literature/1609986
https://arxiv.org/abs/1902.05952
https://inspirehep.net/literature/1720578
https://doi.org/10.3847/2515-5172/ac7646
https://doi.org/10.3847/2515-5172/ac7646
https://inspirehep.net/literature/2094643
https://doi.org/10.1103/PhysRevD.95.043541
https://arxiv.org/abs/1610.08297
https://inspirehep.net/literature/1494555
https://doi.org/10.1103/PhysRevD.97.063507
https://arxiv.org/abs/1801.04864
https://inspirehep.net/literature/1648133
https://doi.org/10.1093/mnras/sty3404
https://doi.org/10.1093/mnras/sty3404
https://arxiv.org/abs/1808.06634
https://inspirehep.net/literature/1689196
https://doi.org/10.1103/PhysRevLett.119.031302
https://arxiv.org/abs/1703.04683
https://inspirehep.net/literature/1517430
https://doi.org/10.1093/mnras/stx1870
https://arxiv.org/abs/1703.09126
https://inspirehep.net/literature/1519388
https://doi.org/10.1103/PhysRevD.96.123514
https://arxiv.org/abs/1708.00015
https://inspirehep.net/literature/1613864
https://doi.org/10.1103/PhysRevLett.126.071302
https://arxiv.org/abs/2007.12705
https://inspirehep.net/literature/1808893
https://doi.org/10.1103/PhysRevD.98.023513
https://arxiv.org/abs/1804.05921
https://inspirehep.net/literature/1668141

	Introduction
	Schrödinger Poisson system
	Orbiting dwarf galaxy
	Tidal potential
	Mode decomposition
	Asymptotic behavior and weak external potential
	Numerical results
	Application to dwarfs and bounds
	Corrections within halo
	Discussion

