Neuro-Symbolic Reasoning with Large Language Models and Answer Set
Programming: A Case Study on Logic Puzzles

Adam Ishay!, Zhun Yang', Joohyung Lee'>

! Arizona State University
2Samsung Research

{aishay, zyang90, joolee } @asu.edu

Abstract

Large language models (LLMs), such as GPT-3 and GPT-4,
have demonstrated exceptional performance in various nat-
ural language processing (NLP) tasks and have shown the
ability to solve certain reasoning problems. However, their
reasoning capabilities are limited and relatively shallow, de-
spite the application of various prompting techniques. In con-
trast, formal logic is adept at handling complex reasoning,
but translating natural language descriptions into formal logic
is a challenging task that non-experts struggle with. This
paper proposes a neuro-symbolic method that combines the
strengths of large language models and answer set program-
ming. Specifically, we employ an LLM to transform natural
language descriptions of logic puzzles into answer set pro-
grams. We carefully design prompts for an LLM to convert
natural language descriptions into answer set programs in a
step by step manner. Surprisingly, with just a few in-context
learning examples, GPT-3 and GPT-4 can generate reason-
ably complex answer set programs. The majority of errors
made are relatively simple and can be easily corrected by hu-
mans, thus enabling the LLMs to effectively assist in the cre-
ation of answer set programs.

1 Introduction

Transformer-based large language models (LLMs) have
recently shown remarkable success in many downstream
tasks, demonstrating their general reasoning capability
across diverse problems. However, while LLMs excel in
generating System 1 thinking, they struggle with System 2
thinking, resulting in output that is often inconsistent and
incoherent (Nye et al. 2021). This is because LLMs are ba-
sically trained to predict subsequent words in a sequence and
do not appear to have a deep understanding of concepts such
as cause and effect, logic, and probability, which are essen-
tial for reasoning.

To address the issue, Nye et al. (2021) propose a dual-
system model that combines the strengths of LLMs and sym-
bolic logic to achieve improved performance on reasoning
tasks. They leverage an LLM to generate a System 1 pro-
posal and employ symbolic computation to filter these pro-
posals for consistency and soundness.

We are interested in situations where problems are de-
scribed in natural language and solving them requires deep
reasoning. A system needs to take into account linguistic
variability and be able to perform symbolic reasoning. We

take logic puzzles as the testbed as they are well-suited for
this purpose.

We first note that GPT-3 (Brown et al. 2020) and GPT-
4! by themselves struggle with solving logic puzzles, de-
spite various prompts we tried. On the other hand, we find
that they can convert the natural language descriptions of the
puzzles into answer set programs (Lifschitz 2008; Brewka,
Niemeld, and Truszczynski 2011) surprisingly well. This is
in part thanks to the declarative semantics of answer set pro-
grams. Even the errors these LLMs make are mostly simple
for humans to correct. We hope that our finding will ease the
efforts of writing answer set programs and expand the appli-
cation of answer set programming to a broader audience.

The remainder of this paper is organized as follows. Sec-
tion 2 offers a brief overview of related work on automated
solving of logic puzzles. Sections 3 and 4 delve into the pro-
posed approach in detail. Section 5 presents experimental
results and a performance evaluation of the approach. Sec-
tion 6 shows more examples demonstrating the generaliz-
ability of our method.

The code is available at https://github.com/azreasoners/
gpt-asp-rules.

2 Preliminaries
2.1 Large Language Models (LLMs)

LLMs have significantly improved natural language pro-
cessing, achieving strong performance on a variety of tasks
using few-shot learning (Brown et al. 2020). However,
LLMs remain weak at tasks that involve complex reason-
ing (Creswell, Shanahan, and Higgins 2022; Valmeekam
et al. 2022), and scaling model size alone is not enough
to achieve good performance (Rae et al. 2021). It has
been shown that various prompting methods improve accu-
racy on reasoning tasks (Wei et al. 2022; Zhou et al. 2022;
Creswell, Shanahan, and Higgins 2022). Nye et al. (2021)
present a dual-system model which uses an LLM as a se-
mantic parser and couples it with a custom symbolic mod-
ule to achieve performance gains on reasoning tasks. This
framework combines the strengths of LLMs for parsing
complex natural language and symbolic logic for handling

'Throughout the paper, we use GPT-3 to refer to the “text-
davinci-003” model and GPT-4 to refer to the “gpt-4” model in
the OpenAl APL

https://github.com/azreasoners/gpt-asp-rules
https://github.com/azreasoners/gpt-asp-rules

complex reasoning. However, the authors had to use hand-
engineered set of constraints for the latter part. To our
knowledge, our work is the first to use LLMs to generate
constraint rules to solve complex reasoning tasks.

2.2 Automated Logic Puzzle Solving

Works focused on solving logic puzzles typically involve a
mapping from natural language to logic formalism. This
process often includes problem simplification techniques,
such as tailoring the puzzle to a specific domain, restrict-
ing natural language input to a certain form, or assuming
additional inputs like enumerated types. Lev et al. (2004)
employ a specialized automated multi-stage parsing process
to convert natural language text into an intermediate form
called Semantic Logic, which is then converted into First
Order Logic to finally evaluate on law school admissions
tests (LSAT) and the Graduate Records Examination (GRE).
Shapiro (2011) manually encodes the “Jobs Puzzle” in a
few different logical formalisms and compare them. Puz-
zler (Milicevic, Near, and Singh 2012) uses a general link
parser to translate puzzles into to the Alloy language for
solving, primarily through an automated process, albeit with
assumed types. LogicSolver (Nordstrom 2017) follows a
similar approach to Puzzler but replaces Alloy with a cus-
tom solver and conducts a more comprehensive evaluation.

Several works utilize translations into the language of
answer set programming (ASP) (Lifschitz 2008; Brewka,
Niemeld, and Truszczynski 2011). Schwitter (2013) ad-
dresses the “Jobs Puzzle” by representing the problem using
controlled natural language (Schwitter 2010), which can be
further turned into ASP. Baral and Dzifcak (2012) employ a
A-calculus-based approach and trains a model that converts
a manually simplified version of natural language clues into
ASP rules for solving Zebra puzzle-type logic puzzles. Mi-
tra and Baral (2015) train a maximum entropy-based model
to extract relations for each clue, which are then converted
into a common ASP rule format, where a stable model corre-
sponds to the puzzle solution. LGPSolver (Jabrayilzade and
Tekir 2020) uses DistilBERT, a transformer-based model, as
a classifier that can distinguish between representative rule
types. With the clue classification, the authors use a hand-
crafted clue to Prolog translation (as opposed to ASP) and
compute the solution. The works mentioned involve some
combination of manual processing and/or brittle problem-
specific translations. Our work distinguishes itself by be-
ing both fully automated and featuring a general pipeline,
leveraging the extensive translation capacity available from
LLMs.

2.3 Generate-Define-Test with ASP

ASP programs typically follow the Generate-Define-Test
structure, which generates potential solutions (Generate)
and eliminates invalid ones based on certain constraints
(Test). The Generate portion usually includes choice rules,
while the Test portion consists of a set of constraints that
prune out invalid solutions. An additional part of the pro-
gram, the Define portion, includes necessary auxiliary pred-
icates that are used in the 7est portion.

3 Method

Story q: N\
Let us assume that there are five houses
of different colors next to each other on [
the same road... The Englishman lives
in the red house... Who keeps fish? J

¥

Constant Extraction

¥

> Rule Generation

% Generate:
{match(ldx, Col, Cig, Nation, Dr,
Pet): ...}=1 :- house_index(ldx)]

Constants c:)
house_index: 1, 2, 3, 4, 5 H
color: "red", "yellow", "green", ... S i

cigarette: "Blue Master”, "Blend", ... | | [C0l="red" - match(ldx, Col, Cig,

Nation, Dr, Pet),
3) Nation="Englishman".

Predicate Generation
v
Predicates p: |
match(ldx, Col, Cig, Nation, Dr, Pet)

Figure 1: Flow of Generating Answer Set Programs from Logic
Puzzle in English

% Define and Test:

In order to find a solution to a logic puzzle, we utilize
GPT-3 to convert the puzzle into an answer set program
so that the stable model (a.k.a answer set) encodes the so-
lution.> Although GPT-3 exhibits strong capabilities, we
discovered that it cannot generate a correct answer set pro-
gram without being guided by carefully engineered prompts.
These prompts instructs GPT-3 to reliably extract constants
and generate accurate predicates and rules. In this paper, we
detail our prompt engineering efforts.

Figure 1 illustrates the structure of our pipeline, which uti-
lizes GPT-3 step by step to generate an ASP program. Sim-
ilar to how a human would approach the task, our pipeline
first extracts the relevant objects and their categories. Then,
it generates a predicate that describes the relations among
the objects from different categories. Using the generated
information, the pipeline further constructs an ASP program
in the style of Generate-Define-Test.

Let . and F,, denote the Constant Extraction and Predi-
cate Generation steps in Figure 1. Let F,.; and F,.5 represent
the two parts of the Rule Generation step, i.e., the Generate
part and the Define&Test part, respectively. Our pipeline can
be modeled by the following equations that map a puzzle
story ¢ to an ASP program II = Il cpnerate U Ilge fine test-

c=Fe(q) p=Fp(q;¢)
ngnerate :Frl(cap) Hdefine,test :fr2(q; Cvp)-

Here, ¢ and p denote extracted objects and generated pred-
icates. Each step F, is realized by GPT-3 with 2-shot
prompting, i.e., only 2 examples in each prompt.

3.1 Constant Extraction

The first step in the pipeline is to extract constants or entities
from the given story along with their corresponding cate-
gories. To accomplish this, we invoke GPT-3 using Prompt
C, which consists of three parts: instruction, examples, and
a query.

Prompt C:

>Though this section mostly mentions GPT-3, GPT-4 can be
used instead.

Given a problem extract all different constants and
their categories in the form "category:
constant_1; constant_2; ...; constant_n". Here,
the format of each constant is turned into
either an integer or a string surrounded by
double quotes, e.g., "some name".

Problem 1:

Consider N-Queens Puzzle on a chessboard of size 8x8.
The goal is to assign 8 queens on the
chessboard so that no two queens can share the
same row, column, or diagonal.

Constants:
index_of_row: 1; 2; 3; 4; 5; 6; 7; 8.
index_of column: 1; 2; 3; 4; 5; 6; 7; 8.

r ’ ’ ’ ’

r

Problem 2:
"Against the Grain" offers hand-made wooden furniture
at reasonable prices. Each item is made by an
in-house employee. Using only the clues that
follow, match each item to the employee who
crafted it, and determine its price and the type
of wood used to make it. Remember, as with all
grid-based logic puzzles, no option in any
category will ever be used more than once.
1. Bonita’s piece costs $325.
2. The item made of poplar costs more than Yvette's
piece.
3. Tabitha's item costs 50 dollars less than the
piece made of sandalwood.
4. The $275 item is either the piece made of ash or
Yvette's item.

Constants:

employee: "Bonita"; "Yvette"; "Tabitha".
price: 225; 275; 325.

wood_type: "ash"; "poplar"; "sandalwood".

Problem 3:
<story>

Constants:

Line 1 provides a general instruction for the task of ex-
tracting objects and directing GPT-3 to generate them in the
form of “category: constant;; ...; constant,”. Then, two
examples follow: Lines 6-8 for Problem 1 specified in Lines
3-4, and Lines 17-20 for Problem 2 specified in Lines 10-15.
By replacing Line 23 ((story)) with a new example story and
invoking GPT-3 with the above prompt, a new list of cate-
gories and constants for that story is generated, as with the
previous two examples.

The above two examples are chosen to cover two cases of
object extraction. For the N-Queens problem, the constants
1,...,8 are not described in the Problem 1 statement (Line
4) but can be inferred. For the second puzzle, however, all
constants in Lines 18-20 are mentioned in the example story
provided in Lines 11-15.

The second puzzle is also intentionally selected to give an
example for GPT-3 so that certain constants (e.g., $225) can
be turned into valid integers (e.g., 225) so that arithmetic

PSR N SR ¥

can be applied correctly later when generating rules later on,
while others should be surrounded by double quotes. We ex-
perimented with various prompts to instruct GPT-3 to gener-
ate all non-numeric constants in lowercase and replace spe-
cial characters with underscores. However, GPT-3 was un-
able to strictly adhere to these instructions and consequently
made more errors.

3.2 Predicate Generation

The next step in the pipeline is to generate predicates p that
describe the relations among the extracted constants. We use
GPT-3 on the Prompt P below.

Prompt P:

Given a problem and some categorized constants of the

form "category: constant_1; constant_2; ...;
constant_n", generate the minimum number of
predicates to define the relations among the
categories of constants. Each generated
predicate is of the form "predicate (X1, X2, ...,
Xn)" where X1, X2, ..., Xn are different
variables and each variable X belongs to one of
the categories. For each category, there must
exist at least one variable of some predicate
that belongs to this category.

Problem 1:
(Lines 4-8 from Prompt C: Omitted)

Predicates:

% The categories in Constants include index_ of row
and index of column. We use different variables
Ir and Ic to represent index of row and
index of column.

% We assign a queen at row Ir and column Ic, where Ir
belongs to index of row and Ic belongs to
index of column.

assign(Ir, Ic)

Problem 2:

(Lines 11-20 from Prompt C: Omitted)

Predicates:

% The categories in Constants include employee, price
, and wood_type. We use different variables E, P
, and W to represent employee, price, and
wood_type.

% We match an employee E with price P and wood type W
, where E belongs to employee, P belongs to
price, and W belongs to wood_type.

match(E, P, W)

Problem 3:
<story>

Constants:
<constants>

Predicates:

Line 1 is a general instruction describing the task of pred-
icate generation, and that the generated predicates should

© ® 9 o L R W R

20

21
22

follow the form of “predicate(Xy, ..., X,)” where each X;
is a distinct variable that represents a category of constants.

Again, the two examples follow. Lines 3—4 are a copy
of the first example in Lines 3-8 of Prompt C (where we
omit Lines 4-8 from Prompt C to reduce the space). Lines
6-9 continue the first example, where it now generates the
predicates with variables as arguments following the instruc-
tion. It also contains two comments (starting with symbol
%). The first comment in Line 7 recalls the categories of
constants and assigns a different variable to each category.
The second comment in Line 8 gives the English reading of
the predicate and variables, and emphasizes the link between
each variable and a category of constants. Similarly, Lines
11-17 present the second example.

Next, the story and constants are given for the third prob-
lem and GPT-3 is prompted to generate the predicate for that
example, given the general instruction and the preceding two
examples.

Given the extracted constants ¢ and generated predicates
p, the next step in the pipeline is to generate ASP rules II,
consisting of the Generate part and the Define & Test part.

3.3 Rule Generation: Generate

The Generate part of an ASP program defines all possi-
ble mappings of constants from different categories. This
is done by choice rules. In this step, an ASP program
Igenerate is obtained by calling GPT-3 with Prompt R1.

Prompt R1:

Given some categorized constants in the form "
category: constant_1; constant_2; ...;
constant_n" and some predicates about the
relation among different categories of constants
, write ASP (Answer Set Programming) rules to
generate the search space of possible relations.

Constants:

employee: "Bonita"; "Yvette"; "Tabitha".
price: 225; 275; 325.

wood_type: "ash"; "poplar"; "sandalwood".

Predicates:

% The categories include employee, price, and
wood_type. We use different variables E, P, and
W to represent employee, price, and wood_type.

% We match an employee E with price P and wood type W
, where E belongs to employee, P belongs to
price, and W belongs to wood type.

match(E, P, W)

ASP Rules:

% Define the constants in each category.
employee ("Bonita"; "Yvette"; "Tabitha").
price(225; 275; 325).

wood._type ("ash"; "poplar"; "sandalwood").

% For each employee E, it matches with exactly 1
price P and 1 wood type W.

{match(E, P, W): price(P), wood_typeW)}=1 :—
employee (E) .

Constants:

23
24
25
26
27
28

11

<constants>

Predicates:
<predicates>

ASP rules:

In the above prompt, (constants) and (predicates) are to
be replaced for a new example. GPT-3 generates facts and
choice rules following the last line of the prompt.

The task in this step is to write facts and choice rules based
on the generated constants and predicates. Since this step
doesn’t require the details of the story, we omit the story
from the prompt to avoid unnecessary noisy information be-
ing included in the prompt. Each example only consists of
constants, predicates, and ASP rules to be generated, i.e.,
facts and choice rules.

Similar to the previous prompts, Line 1 is a general in-
struction, Lines 3-20 provide an example, and Lines 22-28
are for the queried example. The example ASP rules in Lines
14-20 contain comments (Lines 14 and 19), which will also
be generated for the queried example and help to gather se-
mantic information before generating a rule.

3.4 Rule Generation: Define and Test

The Define&Test part of an ASP program contains con-
straints that “weed out” the stable models that do not cor-
respond to valid answers. This step takes as input the puzzle
story ¢, constants ¢, and predicates p: semantically, the ASP
rules represent the content in story ¢ while, syntactically, the
ASP rules must be formed by the extracted constants ¢ and
generated predicates p. The ASP program Ilge fine_test 15
obtained by calling GPT-3 with Prompt R2.

Prompt R2:

Consider the constraint in the following form
<Cl>; <C2>; ...; <Cm> :— <L1l>, <L2>, ..., <Lr>.
which says that if the conjunction "<L1> and <L2> and
. and <Ln>" is true, then the disjunction of
comparisons "<C1> or <C2> or ... or <Cm>" must
be true.

One can also add a restriction that "exactly k of <Cl
>, <C2>, ..., <Cm> is true" by using the
following form

{<C1>; <C2>; .; <Cm>}=k :— <Ll>, <L2>, ..., <Ln>.

Given a problem, extract all constraints from the
clues in the problem using only the provided
constants and predicates.

Problem 1:

"Against the Grain" offers hand-made wooden furniture
at reasonable prices. Each item is made by an
in-house employee. Using only the clues that
follow, match each item to the employee who
crafted it, and determine its price and the type

of wood used to make it. Remember, as with all

grid-based logic puzzles, no option in any
category will ever be used more than once.

1. Bonita's piece costs $325.

24

25
26
27
28

29

30
31
3
33
34

35

36
37

38

39
40

41
42
43
44
45
46
47
48
49
50
51
52
53
54

2. The item made of poplar costs more than Yvette's
piece.

3. Tabitha's item costs 50 dollars less than the
piece made of sandalwood.

4. The $275 item is either the piece made of ash or
Yvette's item.

Constants:

employee: "Bonita"; "Yvette"; "Tabitha".
price: 225; 275; 325.

wood_type: "ash"; "poplar"; "sandalwood".

Predicates:

% The categories include employee, price, and
wood_type. We use different variables E, P, and
W to represent employee, price, and wood_type.

% We match an employee E with price P and wood type W
, where E belongs to employee, P belongs to
price, and W belongs to wood type.

match(E, P, W)

Constraints:

% No option in any category will ever be used more
than once.

{E1=E2; P1=P2; W1=W2}=0 :- match(El,P1,Wl), match(E2,
P2,W2), (E1,P1,Wl)!=(E2,P2,W2).

% 1. Bonita's piece costs $325.
P=325 :— match(E,P,W), E="Bonita".

% 2. The item made of poplar costs more than Yvette's
piece.

P1>P2 :— match(El,P1,Wl), match(E2,P2,W2), Wl="poplar
", E2="Yvette".

% 3. Tabitha's item costs 50 dollars less than the
piece made of sandalwood.

P1=P2-50 :- match(El,P1,Wl), match(E2,P2,W2), El="
Tabitha", W2="sandalwood".

% 4. The $275 item is either the piece made of ash or

Yvette' s item.
{W="ash"; E="Yvette"}=1 :- match(E,P,W), P=275.
(Problem 2 omitted)

Problem 3:
<story>

Constants:
<constants>

Predicates:
<predicates>

Constraints:

says that “C or ... or C,, is true if L; and ... and L,, are
true.” Here, each L; is a literal and each C; is a comparison
in the input language of CLINGO, e.g., A > B, A = B+ 3,
etc. The second rule form

{Cl;CQ;...;Cm}:k — Ll,LQ,...,Ln

additionally restricts that “exactly k of {CY, ..., C,,} must
be true.” In principle, the first rule form is enough to rep-
resent various constraints. However, since the second rule
form is syntactically closer to certain complex sentences re-
lated to cardinality, e.g., “either ... or ...”, “neither ... nor ...”,
or “no ... is ...”, etc, we found that GPT-3 works much better

when we also include the second rule form.

4 Optional Enhancements to the Pipeline

Section 3 presented a general pipeline that automatically
writes an ASP program for a puzzle in natural language us-
ing LLM. In this section, we explain two optional enhance-
ments to the pipeline that strengthen its robustness when
dealing with arbitrary sentences.

4.1 Constant Formatting

In the Constant Extraction step (Section 3.1), GPT-3 may
extract the names of the objects as they appear in the puz-
zle story, such as $225, Sue Simpson, and 8:30 AM,
which do not conform to the syntax of the input language of
answer set solver CLINGO. Also, GPT-3 applies arithmetic
computations (e.g., L1=L2+3) to constants surrounded by
double quotes (e.g., L2 is constant "9 inches") instead
of constants that are integers (e.g., L2 is constant 9).

A rule-based post-processing could be applied to turn
them into the right syntax, but alternatively, we employ
GPT-3 to generate syntactically correct forms. We found
that this method requires significantly less efforts and is
more general because GPT-3 applies the constant formatting
correctly even for unforeseen formats using some “common
sense,” which is lacking in the rule-based approach. We use
the following prompt for this.

The Constant Formatting step is done by calling GPT-3
with the following prompt, where (constants) at the end of
the prompt is replaced by the original (extracted) constants ¢
obtained by the Constant Extraction step (Section 3.1). The
GPT-3 response in this step is the updated constants ¢, serv-
ing as an input to other steps in the pipeline.

In the above prompt, (story) is a new puzzle, and
(constants), (predicates) are generated by GPT-3 for that
story using Prompt C and Prompt P in Section 3.1 and 3.2.

Lines 1-8 are a general instruction describing the task of
Ige fine_test generation and provides two rule forms for the
target ASP rules. The first rule form

01;02;...;Cm — Ll,L27...,Ln

Given categorized constants of the form "category:
constant_1; constant_2; ...; constant_n", format
the category and constants such that:

each category consists of only lowercase letters and
underscores, and

each constant is either an integer or a string
surrounded by double quotes, e.g., "United
States".

There are two ways below to format constants and we
must use the same way for all constants of the
same category.

1. Turn all constants of the same category into
integers with no space or special character.

2. Add double quotes around all constants of the same

category.

Note that the 1st way has a higher priority, meaning
that we must turn all constants of the same
category into integers whenever possible. For
example, twice or second can be turned into 2,
September can be turned into 9, September 5th
can be turned into 5 if all dates are in
September, but 9:30am can only be turned into
"9:30am" since no integer can represent 9:30am.

Original constants:

Employees: Bonita; Yvette; Tabitha.
Prices: $225; $275; $325.

Wood types: ash; poplar; sandalwood.

Formatted constants:

employee: "Bonita"; "Yvette"; "Tabitha".
price: 225; 275; 325.
wood_type: "ash"; "poplar"; "sandalwood".
Original constants:

months: January; April; October; December.
times: 8:30AM; 10:30AM; 2:30PM; 3:30PM.
durations: 1 day; 3 days; 11 days; 12 days.

Formatted constants:

month: 1; 4; 10; 12.

time: "8:30AM"; "10:30pPM"; "2:30PM"; "3:30PM".
duration: 1; 3; 11; 12.

Original constants:
(constants)

Formatted constants:

4.2 Sentence Paraphrasing

Sometimes sentences may need to be paraphrased before an
LLM can correctly generate rules from them. The Sentence
Paraphrasing step provides the opportunity to not only sim-
plify or formalize the sentences from the original question
but also add the hidden information assumed to underlie the
question. For example, the following sentence

Of the person who won the prize in biocengineering and
Sue Simpson, one won in 1976 and the other won
in 1968.

is one clue in the example question in Section 3. The cor-
rect translation requires an LLM to turn the above sentence
into at least 3 ASP rules, which would be hard for the cur-
rent LLMs (e.g., GPT-3). Instead, we can ask GPT-3 to first
paraphrase such kind of sentence into simpler ones below.

The person who won the prize in bioengineering and
Sue Simpson are different.
The person who won the prize in bioengineering won in
1976 or won in 1968.
Sue Simpson won in 1976 or won in 1968.

The Sentence Paraphrasing step is done by calling GPT-
3 with the following prompt, where (sentences) at the end
of the prompt is replaced by the numbered sentences in the

IS - T S

21
22

23

24
25

26

27
28
29
30

queried puzzle story ¢, and the GPT-3 response in text is
used to replace the original sentences in q. This prompt is
dedicated to the logic puzzles from Puzzle Baron and only
paraphrases one kind of sentence in the form “of A and B,
one is C and the other is D.”

Copy a sequence of numbered sentences.

If a sentence is of the form "N. Of A and B, one is C
and the other is D", replace it with 3
sentences below.

N.1l A and B are different.

N.2 A is C or D.

N.3 B is C or D.

For every sentence, if it is not of the form "N. Of
... and ...", simply copy it without replacement
. An easy way to determine if a sentence is not
of the above form is to check if its first word
is not of.

In the following example, one sentence is of the
above form.

Given:

1. The squad from Grenada ended with 2 silver medals.

2. Of the team from Oman and the team that won 10
silver medals, one finished with 2 gold medals
and the other finished with 1 gold medal.

Copy:

1. The squad from Grenada ended with 2 silver medals.

2.1 The team from Oman and the team that won 10
silver medals are different.

2.2 The team from Oman finished with 2 gold medals or

finished with 1 gold medal.

2.3 The team that won 10 silver medals finished with

2 gold medals or finished with 1 gold medal.

In the following example, no sentence is of the above
form.

Given:

1. Tabitha's item costs 50 dollars less than the
piece made of sandalwood.

2. The $275 item is either the piece made of ash or
Yvette's item.

Copy:

1. Tabitha's item costs 50 dollars less than the
piece made of sandalwood.

2. The $275 item is either the piece made of ash or
Yvette's item.

Given:
(sentences)
Copy:

5 Experiments

We tested the above pipeline on the logic puzzles dataset
from (Mitra and Baral 2015). Since the constants are pro-
vided in the dataset as necessary information to solve each
puzzle, we apply Constant Formatting directly on the given
constants to generate constants c.

The dataset consists of 50 training examples and 100 test-
ing examples. When designing our prompts, we only consult

Method train set test set
(Mitra and Baral 2015) - 71%
Zero-shot GPT-3 0% 2%
Few-shot GPT-3 4% 3%
Zero-shot GPT-4 12% 21%
Few-shot GPT-4 6% T%
GPT-3 Generated ASP Rules 86% 81%
GPT-4 Generated ASP Rules 92% 92%

Table 1: Accuracy on 50 train and 100 test puzzles. GPT-3 refers
to the model named“text-davinci-003” in the OpenAl API, while
GPT-4 is the model named “gpt-4.”

Step Count
GPT-3 GPT4
constant formatting 3 1
paraphrasing 2 4
constraint generation (syntax) 3 0
constraint generation (semantics) 13 3

Table 2: Mistakes on 100 test puzzles at different pipeline steps.

the training examples and not the testing examples. Table 1
shows the performance of our approach to zero-shot GPT-
3/GPT-4, few-shot GPT-3/GPT-4, and a fully-supervised
learning system LOGICIA (Mitra and Baral 2015). 3 In
the few-shot setting, we use the first two examples in the
training set as the few-shot examples. GPT-3 with zero-shot
and few-shot settings didn’t perform well, while zero-shot
GPT-4 could solve 21% of the test puzzles correctly, which
is significantly better than GPT-3’s performance. However,
this is much lower than our method’s 81%. Interestingly,
while the few-shot setting slightly improves over the zero-
shot for GPT-3, this is quite different with GPT-4. This
is likely because GPT-4 with the zero-shot setting was in-
structed to solve the puzzles in a step by step manner. How-
ever, for the few-shot setting, the examples only include the
problem and solution, which may have discouraged GPT-4
from working through the puzzles in steps.

Besides the fact that the direct execution of the LLMs re-
sults in low performance, it is hard to understand why they
fail to solve puzzles; in other words, the results are hard to
interpret.

On the other hand, in our method, although the LLMs can
still produce incorrect ASP programs, the errors are much
less and it is easy to identify the failures by examining the
generated ASP programs. Table 2 summarizes the number
of mistakes we encountered on 100 test data at each pipeline
step. Below we provide a representative example for each
type of errors from Table 2 and highlight the mistakes in
red. * The examples are taken from GPT-3, although each

3For GPT-3/GPT-4, to avoid randomness, we use a temperature
of 0 (deterministic) and a top P value of 1 (default setting).

“We have provided a breakdown of the errors we encoun-
tered on Github at https://github.com/azreasoners/gpt-asp-rules/
tree/main/error_analysis.

type also occurs with GPT-4, except for the syntax error.

1

[RV BN I ¥

 Failure to convert certain constants into integers dur-
ing constant formatting. The only mistake happens
when, given constants “points: 181 points; 184 points;
187 points; 190 points”, GPT-3 generated

points: "187

points";

"181 points"; "184 points";
"190 points".

while it should generate constants in integers below to be
able to apply arithmetic operations.

points: 181; 184; 187; 190.

¢ Addition of wrong clues during paraphrasing. One
such error happens when paraphrasing the sentence “2.
The book published in 2011 is either Orlando’s project
or Jan’s project”. GPT-3 generated the following three
sentences.

% 2.1 The book published in 2011 is either Orlando
"s project or Jan’s project.

2.2 Orlando’s project is the book
published in 2011 or the 200 page
project.

2.3 Jan’s project is the book published
in 2011 or the 200 page project.

o\

o°

The first sentence is simply a copy of the original sentence
while the last two should not be there since they cannot be
inferred from the original sentence.

* Syntax error during constraint generation. One typ-
ical syntax error is an incorrect variable name in a gener-
ated rule. For example, given the sentence “The study on
the Liberty starts 2 months after Eunice’s project”, GPT-3
generates the following rule

M=M1+2 :— match(S,M,Sh), match(S1,M1,Shl),
S="Eunice", Sh="Liberty".

while the variable S in the second line should have been
S1.

e Semantic error during constraint generation. One
typical semantic error is caused by a wrong equation. For
example, given the sentence “the $35,000 structure is 15
sq ft smaller than the $29,000 home”, GPT-3 generated

S1=S2+15 := match(Cl1,S1,P1l), match(C2,S2,P2), P1
=35000, P2=29000.

while the equation in the head should have been
S1=S52-15.

While our pipeline doesn’t achieve 100% accuracy on
generated ASP programs, most failed puzzles only have one
mistake and such a mistake is easy to correct. This means
that our pipeline could serve as a good suggestion tool to
prepare draft ASP programs for users. For example, com-
pared to designing all the ASP programs for 50+100 puzzles
manually, it would save a significant amount of time to only
check the correctness of the automatically generated rules
for the programs that don’t have a single stable model.

https://github.com/azreasoners/gpt-asp-rules/tree/main/error_analysis
https://github.com/azreasoners/gpt-asp-rules/tree/main/error_analysis

[N N

6 More Examples

Previous approaches that automate logic puzzle solving ei-
ther only predict constants and relations (Mitra and Baral
2015) or treat rule generation as a classification problem on
a small set of rule templates (Jabrayilzade and Tekir 2020).
In comparison, our method is generative, where rules are
generated in an open-ended manner under the guidance of a
few examples.

While it’s hard to apply the previous methods to other
domains without substantial changes, applying our pipeline
to new domains requires only minor adjustments on the
prompts. To apply our pipeline to other domains, we make a
slight adjustment by turning the last sentence in Line 11 of
Prompt R2 into a numbered clue “0. No option in any cate-
gory will ever be used more than once.”, since it was specific
to grid logic puzzles.

In the following part of this section, we show how our
pipeline can be further applied to generate ASP programs
for Sudoku and the Jobs Puzzle.

6.1 Sudoku
If we describe Sudoku problem with the following story g

The Sudoku problem is a classic computer science
problem that involves filling a 9x9 grid with
digits from 1 to 9.

1. The same number cannot appear twice in the same
TOW.

2. The same number cannot appear twice in the same
column.

3. The same number cannot appear twice in the 3x3 box

(You can use division / to check if 2 cells
are in the same box.)

our pipeline generates the following ASP program II.

% Define the constants in each category.

index_of_row(l; 2; 3; 4; 5; 6; 7; 8; 9).

index_of_column(l; 2; 3; 4; 5; 6; 7; 8; 9).

number(1l; 2; 3; 4; 5; 6; 7; 8; 9).

% For each row Ir and column Ic, it assigns exactly 1
number N.

{assign(Ir, Ic, N): number(N)}=1
index of column(Ic) .

:— index_of_row(Ir),

% 1. The same number cannot appear twice in the same
TOwW.

{N1=N2}=0 :- assign(Ir,Icl,N1), assign(Ir,Ic2,N2), (
Icl,N1)!=(Ic2,N2).

% 2. The same number cannot appear twice in the same
column.

{N1=N2}=0 :- assign(Irl,Ic,N1), assign(Ir2,Ic,N2), (
Irl,N1)!=(Ir2,N2).

% 3. The same number cannot appear twice in the 3x3
box.

{N1=N2}=0 :- assign(Irl,Icl,N1), assign(Ir2,Ic2,N2),
(Irl/3,Icl/3)=(Ir2/3,Ic2/3), (Irl,Icl,N1)
'=(Ir2,Ic2,N2).

This ASP program II is almost correct except that the red
part in Line 16 of II should be

1

© ® 9 o W

((Irl-1)/3, (Icl-1)/3) = ((Ir2-1)/3, (Ic2-1)/3)

since the row and column indices start from 1. This for-
mula seems too difficult for GPT-3 to notice and generate
unless some examples are provided . On the other hand, if
we slightly adjust Lines 7-8 of Prompt C (Section 3.1) to
make the indices start from 0, then the generated ASP pro-
gram II becomes correct as Lines 2-3 of II are changed to
the following facts.

index_of_row(0; 1; 2; 3; 4; 5; 6; 7; 8).
index_of_column(0; 1; 2; 3; 4; 5; 6; 7; 8).

’

GPT-4 also fails to generate the last rule correctly, al-
though it makes a different mistake.

6.2 Jobs Puzzle

The Jobs Puzzle studied in (Schwitter 2013) asks one to as-
sign 8 different jobs to 4 people while satisfying the given
constraints. The full puzzle ¢ is shown below.

1. There are four people: Roberta, Thelma, Steve, and
Pete.

2. Among them, they hold eight different jobs.

3. Each holds exactly two jobs.

. The jobs are: chef, guard, nurse, telephone
operator, police officer (gender not implied),
teacher, actor, and boxer.

. The job of nurse is held by a male.

. The husband of the chef is the telephone operator.

. Roberta is not a boxer.

. Pete has no education past the ninth grade.

. Roberta, the chef, and the police officer went
golfing together.

Question: Who holds which jobs?

S

O o0 J oy U

This puzzle was considered a challenge for logical express-
ibility and automated reasoning (Shapiro 2011).

To apply our method to the Jobs Puzzle, some paraphras-
ing was needed before the Define&Test part of rule genera-
tion. We manually paraphrased the above puzzle to the fol-
lowing

There are four people: Roberta, Thelma, Steve, and
Pete. Among them, they hold eight different Jjobs
. Each holds exactly two jobs. The jobs are:
chef, guard, nurse, telephone operator, police
officer (gender not implied), teacher, actor,
and boxer.

5. The job of nurse is held by a male.

6. The husband of the chef is the telephone operator,

which means the chef is a female and the
telephone operator is a male.

7. Roberta is not a boxer.

8. Pete has no education past the ninth grade. (Three
jobs teacher, nurse, and police officer require
higher education.)

9. Roberta, the chef, and the police officer went
golfing together, meaning they are different
people.

10.1 The same job cannot be assigned to different
people.

10.2 Roberta is a female.

20

21
22

23

10.3 Thelma is a female.

10.4 Steve is a male.

10.5 Pete is a male.

10.6 The actor is a male.
Question: Who holds which jobs?

by turning clues 1-4 as background story, clarifying clues 6,
8, and 9, and adding a few hidden clues numbered 10.X at
the end.

As for the prompts, we only need to update Line 1 of
Prompt R1 to the following to allow for {. . . }=k in a rule.

Given a problem as the background information, turn
the provided categorized constants and
predicates into rules.

Tasks:

1. Write a rule of the form "category(constant_1;
constant_2; ...; constant_n)" to represent each
row of categorized constants in the form "
category: constant_1; constant_2; ...;
constant_n".

2. Write a rule of the form "{predicate(X_1, X 2,

.., X n): category 2(X_2), ..., category n(X n)
}=k :— category_1(X_1)" for each predicate of
the form "predicate(X_1, X 2, ..., X n)".

Finally, GPT-3 generates the following ASP program:

% Task 1. Define the constants in each category.

person("Roberta"; "Thelma"; "Steve"; "Pete").

Jjob("chef"; "guard"; "nurse"; "telephone operator"; "
police officer"; "teacher"; "actor"; "boxer").

gender ("male"; "female").

% Task 2. For each person P, there is exactly 2 jobs
J and gender G.

{assign(P, J, G): job(J), gender(G)}=2

% Done tasks 1 and 2.

:— person(P) .

% 5. The job of nurse is held by a male.
G="male" :- assign(P,J,G), J="nurse".

% 6. The husband of the chef is the telephone
operator, which means the chef is a female and
the telephone operator is a male.

Gl="female" :- assign(Pl,J1,Gl), assign(P2,J2,G2), J1
="chef", J2="telephone operator".

G2="male" :- assign(P1,J1,Gl), assign(P2,J2,G2), J1="
chef", J2="telephone operator".

% 7. Roberta is not a boxer.
J!="boxer" :- assign(P,J,G), P="Roberta".

% 8. Pete has no education past the ninth grade. (
Three jobs teacher, nurse, and police officer
require higher education.)

{J="teacher"; J="nurse"; J="police officer"}=0 :-
assign(P, J,G), P="Pete".

% 9. Roberta, the chef, and the police officer went
golfing together, meaning they are different
people.

P1!=P2 :- assign(P1,J1,Gl), assign(P2,J2,G2), assign(
P3,J3,G3), P1="Roberta", J2="chef", J3="police
officer".

24

25

26

28

30
31
32
33
34
35
36
37
38
39
40
41
4
43
44

1

P2!=P3 :- assign(Pl,J1,Gl), assign(P2,J2,G2), assign(
P3,J3,G3), P1="Roberta", J2="chef", J3="police
officer".

P1!'=P3 :- assign(P1l,J1,Gl), assign(P2,J2,G2), assign(
P3,J3,G3), Pl="Roberta", J2="chef", J3="police
officer".

% 10.1 The same job cannot be assigned to different
people.
{pP1=pP2}=0
assign(P2,J,G2),

:— assign(P1,J,Gl),
(P1,Gl) !'=(P2,G2).

% 10.2 Roberta is a female.
G="female" :- assign(P,J,G), P="Roberta".

% 10.3 Thelma is a female.
G="female" :- assign(P,J,G), P="Thelma".

% 10.4 Steve is a male.
G="male" :- assign(P,J,G), P="Steve".

% 10.5 Pete is a male.
G="male" :- assign(P,J,G), P="Pete".

% 10.6 The actor is a male.
G="male" :- assign(P,J,G), J="actor".

which is almost correct with a single mistake in translating
clue 10.1. If we just replace this constraint (in red) with

P1=P2 :- assign(Pl,J,Gl), assign(P2,J,G2).

the corrected ASP program has exactly one stable model,
which is the correct solution to the Jobs Puzzle.

Similarly, GPT-4 also failed to generate a completely cor-
rect ASP program. It also couldn’t generate a correct rule for
constraint 10.1, and furthermore failed to produce the gen-
der category in constant extraction step Prompt C), missing
“gender: "male"; "female".”

7 Conclusion

LLMs are a relatively recent technology that have shown to
be disruptive. Despite their wide range of applications, their
responses are not always reliable and cannot be trusted.

Automatic rule generation is a difficult problem. How-
ever, by using LLMs as a front-end to answer set program-
ming, we can utilize their linguistic abilities to translate nat-
ural language descriptions into the declarative language of
answer set programs. Unlike previous methods that use al-
gorithmic or machine learning techniques, we find that a pre-
trained large language model with a good prompt can gener-
ate reasonably accurate answer set programs. We present a
pipeline with general steps that systematically build an ASP
program in a natural way. This method not only leads to
higher accuracy but also makes the results interpretable.

We expect this type of work to expand the application of
KR methods that may appear unfamiliar to non-experts. We
also anticipate that this pipeline will serve as a suggestion
tool to help users prepare valid constants, useful predicates,
or draft ASP programs.

Acknowledgements

We are grateful to the anonymous referees for their useful
comments. This work was partially supported by the Na-
tional Science Foundation under Grant I11S-2006747.

References

Baral, C., and Dzifcak, J. 2012. Solving puzzles described
in english by automated translation to answer set program-
ming and learning how to do that translation. In Proceedings
of the Thirteenth International Conference on Principles of
Knowledge Representation and Reasoning, 573-577.

Brewka, G.; Niemeld, I.; and Truszczynski, M. 2011. An-
swer set programming at a glance. Communications of the
ACM 54(12):92-103.

Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J. D.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; etal. 2020. Language models are few-shot learners. Ad-

vances in neural information processing systems 33:1877—
1901.

Creswell, A.; Shanahan, M.; and Higgins, 1. 2022.
Selection-inference: Exploiting large language models
for interpretable logical reasoning. arXiv preprint
arXiv:2205.09712.

Jabrayilzade, E., and Tekir, S. 2020. LGPSolver - solving
logic grid puzzles automatically. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2020, 1118
1123.

Lev, I.; MacCartney, B.; Manning, C. D.; and Levy, R. 2004.
Solving logic puzzles: From robust processing to precise se-
mantics. In Proceedings of the 2nd Workshop on Text Mean-
ing and Interpretation, 9—16.

Lifschitz, V. 2008. What is answer set programming? In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, 1594-1597. MIT Press.

Milicevic, A.; Near, J. P;; and Singh, R. 2012. Puzzler:
An automated logic puzzle solver. Technical report, Mas-
sachusetts Institute of Technology (MIT).

Mitra, A., and Baral, C. 2015. Learning to automatically
solve logic grid puzzles. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language Process-
ing, 1023-1033.

Nordstrom, R. 2017. LogicSolver - Solving logic grid puz-
zles with part-of-speech tagging and first-order logic. Tech-
nical report, University of Colorado, Colorado Springs.

Nye, M.; Tessler, M.; Tenenbaum, J.; and Lake, B. M.
2021. Improving coherence and consistency in neural se-
quence models with dual-system, neuro-symbolic reason-

ing. Advances in Neural Information Processing Systems
34:25192-25204.

Rae, J. W.; Borgeaud, S.; Cai, T.; Millican, K.; Hoff-
mann, J.; Song, F.; Aslanides, J.; Henderson, S.; Ring, R.;
Young, S.; et al. 2021. Scaling language models: Meth-

ods, analysis & insights from training gopher. arXiv preprint
arXiv:2112.11446.

Schwitter, R. 2010. Controlled natural languages for knowl-
edge representation. In Coling 2010: Posters, 1113-1121.

10

Schwitter, R. 2013. The jobs puzzle: Taking on the chal-
lenge via controlled natural language processing. Theory
and Practice of Logic Programming 13(4-5):487-501.
Shapiro, S. C. 2011. The jobs puzzle: A challenge for logi-
cal expressibility and automated reasoning. In AAAI spring
symposium: logical formalizations of commonsense reason-
ing.

Valmeekam, K.; Olmo, A.; Sreedharan, S.; and Kambham-
pati, S. 2022. Large language models still can’t plan
(a benchmark for LLMs on planning and reasoning about
change). In NeurlPS 2022 Foundation Models for Decision
Making Workshop.

Wei, J.; Wang, X.; Schuurmans, D.; Bosma, M.; brian ichter;
Xia, F.; Chi, E. H.; Le, Q. V.; and Zhou, D. 2022. Chain of
thought prompting elicits reasoning in large language mod-
els. In Oh, A. H.; Agarwal, A.; Belgrave, D.; and Cho, K.,
eds., Advances in Neural Information Processing Systems.
Zhou, D.; Schirli, N.; Hou, L.; Wei, J.; Scales, N.; Wang,
X.; Schuurmans, D.; Bousquet, O.; Le, Q.; and Chi, E. 2022.
Least-to-most prompting enables complex reasoning in large
language models. arXiv preprint arXiv:2205.10625.

	Introduction
	Preliminaries
	Large Language Models (LLMs)
	Automated Logic Puzzle Solving
	Generate-Define-Test with ASP

	Method
	Constant Extraction
	Predicate Generation
	Rule Generation: Generate
	Rule Generation: Define and Test

	Optional Enhancements to the Pipeline
	Constant Formatting
	Sentence Paraphrasing

	Experiments
	More Examples
	Sudoku
	Jobs Puzzle

	Conclusion

