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SU(2) geometric phase induced by a periodically driven Raman process
in an ultracold dilute Bose gas
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We propose a practical protocol to generate and observe a non-Abelian geometric phase using a periodically
driven Raman process in the hyperfine ground-state manifold of atoms in a dilute ultracold gas. Our analysis
is based upon recent developments and application of Floquet theory to periodically driven quantum systems.
The simulation results show the non-Abelian gauge transformation and the noncommuting property of the SU(2)
transformation operators. Based on these results, we propose a possible experimental implementation with an
ultracold dilute Bose gas.
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I. INTRODUCTION

The geometric phase is a phase factor acquired by a quan-
tum system during adiabatic cyclic evolution. In 1984, Berry
systematically discussed the geometric phase in nondegen-
erate quantum systems, and such a U(1) Abelian geometric
phase (Berry phase) appears as a phase factor on the non-
degenerate states [1]. Wilczek and Zee generalized Berry’s
work to degenerate quantum systems and showed that a
non-Abelian geometric phase can be obtained [2]. Geometric
phases have been studied in a broad range of physical systems
and they connect to both fundamental and practical appli-
cations. In condensed-matter physics, the geometric phase
and the corresponding gauge structure in the Bloch band are
closely related to the quantum Hall effect [3–6]. In quantum
computing, the non-Abelian geometric phase can be used to
construct non-Abelian holonomic gates [7], which are the
foundation of robust holonomic quantum computing. There
are many experimental realizations of non-Abelian geometric
gates in different quantum systems, such as trapped ions [8,9],
superconducting qubits [10–12], and nitrogen vacancy (NV)
centers [13].

In the study of cold atoms in optical lattices, a geometric
phase and the related Berry curvature of the Bloch band have
been investigated [14–16] and are closely related to the study
of the topology of the Bloch bands. In continuous quantum
gases, the effects caused by the non-Abelian geometric phase
have also been studied in a 87Rb Bose-Einstein condensate
(BEC), where the cyclic evolution of the atomic system was
driven by slowly varying microwave and radio-frequency
(rf) fields [17,18]. Using a resonant tripod scheme, the non-
Abelian adiabatic geometric transformation in the dark state
manifold has also been realized in a metastable neon atom
system [19] and a cold strontium gas system [20].
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To obtain the non-Abelian geometric gauge transformation
and non-Abelian gauge potentials, a quantum system with
degenerate energy levels is necessary. The degenerate mul-
tilevel system in the study of continuous quantum gases is
usually introduced by considering a multipod scheme [21,22]
or a system with a special symmetry property [18,23]. Recent
theoretical works on the Floquet analysis of periodically
driven systems shows that a periodically driven Hamiltonian
can make quantum levels within the same Floquet band de-
generate within the adiabatic approximation, and therefore
one can realize non-Abelian geometric phase effects from a
periodically driven system [24,25].

In this work we propose a practical experimental proto-
col for generating an SU(2) non-Abelian geometric gauge
transformation by a periodically driven Raman process and
observing the SU(2) geometric phase in a pseudo-spin-1/2
system in the ground-state manifold of a noninteracting ultra-
cold Bose gas system, where SU(2) is the group of rotations
of a spin-1/2 system and such a geometric phase results in
a spin rotation in our system. Our analysis is based on the
recent theoretical works [24,25], in which the authors applied
Floquet theory to a system consisting of a spin interacting
with a periodically driven magnetic field. They showed that
when the oscillating magnetic-field vector is slowly changing
in direction, a non-Abelian geometric phase will appear. We
build on this theoretical result by considering a pseudospin
system interacting with a synthetic magnetic field generated
by an optical Raman coupling, and propose an experimental
protocol that may be realized practically. Our simulation
shows that it is possible to measure the non-Abelian geometric
phase using parameter sets that lie within the capabilities of
existing cold atom experiments. Furthermore, we show that
with our protocol one can observe the non-Abelian geometric
phase even in the presence of undesired parameter fluctua-
tions.

Our pseudo-spin-1/2 system consists of two Zeeman sub-
levels in the hyperfine ground-state manifold of an alkali-
metal atom. The periodically driven Raman process is realized
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by applying the product of a low-frequency and a high-
frequency periodic signal simultaneously to the bias magnetic
field, Raman laser intensities, and relative phase between Ra-
man lasers. Our simulation of the time-dependent Schrödinger
equation (TDSE) shows that an SU(2) geometric phase can be
observed and that the evolution operators which generate the
geometric phase are non-Abelian, i.e., [U1,U2] �= 0, whereU1

and U2 are different unitary transformation operators caused
by different geometric phases. Although we use an 87Rb
system as an example, this protocol can be used in other
atomic systems, both bosonic and fermionic, and has the
potential to become a robust quantum control method.

II. NON-ABELIAN GEOMETRIC PHASE IN A
PERIODICALLY DRIVEN SYSTEM

The Floquet analysis of periodically driven quantum sys-
tems has been well studied. We consider a system based on
the periodically driven systems studied in two recent papers
[24,25]. Consider a spin-1/2 system whose Hamiltonian takes
the form

H (t, ωt + θ ) = H̃ (t ) f (ωt + θ ),

where H̃ (t ) = H̃ [�λ(t )] is a Hamiltonian that depends on a set
of slowly varying parameters �λ(t ) = {λμ} (μ = 1, 2, 3, . . .),
and f (ωt + θ ) is a periodic function with driving frequency
ω (period T = 2π/ω) and phase offset θ . For simplicity,
we only consider the harmonic driving case, where f (ωt +
θ ) = cos(ωt + θ ). The evolution of the state follows the
Schrödinger equation

ih̄∂t |ψ (t )〉 = H (t, ωt + θ )|ψ (t )〉. (1)

We can transform the system into a Floquet basis by introduc-
ing a micromotion operator R(t, ωt + θ ) = exp{iS(ωt + θ )},
where S(ωt + θ ) = H̃ (t ) sin(ωt + θ )/h̄ω is the kick operator.
The micromotion operator transforms the system from the
physical basis into the Floquet basis.

Furthermore, we let H̃ (t ) take the form

H̃ = h̄�0r̂(t ) · σ̂ , (2)

where σ̂ = (σx, σy, σz )T is the vector of Pauli operators and
r̂(t ) = r̂[�λ(t )] is a unit vector parametrized by �λ(t ). If we set
�0 as constant, then the Hamiltonian H̃ describes a spin-1/2
system subject to a magnetic field whose direction is slowly
changing. The Hamiltonian in the Floquet basis takes the form

HF = R†(t, θ ′)H (t, θ ′)R(t, θ ′) − ih̄R†(t, θ ′)∂tR(t, θ ′)

= −λ̇μ(ih̄R
†(t, θ ′)∂μR(t, θ

′))

= λ̇μAμ(�λ, θ ′), (3)

where we defined θ ′ = ωt + θ , ∂μ = ∂/∂λμ for fixed θ ′, and
Aμ(�λ, θ ′) = −ih̄R†(t, θ ′)∂μR(t, θ ′) is the gauge potential in
the parameter space.

According to Floquet theory, the Hamiltonian in the Flo-
quet basis can be written as a Fourier expansion of the form

HF =
∑
l

H (l )
F eilθ

′
, l = 0,±1,±2, . . . ,

where H (l )
F = 1

2π

∫ 2π
0 HFe−ilθ ′

dθ ′ is the lth Fourier compo-
nent of HF . If we assume the amplitudes of the matrix
elements of these Fourier components are much smaller than
the driving frequency, i.e.,∣∣〈α|H (l )

F |β〉∣∣ � h̄ω, (4)

then this adiabatic condition allows us to neglect transitions
between different Floquet bands and the evolution of the
system can be approximated by the evolution within a single
Floquet band [25]. Furthermore, we can restrict our attention
to the zeroth (l = 0) Floquet band, since the states in the l �= 0
Floquet bands will evolve like their corresponding states in
the l = 0 band except for an additional U(1) global phase
factor φglobal = lωt . Thus within the adiabatic approximation,
the Hamiltonian in the Floquet basis is well approximated by
the zeroth-order Fourier component and can be written as

H (0)
F = λ̇μA

(0)
μ , (5)

where A(0)
μ is the zeroth-order gauge potential A(0)

μ (�λ) =
1
2π

∫ 2π
0 Aμ(�λ, θ ′)dθ ′.

The zeroth-order component of the Hamiltonian in the
Floquet basis does not depend on the fast driving and thus
can be regarded as the effective Hamiltonian of the spin-1/2
system in the Floquet basis. It takes the explicit form [25]

Heff = h̄[1 − J0(a)]

2
�r × �̇r · �σ

= λ̇μh̄gεi jkri∂μr jσk

= λ̇μA
(0)
μ , (6)

where J0(a) is the zeroth-order Bessel function of the first
kind, a = |2�0(t )|/ω, εi jk is the Levi-Civita tensor (here i,
j, and k stand for x, y, and z), g = 1

2 [J0(a) − 1], and we
have used ∂t = λ̇μ∂μ with fixed θ ′. Note that the zeroth-
order SU(2) gauge potential is A(0)

μ = h̄gn̂ · σ̂ , where A(0)k
μ =

h̄gεi jkri∂μr j and nk = εi jkri∂μr j .
The state in Floquet space is defined as |χ (t )〉 =

R†(t, θ ′)|ψ (t )〉, and the time evolution of the system in the
Floquet space under adiabatic approximation can be written
as

|χ (t )〉 = Ueff (t, t0)|χ (t0)〉, (7)

or in the original basis

|ψ (t )〉 = R(t, θ ′)Ueff (t, t0)R
†(t0, θ

′
0)|ψ (t0)〉,

where Ueff = T exp{− i
h̄

∫ t
t0
Heffdt ′} is the time evolution op-

erator under the adiabatic approximation in the Floquet basis;
and here T stands for time ordering and θ ′

0 = ωt0 + θ .
Using Eq. (6), we can change the time evolution op-

erator Ueff from its time-ordered form into the form of a
path-ordered SU(2) unitary transformation operator Ueff =
P exp{− i

h̄

∫ �λ(t )
�λ(t0 ) A

(0)
μ dλμ}, where P stands for path ordering.

The form of Ueff shows that the evolution of the state only
depends on the path that the parameter �λ takes from its initial
value �λ(t0) to its final value �λ(t ), and does not depend on its
rate of change. If the parameter �λ has cyclic time dependence,
then the path-ordered unitary transformation operator only
depends on the geometry of the closed loop that the parameter
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follows. In this case, the path-ordered operator takes the form
Uc = P exp{− i

h̄

∮
Aμdλμ}, and the system gains an SU(2)

geometric phase (Wilczek-Zee phase).
Unlike the U(1) Berry phase that acts as a commutable

phase factor, the non-Abelian geometric phase can cause pop-
ulation transfer between two eigenstates and two non-Abelian
geometric phase factors related to different closed loops in
the parameter space do not necessarily commute. Usually,
to observe the adiabatic non-Abelian geometric phase, the
system needs to be degenerate in order that all states acquire
the same dynamic phase, which would otherwise make the
geometric phase hard to detect. Therefore, many studies of
non-Abelian geometric phases are done within the degenerate
dark state manifold. However, the physical system defined by
H̃ in this work is not required to be degenerate. The periodic
driving f (ωt + θ ) on the Hamiltonian H̃ introduces a Floquet
band structure to the system, and the energy levels within the
same Floquet band become degenerate under the adiabatic
approximation [24,25]. Since we set our parameters in the
adiabatic regime, the system stays in the same Floquet band,
and the cyclic evolution in the same Floquet band results in a
non-Abelian geometric phase.

III. PERIODICALLY DRIVEN HAMILTONIAN OF THE
ATOMIC SYSTEM

In this section we consider strategies for creating the
periodic Hamiltonian discussed in the previous section using
a Raman process in the ground-state manifold of a 87Rb
atom. The Raman process has a variety of applications in
the study of ultracold atoms, including quantum state manip-
ulation, generating artificial gauge potentials and spin-orbit
coupling, and creating topological defects [26–31]. We con-
sider |1〉 = |F = 1,mF = −1〉 and |2〉 = |F = 1,mF = 1〉 in
the 5 2S 1

2
,F = 1 ground-state manifold of 87Rb to be our

pseudo-spin-1/2 system, as shown in Fig. 1(a). The Raman
process is realized by applying two copropagating circularly
polarized lasers to the ultracold atoms, which are subject to a
weak bias magnetic field oriented along the beam axis (z axis)
[26,27,30,31]. Since the Raman lasers that we consider couple
our pseudo-spin-1/2 states in the 5 2S 1

2
,F = 1 manifold to the

excited states in the 5 2P1
2
,F = 1 and F = 2 hyperfine levels,

the level diagram that we use in our calculation is actually a
W type instead of � type [26]; see Fig. 1(a).

We start with the dipole interaction Hamiltonian H0 =
Ha − �d · �E , where Ha is the Hamiltonian of the atom in the
presence of a bias magnetic field, �d is the atomic dipole
moment, and �E is the laser electric field, taking the form
�E = �Eae−iωat + �Ebe−iωbt + c.c., where ωa and ωb are laser
frequencies. To solve the problem we can go to a rotating
frame defined by the gauge transformation operator U =
diag{eiα1 , eiα2 , eiα3 , eiα4 , eiα5 , eiα6}, where we define

α1 = (ω1 − δ/2)t, α2 = (ω2 + δ/2)t,

α3 = (ω3 − �1)t, α4 = (ω4 − �2)t,

α5 = (ω5 − �3)t, α6 = (ω6 − �4)t .

h̄ωi (i = 1, 2, 3, 4, 5, 6) is the energy of state |i〉 in the bias
magnetic field; and we also define the one-photon detuning

(a () b)
EO

M

Atom
Cloud

F=2

F=1

F=1

FIG. 1. (a) Level diagram of the Raman process that we consider.
We choose |1〉 = |F = 1,mF = −1〉 and |2〉 = |F = 1,mF = 1〉 in
5 2P1

2
,F = 1 manifold as our pseudo-spin-1/2 system. The ground

states are coupled by two Raman lasers a and b with σ+ and σ−

polarizations, respectively. The excited states in the 5 2P1
2
,F = 1 and

F = 2 manifolds that couple to the ground states are |3〉 = |F =
1,mF = 0〉, |4〉 = |F = 2,mF = 0〉, |5〉 = |F = 2,mF = −2〉, and
|6〉 = |F = 2,mF = 2〉. �i, i = 1, 2, 3, 4 are single-photon detun-
ings; δ is the two-photon detuning. (b) The experimental setup we
consider: two Raman lasers merge to form a single beam before they
interact with the atoms.

�i (i = 1, 2, 3, 4) and two-photon detuning δ as

2πδ = ωa − ωb + ω1 − ω2,

2π�1 = ω3 − ω1 + ω2

2
− ωa + ωb

2
,

2π�2 = ω4 − ω1 + ω2

2
− ωa + ωb

2
,

2π�3 = ω5 − ω1 + ω2

2
− ωa + ωb

2
,

2π�4 = ω6 − ω1 + ω2

2
− ωa + ωb

2
. (8)

If we are in the far-detuned regime, namely where the one-
photon detuning is much larger than the decay time of the
excited state, we can adiabatically eliminate the excited states
and get the effective two-level Hamiltonian [26,27,30,31]

W = −h̄

(
ξ11 + δ

2 η12e−iφ

η12eiφ ξ22 − δ
2

)
, (9)

where the matrix elements are defined as

ξ11 = |�a13|2
�1

+ |�a14|2
�2

+ |�b15|2
�3

,

ξ22 = |�b23|2
�1

+ |�b24|2
�2

+ |�a26|2
�4

,

η12 = |�a13�b23|
�1

+ |�a14�b24|
�2

.

Here �ρi j is the Rabi frequency, and it takes the form �ρi j =
−dD1EρCi j/h̄, with ρ = a, b, i = 1, 2, and j = 3, 4, 5, 6. dD1
is the effective dipole moment of the D1 transitions, Eρ is the
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electric field, Ci j is the Clebsch-Gordon coefficient between
states |i〉 and | j〉, and φ = φb − φa is the relative phase
between the two Raman lasers.

Our goal is to construct the periodically driven Hamilto-
nian with a high-frequency driving signal H = H̃ f (ωt + θ ),
or in the harmonic driving case, H = H̃ cosωt , where θ is
taken to be zero for simplicity. Notice that we can rewrite the
effective two-level Hamiltonian Eq. (9) as

W = − h̄[δ + (ξ11 − ξ22)]

2
σz − h̄η12 cosφσx − h̄η12 sin φσy

− h̄(ξ11 + ξ22)

2
1, (10)

where 1 is the 2 × 2 identity matrix. Since we are in the far-
detuned regime, the single-photon detunings are much larger
than the two-photon detuning, the Rabi frequencies, and the
Zeeman splitting between different magnetic sublevels. If we
set the Rabi frequencies to satisfy |�a13| = |�b23|, |�a14| =
|�b24|, and |�a26| = |�b15|, with a bias magnetic field (e.g., 5
G), then ξ11 and ξ22 will be approximately equal. Therefore,
we can further reduce the effective two-level Hamiltonian and
write it as

W ≈ −h̄

(
δ

2
σz + η12 cosφσx + η12 sin φσy

)
,

where we ignored the last term in Eq. (10) since it only affects
a U(1) global phase factor during the evolution.

To create the harmonic driving of the Hamiltonian, we can
modulate the bias magnetic field and η12 as cosωt . In this
case, the effective two-level Hamiltonian W can be regarded
as the desired driven Hamiltonian H , and takes the form

H = −h̄

(
δ̃

2
σz + η̃12 cosφσx + η̃12 sin φσy

)
cosωt,

where δ̃ cosωt = δ and η̃12 cosωt = η12. Now let δ̃ =
2�0 cos�(t ) and η̃12 = �0 sin�(t ), where �(t ) is the slowly
varying parameter. This can be achieved by driving both
Raman lasers as

√| sin�(t ) cosωt | and changing the relative
phase φ = φb − φa between two lasers from φ = � to φ =
π + �, where � is a parameter that does not depend on
fast periodic driving. The periodic Hamiltonian can finally be
written in the desired form

H (t ) = h̄�0r̂ · σ̂ cosωt, (11)

with r̂(�λ) = (− sin� cos�,− sin� sin�,− cos�)T . If we
fix � and slowly drive � in a cyclic manner, namely � =
�t , where � � ω, we will obtain the desired Hamiltonian
[Eq. (2)] that leads to an SU(2) non-Abelian geometric phase.
Note that we take �λ = {�,�} as the set of coordinates on a
unit two-sphere with a time-dependent polar angle � = �t
and a fixed azimuthal angle �. This Hamiltonian describes a
pseudo-spin-1/2 system in a rotating synthetic magnetic field
whose magnitude is modulated.

IV. PRACTICAL EXPERIMENTAL PROTOCOL AND
SIMULATION RESULTS

A. Geometric phase

After realizing the effective two-level periodic Hamilto-
nian in Eq. (11), the dynamics of the system in the rotating
frame follow from the Schrödinger equation [Eq. (1)]. Using
Eq. (6), we find the zeroth Fourier component of the effective
Hamiltonian in the Floquet basis to be

Heff = h̄�gn̂ · σ̂ , (12)

where n̂ = (− sin�, cos�, 0)T , and g = 1
2 [J0(a) − 1] with

a = 2�0/ω. We assume � = �t , � = const. so that �̇ = �,
�̇ = 0. Therefore, the zeroth-order SU(2) gauge potential
takes the form

A(0)
� = −h̄g(sin�σx − cos�σy). (13)

We can write the SU(2) transformation operator as

U (t, t0) = exp{ig(sin�σx − cos�σy)[�(t ) − �(t0)]}. (14)

For cyclic evolution, we get the geometric phase γ = 2mπg,
m = ±1,±2,±3, . . ., and the SU(2) transformation operator
can be written as

Uc = exp{−iγ �n · �σ } = exp{i2mπg(sin�σx − cos�σy)},
(15)

where m is an integer. In the case that we consider, m takes a
negative sign due to the choice of states.

We use a fourth-order finite-difference method to solve
the time-dependent Schrödinger equation (TDSE) [Eq. (1)].
The TDSE [Eq. (1)] describes the dynamics in the rotating
frame, but the evolution operator that causes the geometric
phase is in the Floquet basis. Notice that the micromotion
operator that can transform the rotating basis to the Floquet
basis takes the form R = exp{iH̃ (t ) sinωt/h̄ω}, and it goes to
the identity operator at the end of each cycle of fast driving,
namely sinωTq = 0, with Tq = 2qπ/ω (q = 0, 1, 2, 3, . . .).
Thus if we prepare the system into an eigenstate of H̃ (t0) at the
initial time t0 and turn on the Raman laser and periodic driving
abruptly, the system will start evolving in the Floquet basis. If
we measure the system at the end of each fast driving cycle,
the rotating basis will be already aligned with the Floquet
basis so we get a direct measurement in Floquet space.

B. Experimental setup

To experimentally realize the setup we consider, two co-
propagating Raman lasers along the z axis with left and
right circular polarizations are needed; see Fig. 1(b). Unlike
the usual Raman process, where the Raman laser intensities
are time independent or only have slow time dependence,
here we need to modulate both the laser intensities and the
relative phase between two Raman lasers with a periodic
function that is the product of a low-frequency and a high-
frequency periodic signal. Meanwhile, the magnitude of the
bias magnetic field generated by a Helmholtz coil also needs
to be modulated to provide the periodic two-photon detuning
δ. The driving signal of the bias magnetic field is B = B0 +
�B cos�t cosωt and the Raman laser intensities are pro-
portional to | sin�t cosωt |, respectively; see Figs. 2(a) and
2(b). The relative phase between two Raman lasers follows
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FIG. 2. From top to bottom: (a) driving signal of the magnetic
field, (b) laser intensity, and (c) relative phase between lasers. The
driving parameters are � = 2π × 50 kHz and ω = 2π × 500 kHz.
Here we only show the driving signals for the first 10 μs.

the function π
2 [1 − sgn(sin�t cosωt )], where sgn(x) is the

signum function, as shown in Fig. 2(c).
To realize the desired periodically driven signal of the

parameters, we can first use an arbitrary waveform generator
(AWG) to generate the modulation signals. Then we can
propagate the signals to acousto-optical modulators (AOMs)
to drive the intensity of the Raman lasers and to an electro-
optical modulator (EOM) to drive the relative phase between
the Raman lasers. The parameters that we choose in our sim-
ulation are � = 2π × 50 kHz and ω = 2π × 500 kHz with
the beam waistw = 300 μm, which will not push commercial
AOMs beyond their limits. Finally, the modulation of the bias
magnetic field can be realized by sending the modulation
signal from the AWG to an audio power amplifier, and use
it to drive the Helmholtz coil that generates the bias magnetic
field.

C. Preparation of the states and projection measurements

After describing a potential experimental setup, we discuss
the preparation of the initial states and how to do projection
measurements of the desired quantum state. Our theoretical
framework in this paper is based on a single atom, which
assumes the ultracold Bose gas is dilute enough so that the
interaction between atoms is negligible. In this work, we
consider an ultracold dilute 87Rb Bose gas and we focus on
the 5 2S 1

2
,F = 1 ground-state manifold.

We produce a Bose-Einstein condensate in the |1〉 ≡ |R =
1,mF = −1〉 state and then must transfer the population to
the desired initial state. There are many ways to control the
system and achieve this state preparation. In our laboratory,
we have developed a reliable Raman waveplate method to
achieve state rotations on the Bloch sphere, and we can use
a Raman waveplate pulse to rotate the states and measure
the atomic Stokes parameters [27,30,32]. The waveplate pulse

couples states |1〉 and |2〉 and rotates the system to the initial
state |ψ (0)〉, which is a superposition state of |1〉 and |2〉.
Other than the Raman waveplate, there are also other ways to
transfer the atoms into the desired initial state, such as using a
radio-frequency pulse sequence.

We can use a Stern-Gerlach time-of-flight (TOF) imaging
method to measure the populations in different states. To get
phase information from the system, we need to rotate the
system into the eigenbasis of the x and y axes. This can be
achieved by any high-fidelity π/2 rotation operation around
x and y axes, i.e., Raman waveplate pulses. Generally, if we
ignore the undetectable global phase, the state of the system
can be written as |ψ〉 = c1|1〉 + c2eiβ |2〉, where coefficients
c1 and c2 are real and β is the relative phase. The atomic
Stokes parameters are defined as

S1 = 2c1c2 cosβ,

S2 = 2c1c2 sin β,

S3 = c21 − c22, (16)

and they can be understood as projection measurements on the
x, y, and z axes of the Bloch sphere. The Stern-Gerlach TOF
can be regarded as a measurement of S3, while to measure
the other two atomic Stokes parameters S1 and S2 we need to
apply a π

2 -waveplate pulse to rotate the detection axis to the
x and y axes [32]. From the atomic Stokes parameters we are
able to extract both the population and phase information of
the state.

The Stern-Gerlach TOF imaging happens after we turn the
Raman lasers off, so we are performing the measurement in
a Zeeman basis defined solely by the bias magnetic field.
However, in our calculations we work in a rotating frame.
Thus our final state, which is stationary in the rotating frame,
will acquire an extra phase factor between the |1〉 and |2〉
states of α = α2 − α1 = (ωa − ωb)t in the Zeeman basis.
Since in our experimental setup, the laser frequencies are fixed
and shifted by AOMs, we are able to record the frequency
difference between Raman lasers. Therefore, we can calculate
the extra phase difference at any time when the Raman lasers
are on and eliminate the extra phase factor in data processing.

D. Simulation results

By numerically solving the TDSE Eq. (1), we get the
evolution of the system in the rotating frame by extracting
the points at the end of each fast driving cycle. Also, we
analytically calculate the evolution of the state subjected to
the SU(2) unitary transformation given by Eq. (14) in the
Floquet basis under the adiabatic approximation. As shown in
Fig. 3, the simulation results match the analytical calculations
well. In the upper plot, blue circles and red squares are the
simulation result states of |1〉 and |2〉, respectively. The initial
state is |ψ (0)〉 = |1〉. Dashed lines are results of the analytical
calculation for population transfer. In the lower plot, blue cir-
cles, red squares, and black triangles are simulation results for
atomic Stokes parameters S1, S2, and S3, respectively. Dashed
lines are the analytical predictions. The parameters we use
are maximum laser powers Pa = Pb = 271.7 μW, beam waist
w = 300 μm, magnitude of the time-varying part of the bias
magnetic field �B = 0.368 G, and the bias magnetic-field
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FIG. 3. Simulation results of an SU(2) transformation, where
circles and squares and triangles are simulation results from solving
the TDSE in the rotating frame, and dashed lines are analytical
curves calculated in the Floquet basis under adiabatic approximation.
Upper plot: population transfer; blue and red represent |1〉 and |2〉,
respectively. Lower plot: evolution of the atomic Stokes parameters,
where blue, red, and black represent S1, S2, and S3, respectively. Here
we use the following parameters: maximum laser powers Pa = Pb =
271.7 μW, beam waist w = 300 μm, magnitude of the time-varying
part of the bias magnetic field �B = 0.368 G, and bias magnetic-
field average B0 = 5 G, which results in �0 = 2π × 258.3 kHz. The
driving frequencies are � = 2π × 50 kHz and ω = 2π × 500 kHz.
With the above parameters, the geometric phase results in a Rabi-like
oscillation with a period Tgeo ≈ 80 μs.

average B0 = 5 G, which results in �0 = 2π × 258.3 kHz.
The driving frequencies are� = 2π × 50 kHz and ω = 2π ×
500 kHz. With the above parameters, g = −0.1248, and the
geometric phase produces a Rabi-like oscillation with a period
Tgeo ≈ 80 μs.

Using the atomic Stokes parameter values at the end of the
slow driving cycle, we can calculate the SU(2) transformation
operatorUc. Take t = 20 μs as an example. The atomic Stokes
parameters take values S1 = 0.998, S2 = 0.06315, and S3 =
−0.0014, which give |c1|2 = 0.4993, |c2|2 = 0.5007, and β =
0.063 rad. Therefore, the SU(2) transformation operator at
t = 20 μs is calculated to be Uc = 0.70661 − i(0.0445σx +
0.7062σy), which matches the analytical prediction U theory

c =
(1 − iσy)/

√
2 that describes a π/2 rotation around the y axis

on the Bloch sphere.
After solving for the SU(2) transformation operator, the

next step is to prove the non-Abelian property of the geometric
gauge transformations. We consider two SU(2) transforma-
tion operators

U1 = exp{i2πgσy} ≈ 1√
2
(1 − iσy),

U2 = exp{−i2πgσx} ≈ 1√
2
(1 + iσx ),
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FIG. 4. Non-Abelian property of the evolution operators. From
top to bottom: evolution of the atomic Stokes parameters S1, S2, and
S3, respectively. The evolution operators U1 and U2 are achieved by
using the same parameters as Fig. 3 and setting the relative phase
between Raman lasers as �1 = 0 and �2 = π/2, respectively. The
duration of each evolution operator is τ = 20 μs. Different colors
represent the results for different order of operators: blue, U2U1 and
red, U1U2. Blue circles and red squares represent simulation results
from TDSE, while dashed lines are theoretical predictions. The
different final results for atomic Stokes parameters show [U1,U2] �=
0, which proves the geometric phase that we get is non-Abelian.

which are constructed by turning on the periodically driven
Hamiltonian for t = 20 μs and setting the relative phase
parameter to be �1 = 0 and �2 = π/2, respectively. All the
other parameters are the same as what we used in Fig. 3.
After constructing the SU(2) transformation operators, we
apply them to the initial state |ψ (0)〉 = |1〉, one after another
in different orders U2U1 and U1U2. As shown in Fig. 4,
the difference in the atomic Stokes parameters at the final
time shows that the SU(2) transformation operators that we
construct do not commute, [U1,U2] �= 0, which verifies the
non-Abelian property of the geometric phase.

The geometric phase that we get over one low-frequency
cycle depends on the parameters we choose, as long as the
adiabatic condition Eq. (4) is satisfied. Therefore, we can
easily change the parameters, such as Raman laser intensities,
modulation amplitude of the magnetic field, and the periods
of both low- and high-frequency driving parameters to tune
the geometric phase over a broad range of values. In both
simulation results, we see slight differences of the TDSE
solution from the analytical predictions. This is the joint effect
of the nonzero 1

2 (ξ11 − ξ22) term in Eq. (10) and the quadratic
Zeeman effect, which was ignored in the construction of
the effective two-level Hamiltonian of the Raman process.
The nonzero ξ11 − ξ22 term will introduce an additional term
proportional to | sin�t cosωt |σz in the effective two-level
Hamiltonian. The quadratic Zeeman shift will introduce an
additional term to the two-photon detuning that is proportional
to (cos�t cosωt )2, which brings in additional zeroth and
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FIG. 5. Fidelity of the geometric gauge transformation vs num-
ber of fluctuations. Each point is calculated by averaging five runs
with the same number of fluctuations for 26 different initial states
the error bars are the standard deviation of all the fidelities calculated
from the 130 runs for the same number of fluctuations. The ideal
SU(2) transformation operator is U ideal

c = (1 − iσy )/
√
2. The stan-

dard deviation of random Gaussian noises for bias magnetic field
and laser powers are 5% of their amplitudes. For relative phase, the
standard deviation of the Gaussian noise is 0.01π . All fluctuations
are distributed evenly during the pulse duration.

second harmonic terms. The zeroth harmonic from both terms
can be canceled by shifting the laser frequencies, but the
higher harmonic terms will bring in additional terms in the
effective Hamiltonian and affect the dynamics of the system.
However, such effects do not affect our result very much be-
cause we work with a weak bias magnetic field, and under the
conditions that we consider in our simulations the amplitude
of the additional higher harmonic terms is 2π × 1.88 kHz,
whereas �0 = 2π × 258.3 kHz. Therefore, the amplitudes of
both 1

2 (ξ11 − ξ22) term and the quadratic Zeeman shift will be
much smaller than the amplitude of two-photon detuning δ so
that both terms are negligible.

E. Robustness against parameter fluctuations

After showing the non-Abelian property of the geometric
phase, it is natural to ask if such a geometric phase is suf-
ficiently robust against parameter fluctuations that one can
observe it in the laboratory. We introduce random Gaus-
sian noise to the magnitude of the bias magnetic field, the
Raman laser powers, and the relative phase between the two
Raman lasers. The ideal SU(2) transformation operator takes
the form U ideal

c = (1 − iσy)/
√
2 and causes a π/2 rotation

around y axis. With the parameters we considered in Fig. 3,
the pulse duration is 20 μs. We denote the operator with noise
as U noise

c . The standard deviation of the magnetic-field noise
and laser power noise are 5% of their amplitudes, while for
the relative phase φ, the standard deviation of the Gaussian
noise is 0.01π . Then we start from the same initial state |ψ0〉,
vary the number of fluctuations that are evenly distributed over
20 μs, and calculate the fidelity f ≡ |〈ψideal|ψnoise〉|2, where
|ψnoise〉 = U noise

c |ψ0〉 and |ψideal〉 = U ideal
c |ψ0〉. The results are

shown in Fig. 5, where each point is the average fidelity
calculated from 26 different initial states evenly distributed
on the Bloch sphere with five runs for each state, and the

error bars are the standard deviations calculated from the
5 × 26 = 130 data sets for each number of fluctuations. We
can see that the average fidelity is always above 0.9, which
shows that the operators we constructed with noise are robust
against random fluctuations for the different initial states that
we consider. However, we see much smaller error bars for the
numbers of fluctuations higher than 200, which correspond
to high-frequency fluctuations (above 10 MHz), than we see
for lower-frequency fluctuations (below 10 MHz). For low-
frequency fluctuations, 5% parameter fluctuation can greatly
deform the contour that the rotating synthetic magnetic field
takes and therefore have a greater influence on the resulting
geometric phase. For higher-frequency noise, the averaged
fidelity is above 98% and the error bars become much smaller
than the low-frequency points, which indicates that the defor-
mation of the contour in parameter space is averaged out and
the geometric phase becomes robust against high-frequency
random fluctuations.

The fluctuations we consider here are all above 1 MHz.
Since our pulse duration is relatively short, the lower-
frequency fluctuations of up to several kilohertz, such as
mechanical noises, can be regarded as long term drift with
small amplitude for our problem, which does not degrade the
observation of our effect significantly. The high fidelity shown
in Fig. 5 demonstrates that the non-Abelian geometric phase
induced by the periodically driven Raman process is robust
enough to be observed and therefore has the potential to be
another method to control the quantum state of a cold atom
system.

V. CONCLUSION AND DISCUSSION

In this paper we have proposed a possible realization of
a periodically driven Hamiltonian through periodically driv-
ing a Raman process in the hyperfine ground-state manifold
of an alkali-metal atom. A non-Abelian geometric phase is
observed according to our simulation results. Through mea-
suring the atomic Stokes parameters, we are able to measure
the SU(2) transformation operator of the cyclic evolution in
Floquet space. The noncommuting property of two different
SU(2) transformation operators subject to different geometric
phase factors proves the non-Abelian property of this geomet-
ric phase. For simplicity, we only set one of our parameters �

as time dependent. In fact the other parameter that we consider
� can also be time dependent as long as the parameters
form a closed loop. Based on the general theory of a spin
interacting with a periodically driven magnetic field [24,25],
our work extends the realization of the non-Abelian geometric
phase into a pseudospin system with Raman coupling. We
also proposed a practical experimental implementation using a
dilute ultracold atomic gas interacting with Raman lasers and
we verify that the non-Abelian geometric phase effect can be
observed in the laboratory even with the presence of possible
parameter fluctuations.

Due to the oscillating magnetic field, an additional
quadratic Zeeman effect term will appear in the Hamiltonian
[33]. However, as we discussed, the effect caused by the
quadratic Zeeman effect can be ignored when the field is
sufficiently weak. Another issue is heating. Since we use
a Raman process with large single-photon detuning, the
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dynamics of the system is confined to the ground-state mani-
fold, so the heating caused by spontaneous emission from the
excited states is negligible. The excitation between different
Floquet bands is also suppressed if we let the parameters
satisfy the adiabatic condition Eq. (4). In addition, in our
protocol we use copropagating Raman lasers, so there will
be no momentum transfer in our periodically driven Raman
process. Therefore, the Floquet heating effect discussed in
[34] will be suppressed as well. Finally, in our analysis, since
the duration of the evolution is much less than the typical
decoherence time of ultracold Bose gases, we can ignore
decoherence effects and use pure state descriptions of the
system in the calculations. For a more general case, if the
duration of the geometric phase pulse becomes comparable
to the decoherence time, one needs to take decoherence into
consideration and use density-matrix methods instead.

Our simulation results show that, by introducing peri-
odically driven interactions, one can promote the Abelian
physical system to a non-Abelian one under the adiabatic
approximation [24,25], and that the associated geometric
phase is sufficiently robust against parameter fluctuations and
thus detectable in the laboratory. To obtain the non-Abelian
geometric phase and the non-Abelian gauge potential, one
needs to work with a system with degenerate quantum levels.

As discussed by Novičenko [25], the non-Abelian geometric
phase comes from neglecting the transitions between differ-
ent Floquet bands such that the states in the same Floquet
band become degenerate. There are other strategies to get
non-Abelian geometric phase effects [18,20] that work in
the degenerate eigenbasis of a system. Such an eigenbasis
consists of superposition states in the Zeeman basis. In con-
trast, the experimental protocol that we propose realizes a
non-Abelian geometric phase effect in a Floquet basis that
can be projected to the Zeeman basis, allowing us to mea-
sure the system in a more direct way. Although we only
considered a 87Rb Bose gas in this work, the protocol we
propose can be used in other atomic or ionic systems, both
bosonic and fermionic. Therefore, our protocol has the poten-
tial to be a reliable quantum control method in ultracold atom
studies.

ACKNOWLEDGMENTS

We thank Maitreyi Jayaseelan and Elisha Haber for dis-
cussions. We also thank Gediminas Juzeliūnas for the useful
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