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We propose possible properties of quantum gravity in de Sitter space, and find that they relate the value
of the cosmological constant to parameters of the standard model. In de Sitter space we suggest (i) that the
most sharply defined observables are obtained by scattering objects from the horizon and back to the
horizon and (ii) that black holes of discrete charge are well defined states in the theory. For a black hole of
minimal discrete electric charge, we therefore demand that a scattering process involving the black hole and
a probe can take place within a Hubble time before evaporating away, so that the state of a discretely
charged black hole is well defined. By imposing that the black hole’s charge is in principle detectable,
which involves appreciably altering the state of a scattered electron, we derive a relation between the
Hubble scale, or cosmological constant, and the electron’s mass and charge and order one coefficients that
describe our ignorance of the full microscopic theory. This gives the prediction Λ ∼ 10−123!2M4

Pl, which
includes the observed value of dark energy. We suggest possible ways to test this proposal.
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I. INTRODUCTION

The values of the fundamental constants of the standard
model and gravitation remain mysterious. There is cur-
rently no known principle that links any of their values.1

The standard model consists of 26 parameters (if we
include the massive neutrino sector and the strong sector’s
θ angle and work in natural units) and general relativity
includes one additional parameter: the cosmological con-
stant Λ (plus Newton’s constant, which we can use to set
units). In terms of the Planck scale MPl, the cosmological
constant is observed to be fantastically small Λ ≈
10−123M4

Pl (in the convention of treating it as an energy
density and assuming it is indeed the dark energy). There is
currently no satisfactory explanation for its value; for some
reviews, see Refs. [4–8]. To our knowledge, the only

candidate dynamical explanation for its smallness (without
appealing to anthropics, which may overpredict the value
anyhow [9]) is an entropic argument; low Λ implies large
entropy of de Sitter space and hence there is an exponen-
tially strong preference for small Λ [10]. This argument,
however, overshoots and predicts Λ should be effec-
tively zero.
In this work, we suggest a possibility to improve the

situation by appealing to hypothesized principles of quan-
tum gravity. By imposing these principles on charged black
holes, we derive a bound on the cosmological constant in
terms of the charge and mass of the lightest particles.
Interestingly, by saturating this bound (which can be
motivated), we find that the predicted Λ is roughly
consistent with the observed value.
The outline of our paper is as follows: In Sec. II we

summarize our principles. In Sec. III we show how this
leads to a relation between fundamental constants. In
Sec. IV we discuss our findings and future work to test
this proposal.

II. PRINCIPLES

We suggest the following hypothetical principles that a
theory of quantum gravity might impose upon the structure
of black holes:

(i) There exists well defined states of black holes with
any discrete charge (multiple of electron charge, e).
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1Some previous interesting works to try to relate parameters,
such as the weak scale to the Planck scale and forms of vacuum
energy, include Refs. [1–3]. Our work will differ from these
previous works in several ways; our stated principles, our usage
of black holes, and the final relation between constants.
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(ii) In de Sitter space, the sharpest defined observables
arise from scattering from and to the horizon. Hence,
scattering processes must exist that can learn about
the black hole’s charge.

Here we are only referring to nonextremal black holes;
there can be some large upper bound on their charge, but
this will not be directly relevant.
The first principle is motivated by the observational fact

that electric charge is discrete (quantized), and one may
anticipate that this remains true in quantum gravity and that
black holes can indeed carry this charge. The second
principle is motivated by the fact that in standard relativistic
quantum mechanics in asymptotically flat spacetime, the
sharpest observables are scattering amplitudes from and to
infinity. So for de Sitter space, which prevents such
experiments at infinity, one may anticipate scattering from
and to the horizon as the appropriate update.
Taken together, we can consider black holes of any

discrete charge and enquire under what conditions a
scattering experiment can be performed to clearly learn
the black hole’s charge. We take as a criterion that the
scattering off a probe can give rise to an electric effect
comparable to or larger than the gravitational effect. The
most difficult amount of charge to detect is a black hole of
minimal charge e, i.e., one electron or proton (or
antiparticle).
In order to construct black hole states whose minimal

charge can be measured, we can use the black hole’s mass
M as a free parameter. If we consider black holes of
extremely large mass M, their effects on scattering probes
will be entirely dominated by the gravitational scattering.
This is not useful to learn about the black hole’s minimal
charge. On the other hand, black holes of extremely small
massM will Hawking evaporate away before the scattering
process from and to the horizon is complete. So these too
are not useful to learn about the black hole’s minimal
charge. (To be clear, we are not saying such light and
therefore rapidly evaporating black holes cannot exist. We
are only suggesting that quantum gravity will impose that
there can exist heavier charged black hole states that are
more sharply defined.)
Hence, the optimal choice is a black hole that is as light as

possible, but just heavy enough to survive the scattering
process. The proposal is that these states should exist in
principle, even if not easily produced. The duration of the full
scattering process is controlled by the Hubble scale of
de Sitter space, which is in turn controlled by the cosmo-
logical constant. As we will mention, depending on param-
eters, the black holes of interest may undergo rather rapid
neutralization through the Schwinger effect, so the full
process can involve absorption and emission of its charge.
See Fig. 1 for a depiction of the full scattering process.
Since current data indicates that the cosmological constant

is nonzero, this situation in fact appears to be the fate of
our Universe in the far future, as it will be close to de Sitter.

The probe particle that participates in the scattering process
with the black hole needs to be some charged particle within
the standard model (see the Discussion for other possibil-
ities); the optimal choice is the lightest charged particle.Next,
we show how this leads to a relation between the cosmo-
logical constant and parameters of the standard model.

III. RELATION BETWEEN CONSTANTS

Suppose a black hole has the minimum charge e. We
would like to be able to detect this charge from scattering the
black hole off a probe. The optimal probewithin the standard
model is an electron (or positron), as it is the lightest particle
of charge e, i.e., it has the largest charge to mass ratio of any
particle or collection of particles. Hence, the value of the
electron’s mass me, being the mass of the lightest charged
particle, will play an important role in our results.
In order for the measurement to be sharp and hence the

black hole’s charge is well defined in a quantum theory, we
anticipate that the mutual electric potential between the
black hole and the electron is comparable to, or a little
larger than, their mutual gravitational potential. This can
only occur for a critical black hole mass M" that obeys
(units ℏ ¼ c ¼ 1)

VE ¼ α
r
¼ bVG ¼ b

GM"me

r
; ð1Þ

FIG. 1. The basic scattering process: A minimally charged
black hole (thick red) is “measured” by a probe electron (thin
blue) via the electric interaction (green virtual photon exchange)
if it is greater than the gravitational interaction (virtual graviton
exchange). This all takes place within a de Sitter Hubble patch
(brown circle). Depending on parameters, the black hole may
begin neutral (thick black), absorb, then reemit its charge (thin
red) during the full process.
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where b is a fudge factor, whose precise value would
depend on the details of a microscopic implementation of
this framework. One anticipates that b is perhaps order 1 or
a few, though b ¼ Oð10Þ is plausible too, as the ability to
detect the black holes’ charge sharply may require this. The
scattered probing electron can be semirelativistic, and
hence its energy is on the order me. Hence, the critical
black hole mass is

M" ¼
α

Gmeb
; ð2Þ

which is a mass purely specified by fundamental constants.
Note that for sufficiently small masses, the black hole is

anticipated to emit its charge via the Schwinger proc-
ess [11]. At the horizon of the black hole, the electric force
on an electron is eE ¼ α=R2

S ¼ α=ð2GM"Þ2. The standard
condition for suppression of Schwinger pair production is
πm2

e=ðeEÞ ≫ 1, but here we have πm2
e=ðeEÞ ¼ 4πα=b2,

which can be smaller than 1 for plausible parameters. From
a produced electron-positron pair, the oppositely charged
particle can fall in and neutralize the black hole, while the
other can escape. For work on neutralization rates of
black holes, see Ref. [12]. In this case, the appropriate
full scattering process involves black hole charge absorp-
tion, then detection, then Schwinger emission, as depicted
in Fig. 1.
For detectability, we require that such a critical black

hole (which may be neutral for much of the process) can
survive the scattering process from the horizon and back
out to the horizon—a time of order 2tH (where tH is the
Hubble time)—before appreciably Hawking evaporating
away. We recall that the time for a black hole of initial mass
M to Hawking evaporate away completely is [13]

tBHðMÞ ¼ 5120πG2M3: ð3Þ

Also, recall that in de Sitter space, the Hubble time tH is
determined by the cosmological constant Λ (we shall use
the notation that Λ has units of energy density and the
traditionally defined cosmological constant is actually
8πGΛ). According to the Friedmann equation (in spatially
flat slicing), we have

tH ¼ H−1
Λ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
3

8πGΛ

r
: ð4Þ

Altogether, we impose the inequality

tBHðM"Þ ≥ 2γtH; ð5Þ

where γ is a fudge factor, which captures the fact that the
microscopic theory may require the black hole lifetime to
be somewhat larger than Hubble in order for the state of
the black hole to be well defined. One may anticipate
γ ¼ Oð10Þ or so.

Solving for Λ, we obtain

Λ ≥ Λc; ð6Þ

where the critical value is found to be

log
"
Λc

M4
Pl

#
¼ −0.73þ log

"
G3m6

e

α6

#
þ 6 log

"
b
10

#

þ 2 log
"
γ
10

#
; ð7Þ

where logmeans log base 10.Herewehave rescaled factorsb
and γ by representative factors of 10 for convenience, andwe
have expressed Λ in units of the Planck massMPl ¼ 1=

ffiffiffiffi
G

p
.

The question is whether this result is consistent with
observations. By inserting the standard model measured
values Gm2

e ≈ 1.75 × 10−45 and α ≈ 1=137, we find the
prediction

log
"
Λc

M4
Pl

#
¼ −122.2þ 6 log

"
b
10

#
þ 2 log

"
γ
10

#
: ð8Þ

Hence, if themicroscopic theory gives b and γ valuesOð10Þ,
which is plausible, and if the bound is saturated, then we
obtain the prediction of an appropriately small Λ. For b, γ
between 4 and 15, say, the prediction, with error bars, is
Λ ∼ 10−123!2M4

Pl. Moreover, if we have b3=4γ1=4 ≈ 8, then
we have Λ ≈ 10−123M4

Pl, which is the observed value of the
density of dark energy that is driving cosmic acceleration
when interpreted as a cosmological constant. The observed
value is obtained from Λobs ¼ 3H2

0ΩΛ=ð8πGÞ with H0 ≈
70 km=s=Mpc and ΩΛ ≈ 0.7 [14].
Saturating the above bound to give Λ ≈ Λc may be

possible in a refined version of our argument. As mentioned
in the Introduction, an entropic argument is a possibility:
We note that if one considers the de Sitter entropy
SdS ¼ AH=ð4GÞ, where AH ¼ 4π=H2

Λ is the horizon
area [15], then SdS ¼ 3M4

Pl=ð8ΛÞ. Since the number of
microstates is ΩdS ∼ expðSdSÞ, then there is an exponential
favorability of asymptotically small Λ [10]; plausibly
saturating the bound.

IV. DISCUSSION

In this paper, we have introduced some hypothesized
rules that quantum gravity may impose on charged black
holes in de Sitter space.2 This led to a relation between the
cosmological constant and the electron’s mass and charge.
Important future work requires embedding the above
principles into a microscopic framework, and checking if
indeed the combination of b3=4γ1=4 ¼ Oð10Þ emerges.

2Some other interesting works considering charged black holes
in de Sitter space include Refs. [16–20].
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One way to falsify the proposal would be if there are dark
sectors (perhaps related to dark matter) charged under some
dark Uð1ÞD. By the same principles proposed here, one
should be able to detect the black holes of this new type of
discrete charge too. If the lightest charged particles mD in
such a sector have masses significantly larger than the
(visible) electron mass, then the strictest bound would arise
from that sector. We should use Eq. (7) with me → mD and
α → αD. For sufficiently largemD (or sufficiently small αD)
the value of Λc would be larger than the observed value of
dark energy and the proposal would be falsified. Such dark
sectors could in principle be detected experimentally due to
smallmixingswith the standardmodel or potentially through
novel astrophysical properties if related to dark matter.

As another possibility, if we were to observe that dark
energy is relaxing over time to significantly smaller values
(such as in models of quintessence [21]), then again the
proposal would be falsified.
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