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Abstract. In this work, we investigate the impact of class imbalance on
the accuracy and diversity of synthetic samples generated by conditional
generative adversarial networks (CGAN) models. Though many studies
utilizing GANs have seen extraordinary success in producing realistic
image samples, these studies generally assume the use of well-processed
and balanced benchmark image datasets, including MNIST and CIFAR-
10. However, well-balanced data is uncommon in real world applications
such as detecting fraud, diagnosing diabetes, and predicting solar flares.
It is well known that when class labels are not distributed uniformly,
the predictive ability of classification algorithms suffers significantly, a
phenomenon known as the "class-imbalance problem." We show that the
imbalance in the training set can also impact sample generation of CGAN
models. We utilize the well known MNIST datasets, controlling the im-
balance ratio of certain classes within the data through sampling. We are
able to show that both the quality and diversity of generated samples
suffer in the presence of class imbalances and propose a novel framework
named Two-stage CGAN to produce high-quality synthetic samples in
such cases. Our results indicate that the proposed framework provides
a significant improvement over typical oversampling and undersampling
techniques utilized for class imbalance remediation.

Keywords: class-imbalance issue · generative adversarial networks ·
synthetic data

1 Introduction

Most classification algorithms assume that training data classes are distributed
uniformly. When this assumption is questioned, regular algorithms suffer from
the class-imbalance problem, i.e., their ability to predict minority classes de-
creases significantly. This well-known issue can also have a profound effect on
training generative adversarial networks (GAN). So much so, that the authors of
[1] state that traditional GANs cannot be employed to generate minority-class
images from an imbalanced dataset. There have been few studies conducted to
address this imbalance issue, one of which being BAGAN [2]. In the BAGAN
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work, an augmentation tool for generating high-quality images of minority classes
was developed by achieving the following: (1) Using an autoencoder to initiate
the GAN training, allowing the model to learn accurate class-conditioning infor-
mation in the latent space. (2) Combining the real/fake loss and classification
loss at the discriminator into a single output. Based on BAGAN, authors of [1]
utilize the supervised Autoencoder and gradient penalty to solve the instability
problem when images from different classes appear similar. Nevertheless, the
aforementioned works attempt to address the imbalance issue at the algorithm
level, either by employing Autoencoder to learn latent features or by modifying
objective functions during the training procedure. In this work, we investigate
the issue of class imbalance inherent to GAN training at the data-level, and
develop a solution through the following contributions:

– Show how the imbalance in the training set has a negative effect on the
performance of GANs.

– Show the ineffectiveness of common remedies for training GANs on imbal-
anced datasets, such as oversampling and undersampling.

– Propose a novel solution, Two-stage CGAN, to enhance the quality of sam-
ples from minority classes when training GAN models on imbalanced datasets.

– Show that the proposed framework can generate synthetic samples of higher
quality than scenarios that use the original imbalanced set or sets that are
rebalanced by oversampling or undersampling.

2 Related Work

In this section, we begin with an overview of the issue of class imbalance and
the traditional methods used to overcome it. Next, we introduce the concept
of a generative adversarial network (GAN) and its many variants, including
the conditional GAN (CGAN) employed in this study. Additionally, we present
Fréchet Inception Distance, or FID, as the standard measure for assessing the
quality of generative models.

2.1 Imbalance issue

Class imbalance typically occurs when there are more instances of some classes
than others. It is common to use special remedies to address the class imbalance
if it is present, since standard classifiers can be overwhelmed by the majority
classes and neglect the minority ones. In typical class-imbalance situations, the
minority class is the class of interest and therefore cannot be ignored. As a result,
two approaches to overcoming the imbalance issue are established: either reduce
the class skew at the data level or alternate the learning procedure at the algo-
rithm level. As the representative method of data level, resampling is a classifier-
independent technique for addressing imbalanced data, and it is accomplished
in one of three ways: (1) Oversampling: selecting and duplicating samples of the
minority class; (2) Undersampling: removing samples of the majority class; or (3)
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Hybrid: coupling the oversampling and undersampling methods when multi-class
data are present [3]. The authors of [4] show that the classification performance
improves when the above class-imbalance remedies are applied to a solar flare
benchmark dataset, namely SWAN-SF [5]. However, random undersampling can
jeopardize the preservation of important concepts because it removes the most
samples from the majority classes [6]. Random oversampling is susceptible to the
risk of overfitting because it neither introduces nor utilizes new data. To reduce
such risks in the image domain, we can perform transformation-based data aug-
mentation, a heuristic oversampling strategy for dealing with the lack of data.
To achieve this, the current examples are subjected to one or more data trans-
formations, such as random rotation, translation, reflection, cropping, blurring,
sharpening, and hue adjustment. These transformations are not applicable in all
circumstances. A reflection or affine transformation, for instance, would alter the
chirality of a picture of a solar filament. In addition, it is challenging to apply
transformation-based data augmentation to feature-based data points or sequen-
tial data such as time series and text data [7]. To deal with such a situation,
SMOTE [8], a heuristic oversampling method, is introduced by constructing new
synthetic samples between minority instances and their nearest neighbors of the
same class, but it may suffer when the separation between majority and minor-
ity clusters is not always obvious, resulting in noisy samples [6]. In addition, the
method is based on information from the local area, not the overall distribution
of minority classes [9]. Generative Adversarial Networks provide an alternative
method for addressing the lack of data by learning the underlying distribution
of real samples and then generating new realistic samples [10,11].

In contrast to the solutions discussed at the data level, algorithm-level ap-
proaches are promptly implemented within the training procedures of the clas-
sifiers under consideration in three ways: (1) Classifier adaptation: adapting
existing machine learning algorithms to a particular imbalanced dataset [12];
(2) Ensemble learning: combining several base models to construct an optimal
predictive model. One example is dividing the sample set of majority classes
into multiple small portions that are balanced with minority classes, and then,
training multiple individual classifiers to classify the data, yielding the final de-
cision through a voting mechanism [13]; (3) Cost-sensitive learning: designating
a high misclassification cost to minority classes with the objective of minimiz-
ing the total cost [14]. There are a variety of approaches to the class-imbalance
problem, but resampling methods that manipulate existing data or generate syn-
thetic data to accomplish a balanced class distribution are more versatile than
algorithm modifications. In this work, we therefore place greater emphasis on
data-level solutions.

2.2 Generative Adversarial Network

Generative Adversarial Network is an emerging method for modeling implicitly
the high-dimensional distributions of actual samples [15]. Originally proposed
in [10], the GAN learns to generate plausible data by training two adversarial
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components, the generator and the discriminator. First, the generator is used to
capture the data distribution by sampling random vectors from a latent space
as inputs and producing samples that resemble the actual data. Next, the dis-
criminator receives both generated and actual samples as inputs and estimates
the probability that the input originated from the real data space. By simulta-
neously training the generator and the discriminator, a generator can generate
progressively more realistic samples under the supervision of actual samples.
This procedure is repeated until the discriminator is unable to distinguish be-
tween generated and actual samples. Depending on the actual data source, either
the generator or the discriminator can typically be implemented by arbitrary
multilayer neural networks consisting of fully connected networks, convolutional
neural networks, and recurrent neural networks.

The vanilla GAN has limitations regarding the stability of model training
and the diversity of the samples it generates [16]. Consequently, a number of
studies have investigated the design of novel architectures to mitigate training
issues and enhance the quality of generated samples. Deep Convolutional GAN
(DCGAN) replaces pooling layers with strided convolutions (discriminator) and
fractional-strided convolutions (generator) to enhance training stability [17]. The
Wasserstein GAN implements the Earth-Mover distance to enhance learning
stability and provide a meaningful learning curve for hyperparameter tuning [16].
Conditional information is incorporated into the Conditional GAN (CGAN) to
enhance the quality of the generated samples and control the classes of synthetic
samples [18]. Class labels are the most common type of conditional information.

2.3 Fréchet Inception Distance

Introduced in 2017, the Fréchet Inception Distance (FID) score is the current
standard metric for evaluating the quality of generative models. Using the feature
vectors derived from the Inception v3 model [19], FID calculates the distance
between real and generated images. Specifically, the final pooling layer preceding
the classification of output images is used to capture computer-vision-specific
features of an input image. In practice, each input image is represented as a
vector of 2048 units. Suppose that if we select 1,000 real samples and 1,000
synthetic samples, X and Y are feature vectors of the real and synthetic samples
with the same shape [1000, 2048]. Then, multivariate FID can be computed based
on the formulation in Eq. 1. µX and µY are the vector magnitudes X and Y ,
respectively. Tr(.) is the trace of the matrix, while ΣX and ΣY are the covariance
matrices of X and Y . Lower FID values indicate higher quality and diversity in
synthetic samples.

FID = ||µX − µY ||2 + Tr(ΣX +ΣY − 2
√
ΣXΣY ) (1)
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3 Methodology

3.1 Recap: CGAN

In this project, we use the Conditional Generative Adversarial Network (CGAN),
and there are two main justifications for doing so: To begin, CGAN allows us
to control the category of generated samples, enabling us to generate samples
of minority classes to alleviate the class imbalance problem. Second, when com-
pared to the vanilla GAN [20], it can provide more stable and quicker training.
Figure 1 depicts the design of CGAN. The generator’s (G) ultimate goal is to
produce output that is similar to the real data. The method begins by taking a
random input vector (Z) and a conditional vector (C). The generator’s outputs,
known as generated or synthetic samples, are computed by feeding them through
the LSTM and Dense layers pipelines.

Fig. 1: This is the framework of the CGAN model, including components of the gen-
erator (G) and the discriminator (D). The inputs of the generator are random input
vectors concatenated with conditional vectors. The inputs of the discriminator are ei-
ther synthetic or real samples with conditional vectors. The binary cross-entropy is the
criterion for optimizing the model.

A discriminator (D) is responsible for classifying inputs as either real or gen-
erated samples produced by the generator. The discriminator accepts as inputs
both the real and generated samples. By inputting C into D, the discriminator
determines whether the sample is generated or real and assesses whether the
generated sample’s category corresponds to its conditional information. Back-
propagation is then used to adjust the weighting parameters of the generator
and discriminator based on the binary cross-entropy loss calculated between the
predicted and actual values.

3.2 Two-stage CGAN

After describing how CGAN is constructed, we present a new framework named
Two-stage CGAN for addressing the class imbalance problem in CGAN model
training. The proposed pipeline consists of three steps. To begin with, if the orig-
inal set is unbalanced, we use random undersampling to reduce it to a smaller,
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more balanced set (i.e., Training-set-1 in Figure 2) and then train the first CGAN
model (CGAN1) on it. After completing CGAN1 training, we can generate syn-
thetic minority class samples, resulting in Synthetic-set-1. The reason for per-
forming undersampling and generating the Synthetic-set-1 dataset based on it
is that we discovered that the CGAN1 can generate synthetic samples of mi-
nority classes with acceptable diversity. In the intermediary step, the original
set and Synthetic-set-1 are merged to create Training-set-2 in Figure 2, a bal-
anced and much larger set. This dataset is then used to train the second CGAN
model (CGAN2). Again, we generate synthetic minority class samples to con-
struct the Synthetic-set-2. In the final step, the Original-set and Synthetic-set-2
will be combined to form the final training set (i.e., Final-set in Figure 2) for
subsequent applications.

Fig. 2: The Two-stage CGAN framework consists of three steps: (1) undersampling
Original-set and training the CGAN1 model on it to form Synthetic-set-1 for minority
classes; (2) merging Original-set and Synthetic-set-1 to training the CGAN2 model
to produce Synthetic-set-2 for minority classes; and (3) combining Original-set and
Synthetic-set-2 to obtain Final-set for subsequent applications.

4 Experiments and Results

4.1 Dataset

MNIST is a benchmark database of handwritten digits that is frequently used
to train and evaluate machine learning algorithms [21]. The original dataset
consists of 10 classes, which are distributed evenly across 60,000 training images



Examining Effects of Class Imbalance on Conditional GAN Training 7

Table 1: The table lists five datasets intended to assess the performance of CGAN
training. A is directly taken from the original MNIST. B is produced by reducing the
minority classes of ′3′ and ′4′ to 500 and 100 samples, respectively, based on A. C and
D are obtained by employing oversampling and undersampling strategies to B. E is the
dataset that has been augmented on B using Two-stage CGAN.

Dataset Type
Digit Class

Total
0 1 2 3 4

A Balanced 5923 6742 5958 6131 5842 30596

B Imbalanced 5923 6742 5958 500 100 19223

C Oversampling (OS) 5923 6742 5958 6000 6000 30623

D Undersampling (US) 100 100 100 100 100 500

E Two-stage CGAN 5923 6742 5958 6000 6000 30623

and 10,000 testing images. For the sake of brevity, we use only a subset of
the original MNIST and perform the necessary resampling operations to meet
the experimental requirements. More specifically, we select five digit classes out
of ten, and we consider {′0′,′ 1′,′ 2′} to be the majority classes and {′3′,′ 4′}
to be the minority classes, as shown in Table ??. In addition, we manually
generate five different datasets to evaluate the efficacy of CGAN models trained
on them. The dataset-A is derived directly from the original MNIST, which has
approximately 6,000 samples per class and is balanced. The dataset-B is created
based on A by reducing the minority classes of ′3′ and ′4′ to 500 and 100 samples,
respectively. We chose 500 and 100 because we wish to examine two distinct
imbalance ratios, which are approximately 1:12 and 1:60. If the assumption that
the class imbalance issue affects the performance of CGAN models holds true,
we consider two common resampling strategies in practice: oversampling and
undersampling. The dataset C is created by duplicating and rebalancing existing
samples of classes ′3′ and ′4′ with majority classes. We can also determine if
the overfitting issue resulting from oversampling the underrepresented classes
is affecting the sample quality. The dataset D is generated by removing the
existing samples of majority classes to align their size with the size of minority
classes. The dataset E differs from the dataset C in that it was oversampled using
Two-stage CGAN, a newly devised framework. Instead of duplicating existing
samples, we rebalance the dataset by adding 5,500 and 5,900 synthetic samples,
respectively, to the minority classes of ′3′ and ′4′.

4.2 Experimental settings

We evaluate the performance of CGAN model with the same hyper-parameter
configuration across different experiments, setting the latent space dimension
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to 3, the learning rates to 0.1, the batch size to 32, and the LSTM hidden
size of 100. The models were trained with 500 epochs. Empirically, we use the
Adam Optimizer for the generator and the Gradient Descent Optimizer for the
discriminator. The CGAN model is implemented based on the TensorFlow 2.1
library [22].

For the sake of simplicity, we only display the FID score distribution of the
CGAN trained on dataset-A in Figure 3 when performing model selection based
on FID scores. We review the checkpoints every 25 epochs, between the 200th
and 500th epochs. We conclude that the 300th epoch is a reasonable option
given the trade-off between performance and computational cost. We use the
300th checkpoint in evaluation with experiments A, B, C, and E because the
dataset size variation is insignificant. Since the experiment D dataset is much
smaller than other datasets, we repeat the FID-based model selection process
for it, and we choose to use the 900th checkpoint in the evaluation that follows.

Fig. 3: The box plots depict the distributions of FID scores for five digit classes (i.e.,
′0′, ′1′, ′2′, ′3′, and ′4′) as calculated by the CGAN model trained on dataset-A. The x-
axis represents the models per 25 epochs between the 200th and 500th epochs, and the
y-axis represents the corresponding FID scores for each class. This metric is considered
the selection criterion for models.

4.3 Results and Analysis

Using the setup shown in Table 1, we trained CGAN models on each of the
five datasets separately. Fig.4 shows examples of the output from these models.
By looking at the outputs in subplot (A), it is evident that a CGAN trained
on a balanced training set is capable of producing acceptable synthetic samples
for all classes. However, in the subplot (B), we discovered that the generated
samples of class ′4′ are of lesser quality, whereas we can generate samples of
comparable quality for other classes using A. This confirms the assumption that
the imbalance ratio in the training set can affect the performance of a GAN, i.e.
that GANs give more attention to the majority classes in practice. In scenario
(C), we observe that both ′3′ and ′4′ synthetic samples have low diversity and
low quality. This may be because the random oversampling strategy typically in-
volves duplicating samples exactly to expand the data space, which may lead to
the overfitting issue. Therefore, balancing the training set by randomly oversam-
pling minority class samples cannot enhance the performance of the CGAN and
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Fig. 4: The diagram shows real samples and synthetic samples generated by CGAN
models trained on five datasets listed in Section 4.1.

generate high-quality synthetic samples. In (D), we can see that the diversity of
minority classes is better than the results in (C), although this strategy can put
the loss of important concepts at risk. The lower-quality outputs are caused by
insufficient training data. The subplot (E) shows the synthetic samples gener-
ated by Two-stage CGAN, which improve quality and diversity simultaneously.
In (D), we can observe that the diversity of minority classes is greater than in
(C), despite the fact that this strategy puts at risk the loss of important con-
cepts. Insufficient training data is responsible for the lower-quality results. The
subplot (E) depicts the synthetic samples generated by Two-stage CGAN, which
enhance both quality and diversity simultaneously.

The FID score is then utilized to quantitatively assess the similarity between
the real and synthetic samples. Specifically, 1,000 real samples per class are se-
lected at random, and 1,000 synthetic samples per class are generated using
CGAN models trained on five training sets. The results of the FID are shown in
Table 2. Row-A displays the FID scores of five classes for a balanced training set,
which can be interpreted as the baseline similarity between real and synthetic
samples. Row B is the result of an imbalanced training set. We discovered that
the FID scores for the majority classes (i.e., ′3′ and ′4′) are lower than A while
the scores for the minority classes (i.e., ′3′ and ′4′) are higher than A, with means
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Table 2: The table provides a summary of the FID evaluation outcomes from five
experiments. Each FID score is determined by comparing 1,000 actual and 1,000 syn-
thetic samples of the same class. Five separate simulations are performed to calculate
the final results, guaranteeing the correctness of the assessment.

FID(mean±std) Digit - 0 Digit - 1 Digit - 2 Digit - 3 Digit - 4

A 21.44± 0.32 15.81± 0.20 27.47± 0.36 26.62± 0.45 24.99± 0.55

B 15.28± 0.38 11.07± 0.26 15.11± 0.15 32.89± 0.23 86.79± 0.50

C 15.12± 0.19 14.16± 0.36 25.46± 0.44 51.75± 0.81 142.59± 0.59

D 55.36± 0.48 30.31± 0.28 59.81± 0.39 53.73± 0.57 45.32± 0.46

E 12.44± 0.28 10.03± 0.39 17.11± 0.52 10.31± 0.23 9.81± 0.19

of 32.89 and 86.79, respectively. The "4" digit class, which has the greatest im-
balance in our design (approximately 1:60), is especially affected. There are two
possible explanations for why the digit class of ′3′ is not significantly affected:
(1) Because the class of ′3′ is not the rarest, the weights in the generator for gen-
erating ′3′s receive more training opportunities than the weights for generating
′4′s; (2) because the digits ′2′ and ′3′ are naturally more similar, feeding suffi-
cient samples of ’2’ into the training process can aid the training process of ′3′.
The FID scores of the oversampling strategy as a remedy for class imbalance are
displayed in Row C. The increased FID scores of both minority classes (i.e., ′3′

and ′4′) indicate less similarity between real and synthetic samples. This is more
evident for ′4′, indicating that oversampling cannot mitigate the data deficiency
issue and result in a well-trained synthetic data generator for minority classes.
Row D displays the FID score of using the undersampling strategy as the class
imbalance remedy, which results in higher FID scores than Row A. However,
given that the training set is balanced, the variances in FID are not that great.
In D, the FID score of the digit ′4′ is 45.81, which is lower than in B and C,
indicating that the synthetic samples of ′4′ are more similar to real samples of
′4′. Therefore, we are considering utilizing this advantage to generate synthetic
samples of minority classes to supplement the imbalance dataset (i.e., dataset
B), and then training a final CGAN model on a larger and more balanced train-
ing set, yielding the result of Row E. Observing the FID results for Row E, we
can see that it achieves the lowest FID scores of all classes, indicating the pro-
posed framework provides a significant improvement over typical oversampling
and undersampling techniques utilized for class imbalance remediation.

5 Conclusion

In this study, we show how the imbalance in the training set has a negative
effect on the performance of GANs. In addition, we show the ineffectiveness of
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common remedies for training GANs on imbalanced datasets, such as oversam-
pling and undersampling. We propose a novel solution named Two-stage CGAN,
to improve the quality of samples from minority classes in two stages. Our ex-
perimental results show that the proposed framework can generate synthetic
samples of higher quality than scenarios that use the original imbalanced set or
sets that are rebalanced by oversampling or undersampling. In our future work,
we plan to improve the algorithm in multiple ways. The first is to investigate
heuristic-based undersampling techniques to preserve as much diversity as possi-
ble for the majority classes in the original set. The second is to extend the usage
of Two-stage CGAN to time series data, including univariate and multivariate
time series. A FID-like score is expected to be implemented using representa-
tion learning methods such as Autoencoder and dictionary learning to evaluate
the quality of generated time series. Furthermore, we would like to investigate
if adding more stages to the current framework would increase the quality and
diversity of synthetic samples for minority classes.
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