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ABSTRACT: The chemistry of conjugated polymers and ladder polymers e P *

endows them with anisotropic bending stiffnesses in their backbones, giving '-‘ vffc

rise to “ribbon-like” structures that the existing statistical polymer models &

do not fully capture. Here, we analyze a generalization to the worm-like N,

chain (WLC) model, called the ribbon-like chain (RLC) model, which 4s/4: %

permits such conformational anisotropy and highlights the importance of Sﬁ’f"f‘ﬂztss “\

backbone twisting stiffness. The free-chain Green function is solved, and o P ————

the basic chain conformational properties are evaluated. The effects of 3d ICE

anisotropic bending stiffness on the tangent and normal correlations, the wLe IR

radius of gyration, and the instantaneous chain shape are clearly revealed. 1 BRRRR T T

Finally, parametrization, extension, and applications in the study of 01 v -
1 2 N

conjugated polymers are discussed.

1. INTRODUCTION

The worm-like chain (WLC) model of Kratky and Porod,
representing the polymer chain as an inextensible string with a
finite bending stiffness, has been widely used to capture the
short-scale stiffness of real chains." The bending stiffness
determines the persistence length and, in conjunction with the
contour length, fully specifies the conformational properties of
a single chain. Extensions to the WLC have been developed to
capture twisting” and finite extensibility” of the backbone, and
the helical worm-like chain (HWLC) model® developed by
Yamakawa and co-workers has successfully captured the finer
local conformational variations of DNA and many synthetic
polymers. These models incorporate chemical details such as
backbones with rotatable bonds and sp*-hybridized carbon
atoms to improve upon WLC predictions for polymers with
these features.

In this work, we adopt the framework of the HWLC model
and examine the conformational properties of ribbon-like
chains (RLC). The RLC model is ideal for studying the
conformations of conjugated polymers (CPs) and ladder
polymers, which exhibit anisotropic bending stiffness and
variable degrees of twisting stiffness. These features cannot be
adequately captured by the standard family of WLC models.
To demonstrate this, we consider polythiophene (Figure 1).
Each monomer is assigned a triad of unit vectors (t;, t,, and
t;). The variation of chain conformation is decomposed into a
combination of rotations about the triad: turning via rotation
about the normal t;, undulation via rotation about the
binormal t,, and twisting via rotation about the tangent t;.
Apparently, for CPs, the “undulating” mode is the typical
bending, the in-plane “turning” mode is severely restricted, and
the “twisting” mode is essential for out-of-plane deformation.
For ladder polymers, the turning and twisting modes are
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bending anisotropy

suppressed, and the conformation statistics reduce to that for
2D WLC. The standard WLC model has isotropic bending
stiffness. Therefore, the twisting mode is inconsequential and
not needed. “Developable ribbons” are objects which can
easily undulate and twist but not turn. As such, polymers
exhibiting these tendencies have been described as “ribbon-
like”.%”

The statistics of ribbon-like polymers have been considered
in the past. Khokhlov and co-workers investigated the scaling
behavior of polymers that bend freely in one plane yet are
extremely rigid in the perpendicular direction,® and studied the
transition between uniaxial and biaxial nematic phases in such
polymers.” Golestanian, Liverpool, and Kremer adapted the
“railway-track” model,’® which couples two WLCs with
harmonic bonds, to study polymer ribbons via mean-field
theory, perturbation theory, and Monte Carlo (MC)
simulation."' ™" These studies have discussed the existence
of kinks and twists in isolation, under confinement, or under
compression. Arinstein developed a lattice model for ribbon-
like polymers,"* which emphasized that, for noninteracting
chains, anisotropies of polymer chains manifest more strongly
in local conformational properties than macroscopic ordering.

Among these models, the HWLC model has incorporated
most small-scale molecular feature and has been extensively
treated.” It has isotropic bending moduli with a residual
curvature and a twisting modulus. By introducing anisotropy
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(a) (b)

Ribbon-Like Chain

Figure 1. Schematic of ribbon-like chain. (a) Ball-and-stick model of a polythiophene oligomer (carbon in gray, sulfur in yellow, hydrogen not
shown) with superimposed RLC tangent vectors (t, in red, t, in green, t; in blue) and a corresponding ribbon cartoon. (b) Three twisting modes
available to the RLC: (left) “turning” via rotation about t;, (middle) “undulating” via rotation about t,, and (right) “twisting” via rotation about t.
(c) Euler angles Q = {¢, 6, y} defined in reference to the laboratory frame.

into the bending moduli and discarding the residual curvature,
the model can be adapted for studying the conformation
properties of the RLC. The Hamiltonian for the RLC is the
same as that in the quantum mechanical treatment of the
asymmetric rigid rotor, first developed for the spectroscopic
analysis of polyatomic molecules.”” The trajectories of such
rotors correspond to the conformations of the RLCs (Figure
1). Studies of ribbon-like polymer rings'® and twist-bend
coupling in helical molecules'’~"” have applied this idea, but
rely on approximations or perturbative analyses to develop
conformational statistics.

Here, we present analytical results for the conformational
properties of the RLC model. Akin to developments of the
WLC, twistable WLC, and HWLC, in Section 2, we determine
RLC statistics by casting the problem as a diffusion equation
satisfied by the free-particle Green function. Following
Yamakwa,* the coefficients are evaluated for the series
expansion of the Green function, which determines RLC
conformational properties. In Section 3, we present the results
on the tangent—tangent and normal—normal correlations,
(R*), and (Rgz) for the RLC, and we discuss the influence of
anisotropic bending on these properties. We further character-
ize the shape of RLCs by analyzing the statistics of aligned
chains. In the concluding section, we discuss how the RLC
model can be tested, applied, and extended.

2. RLC MODEL

We model the RLC as a continuous ribbon of fixed contour
(centerline) length L. The position along the contour is
denoted as s, with 0 <'s < L. Each segment s is assigned a triad
of mutually orthogonal backbone vectors, {t;, t,, and t;}
(Figure 1), with t; being the backbone tangent and t; and t,
being the normal and binormal directions. The vectors t; and
t, refer to the orientation of the ribbon, which should not be
confused with the normal or binormal vectors of the centerline.
It has been pointed out that the normal or bionormal vectors
of the centerline may rotate discontinuously, while t; or t,
remains smooth.”° In general, the segmental orientation varies
along the chain contour, and the vectors t; (i = 1, 2, 3) are
functions of s. To track conformational variation along the
backbone, it is convenient to introduce the angular velocities
w(s) that quantify the rates of rotating the triad about t;*

8360

ﬁ=a)t — wst

ds 283 342

dt,

z=a)3t1—a)1t3

&=a)t - w,t

ds 142 24 (1)

Note that the rates dt;/ds are expanded in terms of the vectors
orthogonal to t;, which is required by the normalization
condition t; - t; = 1. Because the contour parameter s has the
unit of length, the dimension of velocities ®; is the inverse of
length. Only three independent angular velocities w; are
needed, which results from the mutual orthogonality of the
triad. The chain conformation is fixed once w;,(s) are known.

Correspondingly, the free energy density along the contour,
which measures the costs of bending and twisting, is given at
the quadratic order by

BU(s) = l(Alwl2 + A5 + Aw;)

2 (2)
Here, f = 1/(ksT), kg is the Boltzmann constant, and T is the
temperature. The coeflicients A; are the elastic moduli for the
three rotational modes and, in our convention, have the
dimension of length analogous to the persistence length in the
WLC model. The model reduces to the standard WLC model
by setting A; = A, and A; = 0. It is useful to relate eq 2 to the
kinetic energy of an asymmetric rigid rotor with principal axes
t; and momenta of inertia A;"}, and relate the chain contour to
the trajectory of the rigid rotor.” Our model is intimately
related to the HWLC model considered by Yamakawa.* The
main difference is that we let the bending moduli be
anisotropic and do not consider the effects of intrinsic
curvature. However, it should be stressed that the analytical
steps presented below are essentially adapted from the
treatment of the HWLC model.*

2.1. Green Function of the RLC. The orientation of a
“ribbon” segment, {t;, t,, t;}, can be parametrized using the
Euler angles Q = {¢, 6, w} defined in reference to the
laboratory frame. In this work, we adopt the ZYZ convention®'
for the Euler angle. As shown in Figure lc, the azimuthal angle
¢ and polar angle 6 fix the orientation of t;, around which the
twisting angle y is identified, which subsequently fixes the
orientations of t; and t,. In Section S.1 in the Supporting
Information (SI), the explicit expressions for the Cartesian
coeflicients of t; are given in terms of Q and, similarly, the
angular velocities ; are expressed in terms of € as well as Q=
{@, 6, }, where the dot indicates the derivative with respect to
s. Therefore, the chain conformations can be parametrized by
specifying the variation of the Euler angles along the contour,
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i.e, Q(s). For the WLC model, the angles ¢)(s) and 6(s) are
sufficient, whereas for the RLC model, the twisting angle y(s)
is also needed.

As far as conformation statistics is concerned, of particular
importance is the orientation Green function, G(R, QIQ; L),
which measures the probability that the end segment L is
positioned at R and oriented at €, given that the starting
segment is positioned at the origin and oriented at €. This
Green function is the sum of the statistical weights of all
legitimate chain conformations and can be expressed via a path
integral formulation as*

QL)=Q
GR, QIQ; L) = fg - DIQ(s)]

0

5(R—[)L dst3)exp(—ﬂ [)L dsU(s)]
(3)

Here, D[Q(s)] is a functional integral over the chain
conformations or paths whose starting and end orientations
are fixed at €, and Q. For each such path, the end-to-end
separation is calculated from f § dst,, which is constrained to
the prescribed vector R by the J-function. The final
exponential is the Boltzmann factor that weights the path by
the free energy cost of deformation (eq 2). It is understood
that this definition for the Green function will be normalized
after an explicit expansion is developed.

Strictly speaking, the results presented in this work do not
require end-to-end separation to be constrained. However,
introducing the constraint R allows the more general cases to
be studied and facilitates the calculation of the higher-order
moments of the end-to-end vector.* So we present the generic
derivation here and specialize to the case of arbitrary R after
the governing equation for the Green function is obtained. To
proceed, we eliminate the S-function by taking the Fourier
transform of eq 3, i.e,, applying /dR e_ik'lf to both sides of eq
3, which gives a characteristic function G depending on the
wavevector Kk,

Q(L)=Q

Gk, QIQy; L) = /
Q(0)=9,

L
Q i / s

DL (s)]exp(z | d LJ @
On the left-hand side, the definition G = f dR e *R G(R,
QIQy; L) has been substituted. On the right-hand side, the
integration factor [dR e ™ ® has been moved inside the path
integral, which, when combined with the  function, evaluates
to exp(—i/§ds t;). This contribution has been absorbed into
the effectively Lagrangian £ in the last term, in which the
imaginary unit “i” connotes the path-integral formulation for
the rigid rotor."> The effective Lagrangian £ also contains the
deformation free energy and is given by

L= L(Ala)lz + A5 + Awy) — ket
2 (%)
Although the path integral formulation has a clear physical
interpretation, it is more eflicient to evaluate the Green
function using the “Schrédinger” representation.” To do so, we
first derive the Hamiltonian using the Legendre transform

(Chapter VII, ref 22), H= Z;lga)i—l:, where
oL

i ow,

Substitution of w; = p;/A; gives

= A,w; denotes the generalized angular momenta.

8361

i
-—@* - Allplz - A23P32) + ket

24, (6)

inwhichp*=pl +p3 +p3, A, =1 —Ay/A,and Ay =1 — A,/
Aj;. To find the operator for the angular momenta, we notice
that the angular velocity can be written as dw, = d Q,/ds, where
Q. is the accumulated rotation angle around t;. The angles Q,
should be differentiated from the Euler angles Q. Although
they both specify ribbon orientations, Q = {¢, 6, y} are
defined in reference to the laboratory frame, whereas Q, are
defined locally, in reference to the ribbon axes t;. The relations
between the differentials dQ and d Q; are readily derived from
the expressions for @, as shown in Section S.1. Using these

. d
relations, the angular momenta operators L, = 5 can be

expressed as partial derivatives of the Euler angles (Section
S.1). Then, substituting® p; — — iL; into eq 6 gives the
operator form of the Hamiltonian. Note that the operators L;
should not be confused with the contour variable L (see
Chapter 4.1 of ref 23 for the algebraic details of the definition
L, and Chapter 3.2 of ref 24 for the generalized coordinates).

The Green function therefore satisfies the Schrodinger

equation corresponding to the Hamiltonian, eq 6, i(;fi = HG
with L playing the role of “time”. Substituting the operator
form of eq 6, nondimensionalizing L as N = L/ (24,) and k as

2A)k, and adopting the convention that G = 0 for L < 0, we
obtain the Schrodinger equation corresponding to eq 4,

(% ~ A+ ik~t3)é(k, QIQ,; L) = (N)S(Q — Q)

(7)
Here, the inhomogeneous term on the right-hand side ensures
that the Green function is properly normalized, and the kinetic
energy due to rigid body rotations is given by

A=L - ALLY — A23L§. Our convention for the Euler
angles is such that &(Q Q)

—5(0 — 0)5(h — )5 — ).

sin 6

The similarity of eq 7 with the quantum mechanical
treatment for asymmetric rigid-body rotation' is evident.
The term k - t; is reminiscent of the interaction between a
dipole and an electric field. Taking the inverse Fourier
transform from k to R gives the equation governing the
evolution of G(R,QIQ; N)

(% - A+ t3~VR]G(R, QIQ; N) = 5(N)S(R)S(Q — Q)

(8)
where Vy are the gradient with respect to R. When the end-to-
end separation is not constrained, integrating both sides of the

eq 8 for R over the whole space gives the free-particle diffusion
equation for G(QIQy; N) = G(0, QIQ,; N)

(i - y{)c(smo; N) = 3(N)3(Q — Q)

ON 9)

which is equivalent to eq 7 with k = 0. In the following, we
focus on the orientation correlation as revealed by this form of
the Green function.

Because the Hamiltonian A explicitly depends on all three
Euler angles, it is convenient to solve eq 8 by expanding the
free-chain Green function using the Wigner O functions”" as

the basis set. The Wigner functions Z)Erll)] have three indices that
fall into the ranges: [ € [0, c0), m € [—1, 1], and j € [, [].7*
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The functions Z)Eg have several desirable properties: they
explicitly depend on the Euler angles, form a complete basis
set, and are orthogonal to each other. Moreover, fog are

eigenfunctions of L* and L, and the action of L; and L, only
raises or lowers the index j, as shown in Section S.1. Then, the
free-chain Green function can be formally expanded as

0 1 1 1
GQeN) =2 ¥ X ¥ o

=0 m=-1 j=-1 j/=-I

DDV (%) (10)

Above, only one [ index is needed because the functions Z)S,?

with the same [ form an irreducible representation of three-
dimensional (3D) rotation.”’ The two 9 functions in the
expansion share a common index m because the chain
conformation is invariant with respect to whole chain rotation.
And the asterisk * indicates the complex conjugate. Finally, we
note that, throughout this work, we distinguish the normalized

Wigner function DY and the standard Wigner function DY,

1/2
which are related by ¥ = ch(l), where ¢, = (%) are
normalization coefficient.

The coeflicients g}(}l) (N) in the Green function can be fixed
by substituting eq 10 into eq 9. The right-hand side of eq 9
vanishes for finite N. The properties of the Wigner D
functions ensure that the Hamiltonian A is block-diagonal;
each block is labeled by the value of the index I and has
dimension (21 + 1) X (21 + 1) (Section S.2). For the block !
and when N > 0, eq 9 can be written as

9 G0 = ADgH

oN (11)
The entries of G? are g](jlr), and the entries A](jl) in A? are
evaluated from the overlap integral

! ¥ !

AD = / denV (@ And (@) ()
where / dQ = f 0d0 sin 0 f dep f "dy. The explicit expressions
to the entries of the symmetric array A" are given in Section
S.2. It is useful to note that the operator L; does not perturb
the m indices of the D-function, and only modifies the j
indices. The entries of the array Aj(jl) are nonzero only when
indices j and j* differ by an even number. Since eq 11 is a first-
order ODE with constant coeflicient, it can be solved using the
Laplace transform as detailed in Section S.2. The case of [ = 0
is trivial: g{3(L) = 1. The coefficients for [ = 1 are especially
relevant for our analyses of tangent correlations, so are
tabulated in Table 1.

Table 1. Expansion Coefficients gj(jl/)(L) for the Free Particle
Green Function”

g’ (L) jo=-1 0 1

j=-1 1/2(e7Hh 4 7L 0 1/2(e7Mh — 7L/
0 0 e L/h 0

1 1/2(e7h — e7t/h) 0 1/2(e7% + 7H/h)

“The relaxation rates or persistence lengths are combinations of
stiffness: I, = 2/(A5' + A3Y), L = 2/(A3' + A7), and [, = 2/ (A7 +
AN.

2.2. Conformation-Dependent Averages. Once the
Green function, eq 10, is solved, a range of conformational
averages, including moments of the end-to-end distance and
the radius of gyration, can be readily evaluated.”**** For
instance, because the chain end-to-end vector can be calculated
from R = [{ds t,, the expectation for the squared end-to-end
distance (R?) can be written as

®) =3 %2 s, [ st )

where t;, is the z-component of t;. Here and from now on, we
use (-) to represent the average over all chain conformations.
The factor 3 in eq 13 derives from the application of the
relation (R*) = 3 (RZ). The factor 2 accounts for the
permutation symmetry, since we constrained the range of s,
and s, such that 0 <'s; < s, < L. The expectation (ts,(s,)
t;,(s))) is an average over all valid chain conformations,
regardless of the orientations of, in particular, the end
segments Q, and €;. Using the Markov property of the
Green function, we have

<t3z(52)t3z(51)>

- /dQL /dQZ /dgl /dgotaz(gz)%z(gl)’

G(Q1Q,; L — 5,)G(Q,IQ; s, — 5,)G(Q1Q; s,)
(14)
Because the tangents t;, depend on segmental index s via the
Euler angles Q, we have explicitly written £;,(€2,) and t,(Q,).
Similar conventions are adopted below.

Each of the three Green functions in eq 14 can be expanded
in terms of the Wigner O functions using eq 10. The variation
of indices of the D functions along the chain contour is labeled
in Figure 2. For instance, between segments 0 and s}, the

t3.(21)

Ja J1 Jo

Unconstrained p:

Unconstrained g:
la=my=ja=3jp=0 lo=mo=jo=17o=0
Figure 2. Convention for the indices in Wigner O functions used in
the calculation of (RZ). Indices J; and m; (i = 0, 1, 2) remain constant
for 0 <s <sj, 5, <s<s, ands, < s < L, respectively. Pairs of indices j;
and j; are needed by the coeflicients gj(;.‘,), which is nonzero when lj; —
jil is even. Three such coefficients are needed because two internal
segments s; and s, are included. Tangent components t;, raise or
lower indices ..

Green function G(Q,1Q; s,) is parametrized by indices I, m,,
jo» and jg, and equals the sum of the products,

g}_(ol]f;;)(51)1)3‘;3.0(91)1)22:(90). The other two Green functions,

G(Q, 1Qy; s, — s;) and G(Q, 1Qy; L — s,), are expanded by
using the corresponding indices shown in Figure 2. The
summation can be greatly simplified using the symmetry and
the orthogonality relations of the 9 functions.
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For example, the unconstrained orientations of the two end
segments restrict the range of indices of O functions. The

integral / dQOZ)Si‘g/(QO) is nonzero only for the isotropic D

function, i.e, Il = my = j, = 0 and, consequently, j, = 0. By
analogy, the integral over Q; requires [, = m, = j, = j,’ = 0.
These simplifications reduce eq 14 to

[0, [a2,00(0.)6.(2)6(209; 5, - )62

DR(Q,) (15)

In Section S.3, we demonstrate that the tangent components,
t,(Q,) and t,,(€,), as well as all other components of the
vectors t, can be expanded using the linear combinations of

functions Z)E,lg with [ = 1. Then, the conformation averages are

reduced to the integrals of the products of the Wigner O
functions. The orthogonality relations of D functions allow us
to identify selection rules for the surviving indices, e.g, I}, m,
ju and jj in Figure 2. These details are explained in Section S.4,
which shows specifically that

1

(t.(s2)t5.(s1)) = ggéé)(sz ) (16)
Evaluating higher moments involving, e.g, R requires the
nested expansion of the Green functions and vectors t. The
resulting cumbersome algebra can be greatly simplified by
using the “stone-fence” diagrams,”** which diagrammatically
track the selection rules, i.e., the variation of the indices of the
D functions along the chain contour, that contribute
nontrivially to the conformation averages. The detailed
algebraic steps and explicit examples for constructing stone-
fence diagrams are provided in Section S.5.

3. RESULTS

A variety of conformational properties of RLCs are obtained
after the Green function is solved. The general idea is
discussed in Section 2.2 and is detailed in Sections S.3 and S.4.
We first examine the orientation correlation along the chain
and then provide expressions for the end-to-end distance
squared and radius of gyration. The last two parts focus on the
shape of ribbon-like oligomers. In all cases, the effects of the
bending and twisting moduli are of focus. When relevant, the
effects of molecular weights and crossover to the WLC limit
are discussed.

3.1. Orientation Correlations. The unique feature
regarding chain conformation captured by the RLC model,
compared to the WLC model, is the transverse orientation of
the chain segments. The correlation functions of the normal,
binormal, and tangent vectors, respectively, reveal the effects of
anisotropic bending stiffness. Section S.4 shows that all of the
diagonal (eq S.20) and cross-correlations (eqs S.21 and S.22)
of the three vectors tj, t,, and t; can be expressed using the
entries g}()}) . Although we focus on the RLC model in this work,
it is useful to note that these expressions are not restricted by
the choice of model Hamiltonian. For instance, the same
expressions can be used for analyzing the orientational
correlation of the helical worm-like chains,” or of the model
that incorporates the bending-twist coupling.'®

For the RLC model, by substituting the symmetry of Table
1, we find that the three cross-correlations (t,(L) - t;(0)) (i # j)
all vanish, similar to the WLC model, while the autocorrelation
functions can be written
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(t,(1)4,(0)) = ¢ P(1) - gP(1) (17)
(t,(L)1,(0)) = g (L) + gV (1) (18)
(t5(1)15(0)) = g!V(1) (19)

The last line is seen to be consistent with eq 16 because the
conformation statistics of free chains is isotropic. Further
expansion yields

(L) 4(0)) ="

where the decay rates [; are determined by the bending or

twisting moduli, as defined in the caption of Table 1, which
where j # i, k # i,

(i=1,2,3) (20)

) . 2
may be concisely written as [, = A
and j # k. These expressions are expected based on the
symmetry of the Hamiltonian. The tangent t;, for example, is
decorrelated not by self-rotation or twist, which is governed by
Aj;, but by rotations about t; and t,, which are governed by A,
and A,, respectively. The absence of coupling among w,, ®,,
and @3 in eq 6 ultimately leads to the independent relaxations
of the normal, binormal, and tangent vectors. Eq 20 shows that
locally, the polymer may primarily “undulate” (rotate about t,),
“twist” (rotate about t;), or “turn” in-plane (rotate about t,)
depending on the relative values of A}, A,, and A; (Figure 1).
In particular, the twist mode is effective in decorrelating the
orientations of t; and t,.

Equation 20 generalizes the result of the tangent vector,
(t;(L) - t;(0)) = ™%, for the WLCs, in which I, is the
standard persistence length.* By analogy, we introduced three
persistence lengths [, Setting A; = A, and A; = 0 in eqs 20
recovers the WLC behavior. The normal t; and binormal t,
decorrelate instantly because the twist is not penalized and the
WLC cannot differentiate ¢, and t,. Equation 20 becomes
(t5(L) - t5(0)) = e™" for the tangent correlation, with I; = A,
= A, which reduces to [, in the WLC model. On the other
hand, setting A; = oo and A, — oo gives the rod-like behavior:
the tangent vector does not relax.

The rates of exponential decay in eqs 20 are consistent with
the short time behavior of the Green function. In the “short
time” limit, by setting L — 0, it can be shown that eq 9 in the
domain L > 0 reduces to a diffusion equation with anisotropic
diffusivities

1 9°

G _ifr e o
A, 00,

110 1 o°
oL 2| A 06}

A oy (21)
Because the orientation of the starting point €2 is irrelevant, to
obtain the above limit, we have set 8, = 7/2 for convenience.
This choice decouples the contributions from the twist mode
and the two bending modes. The partials d/060, and d/00, give
the variations due to bending along the t; and t, axes,
respectively, and the partial d/dy gives that due to twist along
the ribbon tangent t;.

The fluctuations of the three angles follow the prediction of
the anisotropic diffusion equation (eq 21) and are expressed
using the “diffusivity” 1/A;:°° ((86,)?) = L/A,, ((66,)*) = L/
A,, and {(6y)*) = L/A,. These fluctuations can be related to
the correlation functions in eq 20. For instance, the variation in
the tangent vector results from bending modes. The
contribution from small 6, gives t;(L) - t;(0) = cos 6, ~1 —
03/2. The contribution from 6, is analogous. Combining the
two contributions gives
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Figure 3. Variation of chain size with molecular weight. (a) (R*(L)) for the RLC and WLC with various stiffness parameters. (b) Effect of twisting
stiffness (A;) on (RI(L)); “difference” is the orange trace subtracted from the blue one.

(t5(1)-£5(0))

1

1,5 1,5
1 - E<91> - E<92>

L[l 1]
1- 23—+ =
204 A, (22)

which agrees with the short-time behavior of eq 20 for i = 3.
Similar asymptotic results can be obtained to match the cases i
= 1, 2. However, it is important to note that eqs 20 is exact for
the full range of L values.

3.2. Chain Size. Below we present results for the end-to-
end distance squared and the radius of gyration, calculated
using the stone-fence diagram. It suffices to consider the
moments the z-component for the end-to-end vector (nonzero
for even n)

L s,
(R;‘)zn!’/0 dsn/0 ds,_,

—/oSZ d51<t3z(5n)t3z(5n—l t3z(51)>

(23)

The average (-) is over all possible chain conformations and
segmental orientations. The factorial ‘n!" accounts for the
multiplicity of “time-ordering”, s, < s, < -+ < s,. The n-point
correlation for ordered segments can be written as products of
2-point correlations using the Markov property of conforma-
tion statistics, which includes G(,1Q; s;), G(£,)Q;; 5, — 5,),
- G(Q.Q,; L — s,). Eq 10 can then be substituted for all of
the two-point correlation functions. Finally, an average is
performed over the orientations of both internal and end
segments. For n =1, (R2) = (Ryz) = (R.*) = (R*)/3 because the
integrals over €, and Q; in eq 23 are isotropic.

Substituting eq 16 into eq 23, while keeping the factor 3,
gives

(R(L)) = Lg,(L/1) (24)

The dependence on contour length is contained in the Debye
function, g (x) = %(x — 1+ ™), which approaches 1 — x/
3 as x — 0, and approaches 2/x as x — 0.

This result is formally identical to that of the WLC. Both

types of chains are rod-like at short chain length. Their
differences are notable in the crossover regime. For the RLC,
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as L increases, chains may decorrelate from their initial
direction by rotating around either t, or t,, which are identical
in the WLC. Therefore, RLCs with A; = A, have (R*) identical
to the WLC. However, RLCs with disparate bending stiffness,
A, > A, (or vice versa), have only one relaxation mode,
effectively doubling I;. Because the stiffer mode is quenched,
the RLC behaves like a 2D WLC in this limit (Figure 3a, solid
black line), exhibiting an extended rod-like regime compared
to the 3D WLC. Eventually, all chains progress to the coil-like
regime, where (R*) ~ L (Figure 3a).

The twisting stiffness A; is absent in eq 24 because the
twisting mode is decoupled from the two bending modes in eq
6. Thus, twisting about t; does not deflect the chain (does not
alter t;), and therefore does not affect (R*(L)). The twisting
stifiness does contribute to higher-order moments of (R"),
through their appearance in coeflicients goo(l) (L) for I > 2, but
the effect is modest. In the case of (R?), the chain stiffness is
most significantly enhanced during the rod-to-coil transition
(up to about 15%, Figure 3b) by increasing the twisting
stiffness. Though the twisting stiffness does not materially alter
the end-to-end moments of the chain, it significantly affects the
segmental orientations. These results are discussed in the next
section.

The squared radius of gyration is calculated as

®w) =5 [ [ a0 - )

(25)
Substituting eq 24 into the above yields
2 o| L
3L, (26)

The result in the WLC limit agrees exactly with (R,*(L)) for
the WLC. As such, its interpretation parallels that of eq 24.
The literature has reported the use of the WLC expression for
estimating the persistence length. Our result suggests that this
persistence length needs to be interpreted with caution, as it
does not contain contributions from the twisting mode and it
depends on the average of two orthogonal bending modes.
3.3. Chain Shape: Molecular Weight Effect. We showed
in the preceding section that twist stiffness A; does not
contribute to (R*) nor (Rgz) in the RLC model. This section
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Figure 4. Expectation values of %, ¥, and z components for the end-to-end vector of a ribbon with fixed initial orientation. Three distinct scaling
regimes of molecular weight dependence are identified for the chosen parameters, A, = A; = 10° and A, = 0.1: (i) deflected ribbon, (i) deflected
2D RW (random walk), and (iii) 3D RW. The representative chain conformations in the first two regimes are schematically shown.

discusses the influence of A; on chain shape by examining the
moments of the end-to-end vector for a chain initially aligned
in the z-direction (Figure 4)

L L
<R§Z> = A dsl A d52<t3i(sz)t3i(sl)>r i€ {xr p2) Z}
(27)

The averages evaluated here differ from the previous section in
that the orientation of one end segment, say, Q, is anchored.
The subscript “z” indicates that the tangent t; of the initial
ribbon is oriented along the z axis. Such a constrained average
allows for direct visualization of the effects of twisting on both
local and long-ranged conformational statistics and is useful for
examining the conformation of chains near the interface
between crystalline and amorphous domains. The procedure
adopted for evaluating eq 27 is analogous to the previous
section, and the stone-fence diagrams contributing to the
average are shown in Figure S.3 (SI).

The variation of the expectations (R},) with the contour
length L is shown in Figure 4, for parameters A, = 0.1 and A, =
Az = 10% This choice gives similar behavior as that considered
by Nyrkova et al.” (The general case will be discussed in the
next section.) Because A; and A; are comparatively large,
rotation about t, is the active relaxation mode at a short L.
Depending on how the contour length compares to the
persistence lengths, I} = I; ~ A,/2 and I, = A > [, three
distinct scaling regimes are observed, which are labeled in
Figure 4 as (i) deflected ribbon, (ii) deflected 2D RW (random
walk), and (iii) 3D RW.

Regime (i): L < I;. The contour length is below the smallest
persistence length, and the ribbon has a prescribed orientation
along the z-axis. Therefore, R,, behaves as that of a rigid rod
with length L, and (RZ_) ~ L*. On the other hand, finite bends
or deflections are possible within the x-z plane, which lead to
nonvanishing contributions to (Riz). For the small deflection
angle 6, (Figure 4), R, (L) = L6,. Thus, the value is (R} (L))
= ((L6,)*) = L*(62). The changing rate of tangent vector, over
an arc of length L due to the deflection by a small angle is 6,/L.
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The corresponding bending energy is Iy (6,/L)* L/2, which
leads to the expectation (§2) = L/I;. Therefore, we expect
(R:,(L)) = L*/1,. The in-plane bend, by an angle 0, (Figure 4),
is much harder and is controlled by the persistence length ,.
Similar analysis leads to (#}) = L/L, and (R} ) = L*/1,. Figure 4
confirms these scalings with respect to the molecular weight.

Regime (ii): I3 < L < I,. Although the in-plane bending mode
and the twist mode are still quenched, the out-of-plane
bending is fully activated. The chain conformations are mostly
confined within the x-z plane, analogous to that of a 2D
random walk. Therefore, the expectation values for (RZ,) and
(R%.) both equal to LI, half that of the end-to-end distance
squared for a 2D random walk (Rj). Although the 2D random
walk is the average conformation adopted by the chain
contour, the out-of-plane deflection caused by a small twist
along the z axis or bending along the x axis is possible. The
average deflection angle is (6*) = 2L/A, = 2L/A,, or (6*) ~L/
l,. The product of contribution from the deflection angle and
the span of 2D random walk gives (sz) ~ (Rﬁ)(ﬂz) = L*L/1,
The characteristic scaling exponents are labeled in Figure 4.

Regime (iii): [, < L. The chain adopts 3D random walk
conformations. The average chain end-to-end distance is given
by 2LlI;, which is split evenly among the three components. We
therefore expect (R} ) = (sz) = (R2,) = 2L1;/3. The exponent
for L-dependence is shown in Figure 4.

The above results are summarized in Table 2, in which the
nonessential numerical prefactors are dropped. It is straightfor-

Table 2. Scaling Regimes for the Components of the End-
to-End Vector Squared, for A, < A; = A;“

L<l L<L<l L <L
(R) L3/, Ll Ll
(R L1, L> L/, Ll
(R2.) L? Ll Ll

“One end of the ribbon is anchored, and another end initially points
along the z axis. Note that [, = I; in this specific case.
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ward to verify that the expressions in different regimes cross
over smoothly at L = I; and L = ,, for all three components.
3.4. Chain Shape: Stiffness Effect. The scaling regimes
and crossovers discussed in the previous section form the basis
to understanding the effects of arbitrary combinations of
stiffness. The RLC model contains three parameters, A, A,,
and A;. Without loss of generality, we choose the smaller
bending modulus as a common reference and denote it, for
concreteness, as A,, which defines the length unit and can be
treated as fixed. Therefore, the RLC is uniquely specified by
two ratios: the anisotropy parameter A,/A, (A;/A, > 1) and
the twist parameter A;/A, (A3/A, > 0). The values of these
ratios are both large for the case discussed in Section 3.3.
More generally, we may map the conformational properties
of the RLCs to the diagram sketched in Figure S, in which the

OO fmmmmmmmmmmsmmmmm oo m oo ®
f H
1 H
' 2d !
[ WLC .
‘ ]
s 1
‘. 0
Az/Ay S, :
twist S :
stiffness Se :
Rt Ay Ay :
3d Yo f A1 A3 - 1
wLC =~ :
7 L T :
0 >
1 Ay /A o0

bending anisotropy

Figure 5. Effects of stiffness on segmental shape. The variation of
segmental shape due to either twisting or the secondary bending is
shown schematically, near the edges of softened twist stiffness or
bending anisotropy.

x-axis measures the degree of anisotropy and the y-axis
measures the twist stiffness. The top-right corner of this
diagram represents the 2D WLC since, with one finite bending
modulus A,, the chain is strictly confined to a plane.

3D WLC statistics are reached in two different limits. The
first is the left edge of the diagram with A; = A,. In this limit, as
far as the tangent orientation is concerned, the conformational
statistics are identical to those for the 3D WLC. The second is
the bottom edge of the diagram, with A; — 0. Because the

twists are not penalized, by the time any bending mode is
activated, the ribbon has been twisted multiple times, having
an effectively isotropic stiffness and a persistence length ;.

Along the right edge, the 2D WLC behavior evolves
smoothly to that of 3D WLC as the A; decreases. For finite A,
values, the expectations (R},) for i = x, y, and z follow the L
dependence summarized in Table 2. The chain conformations
go through regimes i—iii as A; is decreased. Specifically, the
crossover between regimes (i) and (ii) occurs when the twist
mode is activated. The anticipated scaling forms are confirmed
by the ratios (R.)/ (R;,) and (RZ,)/(R:.) plotted in Figure
6ab. The ratio (R}.)/ (Ryzz> plateaus for small L, decays
according to L' for L > I, and then plateaus to unity in the
3D random walk regime for L > I,. The width of the second
regime widens with increasing A;, and the plateau value in the
small L regime reaches a constant A, /A, for a sufficiently large
A;. On the other hand, the ratio (RZ,)/(R%.) decays as L' in
the small L regime, and approaches unity for L > I;.

The behavior along the top edge is entirely analogous. As A,
is reduced, the 2D WLC behavior evolves to that of the 3D
WLC, only now the randomization leading to the 3D random
walk behavior is caused by the bending mode governed by A,.

The L dependence is similar when A, /A, and A;/A, are both
finite and the randomizing modes include contributions from
both twisting and bending. Figure 6¢ illustrates the effects of
varying A, while A; and A, are fixed. The dashed line in Figure
S that separates 2D WLC and 3D WLC behavior is an estimate
given by 1/A; + 1/A; = 1/A,. Furthermore, the shapes of the
chain segment due to the softened twist or bending stiffness
are also sketched in Figure S. It is important to notice that the
condition for 3D random walk behavior is L > 1, instead of the
condition L > I; for the 3D WLC.

4. CONCLUSIONS

The RLC model explored here extends the WLC model to
capture anisotropic bending stiffnesses evident in the CP and
ladder polymer conformations. We calculate the free-chain
Green function, which is a key quantity for investigating RLC
statistics. Predictions of end-to-end moments and chain shape
highlight the influence of bending anisotropy and twisting
stiffness on RLC conformational statistics, laying the
foundation for a more detailed characterization of structure—
function relationships in the design of CPs and ladder
polymers. The RLC tangent—tangent correlation functions
give essentially the same information as that for the WLC

Figure 6. Contour length dependence for ribbon shape. (a) Ratio of the x- and y-components of the end-to-end distance squared for A, = 0.1, A| =
10 and varying A;. (b) Same as (a) but for the ratio of the z- and x-components. (c) Ratio of the x- and y-components of the end-to-end distance

squared for A, = 10% A; = 10, and varying A,.
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model, as long as the persistence length is interpreted as the
harmonic average of the two bending stiffnesses. However, in
contrast to the WLC model, the RLC correlation functions of
the normal and the binormal vectors provide information on
the conjugation length along CP backbones, which connects to
the conductivity. The twisting stiffness plays a crucial role in
determining such correlations. Overall, the conformation
statistics of the RLC is determined by the ratios A;/A,
(bending anisotropy) and A;/A, (twisting stiffness), as
summarized in Figure S and Table 2.

A natural application for RLC is investigating the influence
of polymer chemistry on the bending and twist stiffness. Both
CPs and ladder polymers can be studied, and we choose CPs
as the example to facilitate the discussion, which are often
oligomeric. All-atom molecular dynamics (MD) simulation
provides complete structural information for a classical
approximation of CP films, including the position and
orientation of the polymer backbone. By imposing the axes t;
on each monomer throughout the simulation, the bending
stiffnesses {A;} = {A,, A;, A;} extracted from an optimized fit
of eq 20 sampled in MD. Comparing {A;} between polymers
will show the influence of polymer chemistry on conforma-
tional behavior. For example, the effects of side chains, single-
vs double-stranded backbones, or aromatic vs aliphatic
backbones may be investigated. The effect of film processing
on CP microstructure may be more robustly investigated as
well provided accurate and affordable simulation protocols are
available. These calculations will illuminate structure—function
relationships for engineering CP flexibility while also providing
insight into the applicability of the RLC model.

Comparing the parameters derived from simulation to those
derived from experiments is an important task. Because there
are three distinct bending stiffnesses in the RLC, three distinct
experimental measurements would be required to unambigu-
ously parametrize the chain. One such measurement is small-g
light scattering, where the squared radius of gyration may be
calculated from the form factor, P(q), in the Guinier regime”’

252

8

3

P(q) = exp| —
(28)

By means of eq 25, this measurement would determine /5. Two
other measurements are needed that provide I, and I, or an
appropriate combination of {A;}. For example, Forster
resonance energy transfer (FRET) spectra are dependent on
both the distance and relative orientation of the donor and
acceptor and therefore may give insight into the free-chain
Green function, G(Q | Q; L).

Field-theoretic calculations are a natural complement to
experimental and computational investigations of the RLC film
microstructure. It has been shown that, under the influence of
a nematic director, WLC films may assemble in isotropic or
nematic phases depending on the material parameters.”® Given
that the RLC has anisotropic bending and that 7—7 stacking in
CP films is a directional interaction, it is expected that RLC
films may break uniaxial symmetry under certain conditions,
leading to domains where biaxial ordering is dominant.
Developing a mean-field theory for the RLC incorporating
these interactions represents an important step toward a better
understanding of CP film morphology. Using the stiffness
parameters benchmarked from atomistic simulations, the field
theory may be extended to study specific systems in more
detail, such as the inclusion of surface effects or confinement,
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backbone charge for polyelectrolytes,” length asymmetry in
chains for polymer—polymer or small molecule—polymer
blends,®® and fluctuation corrections when chain conforma-
tions or precise phase boundaries are important.

An intriguing feature neglected in this work is the twist-bend
coupling. In the RLC, we envision twisting about the CP
backbone purely as a rotation about t;. However, in CPs,
intermediate dihedral angles between the cis and trans
configurations also perturb t; relative to the planar
configurations. Thus, the geometry of CPs creates inherent
twist-bend coupling. It remains to be tested whether eq 20
captures the conformation properties of CPs with proper
choices of {A;}. Recent simulations have observed persistent
oscillation in the tangent—tangent correlations.” We will
present ongoing work elsewhere that analyzes such effects by
including the twist-bending coupling into eq 6. Finally, we
stress that the RLC model evolves to the Gaussian-chain
behavior in the long-chain limit. The model is particularly
useful when the functional properties of oligomeric polymers
are sensitive to the conformation features at the intermediate
scale.
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