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Selecting and Composing Learning Rate Policies for

Deep Neural Networks

YANZHAO WU and LING LIU, Georgia Institute of Technology, USA

The choice of learning rate (LR) functions and policies has evolved from a simple fixed LR to the decaying

LR and the cyclic LR, aiming to improve the accuracy and reduce the training time of Deep Neural Networks

(DNNs). This article presents a systematic approach to selecting and composing an LR policy for effective

DNN training to meet desired target accuracy and reduce training time within the pre-defined training itera-

tions. It makes three original contributions. First, we develop an LR tuning mechanism for auto-verification

of a given LR policy with respect to the desired accuracy goal under the pre-defined training time constraint.

Second, we develop an LR policy recommendation system (LRBench) to select and compose good LR policies

from the same and/or different LR functions through dynamic tuning, and avoid bad choices, for a given

learning task, DNN model, and dataset. Third, we extend LRBench by supporting different DNN optimizers

and show the significant mutual impact of different LR policies and different optimizers. Evaluated using

popular benchmark datasets and different DNN models (LeNet, CNN3, ResNet), we show that our approach

can effectively deliver high DNN test accuracy, outperform the existing recommended default LR policies,

and reduce the DNN training time by 1.6–6.7× to meet a targeted model accuracy.
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1 INTRODUCTION

Hyperparameter tuning is widely recognized as a critical optimization for efficient training of deep
neural networks (DNNs). A DNN is trained iteratively over the input training data D through
forward and backward processes to update a set of trainable model parameters Θ based on the
configuration of its hyperparameters H and the optimization algorithm of its loss function. The
learning rate (η) is one of the most important hyperparameters for efficiency optimization of the
DNN training algorithms. The learning rate (LR) function and the configuration policy are known
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to have direct impacts on both the training efficacy and the test accuracy of the trained model.
However, it is challenging to choose a good LR function, to select a good LR policy (e.g., a specific
LR parameter configuration) given an LR function, and avoid bad LR policies. Even for the fixed LR
function, it is non-trivial to choose a good value and avoid a bad one, since too small or too large LR
value may impair the DNN training progress on both model accuracy and training time, resulting
in slow convergence or even model divergence [5, 9]. The typical trial-and-error approach will try
different LR values each time for training, which is tedious and time-consuming to tune the single
LR value. Even with a reduced search space such as [0.0001, 0.1], the possible LR values for trial-
and-error can be inexplicable. Bearing with the difficulty of determining a good LR value for fixed
LR, a growing trend of research efforts have been devoted to more complex LR functions (η(t ;P )),
which have multiple LR parameters instead of a single fixed value, and will change as a function
of the training iterations (t ). As a result, finding a good LR function and selecting a good LR policy
will demand tuning multiple LR parameters for each LR function, making the hyperparameter
tuning for LR a far-reaching challenge [6, 10, 22, 30, 36, 41]. Moreover, good LR policies for a
given LR function tend to vary based on the specific datasets and learning tasks, and the DNN
algorithms used for model training [1, 11, 28, 29, 40, 42]. In practice, empirical approaches are
typically used to manually select an LR function and configure a good LR policy by choosing the
concrete LR parameters through trials and errors. For example, most of the DL frameworks (e.g.,
TensorFlow, Caffe, and PyTorch) recommend different LR policies for different benchmark learning
tasks and datasets as their default LR policies in their public releases with accuracy/training time
benchmark results. Even for the same learning task and dataset, each of these DL frameworks often
has different LR policies for different DNN models as the recommended default LRs. For example,
TensorFlow uses a constant LR (fixed LR) with a specific LR value as its recommended LR policy for
CIFAR-10 when training using AlexNet, and uses a decaying LR (NSTEP) as its default LR policy
when ResNet is used for training a CIFAR-10 classifier. Many popular DNN training optimizers,
such as Stochastic Gradient Descent (SGD) [8], SGD with Momentum [33], and Adam [24],
utilize the LR in their optimization execution, indicating that the LR is a critical hyperparameter
for DNN training. For example, for MNIST, TensorFlow chooses Adam optimizer with the fixed
LR of 0.0001, and Caffe, Torch, and Theano all choose SGD optimizer with a fixed LR, but they
set their default choice for the fixed LR to 0.01, 0.05, and 0.1, respectively. In comparison, for
CIFAR-10, TensorFlow, Torch, and Theano choose SGD with fixed LR values of 0.1, 0.001, and 0.01,
respectively, while Caffe changes its LR function to a two-step decay LR policy with 0.001 as the LR
value for the first 4,000 iterations in training and 0.0001 as the updated LR value for the last 1,000
iterations of training [42]. However, when a new DNN model is used for training or an existing
DNN model is trained for a new learning task or a new dataset, domain scientists and engineers
have found it hard to select and compose a good LR policy and avoid worse LR choices for effective
training of DNN models. The manual-tuning task for finding a good or acceptable LR policy with
respect to the training accuracy objective and training time constraint can be labor-intensive and
error-prone, especially given the large search space of LR values for LR functions of either single-
parameter or multi-parameters. There is a high demand for designing and developing a systematic
approach to selecting and composing a good LR policy for a given learning task and dataset and
a given DNN training algorithm. We argue that a good LR policy can notably improve the DNN
training performance on both model test accuracy and model training time, significantly alleviate
the frustration of manual-tuning difficulty and costs, and more importantly, can help avoiding the
bad LR policy choices that will lead to below average or poor training performance.
Bearing these objectives in mind, we present a systematic study of 15 representative LR func-

tions from four LR algorithm families. This article makes three original contributions. First, we
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develop an LR tuning mechanism to enable dynamically tuning and verification of LR policies
with respect to desired accuracy goal and training time constraints, e.g., the pre-set #Iterations or
#Epochs (the number of complete pass-throughs of the training data D). Second, we develop an
LR policy recommendation system (LRBench) to select and compose good LR policies from the
same and/or different LR function(s) and avoid bad ones for a given learning task and a given
dataset and DNN model. Third, we incorporate the support of different DNN optimizers and the
recommendation of adaptive composite LR policy. The adaptive composite LR policy can further
improve the quality of LR policy selection by enabling the creation of a multi-policy LR by com-
bining multi-LR policies from different LR functions at different stages of the training process,
boosting the overall performance of DNN model training on accuracy and training time. We eval-
uate our approach using four benchmark datasets—MNIST [26], CIFAR-10 [25], SVHN [32], and
ImageNet [35]—and three families of DNN backbone algorithms for model training—LeNet [26],
CNN3 [21], and ResNet [17]. The results show that our approach is effective and the LR policies
chosen by LRBench can consistently deliver high DNN model accuracy; outperform the existing
recommended default LR policies for a given DNN model, learning task, and dataset; and reduce
the DNN training time by 1.6–6.7× to meet a targeted accuracy.

2 PROBLEM STATEMENT

The DNN training with a given set of hyperparameters will output a trained model F with dataset-
specific model parameters (Θ). During the training, an optimizer is used to update the model pa-
rameters and improve the model performance iteratively with two important optimizations. (1) A
loss function (L) is computed statistically and used to measure the prediction deviation of the DNN
model output to the ground truth, which enables the optimizer to reduce and minimize the loss
value (error) throughout the iterative model update process. (2) The LR policy (η(t )) is leveraged
by the optimizer to control and adjust the amount of model parameter updates to be exercised
during each training iteration t , which enables the optimizer to tune the rate of the update to the
model parameters between slow and fast based on the specific LR value given at each training
iteration. There are three primary goals for DNN training to adjust the extent of the update on the
model parameters based on a specific LR policy: (i) to control the model learning speed, (ii) to avoid
over-fitting to the single mini-batch, and (iii) to ensure that the model converges to global/local
optimum.
Non-convex optimization algorithms are widely adopted as the optimizer for DNN training,

such as SGD [8], SGD with Momentum [33], Adam [24], Nesterov [38], and so forth. For SGD, the
DNN parameter update can be formalized as follows:

Θt+1 = Θt − η(t )∇L, (1)

where t represents the current iteration, L is the loss function, ∇L is the gradients, and η(t ) is the
LR at iteration t that controls the extent of the update to the model parameters (i.e., Θt+1 − Θt =

−η(t )∇L).
For other optimizers, such as SGDwithMomentum (Momentum) andAdam, they adopt a similar

method to update model parameters. For example, Momentum will update the model parameters
Θ as Formula (2) shows.

Vt = γVt−1 − η(t )∇L, Θt+1 = Θt +Vt , (2)

where Vt is the accumulated gradients at iteration t to be updated to the model parameters and γ
is a coefficient applied to the previous Vt−1, which is typically set to 0.9. Adam is another popular
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optimizer widely used in DNN training. It updates the model parameters Θ as Formula (3) shows.

Mt = β1Mt−1 + (1 − β1)∇L, Vt = β2Vt−1 + (1 − β2) (∇L)2,
M̂t =

Mt

1 − β t1
, V̂t =

Vt
1 − β t2

, Θt+1 = Θt − η(t )√
V̂i + ϵ

M̂t ,
(3)

where β1 and β2 are the coefficients to balance the previous accumulated gradients and the square
of gradients. Typically, we will set β1 = 0.9, β2 = 0.999, and ϵ = 10−8. Formulas (1)–(3) all contain
the LR policy η(t ) as other popular optimizers do, such as Nesterov [38] and AdaDelta [43].
In addition, [4] proposed to search the optimizers for training DNNs by modeling an optimizer

as Formula (4):

Θt+1 = Θt − η(t )b (u1 (op1),u2 (p2)), (4)

where op1 and op2 are the operands, such as ∇L, Mt , and Vt in Formula (3), and u1 (.), u2 (.), and
b (., .) denote the unary and binary functions, respectively, such as mapping the input x to −x
and loд |x | for the unary functions, and addition and multiplication for the binary functions. In
particular, the LR policy η(t ) still plays a critical role in the searching and optimization process.
LR optimization is a subproblem of hyperparameter optimization that is only for LR η. For DNN

training, given an optimizer O and a DNN FΘ with trainable model parameters Θ, the optimizer
O minimizes the loss L(x ; FΘ) over i.i.d. samples x from a natural (ground-truth) distribution Gx .
In practice, the optimizer O will map a training dataset Xtrain to data-specific model parameters
Θ for a given DNN FΘ, that is, Θ = O (Xtrain ). An important hyperparameter for the optimizer O
is the LR policy η = η(t ). With the chosen η, we have the optimizer Oη and Θ = Oη (Xtrain ).
LR optimization aims at identifying a good LR policy η to minimize the generalization error
Ex∼Gx [L(x ; FOη (Xtrain ) )]. In practice, we use a validation dataset Xval to estimate the general-

ization error, that is, Lx ∈Xval (x ; FOη (Xtrain ) ). P denotes the set containing all possible LR policies,

and the LR optimization problem is formalized as Formula (5):

η̂ = arдmin
η∈P

Lx ∈Xval (x ; FOη (Xtrain ) ). (5)

Different from other hyperparameters, such as the weight decay rate, number of filters, and
kernel size, which are typically constant in the entire training process, the LR may change over
the training iteration t . In practice, we choose a finite set of S LR policies, consisting of different
LR functions, denoted as P∗ ⊆ P and P∗ = {η1 (t ),η2 (t ), . . . ,ηS (t )}, e.g., η1 (t ) = k (a fixed LR) and
η2 (t ) = γ t (γ < 1). Hence, we can formalize the LR optimization as Formula (6). That is to select
or compose the optimal LR policy from the candidate set P∗ = {η1 (t ),η2 (t ), . . . ,ηS (t )}.

η̂ = arдmin
η∈P∗={η1 (t ), ...,ηS (t ) }

Lx ∈Xval (x ; FOη (Xtrain ) ). (6)

3 LR SELECTION AND COMPOSITION

LR is a function of the training iteration t with a set of parameters and a method to determine
the LR value at each iteration t of the overall training process. An LR policy specifies a concrete
parameter setting of an LR function. For example, a fixed LR of 0.01 is an LR policy of constant LR
method with a fixed value of 0.01 throughout all iterations of the model training. Another example
is the two-step LR policy of 0.01 in the first half of the training iterations and 0.001 in the second
half of the training iterations. In this section, we will cover a total of 15 functions from three
families of LR functions: fixed LRs, decaying LRs, and cyclic LRs. We use the term of single LR
policy to refer to the LR policy that corresponds to a single LR function, and refer to the LR policy
that is defined by combining multiple LR policies from two or more LR functions as composite LR
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Table 1. Decaying Functions д(t ) for Decaying LRs

Abbr. д(t ) Schedule Param #Param

STEP γ f loor (t/l ) t , l γ , l 2

NSTEP

l0, . . . , ln−1,
γ i , i ∈ N s .t .
li−1 ≤ t < li

t , li γ , li n + 1

EXP γ t t γ 1

INV 1
(1+tγ )p t γ ,p 2

POLY (1 − t
max_iter )

p t p 1

or multi-policy LR. We first describe our approach to select single LR policy for a given learning
task, dataset, and DNN backbone algorithm for model training. Then, we introduce our composite
LR scheme for selecting and composing an adaptive LR policy to further boost the overall training
performance in terms of accuracy or training time given a target accuracy.

3.1 Single Policy LR

Fixed LRs (FIX), also called constant LRs, use a pre-selected fixed LR value throughout the entire
training process, represented by η(t ) = k with k as the only hyperparameter to tune. However, too
small k value may slow down the training progress significantly. Too large k value may accelerate
the training progress at the cost of causing the loss function to fluctuate wildly, making the training
fail to converge, resulting in very low accuracy. The conservative approach is popularly used,
which uses a small value to ensure the model convergence and avoid oscillating loss (e.g., 0.01 for
MNIST on LeNet and 0.001 for CIFAR-10 on CNN3). However, choosing a small and yet good fixed
LR value is challenging. Even for the same learning task and dataset, e.g., CIFAR-10, different DNN
models need to choose different constant values to meet the target accuracy goal (e.g., for CIFAR-
10, 0.001 on CNN3 and 0.1 on ResNet-32). Another limitation of fixed LR policies is that it cannot
adapt to the needs of different learning speeds during different training stages of the entire iterative
learning process, and thus suffers from reaching the peak accuracy due to missing the speed-up
opportunity when the training is on the plateau or failing to converge at the end of training.

3.2 Composite Policy LRs

There are two types of composite LR schemes, according to whether the LRs are composed using
the same LR function or using two or more different LR functions. The former is coined as the
homogeneous multi-policy LRs and the latter is called the heterogeneous multi-policy LRs.
Decaying LRs improve the limitation of the fixed LRs by using decreasing LR values during

training. Similar to simulated annealing, training with a decaying LR starts with a relatively large
LR value, which is reduced gradually throughout the training, aiming to accelerate the learning
process while ensure that the training converges with good accuracy or meeting the target accu-
racy. A decaying LR policy is defined by a decay function д(t ) and a constant coefficient k , denoted
by η(t ) = kд(t ). д(t ) gradually decreases from the upper bound of 1 as the number of iterations (t )
increases, and the constant k value serves as the starting LR.
Table 1 lists the five most popular decaying LRs, supported in LRBench. The STEP function

defines the LR policy at iteration t with two parameters: a fixed step size l (l > 1) and an exponential
factor γ . The LR value is initialized with k and decays every l iteration by γ . The NSTEP enriches
STEP by introducing n variable step sizes, denoted by l0, l1, . . . , ln−1, instead of the one fixed step
size l . NSTEP is initialized by k (д(t ) = 1 when i = 0, t < l0) and computed by γ i (when i > 0 and
li−1 ≤ t < li ). EXP is an LR function defined by an exponential function (γ t ). Although EXP, STEP,

ACM Transactions on Intelligent Systems and Technology, Vol. 14, No. 2, Article 22. Publication date: February 2023.



22:6 Y. Wu and L. Liu

Table 2. Cyclic Functions д(t ) for Cyclic LRs

Abbr. д(t ) Schedule Param #Param

TRI TRI (t ) = 2
π |arcsin(sin( πt2l )) | t , l l 1

TRI2 1

2
f loor ( t

2l
)
TRI (t ) t , l l 1

TRIEXP γ tTRI (t ) t , l γ , l 2

COS COS (t ) = 1
2 (1 + cos (π t

l
)) t , l l 1

SIN SIN (t ) = |sin(π t
2l
) | t , l l 1

and NSTEP all use an exponential function to define д(t ), their choice of concrete γ is different. To
avoid the LR decaying too fast due to the exponential explosion, EXP uses a γ that is close to 1, e.g.,
0.99994 and reduces the LR value every iteration. In contrast, STEP and NSTEP employ a small γ ,
e.g., 0.1, and decay the LR value using one fixed step size l or using n variable step sizes li . The total
number of steps is determined, for STEP, by the step size and the pre-defined training #Iterations
(or #Epochs), and for NSTEP, n is typically small, e.g., 2–5 steps. Other decaying LRs are based on
the inverse time function (INV) and the polynomial function (POLY) with parameter p as
shown in Table 1. A good selection of the value settings for these parameters is challenging and
yet critical for achieving effective training performance when using decaying LR policies.
Several studies [5, 17, 25] show that with a good selection of the decaying LR policies, they are

more effective than the fixed LRs for improving training performance on accuracy and training
time. However, [30, 36, 37, 41] recently show that decaying LRs tend to miss the opportunity to
accelerate the training progress on the plateau in the middle of training when initialized with too
small LR values and result in slow convergence and/or low accuracy. While larger initial values
for decaying LRs can lead to the same problem as those for fixed LRs.
STEP is an example of homogeneous multi-policy LRs created using a single LR function FIX by

employing multiple fixed LRs defined by the LR update schedule based on training iteration t and
step size l . NSTEP is another example of homogeneous multi-policy LRs by employing n different
FIX policies, each changing the LR value based on t and the n different step size: li (i = 0, . . . ,n−1).
Cyclic LRs (CLRs) are proposed recently by [30, 36, 37], to address the above issue of decaying
LRs. CLRs by design change the LR cyclically within a pre-defined value range, instead of using a
fixed value or reducing the LR by following a decaying policy, and some target accuracy thresholds
can be achieved earlier with CLRs in shorter training time and smaller #Epochs or #Iterations. In
general, cyclic LRs can be defined by η(t ) = |k0 −k1 |д(t ) +min(k0,k1), where k0 and k1 specify the
upper and lower value boundaries, д(t ) represents the cyclic function whose domain ranges from
0 to 1, and min(k0,k1) ≤ η(t ) ≤ max (k0,k1). For each CLR policy, three important parameters
should be specified: k0 and k1, which specify the initial cyclic boundary, and the half-cycle length
l , defined by the half of the cycle interval, similar to the step size l used in decaying LRs. The
good selection of these LR parameter settings is challenging and yet critical for the DNN training
effectiveness under a cyclic LR policy (see Section 5 for details).
We support three types of CLRs currently in LRBench: triangle-LRs, sine-LRs, and cosine-LRs as

Table 2 shows. TRI is formulated with a triangle wave functionTRI (t ) bounded by k0 and k1. TRI2
and TRIEXP are two variants of TRI by multiplying TRI (t ) with a decaying function, 1

2
f loor ( t

2l
)
for

TRI2 and γ t for TRIEXP. TRI2 reduces the LR boundary (|k0−k1 |) every 2l iterations while TRIEXP
decreases the LR boundary exponentially. [30] proposed a cosine function with warm restart and
can be seen as another type of CLRs, and we denote it as COS. We implement COS2 and COSEXP
as the two variants of COS corresponding to TRI2 and TRIEXP in LRBench and also implement
SIN, SIN2, and SINEXP as the sine-CLRs in LRBench.
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Fig. 1. Visualization of the training process with different LRs.

We visualize the optimization process of three LR functions, FIX, NSTEP, and TRIEXP, from the
above three categories in Figure 1. The corresponding LR policies are FIX (k = 0.025) in black,
NSTEP (k = 0.05,γ = 0.5, l = [120, 130]) in red, and TRIEXP (k0 = 0.05,k1 = 0.25,γ = 0.9, l = 25)
in yellow. All three LRs start from the same initial point, and the optimization process lasts for
150 iterations. The color on the grid marks the value of the cost function to be minimized, where
the global optimum corresponds to red. In general, we observe that different LRs lead to different
optimization paths. Although three LRs exhibit little difference in terms of the optimization path
up to the 70th iteration, the FIX lands at a different local optimum at the 149th iteration rather
than the global optimum (red). It shows that the accumulated impacts of LR values could result in
sub-optimal training results. Also, at the beginning of the optimization process, TRIEXP achieved
the fastest progress according to Figure 1(a) and (b). This observation indicates that starting with
a high LR value may help accelerate the training process. However, the relatively high LR values
of TRIEXP in the late stage of training also introduce high “kinetic energy” into this optimization
and therefore, the cost values are bouncing around chaotically as the TRIEXP optimization path
(yellow) shows in Figure 1(b)–(d), where the model may not converge. This example also illustrates
that simply using a single LR function may not achieve the optimal optimization progress due to
the lack of flexibility to adapt to different training states.
Studies by [30, 36, 37, 41] confirm independently that increasing the LR cyclically during the

training is more effective than simply decaying LRs continuously as training progresses. On
the one hand, with relatively large LR values, cyclic LRs can accelerate the training progress
when the model is trapped on the plateau and escape the local optimum by updating the model
parameters more aggressively. On the other hand, cyclic LRs, especially decaying cyclic LRs (i.e.,
TRI2, TRIEXP) can further reduce the boundaries of LR values, as training progresses through
different stages, such as the training initialization phase, the middle stage of training in which
the model being trained is trapped on a plateau or a local optimum, and the final convergence
phase. We argue that the LR should be actively changed to accommodate different training phases.
However, existing LRs, such as the fixed LRs, decaying LRs, and cyclic LRs are all defined by
one function with one set of parameters. Such design limits its adaptability to different training
phases and often results in slow training and sub-optimal training results.
According to our characterization of single-policy and multi-policy LRs, we can view TRI2,

COS2, and SIN2 as examples of homogeneous multi-policy LRs, because they are created by com-
biningmultiple LR policies through a simple and straightforward integration of decaying LR policy
to refine the cyclic LR policy using decaying (k0,k1) by one half every 2l iterations. We have an-
alyzed how and why these multi-policy LRs provide more flexibility and adaptability in selecting
and composing a multi-policy LR mechanism for more effective training of DNNs in this section.
Our empirical results also confirm consistently that multi-policy LRs hold the potential to further
improve the test accuracy of the trained DNN models.
Advanced Composite LRs. There are different combinations of multi-policy LRs that can be
beneficial for further boosting the DNNmodel training performance. Consider a new multi-policy
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Table 3. Different LR Policies for CIFAR-10 on ResNet-32, Showing the Benefit

of Advanced Composite LRs

LR Policy
#Iter Accuracy (%)

Category LR Function

Fixed LR FIX (k = 0.1) 61,000 86.08

Decaying LR NSTEP (k = 0.1, γ = 0.1, l = [32,000, 48,000]) 53,000 92.38 ± 0.04

Cyclic LR SINEXP (k0 = 0.0001, k1 = 0.9, γ = 0.99994) 64,000 92.81 ± 0.08

Advanced

Composite LR

0–30,000 iter: TRI (k0 = 0.1, k1 = 0.5, l = 1500)

64,000 92.9130,000–60,000 iter: TRI (k0 = 0.01, k1 = 0.05, l = 1000)

60,000–64,000 iter: TRI (k0 = 0.001, k1 = 0.005, l = 500)

Fig. 2. Comparison of NSTEP, SINEXP, and HeterogeneousMulti-policy LRs (CIFAR-10, ResNet-32), showing

the benefit of advanced composite LR in performance improvement during the latter half of the training.

LR mechanism; it is created by composing three triangle LRs in three different training stages with
decaying cyclic upper and lower bounds and varying decaying step sizes over the total training
iterations. Table 3 shows the effectiveness of this multi-policy LR policy through a comparative
experiment on ResNet-32 with the CIFAR-10 dataset using the Caffe DNN framework. The exper-
iment compares four scenarios. (1) The single-policy LR with the fixed value of 0.1 achieves an
accuracy of 86.08% in 61,000 iterations out of the default total training iterations of 64,000. (2) The
decaying LR policy of the NSTEP function with specific k,γ , l achieves the test accuracy of 92.38%
for the trained model with only 53,000 iterations out of 64,000 total iterations. (3) The cyclic LR pol-
icy of the SINEXP function with specific LR parameters (k0,k1,γ ) achieves the accuracy of 92.81%
at the end of 64,000 total training iterations. (4) The advanced composite multi-policy LR mecha-
nism is created by LRBench for CIFAR-10 (ResNet-32), which achieves the highest test accuracy of
92.91% at the total training rounds of 64,000, compared to other three LR mechanisms. Figure 2 fur-
ther illustrates the empirical comparison results. It shows the LR (green curves) and Top-1/Top-5
accuracy (red/purple curves) for the top three performing LR policies: NSTEP, SINEXP, and the
advanced composite LR.
We highlight three interesting observations. First, this multi-policy LR achieved the highest

accuracy of 92.91%, followed by the cyclic LR (SINEXP, 92.81%) and decaying LR (NSTEP, 92.38%)
while the fixed LR achieved the lowest 86.08% accuracy. Second, from the LR value y-axis (left)
and the accuracy y-axis (right) in Figure 2(a) and (b), we observe that the accuracy increases as
the overall LRs decrease over the iterative training process (t on the x-axis). However, without
dynamically adjusting the LR values in a cyclic manner, NSTEP missed the opportunity to achieve
higher accuracy by simply decaying its initial LR value over the iterative training process. Third,
Figure 2(b) shows that even with a cyclic LR policy such as SINEXP, it fails to compete with the
new multi-policy LR that we have designed because it fails to decay faster and at the end of the
training iterations, it still uses much higher LRs. In comparison, Figure 2(c) shows the training
efficiency using our new multi-policy LR for CIFAR-10 on ResNet-32. It uses three different CLR
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Fig. 3. LRBench architecture overview.

functions in three different stages of the overall 64,000 training iterations, each stage reducing the
cyclic range by one-tenth decaying of k0 and k1 and reducing the step size l by 500 iterations.
Recent research has shown that variable LRs are advantageous by empowering training with

adaptability to dynamically change the LR value throughout the entire training process to adapt to
the need of different learning modes (learning speed, step size, and direction for changing learning
speed) at different training phases. A key challenge for defining a good multi-policy LR, be it ho-
mogeneous or heterogeneous, is related to the problem of how to determine the dynamic settings
of its parameters, such as l and k0,k1. Existing hyperparameter search tools are typically designed
for tuning the parameters at the initialization of the DNN training, which will not change during
training, such as the number of DNN layers, the batch size, the number of iterations/epochs, and
the optimizer (SGD, Adam, etc.). Thus, an open problem of selecting and composing LR policies
with evolving LR parameters is to develop a systematic approach to selecting and composing LRs.
In the next section, we present our framework, called LRBench, to create a good LR policy by
dynamically tuning, composing, and selecting a good LR policy for a learning task and a given
dataset on a chosen DNN model.

4 DESIGN OVERVIEW

LRBench is a Learning Rate Benchmarking system for tuning, composing, and selecting LR
policies for DNN training. The current prototype of LRBench implemented 15 LR functions in
four families of LR policies and eight evaluation metrics, covering utility, cost, and robustness
of LR policies defined by [41]. Figure 3 shows the architecture of LRBench, consisting of eight
functional components. (1) The LR schedule monitor tracks the training status and triggers the
LR value update based on the specific LR policy. (2) The LR policy database stores the empirical
LR tuning results organized by the specific neural network and dataset. (3) The LR value range
test will estimate a good LR value range to reduce the LR search space. (4) The LR policy verifier
will perform the verification of the given LR policy in terms of whether it can meet the desired
target accuracy or achieve optimal training performance. (5) The LR policy visualizer will help
users visualize the LR values and DNN training progress. (6) The LR policy ranking algorithm
will select the top N ranked LR policies based on the empirical LR tuning results from the LR
policy database for a pre-defined utility, cost, or robustness metric. (7) The LR policy evaluator
estimates the good LR parameters, such as the step size l , for evaluating and comparing alternative
LR policies and dynamically tuning LR values. (8) The tuning algorithms in LRBench are provided
by Ray Tune [28], including grid search, random search, and distributed parallel tuning algorithms
to effectively explore the LR search space.
In practice, users can leverage a set of functional APIs provided by LRBench in their DNN train-

ing. For example, LRBench provides three main LR tuning methods: (1) single-policy LR selection,
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(2) multi-policy LR composition, and (3) cost-effective LR tuning. The first two LR tuning methods
aim at achieving the highest possible model accuracy under a training time constraint, such as
the number of training iterations. The third tuning method targets at reducing the training time
cost for achieving a desired target accuracy. In some cases, such as the pruning in neural network
search [44], the goal for DNN training is to achieve a certain accuracy threshold, where a low
training cost, such as using a small number of iterations, will significantly improve the training
efficiency. LRBench leverages two complementary principles in LR tuning, which are exploration
and exploitation. Exploration helps LRBench explore different LR functions and LR parameters in
DNN training, which can avoid falling into sub-optimal LRs or even bad ones. Exploitation allows
LRBench to follow a few good LR policies and verify whether these LRs can help the DNN converge
to high accuracy under the given training time constraints. A proper balance between these two
principles is crucial for efficient LR tuning. For example, the single-policy LR selection restricts
the LR to a single policy and puts more effort into exploitation, compared to the multi-policy LR
composition, which allows composing multiple LR policies and emphasizes more on exploration.
Implementation Details. We have open-sourced LRBench on GitHub at https://github.com/git-
disl/LRBench, which is written in Python and has a flexible modular design that allows users
to leverage different modules to perform LR tuning. The frontend and LR policy database are
implemented with Django and PostgreSQL, respectively. LRBench supports popular deep learning
frameworks, such as Caffe, PyTorch, Keras, and TensorFlow through their Python APIs.
In this section, we describe LR tuning and LR verification, which are the two important features

in LRBench to support automatic creation of new multi-policy LRs in the scenarios where the
target accuracy is not met or can be improved by LRBench during its LR verification process.

4.1 LR Tuning

The LR is an important hyperparameter, critical for efficient DNN training. Even for the fixed LR, it
is non-trivial to find a good value. Advanced LRs, such as cyclic LRs and composite LRs, introduce
more LR parameters to control the LR values, making this process even harder. LRBench is designed
to mitigate these issues with three important components: the LR Policy Database, LR Value Range
Test, and LR Schedule Monitor.
LRPolicy Database stores the empirical LR policy tuning results, including good LR value ranges,
organized by the specific dataset, the specific learning task, the chosen DNN model (e.g., LeNet,
ResNet, AlexNet), and the deep learning framework. With the LR policy database, LRBench is able
to rank existing LR policies based on a set of metrics, such as the loss, accuracy, and training cost,
and recommend a good LR policy for DNN training for a learning task on a given dataset with
a chosen DNN model. It does so by first searching the LR policy database, and if the relevant LR

policies are found, LRBench will use the stored LR policies, denoted as P̂ ⊆ P, as the starting
point for performing LR tuning. Upon identifying a set of three good LR policies that can meet the
target accuracy within the pre-defined training iterations, LRBench will select the highest ranked
LR policy as the tuning output. Otherwise, LRBench will trigger the new LR policy generation
process, which will perform the LR value range test to find the range of good LR values.
LR Value Range Test. The goal of the LR value range test is to significantly reduce the search
space of LR parameters for finding the good candidate LR policies. We first illustrate by ex-
ample how to determine the proper ranges for training CNN3 on CIFAR-10. Figure 4 shows
the results of Top-1 accuracy (y-axis) by varying the fixed LR values in a base-10 log scale
(x-axis). The two red vertical dashed lines represent two fixed LR values, k = 0.0005 and
0.006, and the three black dashed lines represent another three fixed LR values, k = 0.0001,
0.001, and 0.01. The different colors of curves correspond to the Top-1 accuracy obtained when
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training using different total #Epochs. We observe from Figure 4 that the appropriate LR ranges
is [0.0005, 0.006] marked by the two red dashed lines, and the accuracy drops much faster af-
ter k = 0.006. Thus, setting the upper bound of the LR range to be around 0.006 is recom-
mended. Similarly, the lower bound by k = 0.0005 is the LR value in which the accuracy
increase is relatively stabilized, indicating that [0.0005, 0.006] is a good LR value range for
CNN3 training on CIFAR-10. Another interesting observation is that with five different accu-
racy curves obtained using five different training #Epochs (in five colors), the general accuracy

Fig. 4. Acc with varying k (FIX, CNN3, CIFAR-10).

trend over varying LR values (x-axis) reveals
similar patterns. This shows that it is sufficient
for LRBench to examine the LR value range us-
ing a small number of variations in #Epochs in-
stead of enumerating a large number of possible
#Epochs, enabling LRBench to accelerate this
process, which can also be automated by using
grid or random search algorithms in LRBench.
In comparison, the total of 140 epochs is used
in Caffe as the recommended training time con-
straint for training CNN3 on CIFAR-10 (the de-
fault). This verification and tuning process also
enables LRBench to remove worse LR policies
through a small number of trial-and-error operations. For instance, by investigating the relation-
ship between test accuracy and the good LR range, we can choose the fixed LR value from a small
set of good LR values and significantly reduce the search space of finding a good LR policy by
99.4% for CIFAR-10, computed by (1 − (0.006 − 0.00005)) × 100%/1, compared to using the search
space defined by the domain [0, 1] of any given LR function for finding a good LR value under a
given training #Epochs.
LR Schedule Monitor is a system facility that is used for both LR tuning and LR verification.
It monitors the training status, such as the training/validation loss, and dynamically changes the
LR value to ensure effective training for meeting the target accuracy. Reduce-LR-On-Plateau is a
popular method to tune LR on-the-fly during training included in [23], which monitors the train-
ing/validation loss during the DNN training, when the learning stagnates on plateau, e.g., no im-
provement for the loss, Reduce-LR-On-Plateau will reduce the LR value to facilitate DNN training.
However, Reduce-LR-On-Plateau is limited to multiple decreasing fixed LR values and the FIX LR
function. When the training is trapped on a plateau, increasing LR by a CLR function or even using
a decaying LR function can be more beneficial and lead to faster training convergence and higher
accuracy according to empirical studies [12, 37]. In LRBench, we implement the Change-LR-On-
Plateau method as Algorithm 1 shows to compose multi-policy LRs. Our Change-LR-On-Plateau
method allows changing the current LR value at different phases of the training based on the spe-
cific LR function (p (t )) used, be it a decaying LR function or a CLR function, rather than being
limited to only the decreasing fixed LR values as Reduce-LR-On-Plateau. i indicates the current
LR function index in the input LR functions P (ordered in the descending order) for the LR value
η, which will be used in the optimizer Oη (Xtrain ).M will keep track of the monitored metrics
m, and t indicates the current training iteration. Is-Trapped-On-Plateau-Action(M,m, t ) will take
these three variables and judge whether the current training is trapped on the plateau, such as for
a certain number of consecutive training iterations, e.g., five iterations, whether the improvement
of the monitored metrics are beyond a threshold, e.g., 0.05 for the training loss. Then, if the current
training is not trapped on plateau, it will just return no action. Otherwise, it will return specific ac-
tions to change the index i to switch between the LR functions. For example, during the beginning
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ALGORITHM 1: Change-LR-On-Plateau

procedure Change-LR-On-Plateau(m, P, i , training stop condition)

Input: (1) the monitored metrics m, such as the training loss; (2) the chosen n LR functions P =

{p1 (t ), p2 (t ), . . . , pn (t ) } s .t . p1 (t ) ≥ p2 (t ) ≥ · · · ≥ pn (t ); (3) the starting LR function index i ; (4) the training

stop condition, such as a pre-defined #Iterations.

Output: The trained DNN model FΘ.

� M: store monitored metrics, t : the current iteration

Initialize t = 0, η = pi (t ),M = { };
Initialize the DNN model FΘ;

while the training stop condition is not met do

training FΘ with Oη (Xtrain ) for one iteration;
obtain the monitored metricsm;

action = Is-Trapped-On-Plateau-Action(M,m, t );
if action == “increase” then

i = i − 1;
end if

if action == “decrease” then

i = i + 1;

end if

M.append(m); t = t + 1;

end while

return FΘ;

end procedure

and middle of the training (i.e., t is smaller than a pre-defined threshold), Is-Trapped-On-Plateau-
Action(M,m, t ) will return “increase” to increase the LR value with i = i −1, allowing the training
to quickly escape the plateau or local optimum, and when the training approaches the end of the
pre-defined training iterations, it will return “decrease” with i = i + 1 to reduce the LR value to
help converge the DNN training.

4.2 LR Verification

When a newDNNmodel is chosen for an existing dataset and learning task such as CIFAR-10, even
when we use the same DL framework such as Caffe or TensorFlow, the system recommended LR
policy for CIFAR-10 on AlexNet is no longer a good LR policy for ResNet. Similarly, the LR policy
for MNIST with the 10-class classifier is not a good policy for CIFAR-10 either with only 77.26%
accuracy compared to 81.61% of the Caffe default NSTEP policy on CNN3. This motivates us to
incorporate a new functional component, called the LR policy verification, in our LRBench.
Our LR policy verification is carried out in three validation phases. In the first validation phase,

we utilize the DNN training to perform the verification of the given LR policy in terms of whether it
meets the desired target accuracy given by the user. If yes, then this policy is verified. Otherwise,
we enter the second validation phase, which searches the LR policy database according to the
learning task, the dataset, or the DNN model and select the top three ranked LR policies based on
the Top-1 accuracy, for example. Other ranking metrics, such as Top-5 accuracy, training cost, and
robustness of the trained model, can also be employed in conjunction with Top-1 accuracy. Upon
identifying the top three good LR policies, we select the highest ranked LR policy and compare it
with the LR policy being verified. By good, we mean that all meet the target accuracy within the
pre-defined training time constraints (e.g., #Iterations or #Epochs). If the LR policy being verified
is no longer the winner in ranking, the verification will output the top ranked LR policy as the
LRBench recommended LR policy as the replacement. The verification process is terminated. If
the policy being verified remains to be the winner, the verification enters the last phase, in which
LRBench will trigger the new LR policy generation process, which will perform the LR value range
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test. It aims to effectively reduce the search space of LR parameters for finding the good candidate
LR policies through several mechanisms, such as the grid search or random search algorithms in
LRBench. A challenge for the third verification phase is to estimate the good LR value based on
the current or the recent past model parameters. One approach is to use the optimal learning rate
(denoted as M-opt LR) of the three most recent intermediate learning outcomes across two steps.
Let Θt denote the model parameter in the current training iteration t , ηt+1 be the actual LR value
used for the iteration t + 1, and η∗ denote the calculated LR value across two consecutive model
parameter updates, i.e., (Θt+1 − Θt ) and (Θt+2 − Θt+1). One can estimate the M-opt η∗ using the
following formula [37] on Θt , Θt+1 and Θt+2:

η∗ = ηt+1
| |Θt+1 − Θt | |1

| |(Θt+1 − Θt ) − (Θt+2 − Θt+1) | |1
= ηt+1

| |Θt+1 − Θt | |1
| |2Θt+1 − Θt − Θt+2 | |1 .

(7)

The intuition of Formula (7) is from the Newton’s method for optimization, which will use
the Hessian matrix (second derivative) HL of the loss function L to update the model parameters
as Formula (8) shows. The high computation cost of the Hessian matrix makes it infeasible to
obtain the exact Hessian matrix for real optimization. [31] proposed the Hessian-free optimization
to obtain an estimate of the Hessian hL (ϑ ) ∈ HL where ϑ is a single variable in Θ from two
gradients as Formula (9) shows and δ should be in the direction of the steepest descent. Based on
the estimation, [16] further proposed an efficient learning rate calculated with Formula (10) on
the single variable ϑ ∈ Θ. From Formula (1) on SGD, we have Formulas (11) and (12) on the single
variable ϑ . With Formulas (10), (11), and (12), we derive Formula (13) based on ηt+1 ≈ ηt , indicating
the effective LR for a single variable ϑ ∈ Θ. Hence, for estimating the optimal LR for Θ, we applied
the L-1 normalization in Formula (7) as [37] suggests.

Θt+1 = Θt − H−1L ∇L, (8)

hL (ϑ ) = lim
δ→0

∇L(ϑ + δ ) − ∇L(ϑ )
δ

, (9)

η∗
ϑ
≈ ϑt+1 − ϑt
∇L(ϑt+1) − ∇L(ϑt ) , (10)

ϑt+1 − ϑt = −ηt∇L(ϑt ), (11)

ϑt+2 − ϑt+1 = −ηt+1∇L(ϑt+1), (12)

η∗
ϑ
≈ ηt+1 ϑt+1 − ϑt

2ϑt+1 − ϑt − ϑt+2 . (13)

If the computed M-opt LR value is better than the one produced by the given LR policy to
be verified, LRBench will use the computed M-opt LR values and output it as a recommended
replacement. Thus, the LR verification process is performing both validation and tuning in order
to produce a better LR policy for the given learning task, dataset, and DNNmodel for a given deep
learning framework (e.g., Caffe, TensorFlow, PyTorch).
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Fig. 5. The comparison of four datasets.

5 EXPERIMENTAL ANALYSIS

We conduct experiments using LRBench on top of Caffe with four popular benchmark datasets,
MNIST, CIFAR-10, SVHN, and ImageNet, and three DNN models, LeNet, CNN3, and ResNet.
Figure 5 shows the example images from these four datasets. We report four important results.
First,we show the impact of the LR selection on different datasets and DNN models and the exper-
imental characterization of different types of LR policies, with respect to highest accuracy within
the training time constraint. Second,we show how to use LRBench to select and compose good LR
policies for a given learning task, dataset, and DNN model as well as the effectiveness of LR verifi-
cation, and demonstrate that advanced composite LRs are beneficial for accelerating DNN training
and achieving high accuracy. Third,we show how to efficiently choose good LR policies to achieve
the desired accuracy with reduced training time cost. Fourth, we consider other hyperparameters,
such as the choice of a specific optimizer, and how different optimizers will impact the DNN train-
ing performance with different LR policies. In all experiments, we only vary the LR policy and keep
all the other settings of hyperparameters unchanged for the given learning task with the dataset,
e.g., CIFAR-10, and the chosen DNN model, i.e., CNN3 or ResNet-32. We use the averaged values
from five repeated experiments with mean±std for the most critical experiments. All experiments
reported in this article were conducted on an Intel Xeon E5-1620 server with Nvidia GTX 1080Ti
GPU, installed with Ubuntu 16.04, CUDA 8.0, and cuDNN 6.0.

5.1 LR Policy Selection

Here, we perform an experimental comparison of different LR policies with LRBench using MNIST
and CIFAR-10 to show the impact of selecting a good LR policy on the DNN model accuracy.
MNIST (LeNet). Table 4 shows the results of LeNet training on MNIST with the highest accuracy
(Highest Acc (%)) found under the Caffe default training iterations of 10,000 and batch size of 100.
We highlight three interesting observations. First, the model accuracy trained by the baseline fixed
LR is sensitive to the specific k values. For example, when k = 0.1, the LeNet failed to converge
and resulted in a very low model accuracy, i.e., 11.35%. Hence, it is very hard to select a proper
constant LR value for the fixed LR. Second, all decaying LRs can produce high accuracy above
99.12%. These decaying LR policies are recommended by LRBench based on the optimal k = 0.01
from these fixed LRs. This observation shows that such selection of LR parameters by LRBench
is very effective. Third, seven CLRs recommended by LRBench produce much higher accuracy,
ranging from 99.27% to 99.33%, than other LRs. In particular, SIN2 provides the highest accuracy,
which is 99.33%, significantly outperforming the baseline fixed LR policies by 0.22%–87.98%.

This set of experiments demonstrates that LRBench can help identify good LR policies and sig-
nificantly improve the DNN model accuracy. In general, decaying and CLR policies can provide
better training results than the baseline fixed LR policies. Similar observations can be found on
CIFAR-10, with two different DNN models, CNN3 and ResNet-32.
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Table 4. Accuracy Comparison of 13 LR Policies with Training LeNet on MNIST

Category LR Function k (k0) k1 γ p l Highest Acc (%)

Fixed LR

FIX 0.1 11.35
FIX 0.01 99.11

FIX 0.001 98.76
FIX 0.0001 95.10

Decaying LR

NSTEP 0.01 0.9
5,000, 7,000,

8,000, 9,000, 9,500
99.12 ± 0.01

STEP 0.01 0.85 5,000 99.12
EXP 0.01 0.99994 99.12
INV 0.01 0.0001 0.75 99.12
POLY 0.01 1.2 99.13

CLR

TRI 0.01 0.06 2,000 99.28 ± 0.02
TRI2 0.01 0.06 2,000 99.28 ± 0.01

TRIEXP 0.01 0.06 0.99994 2,000 99.27 ± 0.01
SIN 0.01 0.06 2,000 99.31 ± 0.04
SIN2 0.01 0.06 2,000 99.33 ± 0.02

SINEXP 0.01 0.06 0.99994 2,000 99.28 ± 0.04
COS 0.01 0.06 2,000 99.32 ± 0.04

Table 5. Accuracy Comparison of 16 LR Policies with Training CNN3 on CIFAR-10

Category LR Function k (k0) k1 γ p l Accuracy (%)

Fixed LR

FIX 0.1 10.02

FIX 0.01 69.63

FIX 0.001 78.62

FIX 0.0001 75.28

Decaying LR

NSTEP 0.001 0.1 60,000, 65,000 81.61 ± 0.18

STEP 0.001 0.85 5,000 79.95

EXP 0.001 0.99994 79.28

INV 0.001 0.0001 0.75 78.87

POLY 0.001 1.2 81.51

CLR

TRI-S 0.001 0.006 2,000 79.39 ± 0.17

TRI2-S 0.001 0.006 2,000 79.95 ± 0.14

TRIEXP-S 0.001 0.006 0.99994 2,000 80.16 ± 0.12

TRI 0.00005 0.006 2,000 81.75 ± 0.13

TRI2 0.00005 0.006 2,000 80.71 ± 0.14

TRIEXP 0.00005 0.006 0.99994 2,000 81.92 ± 0.13

SIN 0.00005 0.006 2,000 81.76 ± 0.12

SIN2 0.00005 0.006 2,000 80.79 ± 0.14

SINEXP 0.00005 0.006 0.99994 2,000 82.16 ± 0.08

COS 0.00005 0.006 2,000 81.43 ± 0.14

CIFAR-10 (CNN3). Table 5 shows the empirical results of training CNN3 on CIFAR-10 with the
highest Top-1 accuracy within Caffe default total training of 70,000 iterations, and the batch size
is the default 100. The three triangle LR policies with S as the suffix are recommended in [36]. We
make two interesting observations. First, all the decaying and CLR policies identified by LRBench
outperform the best baseline fixed LR policy (FIX, k = 0.001) of 78.62% accuracy. For example,
SINEXP achieved the highest accuracy and improved the accuracy of this best fixed LR by 3.54%
and the best decaying LR, NSTEP, by 0.55%. Second, the CLRs recommended by LRBench (the last
seven LRs) achieved over 80.71% accuracy, all outperforming the corresponding TRI-S, TRI2-S,
and TRIEXP-S in [36] in terms of the highest accuracy within the training time constraint. This
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Table 6. Accuracy Comparison of 13 LR Policies with Training ResNet-32 on CIFAR-10

Category LR Function k (k0) k1 γ p l Accuracy (%)

Fixed LR

FIX 0.1 86.08

FIX 0.01 85.41

FIX 0.001 82.66

FIX 0.0001 66.96

Decaying LR

NSTEP 0.1 0.1 32,000, 48,000 92.38 ± 0.04

STEP 0.1 0.99994 91.10

EXP 0.1 0.85 5,000 91.03

INV 0.1 0.0001 0.75 88.70

POLY 0.1 1.2 92.39

CLR

TRI 0.0001 0.9 2,000 76.91

TRI2 0.0001 0.9 2,000 91.85

TRIEXP 0.0001 0.9 0.99994 2,000 92.76 ± 0.14

SIN 0.0001 0.9 2,000 72.78

SIN2 0.0001 0.9 2,000 91.98

SINEXP 0.0001 0.9 0.99994 2,000 92.81 ± 0.08

COS 0.0001 0.9 2,000 76.77

demonstrates that LR selection is critical for effective DNN training. Even for the same LR function,
different LR parameters will lead to different training performance.
CIFAR-10 (ResNet-32). ResNet can achieve over 90.00% accuracy on CIFAR-10, a significant im-
provement over CNN3. Table 6 shows the results of training ResNet-32 on CIFAR-10 with the
batch size 128 and the default of 64,000 training iterations. We make two interesting observations.
First, four LRs recommended by LRBench, i.e., NSTEP (92.38%), POLY (92.39%), TRIEXP (92.76%),
and SINEXP (92.81%) achieved over 92.38% accuracy, significantly outperforming the best baseline
fixed LR with only 86.08% accuracy by over 6.3%. Second, different CLR policies with different CLR
functions may share the same LR range and step size parameters, such as TRI, TRI2, SIN, SIN2,
and COS; they result in different training performance. For example, TRI2 and SIN2 achieve high
accuracy over 91.85% while the other three CLRs fail to achieve the accuracy of 77%. This indicates
that selecting a good LR policy involves both the proper LR function and the proper LR parameter
setting for effective DNN training.
To verify whether a given default LR policy is good for the given learning task and dataset under

the chosen DNNmodel, LRBench will select the top N policies from the LR policy database instead
of performing an exhaustive search. Also, for tuning and verification efficiency, we perform the
experiments on N machines in parallel when feasible. Consider the MNIST LeNet classifier with
the NSTEP LR, and N = 5; LRBench will verify this LR policy by comparing NSTEP with the top
five LRs selected in the LR policy database by ranking on the accuracy for all LR policies associated
with MNIST, assuming SIN2 is one of the stored LRs in the database. Since SIN2 achieved higher
accuracy (99.33%) with LeNet, it will be chosen as one of the top five for verification. The five LRs
can be verified in parallel by running the DNN training on MNIST, with verifying each LR policy
on one machine, where SIN2 has the highest accuracy. The output of the LR verification will show
the performance comparison of NSTEP (99.12% accuracy) with the other five selected LR policies
and also recommend SIN2 as the near-optimal replacement LR policy. Our empirical results show
that the choice of N is in general 3–5 for an effective LR verification with a reasonable size of LR
policy database, e.g., over 100 policies.

5.2 Multiple LR Policy Composition

We then focus on how to compose different LR functions and parameters to form composite
LRs. Two types of composite LRs should be considered: one is the homogeneous composite LR
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Table 7. Advanced Composite LRs for CIFAR-10 with CNN3

LR Policy
Accuracy (%)

Category LR Function

Decaying LR NSTEP (k = 0.001, γ = 0.1, l = [60,000, 65,000]) 81.61 ± 0.18

CLR SINEXP (k0 = 0.00005, k1 = 0.006, γ = 0.99994, l = 2,000) 82.16 ± 0.08

Advanced Composite

LR (Homogeneous)
NSTEP-new (k = 0.001, η ∈ [0.0000008, 0.005]) 82.28

Advanced Composite

LR (Heterogeneous)

0–60,000 iter: TRI (k0 = 0.001, k1 = 0.005, l = 2000)

82.5360,000–65,000 iter: TRI2 (k0 = 0.0001, k1 = 0.0005, l = 1000)

65,000–70,000 iter: TRI2 (k0 = 0.00001, k1 = 0.00005, l = 500)

consisting of the same LR function with different LR parameters, and the other one is the hetero-
geneous composite LR that is comprised of different LR functions.
Homogeneous Composite LRs. Recall Table 3 and Figure 2, we have shown several examples
of homogeneous composite LRs. NSTEP is a special case of homogeneous composite LRs with n
different FIX LRs, defined by n fixed LR values, denoted by η0,η1, . . . ,ηn−1, and n training iteration
boundaries l0, l1, . . . , ln−1, such that the LR value is η0 when i = 0, t < l0, and ηi when i > 0 and
li−1 ≤ t < li for i = 1, . . . ,n − 1. In the next set of experiments, we show the effectiveness of using
Change-LR-On-Plateau in LRBench to select, compose, and verify homogeneous composite LRs
by training CNN3 on CIFAR-10 as Table 7 and Figure 6 show.

By setting the initial LR value for the composite LR (NSTEP-new) at 0.001, LRBench will
automatically scale it within the range of [0.0000008, 0.005]. The key difference between this
composite LR (NSTEP-new) and the decaying LR (NSTEP) is that our NSTEP-new allows the

Fig. 6. NSTEP-new LR (CIFAR-10, CNN3).

increase of LR values in the training while
NSTEP will only reduce the LR values. Figure 6
shows the detailed changes of the LR value (left
y-axis) and the Top-1/Top-5 accuracy (right y-
axis). We observe that increasing the LR value
at the beginning phase of training is beneficial,
confirming that LR values should be dynami-
cally updated to accommodate the proper learn-
ing speeds required in different training phases,
instead of decaying throughout the entire train-
ing iterations. Next, by monitoring the training
loss throughout the 70,000 iterations set by the
Caffe CNN3 default training time on CIFAR-10,
we can identify and create a new NSTEP LR policy with improved Top-1 accuracy, compared to
the decaying NSTEP for Caffe CNN3 on CIFAR-10. Also, this homogeneous composite LR (NSTEP-
new) with k = 0.001 and η ∈ [0.0000008, 0.005] provides slightly improved accuracy of 82.28% over
82.16% of the best single-policy LR SINEXP (computed over five repeated runs). It also improves
the best decaying NSTEP accuracy (81.61%) by 0.67%.
Heterogeneous Composite LRs. Table 7 shows the effectiveness of a heterogeneous compos-
ite LR, which is composed by three cyclic LRs from two different CLR functions, TRI and TRI2.
The highest accuracy achieved by this heterogeneous composite LR is 82.53%, improving the best
decaying NSTEP accuracy (81.61%) by 0.92%, and further improving the accuracy (82.28%) of the
NSTEP-new from LRBench by 0.25%. This shows that composite LRs offer great possibilities to
select and compose good LR policies and avoid worse ones.
M-opt LR Verification. Next, we show the other method in LRBench to verify the LR values
by using Formula (7) to calculate the M-opt LR values every M iterations. Here, we set M = 250
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Fig. 7. M-opt LR verification for CIFAR-10 with CNN3.

and perform this set of experiments with training CNN3 for CIFAR-10 using the best decaying
LR, NSTEP, and the above two composite LRs, the homogeneous composite LR (NSTEP-new) and
the heterogeneous composite LR with TRI and TRI2. Figure 7 shows the results. Two interesting
observations should be highlighted. First, the LR values from the heterogeneous composite LR (TRI,
TRI2) matched well with its M-opt LR values, indicating the applied LR values facilitate efficient
model parameter updates. This also explains why this heterogeneous composite LR policy can
achieve the highest accuracy. However, for the NSTEP and NSTEP-new LRs, the two curves show
a certain interval of mismatch, which means that the LR values for this interval are not optimal.
Second, we also observe the benefits of using LRBench for selecting and composing LR policies.
On the one hand, Figure 7(b) further proves that the NSTEP-new dynamically tuned by LRBench
is a good LR policy, demonstrating effectiveness of the tuning principles in LRBench. On the other
hand, through our M-opt LR verification, practitioners can not only verify whether the chosen LR
policy is optimal but also locate the potential improvements.
LRTuning for SVHN.We further perform experiments using LRBench on another dataset, SVHN.
For a new dataset, it still remains a problem as to whether these good LR policies are applicable
to this new dataset if it shares similar features with the existing dataset in the LR policy data-
base, such as the content and data format. We choose the Street View House Numbers (SVHN)
dataset [32] as Figure 5(c) shows to study this problem. SVHN consists of 73,257 training images
and 26,032 testing images with 10 class labels, from 1 to 10. SVHN share more similar contents
with MNIST than CIFAR-10, which is 10 digits (see Figure 5(a)). However, SVHN and CIFAR-10
share the same data format, which is 32 × 32 × 3 size for each image, and they are both colorful
images (see Figure 5(b)). The default neural network in Caffe uses the same CNN3 architecture
with 70,000 training iterations and the batch size of 100. The default LR policy for SVNH is NSTEP
as shown in Table 8. We use the best LR policies that produce the highest accuracy for training
LeNet on MNIST (CLR: SIN2) and for training CNN3 on CIFAR-10 (Advanced Composite LR: TRI,
TRI2) for this set of experiments on SVHN. We measure the highest Top-1 accuracy in Table 8.
Two interesting observations should be highlighted. First, the advanced composite LR (best LR
for CIFAR-10 with CNN3) achieved the highest accuracy 94.23%, indicating that it is effective to
apply the LR policy to a new dataset sharing similar features, such as the same data format and
DNN architecture. Second, even though MNIST and SVHN share the similar contents, the LR pol-
icy (SIN2) producing the highest accuracy on MNIST failed to converge the DNN model on SVHN,
and it ended with only 19.65% test accuracy. Therefore, this set of experiments shows that it is
applicable to use good LR policies for a new learning task from empirical results, which depends
on the specific similarity in the data and/or DNN model between the new dataset and the known
one.
For a new dataset, LRBench can help users efficiently select and compose good LR policies. If the

LR policy database contains the LR tuning results for an existing dataset (or DNN) that is similar
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Table 8. LR Tuning for SVHN with CNN3

LR Policy
Accuracy (%)

Category LR Function

Decaying LR NSTEP (k = 0.001, γ = 0.1, l = [60,000, 65,000]) 93.97

Cyclic LR SIN2 (k0 = 0.00005, k1 = 0.006, γ = 0.99994, l = 2,000) 19.65

Advanced

Composite LR

0–60,000 iter: TRI (k0 = 0.001, k1 = 0.005, l = 2000)

94.2360,000–65,000 iter: TRI2 (k0 = 0.0001, k1 = 0.0005, l = 1000)

65,000–70,000 iter: TRI2 (k0 = 0.00001, k1 = 0.00005, l = 500)

Table 9. LR Tuning for ImageNet with ResNet-18

LR Policy
Top-1 (%) Top-5 (%)

Category LR Function

Fixed LR FIX (k = 0.1) 50.50 76.51

Decaying LR STEP (k = 0.1, γ = 0.1, l = 30 epoch) 68.40 88.37

Advanced

Composite LR

0–5 epoch: FIX (k = 0.1)

69.05 88.76
5–35 epoch: SINEXP (k0 = 0.1, k1 = 0.6, l = 15 epoch, γ = 0.999987)

35–50 epoch: FIX (k = 0.01)

50–60 epoch: FIX (k = 0.001)

to this new dataset (or DNN), LRBench will directly recommend these LR policies for training a
DNN model on this new dataset, which avoids the typical tedious trial-and-error manual tuning.
LRTuning for ImageNet.However, if a new dataset is very different from these existing datasets
stored in the LR policy database, LRBenchwill performLR tuning by performing the LR value range
test and dynamic LR tuning functions to significantly narrow down the LR search space, such as
a reduction by over 90% (see Section 4.1), and quickly deliver good DNN training results, which is
still more efficient than the time-consuming manual tuning process.
For example, ImageNet is one of the large-scale image datasets with over 1.2 million labeled

images and 1,000 classes, which is more complex than the MNIST and CIFAR-10 datasets (see
Figure 5(d)). It is challenging to specify proper LR policies for trainingDNNs on such a large dataset.
Table 9 shows the experimental comparison of three LR policies recommended by LRBench for
training ResNet-18 on ImageNet for 60 epochswith the default batch size of 256.We highlight three
interesting observations. First, the baseline fixed LR (k = 0.1) can train this DNNmodel and produce
50.50% Top-1 and 76.51% Top-5 accuracy. Second, the decaying LR STEP recommended by LRBench
can significantly improve the Top-1 and Top-5 accuracy from 50.50% to 68.40% by 17.9% for Top-1
accuracy and from 76.51% to 88.37% by 11.86% for Top-5 accuracy, compared to the baseline fixed
LR. Third, LRBench can further identify a good composite LR through dynamic LR tuning, which
combines two LR functions, FIX and SINEXP. This advanced composite LR further improved the
Top-1 and Top-5 accuracy of ResNet-18 on ImageNet to 69.05% and 88.76%, respectively.

5.3 Cost-Effective LR Tuning

In some cases, the goal for DNN training is to achieve a target accuracy threshold at a low cost,
such as a smaller number of training iterations. One example is the pruning in Neural Network
Search by [44]. Hence, we show the minimum #Iterations that LRBench took to obtain the desired
target accuracy for MNIST and CIFAR-10 in Table 10. We highlight two interesting observations.
First, it is very hard to achieve the target accuracy with the baseline fixed LRs. For MNIST, only one
fixed LR (FIX, k = 0.01) can achieve the target accuracy of 99.1%with a high cost of the entire 10,000
training iterations. For CIFAR-10, all baseline fixed LRs failed to achieve the target accuracy, which
is 80% for CNN3 and 90% for ResNet-32. Second, cyclic LRs recommended by LRBench can achieve
the desired target accuracy at a lower training cost than other LRs. For MNIST, COS reached the
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Table 10. Cost Comparison of LR Policies for Achieving Target Accuracy

Dataset-Model LR Function #Iter @ Target Acc Speedup

MNIST (LeNet,

Target Acc = 99.1%)

FIX (k = 0.01) 10,000 1.00×
NSTEP (k = 0.01, γ = 0.9, l = [5,000, 7,000, 8,000, 9,000] 10,000 1.00×

POLY (k = 0.01, p = 1.2) 7,000 1.43×
SIN2 (k0 = 0.01, k1 = 0.06, l = 2,000) 3,500 2.86×
COS (k0 = 0.01, k1 = 0.06, l = 2,000) 1,500 6.67×

CIFAR-10 (CNN3,

Target Acc = 80%)

NSTEP (k = 0.001, γ = 0.1, l = [60,000, 65,000] 61,000 1.00×
POLY (k = 0.001, p = 1.2) 59,000 1.03×

TRIEXP (k0 = 0.00005, k1 = 0.006, γ = 0.99994, l = 2,000) 16,000 3.81×
SINEXP (k0 = 0.00005, k1 = 0.006, γ = 0.99994, l = 2,000) 12,000 5.08×

CIFAR-10 (ResNet-32,

Target Acc = 90%)

NSTEP (k = 0.1, γ = 0.1, l = [32,000, 48,000]) 33,000 1.00×
POLY (k = 0.1, p = 1.2) 51,000 0.65×

TRI2 (k0 = 0.0001, k1 = 0.9, l = 2,000) 20,000 1.65×
SIN2 (k0 = 0.0001, k1 = 0.9, l = 2,000) 20,000 1.65×

target accuracy of 99.10% at 1,500 iterations, significantly reducing the training time cost by 6.67×
compared to the baseline fixed LRwith 10,000 training iterations. SIN2 achieves the target accuracy
at 3,500 iterations, also reducing the cost by 2.86×. For training CNN3 on CIFAR-10, the two CLRs,
TRIEXP and SINEXP, achieved the target accuracy of 80.0% at 12,000 and 16,000 iterations, reducing
the training time by 3.81× and 5.08×, respectively, compared to the baseline NSTEP of 61,000
iterations. For ResNet-32, it only took TRI2 and SIN2 20,000 iterations to reach the target accuracy
of 90% on CIFAR-10. Compared to the best decaying NSTEP of 33,000 training iterations, TRI2 and
SIN2 can still significantly reduce the training cost by 1.65×.
Execution Time of LRBench. Overall, LRBench can efficiently identify a good LR policy. If used
from scratch, LRBench may take a couple of minutes to a few days to find a good LR policy, de-
pending on the size of the training dataset and the complexity of the DNN backbone algorithm
used for training. For a small and medium dataset, such as MNIST or CIFAR-10, it takes LRBench
a few minutes or hours to find a good LR policy from scratch. For MNIST, we spend about 5
minutes to obtain a good LR policy for LeNet. For CIFAR-10, both the dataset and the DNN back-
bone algorithm used for training are more complex, and the CIFAR-10 model training usually
takes a much longer time than MNIST. For example, it takes about 12 minutes to train CNN3 on
CIFAR10 while it only takes about 1 minute for training LeNet on MNIST. As a result, LRBench
took about 1 hour to find a good LR policy to train the CNN3 model on CIFAR-10. Moreover, if we
use ResNet-32 for CIFAR-10, given that ResNet-32 takes much longer training time on CIFAR-10
(about 2 hours), LRBench also takes about K × 2 hours to find a good LR policy, where K is the
number of candidate policies that LRBench is configured to use. For large datasets, it takes much
longer time. Using our experimental server, it takes about 10 days on ImageNet for LRBench to
identify a good LR policy, due to both the large dataset and the complex neural network architec-
ture. One way to effectively reduce such time costs is to run LRBench in parallel. Currently, users
can run multiple LR policies in LRBench in parallel; each performs one of the K candidate policies.
We are working on an auto-parallel version of the LRBench to automate such runtime parallelism
optimization.

5.4 Impact of LR Policies on Different Optimizers

The choice of a specific DNN training optimizer is another important hyperparameter in DNN
training. Given that these optimizers still require the LR to control the model parameter updates,
we perform a set of experiments to study how different optimizers will impact on the choice of
LR policies and the overall training performance on accuracy and training time. Tables 11 and 12
show the experimental results with two measurements: (1) the highest accuracy found and (2) the
corresponding #Iterations under the default training iterations of 10,000 for MNIST and 70,000 for
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Table 11. Impact of Different Optimizers (Momentum and SGD) on Training LeNet on MNIST

LR k (k0) k1 γ p l
#Iter@Highest Acc Highest Accuracy (%)

Momentum SGD Momentum SGD

FIX 0.01 10,000 9,500 99.11 98.71

NSTEP 0.01 0.9 5,000, 7,000,
8,000, 9,000, 9,500

10,000 10,000 99.12 ± 0.01 98.63

STEP 0.01 0.85 5,000 10,000 9,500 99.12 98.65

EXP 0.01 0.99994 10,000 9,500 99.12 98.53

INV 0.01 0.0001 0.75 10,000 10,000 99.12 98.58

POLY 0.01 1.2 7,000 8,500 99.13 98.16

TRI 0.01 0.06 2,000 4,000 (2.5×) 8,000 99.28 ± 0.02 99.02

TRI2 0.01 0.06 2,000 4,000 (2.5×) 8,000 99.28 ± 0.01 99.03

TRIEXP 0.01 0.06 0.99994 2,000 4,000 (2.5×) 7,500 99.27 ± 0.01 99.05

SIN 0.01 0.06 2,000 4,000 (2.5×) 8,000 99.31 ± 0.04 99.03

SIN2 0.01 0.06 2,000 4,000 (2.5×) 7,500 99.33 ± 0.02 98.92

SINEXP 0.01 0.06 0.99994 2,000 4,000 (2.5×) 7,500 99.28 ± 0.04 99.06

COS 0.01 0.06 2,000 10,000 9,500 99.32 ± 0.04 99.08

Table 12. Impact of Different Optimizers (Momentum, SGD, Adam) on Training CNN3 on CIFAR-10

LR k (k0) k1 γ p l
#Iter@Highest Acc Highest Accuracy (%)

Momentum SGD Adam Momentum SGD Adam

FIX 0.001 45,000 70,000 4,500 78.62 75.26 69.64

NSTEP 0.001 0.1 60,000, 65,000 62,250 65,250 7,500 81.61 ± 0.18 76.27 69.98

STEP 0.001 0.85 5,000 68,000 69,750 15,000 79.95 71.91 69.58

EXP 0.001 0.99994 70,000 65,250 69,750 79.28 67.91 70.45

INV 0.001 0.0001 0.75 66,000 70,000 8,000 78.87 70.72 70.66

POLY 0.001 1.2 70,000 69,500 0 81.51 80.84 10.13

TRI 0.00005 0.006 2,000 68,000 68,000 4,000 81.75 ± 0.13 79.55 69.15

TRI2 0.00005 0.006 2,000 70,000 70,000 8,000 80.71 ± 0.14 70.93 70.16

TRIEXP 0.00005 0.006 0.99994 2,000 68,000 67,750 12,000 81.92 ± 0.13 75.34 70.71

SIN 0.00005 0.006 2,000 68,000 68,000 24,000 81.76 ± 0.12 80.01 68.01

SIN2 0.00005 0.006 2,000 70,000 68,250 8,000 80.79 ± 0.14 72.16 69.38

SINEXP 0.00005 0.006 0.99994 2,000 52,000 64,750 8,000 82.16 ± 0.08 75.84 68.99

COS 0.00005 0.006 2,000 70,000 70,000 250 81.43 ± 0.14 79.87 10.02

CIFAR-10 with the default batch size set as 100. Concretely, Table 11 shows the choice of Momen-
tum optimizer and SGD optimizer on different LR schedules for training LeNet MNIST models and
Table 12 shows the choice of Momentum, SGD, and Adam optimizers on different LR schedules
for training CNN3 CIFAR-10 models. We make three observations: First, the combo of the momen-
tum optimizer and the composite LR function SIN2 offers the best performance of 99.33% accuracy
with 2.5× faster in the overall training time (10,000/4,000 = 2.5) on MNIST. Second, the combo of
the momentum optimizer and the composite LR function of SINEXP achieves the best accuracy
of 82.16% with 1.35× faster in overall training time (70,000/52,000 ≈ 1.35). Third, the momentum
optimizer combined with a composite LR schedule, such as SIN2 and SINEXP, can boost the overall
training performance on accuracy and training time, followed by SGD optimizer. Adam optimizer
has relatively lower performance no matter which LR schedule is used.
Summary. Through the four sets of experiments, we have shown (i) the selection of the good
LR policies and schedules on different datasets and different DNN backbone algorithms to train a
DNN model on the same dataset (CIFAR-10); (ii) the composition of multi-policy LR schedules for
four different datasets and their corresponding learning tasks with their respective DNN training
algorithms; and (iii) the cost-effective LR tuning with a targeted accuracy.
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LRBench can be utilized for performing semi-automated or automated LR tuning in several ways:
(i) If the user is providing a set of LR functions and/or their LR parameters, the LRBench can be used
to verify whether and which of the LR policies from this given set are good or bad. (ii) A user can
turn on the dynamic LR tuning option in LRBench. This will enable LRBench to set up the LR auto-
tuning module, which monitors the training progress over a sample of the training dataset in every
M iterations (1 ≤ M ≤ T /2) during the totalT training iterations, and dynamically tune the LRs by
switching between the chosen candidate LR functions and the given range of each LR parameter
based on the specific training progress conditions: for example, LRBench may switch to a larger
LR to accelerate the training progress when the training stagnates on the plateau in the middle of
training and switch to a smaller LR to facilitate the convergence of the model training when the
training is close to the end of total training iterations. (iii) When the dynamic tuning is disabled,
LRBench will verify the given candidate LR policies one by one and select the best performing
LR schedule based on the accuracy and training time. (iv) For a new dataset and learning task,
if the user does not have any specific LR policy as the initial candidate, LRBench can help such
users to determine the initial LR functions and the specific LR parameters to use by leveraging
the LR policy database, the LR value range test, the dataset similarity evaluation, and the M-opt
LR auto-tuning method. One of our ongoing efforts is to introduce similarity evaluation methods
for clustering DNN backbone algorithms into different clusters such that the DNN models with
similar impact on the choice of LR schedules will be grouped together.

6 RELATEDWORK

The LR is widely recognized as an important hyperparameter for training DNNs and it is critical
for achieving high test accuracy [30, 36, 42, 45]; however, there are few studies to date dedicated to
this topic. To the best of our knowledge, our work is the first to present a systematic study on the
selection and composition of good LR policies. We also design and implement an LR recommen-
dation tool, LRBench, to help practitioners to systematically select, compose, and verify good LR
policies that best fit their DNN training goals. Besides different LR functions that are introduced
in Section 3, we summarize the related work in the following four respects.
DNN Hyperparameter Search. The hyperparameter search for finding the optimal settings
for different hyperparameters for DNN training is one of the relevant research themes. Exist-
ing general-purpose hyperparameter search frameworks include Ray Tune [28], Hyperopt [7],
SMAC [20], and Optuna [1]. They use general hyperparameter search algorithms, e.g., grid search,
random search, and Bayesian optimization, and provide limited support for LR tuning, such as only
supporting the fixed LR. LRBench can be used in conjunction with these hyperparameter tuning
frameworks. For example, LRBench incorporates the support for Ray Tune, which allows LRBench
to leverage existing hyperparameter tuning algorithms, such as grid search, random search, and
distributed parallel tuning functions, to further improve LR tuning efficiency.
Hypergradient Descent Based LR Adaptation. The hypergradient descent based methods
model the LR as a trainable variable and apply gradient descent to optimize an objective function
w.r.t. this LR variable to perform automatic updates on the LR value during DNN training
[2, 3, 13, 15]. However, these methods introduce an additional hyperparameter, the hypergradient
LR, which still requires careful tuning.
Model-Update-Aware LR Adaptation. Several orthogonal yet complementary studies focus on
improving the DNN training optimizers to adaptively adjust the LR values for each model param-
eter based on the accumulated model updates, such as Adagrad [14], Adam [24], AdaDelta [43],
and ADASECANT [16]. However, these DNN optimizers still require an LR value to control the
model parameter updates (see Section 2). Our experiments in Section 5.4 demonstrate that for these
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optimizers, such as Adam, different LRs still have high impacts on the DNN training efficiency and
model accuracy.
AutomatedMachine Learning (AutoML).AutoML aims to minimize the dependence of manual
labor and human assistance in developing high performance deep learning systems [18, 19, 27, 34,
39]. In addition to hyperparameter optimization [18, 27], recent AutoML efforts include neural
architecture search [44] and AutoML for model compression [19].

7 CONCLUSION

We have presented a systematic approach for selecting and composing good LR policies for DNN
training with three major contributions. First, we build a systematic LR tuning mechanism to dy-
namically tune LR values and verify LR policies with respect to the target accuracy and/or training
time constraints. Second, we develop LRBench, an LR policy recommendation system, to facilitate
efficient selection and composition of LR policies by leveraging different LR functions and param-
eters and to avoid bad ones for a given learning task, dataset, and DNN model. Our experiments
show that both homogeneous and heterogeneous LR compositions are attractive and advantageous
for DNN training. Third, we show that the good LR policies, including the composite LR policies,
are applicable to a new dataset as well as the significant mutual impact of LR policies on different
optimizers through extensive experiments.
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