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Metric Learning as a Service With Covariance
Embedding

Imam Mustafa Kamal “”, Hyerim Bae

bstract—Metric learning as a service MLaaS) represents one
of the main learning streams to handle complex datasets in service
computing research communities and industries. A common ap-
proach for dealing with high-dimensional and complex datasets
is employing a feature embedding algorithm to compress data
through dimension reduction while optimizing intra-class distance.
To create generalizable MLaaS for high-performance artificial
intelligence applications with high-dimensional Big Data, a robust
and meaningful embedding space representation by efficiently op-
timizing both intra-class and inter-class relationships is required.
We developed a novel MLaaS methodology that incorporates co-
variance to signify the direction of the linear relationship between
data points in an embedding space. Our covariance-based fea-
ture embedding architecture introduces three different yet com-
plementary mapping functions: inner-class mapping, intra-class
with semi-inter-class mapping, and intra- and inter-class mapping.
Unlike conventional metric learning, our covariance-embedding-
enhanced approach is more expressive and explainable for com-
puting similar or dissimilar measures and can capture positive,
negative, or neutral relationships. Our MLaaS framework ensures
efficient, composable, and extensible metric learning by supporting
the selection of dimension reduction and data compression meth-
ods. Experiments conducted using various benchmark datasets
demonstrate that the proposed model can obtain higher-quality,
more separable, and more expressive embedding representations
than existing models.
Index Terms—Al-as-a-service, metric learning, semantic
similarity, siamese network, covariance metric.

1. INTRODUCTION

RTIFICIAL intelligence (AI) has penetrated several busi-
A ness, science, and engineering domains, including self-
driving cars, smart manufacturing, smart cities, healthcare di-
agnostics, information retrieval, recommendation systems, and
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cloud resource management. This trend continues to grow, fu-
eled by the services computing infrastructure for delivering Al
as a service [1] for effective resource and value creation [2]
and cognitive intelligence [3], [4]. With the increase in the
amount of high-dimensional data produced by a myriad of
connected objects and the large amount of data required to
train AI models for complex learning tasks, data compression
or dimensionality reduction has become a critical data-efficient
feature engineering process that involves training a deep neural
network algorithm that can accurately preserve the semantic
information and the similarity or distance of high-dimensional
data in a low-dimensional latent embedding space. The notion of
adistance or similarity measure plays a crucial role in deep learn-
ing algorithms for feature engineering. Conventionally, standard
distance metrics, such as euclidean, cosine, and Mahalanobis [5],
are applied by incorporating a priori knowledge of the domain.
However, it is often challenging to devise metrics pertinent to
particular data and tasks of interest.

Metric learning aims to automatically construct task-specific
distance or similarity metrics using weakly supervised data
in a machine-learning fashion. The outcome, which is low-
dimensional data representation, can be used to perform vari-
ous tasks, such as k-NN, clustering, and information retrieval.
Moreover, metric learning can offer a natural solution to various
machine learning problems because it has numerous benefits,
including robustness to noisy data, a high generalization to
unseen categories, the capability of a dimensionality-reduction
model, reliability as a feature extraction model (for fine-tuning
classification), and the ability to operate with small sample
datasets [6]. Accordingly, research into metric learning has
received increasing attention over the past few years and has
been applied to many different fields, such as information re-
trieval [7], recommender systems [8], social media mining [9],
face recognition [10], and speech recognition [11], to name a
few. Siamese [12], Triplet [13], and N-pair [14] networks are
prominent metric learning frameworks. A Siamese network is
trained using two tandem networks with two different input data
to compute their similarity. A triplet network is trained using
three networks to define the similarity between three images, two
of which will be similar (anchor and positive samples), and the
third will be unrelated (a negative example). The N-pair network
is trained using the cosine similarity to calculate the pairwise
distance of N samples, where N > 3. Each of these networks
is able to project high-dimensional data into a low-dimensional
embedding space while preserving data separability. The sam-
ples of different categories must be dissimilar (far from each
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other); whereas the samples from the same categories must
have a similar latent representation. Defining the closeness and
remoteness among data or samples is a non-trivial task for high
dimensional complex data. We argue that the metric learning
with similarity measure is critical for obtaining a meaningful
embedding space representation.

When similarity measures are not given a priori, although a
generic function, such as euclidean distance, can be adopted,
doing so for high dimensional data may produce unsatisfac-
tory results [S]: If two data vectors have no attribute values
in common, they may have a smaller distance than the other
pair of data vectors containing the same attribute values. In
addition, the magnitude of the vectors is not considered, and
only their direction is considered, which is one of the known
drawbacks of the cosine similarity [15]. In practice, this means
that euclidean distance fails to fully capture the differences in
values. To the best of our knowledge, existing metric learning
models tend to explicitly minimize intra-class similarity while
implicitly neglect the importance of inter-class relationship. As a
result, the latent space representation is possibly less meaningful
because it cannot capture the inter-class connections. Moreover,
existing metric learning models, such as Siamese, Triplet, and
N-pair networks often suffer from a low performance under a
particular condition. The Siamese network results in fewer se-
mantic outcomes because it neglects the inter-class relationship.
The triplet network can diverge when the positive and negative
samples have similar features. In addition, the N-pair network
requires a large number of batches to obtain an appropriate result
that is computationally expensive.

In this paper, we propose a novel metric learning method
called CovNet with three original contributions. First, CovNet
employs covariance to determine the relationship between two
pairs of inputs. The covariance signifies the direction of the
linear relationship between the two vectors. By direction, we
are referring to whether the variables are directly or inversely
proportional to each other. Increasing the value of one variable
might have a positive or negative impact on the value of the
other variable. In addition, unlike the cosine similarity, the
covariance subtracts the means before taking the dot product,
making it invariant to shifts. Second, we provide three types of
mapping functions to embody the covariance embedding: inner-
class mapping (IM), inner-class with semi-inter-class mapping
(ISIM), and inner- and inter-class mapping (IIM). Finally, we
conducted extensive experiments on seven benchmark datasets
and demonstrated that CovNet outperforms existing deep metric
learning models, such as Siamese, Triplet, and N-pair networks.
The covariance metric is more expressive than the euclidean
and the cosine similarity metrics because it can capture three
possible relationships between two variables: a positive, neutral,
or negative correlation. Compared with existing metric learning
models, we show that CovNet is semantically richer and more
expressive as it can obtain accurate inner and inter-class relation-
ships. CovNet can be used not only as a framework for delivering
metric learning as a service but also as an efficient method for
data compression or dimensionality reduction, which are criti-
cal for latency reduction and privacy protection in edge-cloud
computing [16].
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An important challenge in designing our metric learning as a
service (MLaaS) architecture is to ensure modularity, compos-
ability, and extensibility in dealing with high-dimensional and
complex data. Our proposed approach aims to provide metric
learning as a service framework, which is efficient and highly
composable, by supporting a suite of neural embedding-based
dimension reduction and data compression methods using the
services computing architecture. By using metric learning as a
service, we can reduce the latency of learning and model delivery
between the cloud and edge layers to incorporate large and
evolving amounts of data. We conjecture that our findings will
contribute to advancements in service computing in the context
of metric learning.

The remainder of this paper is organized as follows. Section IT
reviews the state-of-the-art (SOTA) metric learning models,
from traditional to the latest approaches, and summarizes recent
studies related to Al as a service system. Section III presents the
problem formulation, mapping function (IM, ISIM, and IIM),
network model, and the learning mechanism of the covariance
network (CovNet). The experimental setting, results, and com-
parison with SOTA, along with a discussion, are presented in
Section IV. Finally, we outline some conclusions, implications,
and future directions for this research in Section V.

II. RELATED WORKS

Metric learning is an approach based directly on a similarity
measure that aims to establish a relationship between data points.
The relation provides a semantic similarity such that close data
points will be considered similar, whereas remote data points
will be considered dissimilar. It can also be categorized as a
dimensionality reduction because it maps high-dimensional data
points to a low-dimensional space while preserving its separable
features [17]. Hence, it can also be useful for large-scale data
or multimedia applications, which are ubiquitous in the modern
era. The popularity of metric learning emerged in 2002 with
the pioneering work of Xing et al. [18], who formulated it
as a convex optimization problem. Therefore, several metrics
learning applications in various domains have been introduced
by some scholars, such as medicine, security, social media
mining, speech recognition, information retrieval, recommender
systems, and computer vision. In terms of business, the usage of
metric learning as a service platform, such as recommendation
system and image search similarity, makes consumption and
buying decisions more effective and the user experience more
comfortable by recommending only relevant items. It allows
service providers to predict the customer’s usage behavior by
reusing data mining services.

According to the type of supervision applied during training,
the metric learning model mainly falls into two main categories:
supervised and weakly supervised learning. In supervised learn-
ing, the model is trained using data, where each sample has label
information as a standard discriminative model or classifier.
In summary, the model learns to map data points based on
the label. Thus, the data points in the same label are consid-
ered similar and are placed in a close space representation;
otherwise, they are mapped in a remote space representation.
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Popular supervised metric learning models, such as a linear
discriminant analysis (LDA), margin maximizing discriminant
analysis (MMDA), learning with side information (LSI), rele-
vant component analysis (RCA), and neighborhood component
analysis (NCA). Because supervised metric learning directly
employs a label in defining the similarity among the data points,
the embedding space becomes rigid to the label, is prone to an
overfitting similarly to a standard (deep learning) classifier, has
difficulty capturing the semantic relationship across data points
lying within different categories, and has problems dealing with
new (unlisted) categories. In weakly supervised learning, the
model has access to a set of data points with supervision at the
tuple level (particularly pairs, triplets, quadruplets, or N pairs of
data points). Thus, its mechanism is called weakly supervised
because the model does not directly map the similarity of data
points based on the corresponding label, i.e., the prominent mod-
els of weakly supervised metric learning such as Siamese [12],
Triplet [13], and N-pair [14].

The Siamese network algorithm was first introduced by Brom-
ley et al. [19] to two handwritten signatures in 1994. The model
was defined as a binary classifier to distinguish whether the pair
of data points belonged to the same class or originated in a
different class. Owing to its simplicity and applicability, the
Siamese network has become the most widely used network
by scholars. Zhang et al. [20] developed a content-based image
retrieval framework using a Siamese network. In addition, Qiao
et al. [21] employed a Siamese network to define user identity
linkages through web browsing. Moreover, Yang et al. [22] pre-
sented terahertz image verification using a symmetric Siamese
network. As represented by a binary classification problem, the
Siamese network solely overlooks the inner-class relationship.
Thus, the connection between inter-class data points can be
less semantic. To address this issue, the triplet network was
introduced by Schroff et al. [13] and was originally devised
for face recognition. Herein, the data points are mapped in a
triplet consisting of an anchor and positive and negative data
points; accordingly, the model can learn the similarity of all
possible pairs of data points. Some previous triplet network
applications are as follows. Zhang et al. [23] adopted a triplet
loss for remote-sensing image retrieval. Boutros et al. [24]
implemented a triplet loss for mask-image recognition. Lue et
al. [25] also devised a visible-thermal-person re-identification
framework using triplet loss. Learning the similarity in a triplet
fashion is a promising technique for enhancing the semantic
similarity of inter-class structures. Nonetheless, this mechanism
is challenging to implement. Many scholars show that a triplet
loss often suffers from slow convergence, partially because they
employ only one negative example while not interacting with
the other negative classes in each update [14]. Moreover, if some
positive and negative data points are similar, the performance can
be degraded. Consequently, Sohn and Kihyuk [14] introduced
N-pair networks to solve this problem. In an N-pair network,
the model learns the pairwise distance or similarity between all
possible pairs in N data points. Commonly, N is represented
as the number of batches. Therefore, the network is updated
by calculating the pairwise similarity within a batch. Among
the latest N-pair network applications, Chen and Deng [26]
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utilized N-pair loss for image retrieval and clustering. In ad-
dition, Pal et al. [27] employed N-pair loss in biomedical im-
age classification. Moreover, Espejo et al. [28] extended the
N-pair loss with a (C'n 2 + 1)-pair loss function for keyword
spotting. Indeed, an N-pair network is a promising metric
learning model for obtaining reliable semantic representations.
Nevertheless, the N-pair loss tends to have inferior performance
when the number of batches (N) is small. Moreover, a large
number of batches requires a significantly high computational
cost.

In metric learning, the distance or similarity measure also
plays a crucial role in defining the embedding space. The base
network of a metric learning model commonly produces a vector.
Its value must represent the original input both accurately and
semantically. The standard distance measure used to define the
distance or similarity between vectors is euclidean and cosine.
Nevertheless, these often fail to capture the idiosyncrasies of the
data of interest [29]. Thus, Norouzi et al. [5] introduced a frame-
work for learning a broad class of binary hash functions based on
atriplet ranking loss designed to preserve the relative similarity.
Zhang et al. [15] proposed a spherical embedding constraint
(SEC) to regularize the distribution of the norms. Moreover,
some scholars have recently used distance measures to accom-
plish a better semantic embedding space representation. Xu et
al. [30] used a bi-level distance metric to enhance the similarity
accuracy, and Ye et al. [31] incorporated multi-metric learning
to capture multi-perspective data relationships. Cheng et al. [32]
incorporated metric learning with a CNN model to address the
challenges of within-class diversity and between-class similarity
in remote-sensing images. Based on the above approaches, we
extended this research in another direction. Unlike the previous
studies, we devised an expressive but straightforward method for
determining the relationship between embedding vectors using
covariance metrics.

In recent years, numerous studies have developed Al as a
service and design framework. Cao et al. [33] developed a
convolutional neural network for food recognition within an
edge-computing service infrastructure. Liu et al. [34] introduced
reliable service recommendations and demand predictions using
a deep neural network. Sami et al. [35] proposed deep rein-
forcement learning for intelligent fog and service placement
(IFSP). For Al-as-a-service, Zhang et al. [3] utilized a Q-learning
algorithm to optimize the throughput of Al co-inference in a dis-
tributed setting. Wang et al. [36] introduced a services-oriented
deep learning architecture using various accelerators such as
graphics processing units and field-programmable gate arrays.
Moreira et al. [37] developed an Al-as-a-service architecture,
particularly a CNN, to deliver Al models with a COVID-19
case study. To the best of our knowledge, our study is the first
to build metric learning as a service framework. In addition to
system-level composability and extensibility, our covariance-
embedding-based approach promotes generalization and ex-
plainability, two important functional properties for delivering
metric learning as a service.

i1z —2) (7 = 7)
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cov(z,z') <0 cov(z,z') = 0 cov(z,z") >0

Fig. 1. Covariance between two embedding vectors capturing negative, neu-
tral, and positive correlations.

III. METHODOLOGY

Rather than euclidean distance and cosine similarity, the co-
variance metric is more expressive because it can simultaneously
capture three possible relationships between two variables, as
depicted in Fig. 1. Given two random variables z and 2/, the re-
lationship between them becomes negative when cov(z, 2’) < 0,
neutral or uncorrelated when cov(z, 2") = 0, and positive when
cov(z, 2") > 0. For instance, in the CIFAR-10 dataset, if z is a
latent variable of the bulldog and 2z’ is a puddle, they will have
a positive relationship. Thus, if the z and 2z’ are from the same
category, they are likely to have a strong positive relationship
(cov(z,2") > 0). If the z and 2’ are the latent variables of a
ship and a dog, respectively, they can have a neutral or negative
relationship. Notably, the neutral or negative relationship can be
automatically learned based on the features of the data by the
model employing covariance during training. This value can be
extracted from the original covariance equation, as denoted in
(1), where s represents the total number of variables, Z is the

mean value of z derived from z = —Esﬂ and z’ is given as

7 = —zlz; Therefore, unlike euclidean and cosine similarity
metrics, the covariance metric is invariant to shifts. Moreover,
the covariance metric can capture more information because it
can signify an inter-class relationship. For example, an eagle and
an airplane can still have a positive relationship; however, their
relationship is weaker than that between an eagle and a parrot,
similar to that between a dog and cat.

20 P
/
Zl Zl
Z= , 2= 2
/
Zq71 ZQ*l
=~ J— T
C=0C(z7) = [co c1 Co Co-1|
where ¢; = (2; — 2) (2] — 7). 3)

In this study, because we aimed to obtain both low-
dimensional and expressive embedding representations, which
are represented as vectors (as shown in (2)), the covariance must
be calculated at the vector level. If 2= (2, 21, 22, . . ., Zg—1)
and z" = (20, 21, 25, .-, 2,_1) is a random vector with ¢ — 1

dimension, the covariance between them can be formulated as
-1

cov(Z,7) = Z;j) %2) Where 7 and 7' are the mean
values of the vectors Z and Z”, respectively. Notably, cov(Z, Z”)

yields a scalar value because it is summarized and normalized by
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Y="frog’

=’doe'

@) M

(b) ISIM

Fig. 2. Mapping functions: IM, ISIM, and IIM. Here, = and 2’ are samples
from four categories {0: bird, 1: cat, 2: dog, 3: frog}. The directed arrows indicate
the possible paired combination (labeled as )’) that can be formed between two
samples.

q — 1. Herein, we introduce covariance vector C, as expressed
in (3), instead of a scalar because we cannot directly minimize
cov(z, z') using an optimization algorithm. Thus, element-wise
multiplication between (z; — Z) and (z; — Z’) yields a vector
representing a low-dimensional embedding representation. Sim-
ilar to covariance ( (1)), the summation of all elements in C will
be either positive, zero (uncorrelated), or negative.

A. Problem Definition

Letusdenote X = {xg,z1,...,xy_1} asreal value N witha
p-dimensional space, X € P,and Y = {yo,y1,...,yn—1} as
a label of X. The embedding network (F') will project X into
g-dimensional space (¥ = F'(z)), where 7 € Zand g < p. We
define a pair input {z, 2’ }, where © = x;, 2’ = x;,and i # j. 2’
can also be obtained after 2’ is processed using F'. Subsequently,
we can obtain the covariance vector, represented as a vector,
between Z and Z”’ using (3). By using a mapping function (IM,
ISIM, or IIM), we can obtain a label of X = {x,2'}, which
is represented as )). Note that Y is a raw label whereas Y
represents the final label generated by the mapping function.
The covariance vector C'(Z, 2”) is directly projected to become )
through the function G (G(C(Z,Z")) = )), where G represents
a dense layer with the number of units |)|. When the label is
binary | Y| = 1, and when the label is categorical | )| is equal to
the total number of categories. Unlike the euclidean and cosine
similarity metrics, the covariance operation may result in arange
value of [— 00, 0o]; hence we cannot directly minimize it by using
an optimization algorithm. Thus, we employ a classification
approach to implicitly obtain the covariance value between 2’
and z”.

B. Data Processing and Network Model

Before the network model learns the data, we apply a data
processing technique which is defined as a mapping function.
The original dataset (X and Y') is mapped into pairwise
samples (X and ))) to estimate their covariance. In this study,
we present three types of mapping functions to determine
a paired of sample (X = {z,2'}) and its label ()), namely,
IM, ISIM, and IIM, as illustrated in Fig. 2. Note that X is
an image and ) is a text. In the IM, the data are paired if
they lie in the same class or category. Thus, this mapping
function only learns the inner-class relationship. For instance,
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in the CIFAR-10 dataset, if x is a bulldog, 2’ can be a puddle
({x = bulldog, z = puddle}, Y = 'dog’) and if z is Persian, 2’
can be aragdoll ({x = Persian, 2 = ragdoll}, Y = 'cat’), and so
on. Thus, suppose K is the total number of categories or classes
in a dataset, and the total number of classes in IM (n¢jqss)
is equal to the total number of categories in a dataset (njqss
= 10 in the CIFAR-10 dataset). The detailed IM mapping
algorithm is presented in Algorithm 1. It indicates that the IM
explicitly maximizes the inner-class similarity. Nevertheless, it
can also implicitly minimize the inter-class similarity after the
convergence (when all data points successfully fit with their
corresponding categories). In the ISIM, the data are paired in the
same as in the original Siamese network mapping. Therefore,
there are only two possible labels (binary) for ISIM, namely, a
pair containing the same class category (e.g., {x=dog, z’=other
dog},Y = 1), and a pair consisting of a different class category
(e.g., {z=cat, 2/=dog}, ) = 0). The ISIM is blind in defining
the inter-class relationship. Because it is assumed that the
similarity between a dog and a cat is equal to that between
a dog and an airplane, thus, the capturing of the inter-class
relationship may be explicitly neglected. The detailed ISIM
mapping is presented in Algorithm 2. In the IIM, the data are
paired based on all pair combinations among the categories.
Hence, this mapping function progressively learns both the
inner- and inter-class relationship since it considers all pair
combinations of category. For example, ({x=dog, z'=other
dog}, Y ='dog-dog’), ({z=dog, xz'=cat}, Y ='dog-cat),
({zx=dog, a'=airplane}, Y =’dog-airplane’), ({x=dog,
x'=automobile}, Y = 'dog-automobile’), ({z=dog, 2'=truck},
Y ='dog-truck’), ({z=dog, z'=ship}, Y = 'dog-ship’),
({x=dog, 2'=deer}, ) ='dog-deer’), ({z=dog, z'=bird},
Y ='dog-bird’), {z=dog, a'=frog}, Y ='dog-frog’),
({x=dog, x'=horse}, ) ='dog-horse’), and so forth for
other categories. Note that because the covariance is symmetric,
the order of label does not matter, thus the covariance of
{x = cat,a’ = dog} is equal to {z = dog, 2’ = cat}. The total
number of classes in IIM can be denoted as 1455 = K + (I;
Because all possible combinations in the class categories are
explicitly observed, IIM can learn to maximize and minimize
inner- and inter-class similarities accurately. The detailed IIM
mapping algorithm is presented in Algorithm 3. In addition,
compared with IM and ISIM, IIM mapping can be robust
in extracting the semantic similarity in both inner-class and
inter-class relationships because it learns similarity of all
combinations of categories. However, because the number
of pair combinations can be significantly increased when the
number of categories in a dataset is high, it will become a
classification with a large number of categories. In which, this
is still an active area of research in machine learning [38]. In
addition, unlike IIM, the learning mechanism of ISIM is simpler
since it can be represented as a binary classification problem.
The data format obtained from the processing technique is
a pair input, {z, 2’} with a single label, ). They were trained
in a supervised manner using a network model called CovNet.
Thus, {z, 2’} is processed to estimate the label ). The overall
architecture of CovNet is illustrated in Fig. 3. We define I as
an embedding network represented as a convolutional neural
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Algorithm 1: IM.
33}'3073317-- van-1} Y ={yo.y1, - yn—1}
1 CG = UCGk,Where CGy ={ilys =k}, // 1 cq,

], // initialize X as an empty list
[]} // initialize Y as an empty list

j +random(CGy,) ;
where y; = y;
7 while z; = x;;

8 | X.append({z;,z;});

9 | Y.append(y;);
10 end

// get random z; in CG,

// pair = and z’
// label, note that y; = y;

Algorithm 2: ISIM.

Input: X 3%“0,171,~- s en-1} Y ={yo, Y1, - YN-1}
Output: X,

1 CG = UCGk,where CGy = {ilyi=k}; // 1n Cq,

T is grouped and indexed by ¥y

2 X = [] // initialize X as an empty list
3 [] // initialize Y as an empty list
4 fori(—OtoN—ldo

/* add a matching pair x/
5 do

j(— random(CGyi); // get random z; in CG,
where y; = y;

7 while z; = x;;

8 X. append({xuxj}); // pair x and z’
9 yappend(l), // a matching label, Y =1
/* add a non-matching pair %/
10 do

11 ‘

|

y; < random_int(0,C —1);
Yi # Yj

12 while y; = y;;

13 J < random(CG,,) ;

where y; # y;

14 X.append({z;, z;}) ;

// to make sure

// get random z; in CG

// pair x and z’

15 Y.append(0) ; // a non-matching label, Y =0
16_end
x x'
@ & @
weights
zZ Z'
y
Fig. 3. An example covariance network (CovNet), where the input {z z'}

and output ) are obtained from the mapping function.

network (CNN). We visually present two embedding networks.
However, because they share their weights, they are physically
a single network (F'). As a standard CNN, the model con-
sists of convolutional, max-pooling, batch normalization, and
dropout layers. In the last layer, we employ a global average-
pooling layer to capture the extracted feature generated from the
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Algorithm 3: IIM.

Algorithm 4: Training Procedure of CovNet.

InPUh X :{LE(), L1y eeny fol}/ Y :{y07 Yiy-eey nyl}/
K = total number of category
Output: X, Y

1 CG = UCGk,where CGy ={ilyi=k}; // m cq,

s grouped and indexed by ¥y

z i
2 X = “ ; // initialize X as an empty list
3 )7= “ ; // initialize Y as an empty list
4 fori < Oto N —1do

5 fork < Oto K —1do

6 do

7 j < random(CGyg); // get random a; in

CG having category yg

8 while z; = x;;

9 X.append({z;, x;}) ; // pair @ and '
10 k1 < class index of y; ; // i€ CGy,
1 ko < class index of y; ; // j € CGh,

/* Because the covariance is symmetric, the
label of catfdog is equal to dog-cat x/
12 if kl < k2 then
13 { )i append(str(label(yl))+” ”+str(label(y;)))
// label as a string (E.g. cat-dog,
dog truck, etc.)
14 else
15 Y.append(str(label(y;))+"-"+str(label(y;)))
, // label as a string in ascending order
only (E.g. dog-cat becomes cat-dog)
16 en
17 end
18 end

convolutional layer. Subsequently, a dense layer with L2 normal-
ization (L2 norm.) is applied to obtain the embedding vector (2).
The L2 norm. has also been commonly used in previous metric
learning models because it can result in stability during training.
Thus, because z and z” are already normalized through the L2
norm, if the Zand z” are centered (have zero means), it ((3)) will
have the same result as the cosine similarity. In the tail layer, we
incorporate it with a dense layer ((7) using a softmax (.5) (when
the mapping function is IM or IIM) or sigmoid function (when
the mapping function is ISIM) to determine the class probability.

C. Learning Mechanism

CovNet was trained as a standard neural network with a back-
propagation algorithm. The learning mechanism of CovNet is
described in Algorithm 4. The inputs are X and )/, the values of
which are obtained from the mapping function used (IM, ISIM,
or [IM, as defined in Algorithms 1, 2, and 3, respectively). Note
that each of the samples in X’ consists of tuples {z,z’}, and
is represented as a one-hot vector (in IM and I[IM mapping) and
a binary vector (in ISIM mapping). The output of the algorithm
is the optimum embedding network model (F™). Initially, F’
produces z and 2’ given input x and 2/, respectively. Subse-
quently, we can obtain C(Z,2”), which is formulated in (3).
Then, G, will classify whether C'(Z, Z”) agrees on the same
label. A predefined loss_function calculates the discrepancy loss
between Y and V. If we employ IM and IIM as our mapping func-
tion, the loss_function is the categorical cross-entropy (Lc )
formulated in (4) and (5). However, if we utilize ISIM as our
mapping function, the loss_function is a binary cross-entropy
(Lpg), denoted in (6). For simplicity, the model parameters

Input: X = {{zo,z(}, {z1, 21}, ., {anv_1, 213} Y
=[L’y07y1a"'7yN—1}

Output: [}

1 fori < 1to NoEpoch do

2 Z’::AF;i(x) ; // embedding network extracts Z

3 | 2 =Fy,(2);

s+ | C(7 _"ﬁ Eq.3;

5

6

// embedding network extracts Z’

// extract covariance vector

Y =Gy, (C(Z2"); )

La, (¢, i) =loss_function(), ) ;
supervised loss betwen ) and ﬁ

7 Qi — Ql — nVQil:Qi ;

Q= {¢,v}

// estimate Y

// calculate

// update model parameter,

s end

F( )and G (1)) are wrapped as a single parameter , and will be
updated using a gradient-descent based optimization algorithm.
All aforementioned processes were repeated until reaching the
predefined number of epochs (N o E’poch). Note that, in practice,
the model is trained and updated using a predefined number of
batches.

S(V) = exp” 4
(Vi) = m “)
Lop=— Y Yilog(S(N)) 5)

1=1

Lpp = —[Vog(V)+ (1 -Y)log(1-Y)].  (6)

IV. EXPERIMENTS

This section presents the performance evaluation of our pro-
posed model (CovNets), followed by a comparison and discus-
sion between CovNets and existing metric learning models.

A. Experimental Setting

We evaluated our model on various well-known datasets
including those with natural images (CIFAR-10 [39], Food-
11 [40], Flower-102 [41], and CUB-200 [42]), biomedical im-
ages (Colorectal [43]), and facial images (Adience [44] and
Yale [45]). Sample images from each dataset are illustrated in
Fig. 4. The CIFAR-10 dataset consists of 50,000 32 x 32 pixels
color training images and 10,000 test images, labeled over ten
categories: airplanes, automobiles, birds, cats, deer, dogs, frogs,
horses, ships, and trucks. We obtained 10  of the training set
for the validation set. Food-11 is a dataset containing 16,643
food images grouped into 11 major food categories: bread, dairy
products, desserts, eggs, fried foods, meat, noodles/pasta, rice,
seafood, soup, and vegetable/fruit. The original images had
various dimensions and were split into 9,866 training, 3,430
validation, and 3,347 testing sets. For simplicity, we uniformly
resized the image dimensions to 128 x 128 pixels. We employ
zero-contrast normalization and ZCA whitening as data pre-
processing on Food-11 and CIFAR-10. Colorectal cancer is a
biomedical dataset containing histological tiles from patients
with colorectal cancer. It is made up of 150x 150 pixels color
images from eight classes, i.e., debris, mucosa, tumor, adipose,
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Fig. 4. Dataset overview.

TABLE 1
EMBEDDING NETWORK (F') OF COVNET, SIAMESE, TRIPLET, AND N-PAIR NETWORKS IN ALL DATASETS

CIFAR-10:

Conv(64, 3, Relu) — BN — Conv(64, 3, Relu) — M P(3) — BN — DO(0.5) — Conv(128, 3, Relu) — BN —

Conv(128, 3, Relu) — M P(3) — BN — DO(0.5) — Conv(256, 3, Relu) — BN — Conv(256, 3, Relu)—

Conv(256, 3, Relu) — M P(3) — BN — DO(0.5) — AP — Dense(256, Relu) — BN — DO(0.5) — Dense(100, Tanh) — L2N orm.
Food-11 & Colorectal:

Conv(64,3, Relu) — BN — Conv(64,3, Relu) — MP(3) — BN — DO(0.5) — Conv(128, 3, Relu) — BN—

Conv(128,3, Relu) — M P(3) — BN — DO(0.5) — Conv(256, 3, Relu) — BN — Conv(256, 3, Relu)—

Conv(512,3, Relu) — M P(3) — BN — DO(0.5) — AP — Dense(256, Relu) — BN — DO(0.5) — Dense(100, Tanh) — L2Norm.
Adience:

ZP(5) — FaceNet — Dense(512, Relu) — BN — DO(0.25) — Dense(100, Tanh) — L2N orm.

Yale:

FaceNet — Dense(512, Relu) — BN — DO(0.25) — Dense(100, T'anh) — L2Norm.

Flower-102/CUB-200:

ResNet50 — AP — Dense(256/512) — L2Norm.

stroma, lympho, complex, and empty. The original dataset con-
sisted of 5,000 samples. We randomly split the datasets into
training, validation, and testing sets at a ratio of 70 , 10 , and
20 ,respectively. We reshaped the images into 128 x 128 pixels,
standardized, and normalized to a value range of O—1. Adience
is composed of face images scraped from Flickr.com albums
that were labeled for age and gender. The benchmark uses eight
classes for age groups (0-2, 4-6, 813, 15-20, 25-32, 38-43,
48-53, 60+). A total of 38,740 images were split into five
groups of 4,484, 3,730, 3,894, 3,446, 3,816, and 19,370. The
Yale dataset contains 165 grayscale images of 15 individuals in
GIF format. There were 11 images per subject, 1 for each dif-
ferent facial expression or configuration: center-light, w/glasses,
happy, left-light, without glasses, normal, right-light, sad, sleepy,
surprised, and wink. We preprocessed the Yale and Adience
datasets by cropping and centering on the faces and resized
them into 150x 150 pixels and 160x 160 pixels color images
for the Adience and Yale datasets, respectively. Flower-102 is
a natural image that contains 102 flower categories. The data
are initially divided into 1,020, 1,020, and 6,149 samples for
training, validation, and testing, respectively. CUB-200, which
stands for Caltech-UCSD Birds-200-2011, contains photos of

200 bird species. Ithas 11,788 images, which have been split into
5,994 and 5,794 images for training and testing, respectively. In
the CUB-200, we randomly obtained a 10  validation set from
the training set.

We compared our experimental results with the state-of-art
metric learning models, such as Siamese, Triplet, and N-pair
networks, to assess the effectiveness of our proposed model.
We employed the same embedding network (F') in all models
for a fair comparison, as shown in Table I. Here, Conuv(i, j, k)
denotes a convolutional layer with ¢ number of filters, a kernel
size of j X j, and k activation functions. In addition, M P (%)
is a 2D max-pooling layer with a size of ¢ X ¢, BN is a batch
normalization layer, and DO (%) corresponds to the dropout layer
with probability 7. In addition, AP is a 2D average-pooling
layer, Dense(i, j) represents a dense layer with ¢ neurons and
Jj activation functions. Moreover, Z P (i) indicates zero-padding
with size i. For the Adience and Yale datasets, we employed a
pre-trained network (FaceNet) [13], which is an inception model
trained on the MS-Celeb-1 M dataset, as a backbone network. In
the Flower-102 and CUB-200 datasets, we employed ResNet50
(pre-trained network with ImageNet weights) as a base model
on top of the embedding network (F'). We then added a 2D
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TABLE II
COMPARISON OF NETWORK ARCHITECTURES

3515

Model Input mapping Embeding net. Merging layer  Tail layer Loss function
CovNetvl IM Fiataset Covariance SDOefrtlrsr?sZ)c lasss Sraotses%(r)lrtir?}iy
CovNetv2 ISIM Faataset Covariance 211;;0?;;1 se(l, Elig:;gntropy
CovNet v3 IIM Fiataset Covariance SD()ef{[lrSrfa(l;l)c lasss cCra(I)tsesge(r)lrtirC(fl}iy
Siamese ISIM Fiataset Euclidean dist. gg;o?;;l se(l, IC(;)(;;ltrastive

Triplet ™" Flataset Triplet dist. - Triplet loss

N-pair M Flotaset _ _ N-pair cosine

similarity

* Triplet mapping.

global-average-pooling (AP) layer and a dense layer. The dense
layer has 256 and 512 units of neurons, which represent the
length of the vector z for Flower-102 and CUB-200, respectively,
as shown in Table L.

The overall network architecture of all models is summarized
in Table II. The value of F' can vary based on the dataset, which
is referred to in Table 1. Here, CovNet v1 and CovNet v3 have
different properties in both the input mapping and tail layer. In
this case, CovNet v1 utilizes IM, whereas CovNet v3 employs
IIM, which is notably more complex than IM. Because 7.4
is defined by all pair combinations of the class label in CovNet
v3, the n.,ss of the CovNet v3 value is significantly higher
than that of CovNet v1. The n;,ss of CovNet vl is equal to the
total number of class categories. In addition, CovNet v2 has the
same architecture as the Siamese network except in the merging
layer, which is represented as a binary classification. Both triplet
and N-pair networks are more straightforward than the others
because they do not have a tail layer. Nevertheless, their learning
mechanism can be trickier because triplet and N-pair losses are
directly optimized during the training phase. We employed batch
sizes of 128, 128, 32, 64, 16, 32, and 32 for the CIFAR-10,
Food-11, Colorectal, Adience, Yale, Flower-102, and CUB-200
datasets, respectively. For CovNet vl in Flower-102, we em-
ployed 16 as the batch size. Each network, except the network for
Flower-102 and CUB-200, which was trained with 100 epochs,
was trained for 200 epochs using Adam optimization. An early
stopping mechanism was executed when the best model was
obtained based on the validation sets.

Sl

accuracy = N < & (7)
j ) = 17 j;lj - yi
g {0, otherwise ®

B. Near Neighbor Analysis

The outcome of an embedding network is commonly repre-
sented as a vector having a significantly lower dimension than
the original input. The main objective of the embedding method

is to preserve the data separability in the embedding space to
be the same as possible as in the original space. Accordingly,
any machine learning task with complex and large dimensional
datasets, such as images, can be simply solved using the near
neighbor algorithm. Eq. (7) measures the accuracy of the near
neighbors of each point in the embedding space based on the
corresponding label, where k represents the number of neigh-
bors, and NV is the total number of data. The 017 value is 1 when
the data point and the predicted neighbor have the same label;
otherwise, it is zero, as shown in (8). Note that the denominator
of (7)is N x k, which represents the total number of neighbors
of each sample in the dataset. In this study, we employed a simple
k-nearest neighbor algorithm with cosine similarity to measure
the closeness among the points (represented as vectors) in the
embedding space.

The £ nearest neighbor performance of the embedding net-
work for all models is shown in Fig. 5. In general, the accuracy
decreases slightly with increasing values of k (except for Adi-
ence, in which the accuracy is significantly decreased). This
indicates that the higher the value of £ is, the more diverse the
neighbors are. Nevertheless, in real applications, such as search
engines and recommendation systems, users are commonly in-
terested only in the top-10 neighbors. CovNet v3 outperforms
other methods in all datasets with a small number of categories
because it explicitly minimizes the inner-class separability and
maximizes the inter-class diversity using [IM. In a small number
of categories, a Siamese network is the most competitive existing
method for the proposed models. However, it has a slightly lower
performance compared to the other approaches in the Adience
and Yale datasets, which used a pre-trained network. In com-
parison, both Siamese and CovNet v2 utilized a binary repre-
sentation, which implicitly neglected the inter-class relationship.
However, CovNet v2 is generally better than a Siamese network.
Thus, we can reveal that employing covariance in the merging
layer is more robust than the euclidean distance. The triplet
network for both Food-11 and Colorectal has worse performance
than the other models. This is because some samples in different
classes can be nearly similar, as shown in Fig. 4; for example,
images labeled 3 and 6 in Food-11 are on the same plate, and
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Fig. 5. Effect of varying k (nearest neighbor) on image search accuracy.

those labeled 6 and 7 in colorectal have nearly similar charac-
teristics. Accordingly, the distance between anchor-positive and
anchor-negative can be inconsistent. In addition, the N-pair with
a small batch achieves a low performance. By contrast, if we
increase the number of batches to 1000 (N-pair(1000)), its per-
formance significantly increases. However, the computational
cost is considerably increased. In addition, the performance of
CovNet v3 was degraded for datasets with a large number of
categories (Flower-10 and CUB-200) because the number of
paired class comparisons can be significantly increased, making
it more challenging for the model to maximize and minimize
inter- and intra-class similarity, respectively.

The Triplet and N-pair models show significantly different
performances compared to others in the CIFAR-10 and Food-11
datasets. This is mainly because (1) they did not use a pre-trained
model, unlike in other datasets (Adience, Yale, Flower-102,
and CUB-200); (2) unlike the Colorectal dataset, CIFAR-10
and Food-11 are natural and complex images with various
backgrounds. Moreover, converging of the Triplet network with
triplet loss, as reported in [46], is challenging when it encounters
natural and complex images because it can result in inconsis-
tent distance between “anchor-positive” and “anchor-negative”
samples during training. The triplet network uses triplet loss
to optimize the metric space embedding representation, which
(i) minimizes the distance of the anchor training example to
the positive one (the positive sample is randomly selected in a
batch from the same class), and (ii) maximizes the distance of
the anchor training example to the negative one (the negative
sample is randomly selected in a batch from different classes).
For example, in CIFAR-10, when the anchor sample is a blue car
(class = automobiles), the positive sample is a red truck (class

Flower-102 CUB-200

OO _LCO00 _0000
2P ~3~1~1~12 00000000
ST O 00 00RO i 5y 60

Accuracy
Accuracy

4 4’5 %zq

K
$ éeo 3@0 ée%xé‘&s é
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automobiles) and the negative sample is a blue ship (class
ships). Based on their feature (shape and color) similarity,
the triplet loss can be intractable because the distance from the
anchor to the positive sample is greater than the distance from
the anchor to the negative sample. This particular condition can
also occur in other categories in CIFAR-10 (such as “dog-cat”
and “horse-deer”) and in Food-11 (such as “bread-desserts” and
“friedfood-seafood”) where the distance from the anchor to the
negative sample can be similar with or even shorter than the
distance from the anchor to the positive sample. Thus, it can
be difficult to minimize and maximize inter- and intra-class
similarities, respectively. Meanwhile, as a default setting in
CIFAR-10 and Food-11, the number N in the N pair equals the
number of batch sizes (128). As is known from the N-pair loss,
the more the N, the more sample comparisons are counted to dis-
criminate the inter-class relationship. Unfortunately, in complex
and natural images, such as CIFAR-10 and Food-11, N=128
is not optimum enough to minimize and maximize inter- and
intra-class similarity, respectively. However, if N is increased
to 1,000, as in the N-pair (1,000), it significantly improves the
performance, which is not substantially different from that of
other models.

In addition, the original Siamese network utilized a binary
representation to define the similarity for each sample, where a
pair of samples originating from the same class is labeled one;
otherwise, it is labeled zero. Hence, it disables the capture of
the semantic connections of inter-categories. For example, the
distance between a cat and a dog is the same as that between a cat
and a truck. Moreover, the original Siamese network employs
euclidean distance, which only considers the magnitude to define
the closeness between two embedding vectors; thus, it is prone
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Fig. 6.
the query image, and the irrelevant image result is marked by the red box.

to yield unsatisfactory results [5]. In contrast, in the cosine
similarity used in the N-pair, the magnitude of the vectors is
not considered, and only their direction is considered, which is
a known drawback of cosine similarity [15]. Our covariance em-
bedding considers both magnitude and direction in defining the
closeness between two embedding vectors in a low-dimensional
space. It considers magnitude because each element of the
vector is subtracted by its mean value, whereas it considers
the direction because it is the same as cosine similarity, which
can be represented as a dot product between two normalized
vectors. Furthermore, the intra-class similarity is enhanced, or
inter-class dissimilarity is improved, in our CovNets because,
unlike the existing models, we provide a more comprehensive
paired comparison for counting the closeness among embedding
vectors, namely, IM, ISIM, and IIM.

As a service, the goal of computing technology is to per-
form business services more efficiently and effectively. Nowa-
days, many real-world applications must deal with large-scale
datasets, such as image similarity searches and content-based
recommendation systems. Thus, metric learning can be efficient
because it can project high-dimensional images into a small
vector. A vector representation must also reflect the original data
effectively. One of the interesting applications of near-neighbor
(or similarity) problems is image search similarity. In this case,
given a query image, the model retrieves k similar images as
the query image. The visualization of the image similarity is
illustrated in Figs. 6 and 7. The first column (yellow box)
represents the query image, whereas the remaining columns
correspond to the top-10 similar images. The red box represents
irrelevant images based on the label of the query image. In
Fig. 6, the irrelevant images mainly occur on dogs-cats and

{b) CovNet v2

e =

(e} Triplet

3517

s | S b LB
Tk ﬁﬂufﬂiﬂﬂﬂ«n

(c) CovNet v3

Cat '

(f) N-Pair

Image search application on CIFAR-10: The first column (yellow box) represents the query image, the remaining columns are the 10 nearest images of

deer-horses, which share similar features. In Fig. 7, because the
label (face age) naturally has an ordinal relationship, the error
commonly occurs in the nearest age; for instance, 15-20 a-olds
are often predicted as 25-32 a-olds. In general, we can infer that
CovNet v3 outperforms the other models. Here, CovNet v1 and
v2 slightly outperformed the Siamese network. Compared with
the triplet and N-pair networks, the Siamese network is more
competitive with our proposed models.

C. Semantic Analysis

In this section, the semantic relationships between both inter-
class separability and inter-class relationships are observed. We
present Fig. 8 as a visualization of the embedding space to
assess inter-class separability. The output of the embedding
network was a vector with 100 dimensions. Accordingly, we
utilized t-stochastic embedding (t-SNE) to project them into a
two-dimensional space. As illustrated in Fig. 8, our proposed
methods have a better embedding space separability compared
with Siamese, Triplet, and N-pair networks. Therefore, we can
reveal that covariance embedding generates separable outcomes
more effectively than the euclidean and cosine similarity metrics.
Note that, unlike the euclidean and cosine similarity metrics,
covariance embedding is more expressive in capturing the rela-
tionship between two inputs because it can reflect the positive,
negative, or even neutral correlation simultaneously. In addition,
for the merging layer (see Table IT), CovNet obtains a vector that
is directly assessed using categorical or binary cross-entropy.
By contrast, other models result in a scalar in the merging layer.
Thus, this mechanism can be more effective in preserving the
data separability in the embedding space because assessing a
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vector (multivariate) as a feature is more effective for guaran-
teeing separability than representing it as a scalar (univariate).
In addition, we argue that a reliable embedding-space repre-
sentation can be assessed not only through inter-class separabil-
ity but also by inter-class relationships. For instance, semanti-
cally, we agree that dog-cat and truck-automobile share similar
shapes and properties. Therefore, a good embedding-space rep-
resentation must also preserve this special proximity property.
This property is useful for content-based recommendation sys-
tems and search engine applications. For better services, in addi-
tion to recommending similar products, it is better if the system
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Visualization of latent separability on CIFAR-10 by projecting an embedding space to a two-dimensional space using t-SNE.

also offers different products that have similar characteristics as
the user query. Consequently, we employed the Pearson corre-
lation method to assess the relationships among the inter-class
images. The results are summarized in a correlation matrix, as
shown in Fig. 9. Compared with other models, our CovNet is
more expressive in describing an inter-class relationship. Unlike
the existing models, the inter-class correlation value is still high,
whereas the value is still lower than the inner-class correlation
value. Inherently, a well-known similar object in CIFAR-10 is
in a different class, such as cat-dog, airplane-bird, deer-horse,
and automobile-truck (red box in Fig. 9). Nevertheless, unlike
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Pearson correlation matrix to capture the semantic relationship among categories on CIFAR-10.

TABLE III
INSPECTION OF EMBEDDING SPACE SEPARABILITY USING A STANDARD CLASSIFIER (SUPPORT VECTOR MACHINE)

Accuracy % (mean =+ standard deviation)

Model
CIFAR-10 Food-11 Colorectal Adience Yale Flower-102 CUB-200

CovNet v1 85.4+0.48 81.24+0.72 84.7+0.53 65.3+049 100.04+0 82.79+0.52 68.20+0.54
CovNet v2 85.2+0.41 79.94+0.70 83.6+0.67 64.4+043 100.0+0 78.41+0.38 65.53+0.37
CovNet v3 86.1+£0.39 82.3+0.65 86.5+0.46 66.0+0.37 100.0+0 84.06+0.62 65.61+0.70
Siamese 85.2+0.42 79.0+0.69 82.1+0.50 64.4+047 100.0+0 74.57+0.66 51.67+0.43
Triplet 74.1+0.61 36.6+094 77.0+£0.73 65.0+0.68 100.0+0 75.04+0.46 62.16+0.40
N-pair 71.7+0.58 48.94+0.74 485+0.65 62.1+0.65 100.0+0 80.07+0.59 65.12+0.51
N-pair(1000) 83.5+£0.35 75.1+£0.67 67.2+£0.59 64.6+£0.37 100.0+0 80.07+0.51 65.14+0.72

our CovNet (particularly v and v3), they have low correlation
values in Siamese, Triplet, and N-pair networks. The correlation
matrix developed using Siamese is slightly similar to that of
CovNet v2 because they have a similar architecture. However,
semantically, CovNet v2 has a slightly higher correlation in
terms of inter-class relationships than Siamese. In the triplet
network, the inter-class correlation value is too aggressive,
and it has a higher magnitude than its inner-class correlation.
Moreover, the N-pair network is too fierce in defining inter-class
relationships, and thus some inner-class correlation values also
become low.

D. Classification and Parameter

Because of their effectiveness, several metric learning mod-
els, such as Siamese, Triplet, and N-pair networks, are com-
monly used for fine-tuning classification. In this study, a metric
learning model acts as a feature extraction network (base model).
Here, we train only a few layers on top of it. Meanwhile, the

weights of the pre-trained network were not updated during
the training. Commonly, we use a deep neural network (DNN)
as the top model to classify the data. However, because of its
stochastic nature, and for the sake of a fair comparison, we
employ a standard classifier, i.e., an SVM with a radial basis
function (RBF) kernel, to classify the embedding outcome.
The classification performances are presented in Table III. In
line with the previous analysis results in the previous sections,
CovNet v3 has the best performance compared with other metric
learning models. Siamese and CovNet v2 have a competitive
performance because their architectures are quite similar. The
triplet network is slightly better than N-Pair, except in Food-11.
In addition, increasing the number of batches in the N-pair net-
work can increase the classification performance, except in the
Yale dataset, which is a relatively small dataset (165 instances).
Thus, it was unaffected by the number of batches. Moreover,
all models become competitive with each other if we utilize
a pre-trained network in the dataset with a small number of
categories, as shown in the Adience and Yale datasets.
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TABLE IV
COMPARISON OF THE NUMBER OF TRAINED PARAMETERS IN EACH MODEL

Number of trainable parameters

Model

CIFAR-10 Food-11  Colorectal ~Adience” Yale' Flower-102f CUB-200"
CovNetvl 1,830,294 2,486,523 2,486,523 119,180 119,887 550,758 1,151,688
CovNetv2 1,829,585 2,485,713 2,485,713 118,673 118,673 525,313 1,050,625
CovNetv3 1,834,839 2,492,078 2,489,078 122,008 130,492 1,874,565 2,451,688
Siamese 1,829,585 2,485,713 2,485,713 118,673 118,673 524,548 1,049,092
Triplet 1,829,284 2,485,412 2,485,412 970,340 128,472 524,544 1,049,088
N-pair 1,829,284 2485412 2,485,412 970,340 128,472 524,544 1,049,088

* Employing FaceNet [13] (pre-trained network) as a base model.
T Employing ResNet50 (pre-trained network) as a base model.

TABLE V
COMPUTATIONAL TIME (SECONDS) COMPARISON OF EACH MODEL IN THE CIFAR-10 DATASET

Model
Phase
CovNet vl CovNet v2 CovNet v3 Siamese Triplet N-pair N-pair(1000)
Mapping functing 0.388 £0.010  0.939+0.007  5.470 = 0.040 0.934+£0.007  1.422+0.015  0.408+0.012  0.411 4+ 0.011
Network training (per-epoch)  16.535 £0.193 31.811 £0.423 102.989 +£1.784 31.697 £0.423 17.248+0.134 18.797+0.182 127.514 4 1.966
Average of training time 16.923 32.750 108.459 32.632 18.669 19.205 127.925
Inference time 2.203 £0.002  2.199£0.002  2.204 £ 0.002 2.201 £0.002 2207 £0.002  2.204 £0.002  2.206 + 0.002

From Fig. 5 and Table III, we can see that even under a large
number of categories in Flower-102 and CUB-200, all three ver-
sions of our CovNet outperformed the existing metric learning
models, such as Siamese, Triplet, and N-pair networks. One of
the main reasons for this is the intelligent use of covariance em-
bedding and comprehensive mapping functions (IM, ISIM, and
IIM) in CovNets for more expressiveness and higher efficiency
in classifying the latent variable (2) in low-dimensional space.

In comparison, unlike the datasets with a small number of
categories, such as CIFAR-10, Food-11, Colorectal, Adience,
and Yale, CovNet v1 tends to perform better than CovNet v2 and
CovNet v3. One reason for this is that the inter-class relationship
in CovNet v2 is only captured using a binary setting. Hence,
a larger number of categories will make the optimization of
maximizing inter-class similarity more challenging. Meanwhile,
the number of pairing combinations among all classes increased
significantly for the datasets with a large number of categories.
Hence, CovNet v3 exhibited a lower accuracy performance. The
technical challenge for metric learning is, to some extent, similar
to deep learning for classification tasks, which tends to degrade
performance when a large number of categories are involved in
classification learning. The Siamese network uses the euclidean
distance, which only considers the magnitude to calculate the
distance between the latent variables (z), where the latent vari-
able size (z length) is 256 and 512; thus, it has an inferior
performance than those of others. Moreover, there is a positive
relationship between the number of pair comparisons (N) and
the accuracy when we increase N, the number of categories,
i.e., when we perform triplet (three-pair comparison), N-pair (32
pair comparison), and N-pair (1,000 comparisons). However, the
difference in accuracy between the N-pair and N-pair (1,000) is
relatively small, indicating that it can be saturated if we add more
N because it has reached its optimum value.

In addition, we present a comparison of the number of train-
able parameters in each model, as described in Table IV. In
the dataset with a small number of categories, the number of
parameters in each model is not significantly different. CovNet
v3 has a higher trained parameter because the tail layer has
more neuron units compared with the others, as described in
Section IV-A. CovNet v2 and Siamese have the same number
of parameters because they have the same architecture except
for the merging layer. The merging layer in Table II has no pa-
rameters. The triplet and N-pair networks have the least number
of parameters because the triplet loss and cosine similarity loss
can be directly optimized such that a tail layer is not required.
Nevertheless, their performance is significantly lower than that
of the other models. The numbers of parameters in the Adience,
Yale, Flower-102, and CUB-200 datasets are less than the others
because they employ a pre-trained network as a base model.

Finally, we compared the computational times for each model,
as listed in Table V. The training phase consists of the processing
time of the mapping function and network training. N-pair
(1,000) has the longest total average training time because it
counts the cosine similarity for all possible pair combinations
of 1,000 samples in each batch. CovNet v2 has a similar total
average training time as that of Siamese because it has the same
mapping function and a similar number of network parameters.
Note that Triplet considers counting the similarity among three
samples, while N-pair considers N (128 samples as default in
our study) samples for each pair. Therefore, our CovNet v1 has a
faster total average training time than the others because it only
compares two samples in a pair. The inference time refers to the
processing time required to generate an embedding vector (2)
by the embedding network (F') in the testing set. As shown in
the last row of Table V, all the models have relatively the same
inference time.
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V. CONCLUSION

Metric learning as a service has emerged as one of the main
streams in the services computing research community and
industry. We present CovNet, a novel metric learning method,
as a service framework. By incorporating covariance to signify
the direction of the linear relationship between data points in
an embedding space, our covariance-based feature embedding
architecture leverages three expressive and explainable mapping
functions (inner-class mapping, intra-class with semi-inter-class
mapping, and intra- and inter-class mapping) to learn and
estimate the covariance of data. Our covariance-embedding-
enhanced approach enables metric learning to capture posi-
tive, negative, or neutral relationships and to compute similar
or dissimilar measures with greater expressiveness and bet-
ter interpretability. Through the development of CovNets, we
show two important properties: (1) A desirable metric learning
model should not only separate the dataset based on its cate-
gories but also maintain the inter-class semantic relationship. (2)
Covariance-enhanced embedding can make complex machine-
learning tasks more expressive, more explainable, and more
efficient. For example, by producing covariance embedding, face
verification simply involves thresholding the distance between
two embeddings. Similarly, object recognition, recommender
systems, and image search similarity when producing covariance
embedding with CovNets can be reduced to a k-NN classifica-
tion problem. High-dimensional data clustering with CovNets
feature-engineering through covariance embedding can be re-
duced to alinear-space problem solvable using simple bottom-up
techniques, including agglomerative clustering. Extensive em-
pirical experiments on seven benchmark datasets demonstrate
the effectiveness of CovNets over representative SOTA metric
learning models, such as Siamese, Triplet, and N-pair networks.
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