
Competitive Perimeter Defense of Conical Environments

Shivam Bajaj1, Eric Torng2, Shaunak D. Bopardikar1,

Alexander Von Moll3, Isaac Weintraub3, Eloy Garcia3, David W. Casbeer3

Abstract— We consider a perimeter defense problem in a
planar conical environment in which a single vehicle, having
a finite capture radius, aims to defend a concentric perimeter
from mobile intruders. The intruders are arbitrarily released
at the circumference of the environment and they move ra-
dially toward the perimeter with fixed speed. We present a
competitive analysis approach to this problem by measuring
the performance of multiple online algorithms for the vehicle
against arbitrary inputs, relative to an optimal offline algorithm
that has information about entire input instance in advance.
In particular, we establish two necessary conditions on the
parameter space to guarantee (i) finite competitiveness of any
algorithm and (ii) a competitive ratio of at least 2 for any
algorithm. We then design and analyze three online algorithms
and characterize parameter regimes in which they have finite
competitive ratios. Specifically, our first two algorithms are
provably 1, and 2-competitive, respectively, whereas our third
algorithm exhibits different competitive ratios in different
regimes of problem parameters. Finally, we provide a numerical
plot in the parameter space to reveal additional insights into
the relative performance of our algorithms.

I. INTRODUCTION

This work considers a perimeter defense problem in a

conical environment involving a single vehicle that seeks

to intercept mobile intruders before they enter a specified

region (referred to as the perimeter). This scenario arises

when a UAV is required to tag (or relay critical information

to) intruders (targets) before they reach a specific region

of interest. The intruders are generated at the boundary of

the environment and move radially inwards with fixed speed

toward the perimeter. The vehicle, which has a finite capture

radius, moves with bounded speed (greater than that of the

intruders) with the aim of capturing as many intruders as

possible before they reach the perimeter. This is an online

problem as the number and the arrival location of intruders

is sequentially revealed over time.

Prior works in the area of perimeter defense have either

focused on determining optimal strategies of small number

of agents or consider a stochastic arrival process for the

intruders [1]–[3]. Although these studies provide valuable

insights, they do not address the worst-case performance

where the intruders might coordinate their actions [4].

1S. Bajaj and S. D. Bopardikar are with the Department of Elec-
trical and Computer Engineering, Michigan State University. Email:
bajajshi@msu.edu (Shivam Bajaj)

2E. Torng is with the Department of Computer Science and Engineering,
Michigan State University.

3A. Von Moll, I. Weintraub, E. Garcia and D. Casbeer are with Control
Science Center, Air Force Research Laboratory.

This research was supported in part by the Air Force Office of Scientific
Research Summer Faculty Fellowship Program, Contract Numbers FA8750-
15-3-6003, FA9550-15-0001 and FA9550-20-F-0005 and in part by NSF
Award ECCS-2030556. Approved for public release: distribution unlimited,
case number: AFRL-2021-3011.

In this work, we adopt a competitive analysis tech-

nique [5], to assess online vehicle motion planning algo-

rithms in the worst-case. In competitive analysis, we measure

the performance of an online algorithm, using the concept

of competitive ratio, which we formally define in Section II.

A related area of research is vehicle routing in which

inputs become available over time. Introduced on graphs

in [6], a typical approach requires that the vehicle routes

be re-planned as new information is revealed over time. We

refer the reader to [7] and the references therein for a review

of this literature. In most of the vehicle routing problems, the

input (known as demands) are static, and so, the problem is

to find the shortest route through the demands in order to

minimize (maximize) the cost (reward) such as total time or

number of inputs serviced. However, in perimeter defense

scenarios, the input (intruders) are not static. Instead, they

are moving towards a specified region and thus, this problem

is more challenging than the former. In our previous works,

we introduced perimeter defense problems in circular and

rectangular environments with stochastically generated input,

[3], [8]. The key distinction of this work from the past works

is the characterization of competitiveness for the worst-case

inputs, as opposed to the stochastically generated inputs.

Perimeter defense problems were first introduced for a

single vehicle and a single intruder in [9]. Since then,

perimeter defense has been mostly formulated as a pursuit-

evasion differential game. The multiplayer setting for the

same has been studied extensively as a reach-avoid game in

which the aim is to design control policies for the intruders

and the defenders [10]–[12]. A typical approach requires

computing solutions to the Hamilton-Jacobi-Bellman-Isaacs

equation, which is generally only suitable for low dimen-

sional state spaces and in simple environments [13], [14].

Recent works include [15]–[18]. Authors in [19] propose

a receding horizon strategy based on maximum matching,

[16], [17] consider a scenario wherein the defenders are

constrained to be on the perimeter and [18] extends the reach

avoid game to n-dimensional Euclidean spaces. Previously,

we introduced a perimeter defense problem for linear envi-

ronments based on the use of competitive analysis [20]. The

key distinction of this work from [20] is the geometry of the

environment which yields novel results in terms of optimally

placing the vehicle, role of capture radius and additional

conditions to ensure competitiveness of the algorithms.

The general contribution of this paper is that we consider

a conical environment of unit radius and angle 2θ in which

arbitrary number of intruders are released at the circumfer-

ence of the environment at arbitrary time instances. Upon

release, the intruders move radially inwards with fixed speed

v < 1 with the aim of reaching a conical perimeter of radius

ρ < 1 and angle 2θ. A single vehicle having a finite capture

radius r, moves with maximum speed of unity with an aim to

capture the intruders. Our main contributions are as follows.

We first establish two necessary conditions in the parameter

space for achieving a c-competitive algorithm with a finite c.
Specifically, we characterize the parameter regime in which

no online algorithm is c-competitive and a parameter regime

in which no algorithm can be better than 2-competitive.

Next, we design and analyze three classes of algorithms

and establish their competitiveness. Specifically, we identify

parameter regimes in which the first two algorithms are

provably 1 and 2-competitive, respectively, and the third

algorithm has a finite competitive ratio that varies with the

problem parameters (r, ρ, θ).

This paper is organized as follows. In section II, we

formally describe our problem and define competitive ratio

for online algorithms. Section III establishes the necessary

conditions. In section IV, we design and analyze three

algorithms and establish their competitive ratios, section

V provides additional insights through numerous parameter

space plots and finally, section VI summarizes this work

and outlines directions for future works. For brevity, we only

provide an outline for some of our intermediate results. The

detailed proofs of all results are available in [21].

II. PROBLEM DESCRIPTION

Consider a conical environment of E(θ) = {(y, α) : 0 <
y ≤ 1,−θ ≤ α ≤ θ} which contains a conical region

(referred to as perimeter) R(ρ, θ) = {(z, α) : 0 < z ≤
ρ < 1,−θ ≤ α ≤ θ}, where θ is measured with respect

to y−axis. Intruders are released at arbitrary time instants

at the circumference of the environment, i.e., y = 1. Each

intruder moves radially with a fixed speed v towards the

origin in order to breach the perimeter. The defense consists

of a single vehicle with motion modeled as a first order

integrator1 with a maximum speed of unity and a finite

capture radius r < ρ. A capture circle is defined as a circle

of radius r, centered at the vehicle’s location. An intruder

is captured and subsequently removed from E(θ) if it lies

within or on the capture circle. An intruder is lost if it reaches

the perimeter without being captured by the vehicle.

A problem instance P(θ, ρ, v, r) is characterized by four

parameters: the speed of the intruders, v < 1, the perimeter’s

radius 0 < ρ < 1, the angle that defines the size of

the environment as well as the perimeter, 0 < θ ≤ π
and, the capture radius r < ρ. An input instance I is

a set of tuples consisting of time instant t ≤ T , where

T denotes the final time instant, the number of intruders

N(t) that are released at time instant t, and the arrival

location of each of the N(t) intruders. Formally, I =
{t,N(t), {(1, α1), (1, α2), . . . , (1, αN(t))}}

T
t=0,for any αl ∈

[−θ, θ], where 1 ≤ l ≤ N(t).
An online algorithm A assigns a velocity with at most unit

magnitude to the vehicle as a function of the input I(t) ⊂ I
revealed until time t, yielding the kinematic model, ẋ(t) =
A(I(t)), where x denotes the vehicle’s polar coordinates.

An optimal offline algorithm is a non-causal algorithm which

1The techniques and analysis used in this work can be extended to other
models such as double integrator, and would be addressed in a future work.

computes the velocity of the vehicle at any time t having the

information of the entire input instance I.

Definition 1 (Competitive Ratio) Given a problem in-

stance P(θ, ρ, r, v), an input instance I, and an online algo-

rithm A, let A(I) denote the number of intruders captured by

the vehicle when using A on input instance I. Let O denote

the optimal offline algorithm that maximizes the number

of intruders captured out of input instance I. Then, the

competitive ratio of A on I is defined as cA(I) =
O(I)
A(I) ≥ 1,

and the competitive ratio of A for the problem instance P is

cA(P) = supI cA(I). Finally, the competitive ratio for the

problem instance P is c(P) = infA cA(P). An algorithm

is c-competitive for the problem instance P(θ, ρ, r, v) if

cA(P) ≤ c, where c ≥ 1 is a constant.

Problem Statement: The aim is to establish fundamental

guarantees and to design c-competitive algorithms for the

vehicle with minimum c.

In light of Lemma 1 in [20], it suffices to restrict to

extreme speed algorithms that either move the vehicle with

maximum speed, i.e., unity, or keep it stationary.

III. FUNDAMENTAL LIMIT FOR FINITE c

We will first establish necessary conditions in the space

of problem parameters (θ, v, r, ρ) for finite c. We begin by

providing two properties based on geometry of the environ-

ment. The proof follows directly from the geometry and has

been omitted for brevity (cf. [21] for a complete proof).

Lemma III.1 For a problem instance P(θ, ρ, r, v) with θ <
π
4 , all intruders can be captured if r ≥ ρ tan(θ) by position-

ing the vehicle at
(

ρ
cos(θ) , 0

)

.

We now characterize the minimum time required by the

vehicle to move from one end of the perimeter to the other.

Lemma III.2 The minimum time required by the vehicle to

move from a location such that the capture circle contains

one end of the perimeter, (ρ, θ), to a location such that the

capture circle contains the opposite end of the perimeter,

(ρ,−θ), is 2(ρ sin(θ)− r) if θ < π
2 and 2(ρ− r), otherwise.

We now present our first necessary condition on the

problem parameters for a finite c(P).

Theorem III.3 (Necessary condition for finite c(P)) For

any problem instance P(θ, r, ρ, v) with parameters satisfying

2(ρ sin(θ)− r) >
1− ρ

v
, if θ <

π

2
,

2(ρ− r) >
1− ρ

v
, if θ ≥

π

2
,

there does not exist a c-competitive algorithm for any con-

stant c and no algorithm, either online or offline, can capture

all intruders.

Proof: In this proof, we first construct an input instance

and then determine the number of intruders captured in that

arriving at location (t1,−α1) (resp. (t1, α1)) at time t1. Any

algorithm that has the vehicle arriving at location (t1,−α1)
(resp. (t1, α1)) at time t1 can capture only one intruder from

I2 (resp. (I3)). As the solution is symmetric, we only provide

the explanation for input instance I3. This follows as the

vehicle can capture intruder b if it moves directly to location

(t2, α2) (Fig. 1a). However, as intruder a arrives in at most

ε < L time units, the vehicle will not be able to capture

intruder a (Fig. 1b). An optimal offline algorithm can capture

both the intruders by simply moving to (t1,−α1) at time t1,

capturing intruder b upon arrival and then to (t2,−α2) to

capture intruder a.

For the case when 1−ρ
v

<
√

1 + ρ2 − 2ρ cos(2θ) − 2r,

consider input instances I4 and I5. In I4, intruder a arrives

at time t1 and intruder b arrives at time t1 + ε, where ε =
√

1 + ρ2 − 2ρ cos(2θ)−2r− 1−ρ
v

. In I5, intruder b arrives at

time t1 and intruder a arrives at time t1+ε. Following similar

reasoning as for input instances I2 and I3, it follows that

no online algorithm can capture both intruders from input

instance I4 or I5.

Case (ii): θ > π
2 . Except for when θ = π, the vehicle must

move first to the origin and then to the next intercept point.

Note that, the vehicle will do the same when θ = π. Thus,

in this case, the location (t1, α1) is (1 − r, θ) and location

(t2, α2) is (ρ−r,−θ). Following similar steps as case (i), we

construct input instances I1, . . . , I5 (omitted for brevity) and

show that no online algorithm can capture both the intruders

from those input instances.

In summary, even restricting our input instance to

{I1, . . . , I5}, no online algorithm can capture both intruders

whereas an optimal offline algorithm can capture both the

intruders. This concludes the proof.

We now turn our attention to design of algorithms that

provide sufficient conditions on the competitive ratios.

IV. ALGORITHMS

We start by defining an angular path for the vehicle. Let

the vehicle be located at (x, α) ∈ E(θ) for any 0 < x ≤ 1
and α ∈ [−θ, θ]. An angular path is a circular arc centered

at the origin defined as T (x, β, β) := {(x, β) : β ≤ β ≤ β}

for any β, β ∈ [−θ, θ] such that β ≤ α ≤ β and β 6= β. We

say that the vehicle completes its motion on the angular path

when the vehicle returns to its starting location after moving

along all of the points in T twice. Once to move from the

starting location (x, α) to (x, β) (resp. (x, β)), and second,

to move from location (x, β) (resp. (x, β)) to location (x, β)

(resp. (x, β)) and then back to the starting location (x, α).

A. Angular Sweep algorithm

Angular Sweep is an open loop algorithm, described as

follows. The vehicle starts at location (xS , 0), where xS ∈
[ρ−r
1−aθv

,min{1− r, ρ+ r}], and a = 2 if θ = π and a = 4 if

θ 6= π. This choice for the location xS is justified in [21]. In

Angular Sweep, the vehicle moves on an angular path with

x = xS , β = −θ and β = θ for any θ < π. For θ = π,

the vehicle moves on a circle with xS as the radius and the

origin as the center.

We first define the angular sweep algorithm for θ 6= π. At

time 0, the vehicle first picks a velocity with unit magnitude

and direction tangent to the angular path, oriented to the

right until it reaches (xS , θ). Once it reaches the endpoint,

the vehicle switches direction and moves towards the other

endpoint, (xS ,−θ). From this moment on, the vehicle only

switches direction after it reaches an endpoint. In other

words, the vehicle moves on the angular path T (xs,−θ, θ),
moving towards (xS , θ) at time 0.

We now define the algorithm for θ = π. At time 0, the

vehicle picks a velocity with unit magnitude and direction

tangent to the angular path, oriented to the right. From this

point on, the vehicle keeps on moving in the same direction

for the entire duration, i.e., the vehicle moves on a circle of

radius xS and center as the origin.

Theorem IV.1 (Angular Sweep competitiveness) For any

problem instance P(r, ρ, θ, v) such that

v ≤ min
{ 2r

(ρ+ r)aθ
,

1− ρ

(1− r)aθ

}

, (1)

where a = 2 (if θ = π) or a = 4 (if θ 6= π), with the choice

of any xS ∈ [ρ−r
1−aθv

,min{1−r, ρ+r}], Angular Sweep is 1-

competitive. Otherwise, Angular Sweep is not c-competitive

for any constant c.

Proof: First, if equation (1) holds, then the interval

[ρ−r
1−aθv

,min{1 − r, ρ + r}] is non-empty and well defined.

Thus, it suffices to show that any xS from the said interval

guarantees that Angular Sweep captures every intruder.
Without loss of generality, we assume that, in the worst-

case, at time instant t, the vehicle has just left the location

(xS , θ) and intruder i is located at (xS + r, θ). The vehicle

takes a total of aθxS time units to return to the location

(xS , θ) whereas the intruder takes xS+r−ρ
v

time units to reach

the perimeter. Thus, in order to ensure that the intruder i is

captured and takes time no less than xS+r−ρ
v

, we require

aθxS ≤ (xS + r− ρ)/v and xS ≤ 1− r, respectively, which

holds given that xS ∈ [ρ−r
1−aθv

,min{1− r, ρ+ r}].

For any xS /∈ [ρ−r
1−aθv

,min{1−r, ρ+r}], we can construct

an input instance with stream of intruders always arriving at

(1, θ) such that when the vehicle leaves location (xS , θ), an

intruder is located at (xS+r, θ). Since xS /∈ [ρ−r
1−aθv

,min{1−
r, ρ+ r}], all intruders will be lost and the result follows.

B. Conical Compare and Capture

We now describe Conical Compare and Capture (ConCaC)

algorithm and establish that ConCaC is 2-competitive for

parameter regimes beyond those required for Angular Sweep.
An epoch k is defined as the time interval in which the

vehicle completes its motion on angular path with a specified

distance xC ∈ [ρ−r
1−2θv ,min{ρ+ r, 1−r

1+vθ
}] which is fixed for

all epochs. The choice of xC is justified in [21]. ConCaC sets

the parameters β and β for the angular path at the start of

every epoch. Denote |Sk
right| (resp. |Sk

left|) as the total number

of intruders in the set Sk
right (resp. Sk

left) in epoch k, where

Sk
right(ρ, v) := {(y, β) : ρ+ βxCv < y ≤

min{1, xc + r + (2θ − β)vxC}∀β ∈ [0, θ]} and

Sk
left(ρ, v) := {(y, β) : ρ− βxCv < y ≤ min{1, xc + r

+ (2θ + β)vxC}∀β ∈ (0,−θ]}.

implies the capture circle can contain the entire perimeter.

Thus, by positioning the vehicle at the unique corresponding

resting point, the vehicle can capture all intruders that arrive

in the environment.

After partitioning the environment into ns sectors, SNP

divides the environment into three annuli with width equal

to Dv each. This is equivalent to dividing time into intervals

of duration D each. Specifically, the jth time interval for any

j > 0 is defined as the time interval [(j − 1)D, jD] (Fig.

3). To ensure a finite competitiveness, we require 1−ρ
v

≥
3D, i.e., the intruders require at least 3D time to reach the

perimeter. For any j ≥ 1, let Sj
l be the set of intruders that

arrive in a sector Nl in the jth interval (Fig. 3).

The SNP algorithm (defined in Algorithm 2) is based

on the following two steps: First, select a sector in the

environment with maximum number of intruders. Second,

determine if it is beneficial to switch over to that sector.

These two steps are achieved by two simple comparisons;

C1 and C2 detailed below.

In the first comparison C1 (Line 6 in Algorithm 2),

SNP determines the sector which has the most number of

intruders in the last two intervals as compared to the total

number of intruders in the entire sector in which the vehicle

is presently located. In particular, suppose that the vehicle

is located at the resting point of sector Ni at the j-th

iteration. Corresponding to any sector Nl, we define ηli as

|Sj+2
l | + |Sj+3

l | if l 6= i and |Sj+1
i | + |Sj+2

i | + |Sj+3
i |,

otherwise. Then, SNP selects the sector Nk∗ , where k∗ =
argmaxk∈{1,...,ns}{η

1
i , . . . , η

ns

i }. In case there are multiple

sectors with same number of intruders, then SNP breaks

the tie as follows. If the tie includes the sector Ni, then

SNP selects Ni. Otherwise, SNP selects the sector with the

maximum number of intruders in the interval j + 2. If this

results in another tie, then this second tie can be resolved

by selecting the sector with the least index. Let the sector

chosen as the outcome of C1 be No, o ∈ {1, . . . , ns}.

For the second comparison C2 (Line 7), if the sector

obtained from C1 is No with o 6= i, and the total number

of intruders in the set Sj+2
o is at least the total number of

intruders in Sj+1
i , then SNP moves (Line 8) the vehicle to

the resting point of sector No denoted by (xo, αo), arriving

there in at most D time units. Then the vehicle waits at that

(xo, αo) to capture all intruders in Sj+2
o . Otherwise (i.e., if

Sj+2
o < Sj+1

i or o = i), the vehicle stays (Line 10) at its

current location (xi, αi), captures intruders in Sj+1
i and then

reevaluates after D time units.

At time 0, the vehicle waits for D time units at location

(0, 0) after the first intruder arrives in the environment. Then

the vehicle moves to the sector which has the maximum

number of intruders in S1
i , ∀Ni sectors in the environment

(Line 2). The vehicle then waits until time 3D. To ensure that

no intruder is lost until time 3D, we require ρ
cos(θs)

≤ 2D.

Lemma IV.4 Let the vehicle be located at a resting point

(xi, αi) of a sector Ni, i ∈ {1, . . . , ns}. Then, for any j ≥ 1,

the vehicle always captures intruders in either Sj+1
i or Sj+2

o ,

where No denotes the sector selected by SNP after C1.

Proof: Consider that the sector No = Ni. Then,

Algorithm 2: Stay Near Perimeter (SNP) Algorithm

1 Stay at origin until time D.

2 k∗ = argmaxk∈{1,...,ns}{η
1
i , . . . , η

ns

i }, Ni = Nk∗

3 Move to (xi, αi) and wait until time 3D.

4 Assumes vehicle is at (xi, αi) in sector Ni

5 for each j ≥ 1 do

6 k∗ = argmaxk∈{1,...,ns}{η
1
i , . . . , η

ns

i },

No = Nk∗

7 if No 6= Ni and |Sj+2
o | ≥ |Sj+1

i | then

8 Move to (xo, αo) and then capture |Sj+2
o |

9 else

10 Stay at (xi, αi) and capture |Sj+1
i |

11 end

12 end

according to Algorithm 2, the vehicle stays at its current

position and captures Sj+1
i and the result follows.

Now consider that the sector No 6= Ni. Then there are

two cases: (i) Either the vehicle decides to stay at its current

position for D time interval, i.e., |Sj+1
i | > |Sj+2

o | or (ii) the

vehicle decides to move to the resting point corresponding to

the sector No, i.e., |Sj+1
i | ≤ |Sj+2

o |. In case (i), the vehicle

stays at its current location and captures |Sj+1
i |. In case (ii),

the vehicle spends at most D time units to moves to the

resting point of the sector No and then captures intruders in

the set Sj+2
o . This concludes the proof.

To establish the competitive ratio of Algorithm SNP, we

use an accounting analysis in which captured intervals pay

for the lost intervals or equivalently, captured intervals are

charged for the intervals lost. The following lemmas will

jointly establish the competitive ratio of SNP algorithm.

Lemma IV.5 In algorithm SNP, any two consecutive cap-

tured intervals pay for a total of 3(ns − 1) lost intervals.

Proof: As Lemma IV.4 ensures that the vehicle always

captures an interval of intruders, any two consecutive cap-

tured intervals can be classified into four types (see [21] for

images); (a) stay at the current location and capture both

intervals on the same side, (b) stay at the current location

and capture an interval and then move to the resting point

of No and capture the second interval, (c) move to the

resting point of No and capture both intervals, and finally

(d) move to the resting point of sector No and capture an

interval and then move to the resting point of another sector,

No′ , o′ ∈ {1, . . . , ns} \ {o} and capture an interval.

The explanation for Type (a) captured intervals Sj+1
i and

Sj+2
i is as follows. At time instant jD and (j + 1)D, since

vehicle decides to capture Sj+1
i and Sj+2

i (comparison C1

and C2), it loses Sj+2
l and Sj+3

l intruders from other sectors,

i.e., ∀l ∈ {1, . . . , ns}\{i}. Thus the captured intervals Sj+1
i

and Sj+2
i are charged 2ns − 2 times. The remaining ns − 1

charge is explained as follows. Since the vehicle is currently

located at (xi, αi) it must be that the vehicle captured Sj
i .

This implies that comparison C1 must have yielded sector

Ni at either time instant (j−2)D (if the vehicle was located

at (xl, αl), l 6= i)) or (j − 1)D (if the vehicle was located

at (xi, αi)). Recall that C1 requires at least Sj
i and Sj+1

i

for the comparison. As the vehicle captured Sj
i , the captured

interval Sj+1
i is charged another ns − 1 times for both Sj

l

and Sj+1
l combined for all l 6= i.

Following similar calculations, type (b) captured intervals

Sj+1
i and Sj+3

o are also charged 3(ns−1) times. ns−1 times

to pay for lost intervals Sj
l and Sj+1

l combined and ns − 1
times for lost interval Sj+2

l , ∀l ∈ {1, . . . , ns} \ {i}. The

remaining ns−1 pay is as follows. Once for all lost intervals

Sj+2
i , Sj+3

i , and Sj+4
i combined and ns − 2 pay for lost

intervals Sj+3
l′ , and Sj+4

l′ combined ∀l′ ∈ {1, . . . , ns}\{i, o}
(comparison C1 and C2 at time (j + 1)D).

Type (c) captured intervals Sj+2
o and Sj+3

o pay once for

lost intervals Sj+1
i , Sj+2

i , and Sj+3
i combined as well as

ns − 2 times for the lost intervals Sj+2
l and Sj+3

l , ∀l ∈
{1, . . . , ns} \ {i, o} (comparison C1 and C2 at time jD).

The captured intervals also pay ns−1 times for lost intervals

Sj+4
l for all Nl, l 6= o sectors. Finally, the last ns − 1 pay is

for lost interval Sj
l′ and Sj+1

l′ , ∀l′ ∈ {1, . . . , ns} \ {i} as the

vehicle captured Sj+2
o instead of Sj+1

i (comparison C1).
For type (d) captured intervals, without loss of generality,

consider that after capturing its first interval, Sj+2
o , in sector

No, the vehicle moves back to sector Ni to capture its second

interval Sj+4
i , i.e., No′ = Ni. Type (d) captured interval

Sj+2
o pays once for Sj+1

i , Sj+2
i , and Sj+3

i combined and

ns−2 times for the lost intervals Sj+2
l and Sj+3

l combined,

∀l ∈ {1, . . . , ns} \ {i, o} (comparison C1 and C2 at time j).

The captured interval Sj+4
i pays once for Sj+3

o , Sj+4
o , and

Sj+5
o combined and ns − 2 times for the lost intervals Sj+4

l

and Sj+5
l combined (comparison C1 and C2 at time j +2).

The final pay is ns − 1 times for lost intervals Sj
l′ and Sj+1

l′

combined, ∀l′ ∈ {1, . . . , ns} \ {i} as the vehicle captured

Sj+2
o and instead of Sj+1

i (comparison C1).
Since each type of captured intervals are charged 3(ns−1)

times, the result is established.
We now establish that each lost interval is fully accounted

for by the captured intervals. Since SNP directs the vehicle

to stay at a resting point of any sector for some time interval,

it can be viewed as a sequence of traces, in which the

vehicle spends some number of intervals at one resting point

and some number of intervals at another. Each trace is thus

defined by a set {k1, k2, . . . , kns
}, where each element kl,

l ∈ {1, . . . , ns} denotes the number of intervals that the

vehicle decides to capture by staying at the corresponding

resting point of the sector Nl.

Lemma IV.6 Each lost interval is accounted for by the

captured intervals of SNP algorithm.

Proof: Note that any realization of SNP can be achieved

by the combination of one or more traces as described in

the following cases. Case (i) ki = 3 and kl = 0 ∀l ∈
{1, . . . , ns}\{i}, Case (ii) 0 ≤ ki < 3 and ko = 2 and Case

(iii) ki = 0, ko = 1 and ko′ = 1, ∀o ∈ {1, . . . , ns} \ {i} and

∀o′ ∈ {1, . . . , ns} \ {o}. The idea is to identify all of the

lost and captured intervals in each case and show that each

lost interval is accounted by the captured intervals.
Case (i): Due to comparison steps C1 and C2 at time jD,

the captured intervals Sj+1
i , Sj+2

i and Sj+3
i account for all

of the lost intervals Sj+2
l and Sj+3

l , ∀l ∈ {1, . . . , ns} \ {i}.

There are two sub-cases; sub-case (a) No = Ni at time

instant jD and sub-case (b), there exists a sector No 6= Ni at

time instant jD (comparison C1) such that |Sj+2
o | < |Sj+1

i |
(comparison C2). We first consider sub-case (a). Sub-case

(a) implies that at time instant jD, the total number of

intruders in sector Ni is more than in any other sector

in the environment. Thus, captured intervals Sj+1
i , Sj+2

i

and Sj+3
i account for all of the lost intervals Sj+2

l and

Sj+3
l , ∀l 6= i. In sub-case (b), we account for lost intervals

Sj+2
l , Sj+3

l , ∀l ∈ {1, . . . , ns} \ {i, o} and Sj+2
o , Sj+3

o ,

separately. Lost intervals Sj+2
l and Sj+3

l are accounted for

because |Sj+2
l | + |Sj+3

l | ≤ |Sj+1
i | + |Sj+2

i | + |Sj+3
i | or

equivalently ηli ≤ ηii (comparison C1). Now it remains to

account for lost intervals Sj+2
o and Sj+3

o . Observe that if

there exists a sector No 6= Ni at time instant jD such that

|Sj+2
o | < |Sj+1

i |, then there cannot exist the same No at

time instant (j + 1)D (from comparison C1). Thus, even if

No 6= Ni exists, then the lost interval Sj+2
o is accounted by

Sj+1
i as |Sj+2

o | < |Sj+1
i | (comparison C2). Since, at time

(j+1)D, sector No cannot be selected again, it follows that

ηoi < ηii at time (j + 1)D and thus, Sj+3
o is accounted for.

Case (ii): To account for the lost intervals Sj+ki

l and

Sj+1+ki

l , ∀l ∈ {1, . . . , ns} \ {i}, from comparison C1 and

C2 at time (j+ki)D, the vehicle was supposed to capture all

Sj−2+ki

i , Sj−1+ki

i , . . . , Sj+1+ki

i intervals. While the vehicle

captured Sj−2+ki

i , . . . , Sj+ki

i intervals, it did not capture

Sj+1+ki

i . As ηoi > ηli at time instant (j+ki)D, lost intervals

Sj+ki

l and Sj+1+ki

l , ∀l ∈ {1, . . . , ns} \ {i} are fully ac-

counted for. The remaining lost intervals Sj+1+ki

i , Sj+2+ki

i ,

Sj+3+ki

i Sj+2+ki

l , and Sj+3+ki

l ∀l ∈ {1, . . . , ns} \ {o}
are fully accounted by the captured intervals Sj+2+ki

o and

Sj+3+ki

o because the conditions ηoi > ηii and ηoi > ηli are

satisfied at time instant (j + ki)D (comparison C1).

Case (iii): To account for lost intervals Sj+1
i , Sj+2

i , Sj+3
i ,

Sj+2
l , and Sj+3

l ∀l ∈ {1, . . . , ns} \ {i, o}, the vehicle was

supposed to capture Sj+2
o and Sj+3

o . This follows because

at time instant jD, ηoi > ηii (comparison C1) and |Sj+2
o | ≥

|Sj+1
i | (comparison C2). The vehicle captured Sj+2

o which

accounts for Sj+1
i as |Sj+2

o | ≥ |Sj+1
i |. As the vehicle moved

to capture Sj+4
o′ at time (j + 2)D, it implies that |Sj+4

o′ | ≥
|Sj+3

o | (comparison C2) and thus, Sj+3
o , Sj+2

i , Sj+3
i , Sj+2

l ,

and Sj+3
l are all accounted by the captured interval |Sj+4

o′ |.
Finally, the lost intervals |Sj+4

l |, ∀l ∈ {1, . . . , ns} \ {o
′} are

accounted for as follows: If the vehicle also captures Sj+5
o′ ,

then lost intervals Sj+4
l are accounted for by per case (ii)

(ki = 1). Otherwise (i.e., the vehicle moved to another sector

Nõ, õ 6= o to capture Sj+6
õ), Sj+4

l is accounted for as per

case (iii) as now the lost intervals will be Sj+3
i , Sj+4

i , Sj+5
i ,

Sj+4
l , and Sj+5

l ∀l ∈ {1, . . . , ns} \ {i, o}.

Finally, note that the boundary cases of the first and the

last intervals fall into these cases by adding dummy intervals

S0
i , ∀i ∈ {1, . . . , ns} and SY+1

i , where Y denotes the last

interval that consists of intruders in any sector, each with

zero cardinality. We assume that the vehicle captures all of

the dummy intervals. This concludes the proof.

Fig. 4: Parameter regime plot in (ρ, v) space with r = 0.05, θ = π

3
.

Dashed lines extend to the right. Solid lines extend to the left.

Theorem IV.7 (SNP competitiveness) For any problem in-

stance P(θ, ρ, v, r) that satisfies 3D ≤ 1−ρ
v

and 2
ρ cos(θs)

≤

2D, SNP is 3ns−1
2 -competitive, where ns = dθ/θse, θs =

arctan(r/ρ) and D is defined in (3).

Proof: From Lemma IV.5 and Lemma IV.6 it follows

that, for any given trace of SNP algorithm, every two

consecutively captured intervals pay for 3ns−3 lost intervals

and every lost interval is accounted by two consecutive cap-

tured intervals. Assuming that the optimal offline algorithm

captures all intruder intervals, i.e., 3ns−1, the claim follows.

V. NUMERICAL VISUALIZATION AND OBSERVATIONS

We now provide a numerical visualization of the analytic

bounds derived in this paper. Figure 4 shows the (ρ, v)
parameter regime plot for a fixed capture radius r = 0.05
and θ = π

3 . We have provided additional parameter regime

plots for different values of r and θ in [21].

Since the competitiveness of SNP depends on the number

of sectors, we observe that the parameter regime of SNP

is in regions, where each region corresponds to a specific

competitiveness. As the capture radius r increases or the

angle θ decreases, the number of regions decreases. An

important characteristic for SNP is that it can be used to

determine the tradeoff between the competitiveness and the

target parameter regime for the problem instance.

Figure 4 suggests that for small values of r, SNP has a

relatively large region of utility implying that the smaller the

capture radius, SNP can capture equally fast intruders, but

at the cost of higher competitive ratio. For r = 0.05, SNP is

2.5-competitive for ρ < 0.2. Interestingly, the curve for SNP

extends beyond that of Theorem III.4. We observe that for

high values of ρ, the curve defined by sufficient conditions

for SNP is completely below the curve defined by conditions

of ConCaC suggesting that SNP is ineffective for large ρ. A

similar observation is made for high values of r.

VI. CONCLUSION AND FUTURE DIRECTIONS

This work analyzed the problem wherein a single vehicle,

having a finite capture radius, is tasked to defend a perimeter

in a conical environment from arbitrary many intruders

that arrive in the environment in an arbitrary fashion. We

designed and analyzed three algorithms and established suf-

ficient conditions that guarantee a finite competitive ratio for

each algorithm. As there is a trade-off in covering a larger

parameter regime and achieving a smaller competitive ratio,

the choice of which algorithm to use depends on the problem

parameters and the acceptable bound on competitiveness. We

also derived two fundamental limits on achieving a finite

competitive ratio by any online algorithm.

Key future directions include a cooperative multi-vehicle

scenario with communication and energy constraints.

REFERENCES

[1] A. Von Moll, E. Garcia, D. Casbeer, M. Suresh, and S. C. Swar,
“Multiple-pursuer, single-evader border defense differential game,”
Journal of Aerospace Info. Systems, vol. 17, no. 8, pp. 407–416, 2020.

[2] D. G. Macharet, A. K. Chen, D. Shishika, G. J. Pappas, and V. Kumar,
“Adaptive partitioning for coordinated multi-agent perimeter defense,”
in 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2020, pp. 7971–7977.

[3] S. Bajaj and S. D. Bopardikar, “Dynamic boundary guarding against
radially incoming targets,” in 2019 IEEE 58th Conference on Decision
and Control (CDC), 2019, pp. 4804–4809.

[4] A. Von Moll, D. Shishika, Z. Fuchs, and M. Dorothy, “The turret-
runner-penetrator differential game,” in 2021 American Control Con-
ference (ACC). IEEE, 2021, pp. 3202–3209.

[5] D. D. Sleator and R. E. Tarjan, “Amortized efficiency of list update
and paging rules,” Comm. of ACM, vol. 28, no. 2, pp. 202–208, 1985.

[6] H. N. Psaraftis, “Dynamic vehicle routing problems,” Vehicle routing:
Methods and studies, vol. 16, pp. 223–248, 1988.

[7] F. Bullo, E. Frazzoli, M. Pavone, K. Savla, and S. L. Smith, “Dynamic
vehicle routing for robotic systems,” Proceedings of the IEEE, vol. 99,
no. 9, pp. 1482–1504, 2011.

[8] S. L. Smith, S. D. Bopardikar, and F. Bullo, “A dynamic boundary
guarding problem with translating targets,” in Proceedings of the 48h
IEEE Conference on Decision and Control (CDC) held jointly with
2009 28th Chinese Control Conference, 2009, pp. 8543–8548.

[9] R. Isaacs, “Differential games. a mathematical theory with applications
to warfare and pursuit, control and optimization,” 1965.

[10] M. Chen, Z. Zhou, and C. J. Tomlin, “Multiplayer reach-avoid games
via pairwise outcomes,” IEEE Transactions on Automatic Control,
vol. 62, no. 3, pp. 1451–1457, 2016.

[11] E. Garcia, A. Von Moll, D. W. Casbeer, and M. Pachter, “Strategies
for defending a coastline against multiple attackers,” in 2019 IEEE
58th CDC. IEEE, 2019, pp. 7319–7324.

[12] A. Davydov, P. Rivera-Ortiz, and Y. Diaz-Mercado, “Pursuer coor-
dination in multi-player reach-avoid games through control barrier
functions,” IEEE Control Systems Letters, vol. 5, no. 6, pp. 1910–
1915, 2020.

[13] K. Margellos and J. Lygeros, “Hamilton–Jacobi formulation for reach–
avoid differential games,” IEEE Transactions on Automatic Control,
vol. 56, no. 8, pp. 1849–1861, 2011.

[14] M. Chen, Z. Zhou, and C. J. Tomlin, “A path defense approach to the
multiplayer reach-avoid game,” in 53rd IEEE Conference on Decision
and Control. IEEE, 2014, pp. 2420–2426.

[15] R. Yan, X. Duan, Z. Shi, Y. Zhong, and F. Bullo, “Matching-
based capture strategies for 3d heterogeneous multiplayer reach-avoid
differential games,” Automatica, vol. 140, p. 110207, 2022.

[16] D. Shishika and V. Kumar, “Perimeter-defense game on arbitrary
convex shapes,” arXiv preprint, arXiv :1909.03989, 2019.

[17] S. Velhal, S. Sundaram, and N. Sundararajan, “A decentralized multi-
uav spatio-temporal multi-task allocation approach for perimeter de-
fense,” arXiv preprint, arXiv:2102.07381, 2021.

[18] Y. Lee and E. Bakolas, “Guarding a convex target set from an attacker
in Euclidean spaces,” IEEE Control Systems Letters, vol. 6, pp. 1706–
1711, 2021.

[19] R. Yan, X. Duan, Z. Shi, Y. Zhong, and F. Bullo, “Matching-based cap-
ture strategies for 3D heterogeneous multiplayer reach-avoid differen-
tial games,” 2019, online available at:https://arxiv.org/abs/1909.11881.

[20] S. Bajaj, E. Torng, and S. D. Bopardikar, “Competitive perimeter
defense on a line,” in 2021 American Control Conference (ACC), 2021,
pp. 3196–3201.

[21] S. Bajaj, E. Torng, S. D. Bopardikar, A. Von Moll, I. Weintraub,
E. Garcia, and D. W. Casbeer, “Competitive perimeter defense of con-
ical environments,” arXiv preprint arXiv:2110.04667v2, 2021, online
available at: https://arxiv.org/abs/2110.04667v2.

	I Introduction
	II Problem Description
	III Fundamental Limit for Finite c
	IV Algorithms
	IV-A Angular Sweep algorithm
	IV-B Conical Compare and Capture
	IV-C Stay Near Perimeter (SNP) Algorithm

	V Numerical Visualization and Observations
	VI Conclusion and Future Directions
	References

