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A B S T R A C T   

Subsea construction operations heavily rely on remotely operated vehicles (ROV). Due to the dynamics of the 
subsea environment such as uncertain turbulences, affected visibility and interference with subsea ecosystems, 
control of subsea ROV is challenging for human operators, especially for construction professionals who have 
never been exposed to such an environment. The traditional visual feedback method can hardly provide direct 
and intuitive cues about workplace uncertainties, especially the flow conditions, which makes the ROV operation 
a work with a high mental load and high training barrier. To augment human sensation of the ROV and 
workplace status, this research proposes a hierarchical intuitive control method based on Virtual Reality (VR) 
and haptic simulators. A distributed sensor system that allows a flexible add-on sensor package for subsea 
environmental data collection is applied to the ROVs to collect hydrodynamic data of subsea workplaces. Then, a 
Digital Twins (DT) module receives and integrates all data to drive a simulation approach for data augmentation. 
Last, multi-level sensory feedback methods, including far-field augmented 3D visual feedback, near-field haptic 
suit tactile feedback, and micro-field haptic suit turbulence feedback are generated and sent to human operators 
through haptic devices. Compared to previous studies, this system reconstructs the realistic subsea environment 
with detailed hydrodynamic features in VR digital twin. Whole-body level haptic feedback is realized based on 
hydrodynamic information. This proposed system ensures an immersive awareness of the proximity conditions 
and predictions of potential damage and status changes during ROV operations. As a result, a less-trained 
operator can pilot the ROV based on intuition to maximize the performance and avoid potential mistakes.   

1. Introduction 

According to the National Oceanic and Atmospheric Administration 
(NOAA), about 95% of the world’s oceans and 99% of the ocean floor are 
unexplored (Baird, 2005). Augmentation of human abilities in subsea 
engineering work, such as offshore construction and inspection (e.g., 
floating cities and offshore wind farms) and subsea exploration and 
operations (e.g., offshore mining, subsea cables, and energy harvesting), 
provides a historic opportunity for the new economic growth and sci
entific discoveries. There is an urgent need to seek versatile, 
high-efficiency, low-risk-cost subsea engineering solutions. In practice, 
remotely operated vehicles (ROVs) have been an effective tool for sub
sea exploration and operations for decades (Kennedy et al., 2019). The 
applications of ROVs have been increasing rapidly in recent years and 
are expected to continue growing in the future (Brun, 2012). Global 
Underwater ROV Market Size is projected to reach $124.6 million by 
2026, from $76 million in 2020, at a compound annual growth rate of 

8.5% during 2021–2026 (WBOC, 2021). 
Subsea engineering operations benefit from ROVs because of their 

agility, safety, and endurance (Li et al., 2018), but the teleoperation of 
ROVs can still be challenging and risky due to the mismatch between the 
complexity of subsea workspace and the environmental perception of 
human operators. In general, a typical ROV system consists of a sub
mersible vehicle, a surface control unit, and a tether management sys
tem (Salgado-Jimenez et al., 2010). Technicians from above sea level, 
usually working on a vessel, can take control of the whole system to 
accomplish complex tasks with the live video streaming captured by the 
cameras equipped on the ROVs (Zhang et al., 2017). The complexity of 
the subsea environment, such as the dynamic internal currents, low 
visibility, and unexpected contacts with marine life, may undermine the 
stability of the ROVs, or the stabilization control (Khadhraoui et al., 
2016). Although many ROV studies are focusing on autonomous algo
rithms, such a certain level of self-stabilization and even self-navigation 
functions nowadays, human controls are still necessary for complex 
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tasks that require precise operations (Fossen, 2011). Human sensori
motor control relies on multimodal sensory feedback, such as the visual 
and somatosensory cues, to make sense of the consequence of any 
initiated action (Wood et al., 2013). In ROV teleoperations, only visual 
feedback is provided in existing methods. The lack of ability to perceive 
various subsea environmental and spatial features, such as the inability 
to directly sense water flows and pressure changes, can break the critical 
feedback loop for accurate motor actions, resulting in an induced per
ceptual-motor malfunction (Finney, 2015). Especially in future ROV 
application scenarios, there will be complex and diverse tasks for ROVs, 
such as navigation in tight, cluttered, and unstructured environments; 
stabilization in highly dynamic flow conditions; repeated dock
ing/undocking operations, etc., which all require varieties of environ
mental information and in-situ perception of the ROV workspace 
(Lachaud et al., 2018; Xia et al., 2022). In addition, the information 
about the ambient fluid environment at different spatiotemporal scales 
would also benefit ROV operations substantially (Lin and Yang, 2020). 
There is an urgent need to grant ROV operators the ability to “see, hear 
and feel” the subsea workplaces and ROV status with multisensory ca
pacity in an intuitive way (Moniruzzaman et al., 2021; Xia et al., 2022). 

This research proposes a virtual telepresence system based on VR and 
a sensory augmentation simulator to mitigate the perceptual-motor 
malfunction, and enhance human perception as well as operation ac
curacy in ROV teleoperation. In order to provide multi-level information 
to meet the versatility of future ROV teleoperation, a hierarchical haptic 
simulator is proposed to simulate the following subsea environmental 
features on the body of the human operator via haptotactile sensations: 
1) near-field (<3 m) and small-scale hydrodynamics around the ROVs 
that could affect the vehicle stabilization and maneuverability; and 2) 
far-field (>3 m) mean hydrodynamic flows that are critical to the ROV 
navigation and motion planning. Besides, an augmented force rendering 
with a pair of high-fidelity haptic gloves for sensing micro-scale turbu
lence is provided as well to further extend human sensation. The multi- 
level environmental information is collected by ROV-equipped sensors, 
sent to the Digital Twin module for data fusion and reconstruction, and 
converted into different scales of visual and haptic feedback through 
different devices accordingly. Compared to previous VR and haptic 
teleoperation studies, this system reconstructs a realistic subsea envi
ronment with both visual objects and hydrodynamic features in VR 
digital twin. A whole-body coverage haptic feedback is generated to 
provide sufficient environmental information for ROV operation. With 
this integrated VR-Haptic sensory feedback system, the human sensation 
of the robot workspace is extended, which will benefit ROV tele
operation for future complex subsea operations. 

2. Literature review 

2.1. ROV operations and controls 

ROVs are a common type of unmanned underwater vehicles (UUVs) 
that are widely used in a wide range of subsea applications. These ap
plications include underwater intervention, exploration and surveys, 
equipment installation and retrieval, sample collections, and photog
raphy/filmography, to name a few (Brun, 2012; NOAA, 2021). The 
differentiating characteristics of ROVs from autonomous underwater 
vehicles (AUVs), the other common type of UUVs, include their large 
numbers of maneuvering degrees of freedom; expendability to be 
outfitted with a wide range of monitoring and navigational payloads; 
and versatility in fulfilling needs for underwater intervention and 
manipulation tasks when equipped with manipulators (Azis et al., 2012; 
Brun, 2012; Paull et al., 2013). As the name indicates, ROVs are 
designed to be remotely operable through a tether connecting the 
vehicle and the remote operator. For larger ROV systems that need to be 
deployed from a surface vessel, an intermediate cable management 
system is often necessary to reach deeper depths. The umbilical cable 
provides a high-speed data connection between the vehicle and the 

remote operator, making real-time data streaming and high-frequency 
remote control possible (Filaretov et al., 2018; Song et al., 2020). 

ROVs can be classified differently depending on their typical di
mensions, costs, functionalities, etc. Based on their main purposes, 
existing ROV platforms can be loosely categorized as education/ 
hobbyist-class, inspection/survey-class, and work-class (Song et al., 
2020). Education-class ROVs are often smaller in size and designed with 
an open architecture, making them an ideal platform for universities and 
research institutes that desire low-cost platforms with good expend
abilities (Wang et al., 2019). The BlueROV series by Blue Robotics is an 
example of this type of platform (BlueRobotics, 2021). 
Inspection/survey-class ROVs are often equipped with different types of 
sensing instruments for data collection and monitoring (Capocci et al., 
2017). A wide range of ROVs is full within this category, including the 
commercially available Sabertooth ROV by Saab Seaeye (Johansson 
et al., 2010). The work-class ROVs are the most versatile ones that are 
often equipped with underwater manipulation capabilities. They play an 
essential role nowadays in many of the routine operations of oil and gas 
industries and the ocean science community (Nakajoh et al., 2012). An 
emerging category is the residential-class ROVs that are designed to be 
deployed at the work site for an extended period with support from 
underwater docking stations and subsea cables for power and commu
nication (Jacoff et al., 2015). 

Although ROVs vary in their sensing and actuation capabilities, they 
typically have basic capabilities such as maneuverability along more 
than one principal axes, state estimation, and communication through 
the umbilical cable or additional wireless means. For work-class ROVs, 
more sophisticated actuation and sensing capabilities are often available 
to ensure operational accuracy and improve system reliability (Finney, 
2015). For instance, to improve the vehicle control robustness in dy
namic and uncertain conditions, a disturbance rejection controller can 
be implemented to improve the maneuvering accuracy in the event 
where unknown environmental forces appear to act on the vehicle (Cao 
et al., 2020). This capability becomes very essential to ROVs when 
performing intervention or manipulation tasks, where the body of the 
ROVs needs to hold its position to allow precise control of the end 
effector. However, existing station holding controllers often act as 
after-the-effect disturbance compensators, meaning that the controller 
will not take effect until a position holder error appears due to distur
bances (Caccavale and Villani, 2002; Wang et al., 2017). Such a vehicle 
stabilization method creates control delays and inaccuracies for ROVs. 
Similarly, more capable ROVs are equipped with navigational sensors 
with improved range, precision, and long-term accuracy. These navi
gational sensors allow the ROVs to maintain a better positioning accu
racy, which is of utmost importance for underwater navigation where 
satellite-based localization services are not available and persistent 
localization is inherently challenging (Paull et al., 2013). 

ROV technologies have gradually matured over the past few decades. 
Nonetheless, operating an ROV is still a challenging and demanding task 
even for experienced ROV pilots with years of background in ocean 
engineering, especially for complex subsea inspection, installation and 
maintenance tasks. Operations in these tasks can entail risks of com
placency, misjudgment and loss of manoeuverability due to a lack of 
environmental information (Utne et al., 2019). However, current efforts 
in ROV technologies development do not help reduce the high barriers 
to entry for ROV piloting. On the one hand, many studies focused on 
improving traditional visual feedback and joystick controller, such as 
photo-model-based stereo-vision 3D perception (Tian et al., 2019) and 
extra steering for ROV control systems by tracking the gamepad orien
tation (Abdulov and Abramenkov, 2021). These methods highly relied 
on operators’ skills and did not resolve the perceptual-motor malfunc
tion problem (Finney, 2015). On the other hand, more and more studies 
focused on autonomous algorithms, including automatic docking 
(Qomaruzzaman and Mardiyanto, 2018), autonomous inspection 
(Amundsen et al., 2021), and autonomous manipulation (Yeu et al., 
2019). Yet, the subsea environment is much more complex than the 
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traditional engineering workplace, such as highly dynamic fluid envi
ronments with many unknown disturbances. It is extremely hard for 
autonomous algorithms to cover all the work requirements, and human 
operators are necessary in the loop. Future ROVs should possess high 
levels of autonomy with human control in the loop and be capable of 
relaying underwater perceptions of different modalities back to the 
human operator in real time, creating an intuitive and immersive 
piloting experience. 

2.2. VR-based robot teleoperation 

Traditional robot teleoperation, especially ROV teleoperation, highly 
relied on camera view display and all kinds of joystick panel control 
(Kent et al., 2017). Many studies focused on improving teleoperation by 
designing efficient teleoperation interface (Kent et al., 2017; Labonte 
et al., 2010) and additional workload analysis (Lin et al., 2019). These 
kinds of control methods still lacked sufficient sensory feedback, which 
might result in lower spatial perception in complex environments 
(Lathan and Tracey, 2002). Virtual Reality (VR) is an emerging 
human-computer interface for rendering realistic environment scenes 
and for providing rich spatial information (Brooks, 1999; Zheng et al., 
1998). VR for human-robot collaboration (HRC) has brought the bene
fits of coupling the perception and controls between human agents and 
robots (Chakraborti et al., 2017). Such a close sensation pairing can 
result in a better plan of motions and interactions in difficult tasks that 
require both robotic and human intelligence (Williams et al., 2019). For 
robot teleoperation, compared to traditional 2D imagery or video 
feedback above, the advantage of VR is to provide a direct and immer
sive 3D visualization of the target object or scene within the surrounding 
workplace, therefore converting richer environmental information and 
relationship between multi objects to human users, and lowering the 
communication and control barriers (Kaminka, 2013). 

In addition to augmenting visual feedback, it is recently noted that 
VR can also serve as the platform for multisensory augmentation, i.e., 
providing multimodal visual, auditory, and haptic cues associated with 
an intended action to improve the motor performance (Sugiyama and 
Liew, 2017; Zhou et al., 2020a, 2020b; Zhu et al., 2021). Especially, 
haptic devices combined with a VR simulation can generate haptotactile 
stimulation (e.g., vibrations and force feedback) on the user’s body in 
correspondence with the occurring events (Tian et al., 2017, 2021). 
These haptotactile signals may be used as feedback cues signing for the 
human operator’s sensation to help understand the motion and status of 
ROVs, which is expected to further improve human spatial awareness 
and control ability of ROVs. In fact, some studies have already tested the 
efficacy of capturing underwater environmental information and 
sending the simulated haptic signals back to humans. For example, a 
linear-oscillating actuator using asymmetric drivers was developed to 
create equivalent pressure signals (Ciriello et al., 2013), such as pushing 
or hydrostatic pressure in remote system operations. A gyro effect haptic 
actuator was tested to simulate torque feedback even when ungrounded 
(Shazali, 2018). The combined pressure and torsion forces applied to the 
user’s body can produce the illusional feeling of external force and 
incorporated by the user’s proprioceptors, generating a kinesthetic 
perception of the ROVs (Amemiya and Maeda, 2009). These preliminary 
“one-size-fits-all” efforts could only work in the pre-designed workspace 
with limited depth and zones, which could hardly capture multi-level 
hydrodynamic features in underwater workplaces. Lacking detailed in
formation for different spatiotemporal scales, these methods may not be 
effective for ROV operations occurring in diverse and complex work
spaces. Given the emergence of resident ROV systems, challenges for the 
large-scale ROV navigation and precision operations such as dock
ing/undocking are both significant, which is missing in the current 
sensory feedback methods. A system is needed to capture high-fidelity 
hydrodynamic data at both the micro and macro levels, as well as sim
ulations to create a unique immersive sensory-rich environment for ROV 
operators. The system should also be able to augment human ability in 

critical decision-making such as navigation path planning. We propose 
to utilize the framework of digital twin simulation to integrate the data 
processing and decision-making needs in the VR. 

2.3. Digital Twin for complex work interface 

Digital Twin (DT) is a comprehensive digital representation con
necting to physical products. It includes properties, conditions, and 
behaviors of the real-life object through models and data (Haag and 
Anderl, 2018; Tao et al., 2018). An effective DT should have basic 
functions of modeling, simulation, verification, validation, accreditation 
(VV&A), data fusion, interaction and collaboration, and service (Jones 
et al., 2020; Tao et al., 2018). In practice, DT is a great tool for data 
fusion and augmentation, including integrating different sources of data 
and filling gaps in the collected data. For example, for geometrical 
variations management, a concept of Skin Model Shapes was proposed 
to connect all different views throughout the product life-cycle and 
operations in a comprehensive model that incorporates manufacturing 
process planning and inspection process planning (Schleich et al., 2016; 
Schleich et al., 2017). To monitor machining operations and predict 
surface roughness, a method was developed by Cai et al. and Tao et al. to 
integrate sensor data and manufacturing data as the basis for building 
the DT of a vertical milling machine (Ricks et al., 2015; Tao et al., 2018). 
Especially for subsea environment data, there is much-complicated in
formation from a variety of sensors and methods. Tremendous data is 
obtained by different kinds of sensors for all purposes, including tem
perature sensors, hydro pressure sensors, acoustic doppler for turbidity, 
etc. (Williamson et al., 2015). Multiple methods are applied to predict 
ocean conditions, such as machine learning methods for modeling a 
bigger range of workplaces (Brunton et al., 2020) and Smoothed Particle 
Hydrodynamics (SPH) for simulating free surface flows (Liu and Liu, 
2010). Such a huge amount of data results in a burden on data percep
tion and analysis for human operators. Therefore, it deserves a further 
investigation to integrate all kinds of data in DT and send it to human 
operators effectively for future ROV subsea tasks. 

Plus, DT can be used as an effective optimization tool. For example, 
DT for manufacturing can offer an opportunity to simulate and optimize 
the production system, including logistical aspects and visualization of 
the manufacturing process (Kritzinger et al., 2018). In robot applica
tions, DT can serve as a platform for path planning. Simulated envi
ronments can be built in DT based on the physical environment, and 
path planning algorithms such as A* (Tseng et al., 2014) can be inte
grated to generate the shortest route path to target points. For example, 
a robot path planning algorithm that integrates human-predicted tra
jectories by a context-aware Long Short-Term Memory (LSTM) model 
was successfully designed by Hu et al. to navigate a robot at an un
structured construction site (Hu et al., 2020). However, for subsea 
environment path planning, it is more challenging due to the complexity 
of the subsea environment and the unique locomotion features of ROVs. 
Except for obstacles, potential dangers such as high turbidity areas are 
required to be avoided as well for ROV navigation. These kinds of in
formation are lacking in current ROV operation studies. Therefore, 
further efforts are necessary to develop a multi-level hydrodynamic in
formation display method and a subsea-adapted path plan function in 
the DT module. 

3. System design 

3.1. System architecture 

The existing ROV control and feedback systems still focus on the 
camera view display and joystick controller. Although efforts were paid 
to efficient UI design (Labonte et al., 2010), workload analysis (Riddle, 
2002) and autonomous algorithms (Amundsen et al., 2021; Qomar
uzzaman and Mardiyanto, 2018), these methods could not provide 
enough sensory feedback for effective environmental spatial perception. 
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Especially, the complexity of the subsea environment, such as the dy
namic internal currents, low visibility, and unexpected contact with 
marine life, may undermine the stability of the ROVs and result in a high 
career barrier. A new method is necessary to provide human operators 
with sufficient and immersive feedback of the surrounding workspace. 
Therefore, this study presents the design of a system combining the VR 
simulation and a whole-body haptic device to augment the human op
erator’s sensation in ROV teleoperation. Fig. 1 illustrates the architec
ture of the proposed human-robot sensory transfer system for 
simplifying ROV teleoperation. The proposed system consists of five 
modules, including Subsea Sensing Module, ROV module, Robotic Simu
lation, and Control Module, Workplace Model, and User Interface. The 
details of each module are described as follows. 

VR and haptic feedback methods have been commonly used in robot 
teleoperation, such as robotic arms (Zhou et al., 2020) and snake robot 
teleoperation (Zhu et al., 2022). Compared to these studies, our system 
contributes in two aspects. Firstly, previous studies consider VR as an 
immersive visual augmentation method, while our system improves it as 
a DT simulator and data center. Different kinds of sensory data are sent 
to VR and used to reconstruct a realistic subsea environment, including 
not only visual objects but also hydrodynamic features. Several algo
rithms are developed to categorize all kinds of data and generate 
multi-level feedback based on hydrodynamic features, such as 
micro-field haptic glove feedback, near-field haptic suit feedback, and 
far-field visual augmentation feedback. Secondly, many haptic-related 
studies are limited to a hand-held level, i.e., developing hand-held 
haptic device (Chen et al., 2019) and robotic arm sensory feedback (Li 
et al., 2019). Except for the hand-held device, our system extends the 
haptic feedback to a whole-body level. Several algorithms are developed 
to adjust hydrodynamic features to body-covered haptic intensity 
values. 

3.2. Subsea sensing module 

Subsea workplaces will be substantially different from our estab
lished workplaces, and thus the human operator may not perceive the 
environmental data in the desired way. As a result, we expect the sensing 
system to capture the key characteristics of a dynamic underwater 
environment for sensory augmentation. The Subsea sensing module 
builds on a multi-level sensor network to collect real-time subsea envi
ronmental data pertaining to the hydrodynamic features and tempera
ture changes. The sensor network captures three levels of sensor data to 
meet the sensing needs, including far-field hydrodynamic status based 
on an acoustic Doppler current profiler (ADCP) (Kostaschuk et al., 2005) 
to collect underwater wave profiles in the 3–20 m proximity; and near 
field (0.1–3 m) and micro field (<0.1 m) turbulence based on in-situ 
sensors equipped on the ROVs. The far-field sensing aims to identify 
the sudden change of underwater waves on a bigger scale or the 
so-called “seamount”. The existence of seamounts often poses significant 
risks to the teleoperation of ROVs as they usually intensify the tidal flow 
and water stratification, interrupting the ongoing ROV operation pro
files. As for the in-situ sensor, we leverage an artificial skin – an inno
vative distributed sensor system that allows a flexible add-on sensor 
package. It uses an array of paired differential pressure sensors mounted 
on electronics boards. The boards are embedded in elastomers with 
hardware that allow them to connect to a 3D printed scaffolding or a 
custom shell. A hydrodynamic force measurement module is fabricated 
and installed onto the ROVs to enable the vehicle to sense near-field 
flows and hydrodynamic forces. Different scales of flow sensing mea
surements are collected by the sensor module and sent to the DT simu
lation and optimization module for data fusion, smoothing, and 
reconstruction. The artificial skin sensing system enables fast distur
bance detection and rejection to improve vehicle control accuracy. The 
design of the in-situ sensor is based on our previous works (Krieg et al., 
2011; Krieg et al., 2019; Krieg et al., 2015) on lateral-line sensory 
mechanisms within fish which consist of specialized “hair cells” 

Fig. 1. Proposed underwater human-robot interaction for enhanced ROV teleoperation.  
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throughout the body surface capable of detecting pressure gradients and 
shear stress. Sensing signals include temperature, pressure gradient, and 
shear stress sensors distributed throughout a custom shell designed to fit 
the surface of the ROVs. All these visual and haptic feedbacks is sent to 
the operation module to generate a real-time and realistic sense of the 
ROV workspace for humans through multi-modal sensory devices. In 
addition, to enable the continuous operation and long-term availability, 
the proposed system is designed to be a resident system with a docking 
station that can be deployed for long terms and tasked remotely from a 
remote station on land (Song et al., 2020). The docking station can 
utilize power and communication interfaces available from existing 
cabled subsea observatories (Pawlak et al., 2009), marine renewable 
energy harvesting systems, or inter-continental telecommunication 
infrastructure (Wallen et al., 2019). The ROVs can be connected to a 
docking station through a cable management system for high reliability 
and bandwidth in data transfer, and the docking station is connected to a 
remote human operator via the Internet. The bioinspired flow sensing 
system is integrated with the vehicle to provide in-situ hydrodynamic 
force measurements. In addition, the DT simulated environment can be 
also used as a fast training of new operators and provide pre-mission 
evaluation for operation plans. 

3.3. ROV module 

The vehicle used in this project is based on a BlueROV2 platform 
with a heavy configuration. The BlueROV2 is an open-source under
water vehicle equipped with six thrusters in a vectored configuration. 
The heavy configuration provides control in all six DOFs. The based 
vehicle is powered by an onboard 18Ah battery, giving 2–3 h of battery 
life with a single charge. On top of the base platform, our vehicle is 
upgraded with a Jetson Xavier NX backseat computer (NVIDIA, 2021) to 
perform high-level sensor fusion and closed-loop control autonomy. The 
vehicle is outfitted with a bottom-facing single-beam echosounder that 
measures distances concerning the seafloor for up to 50 m, and a 360-de
gree scanning imaging sonar for underwater perception. In addition, the 
vehicle is equipped with a Nortek Doppler velocity log with current 
profiling capability that allows the vehicle to measure the relative ve
locity concerning the seafloor as well as the far-field flow velocity for 
augmenting the operator’s situational awareness in the digital-twin 
environment. The vehicle is outfitted with forward and bottom-facing 
cameras, a 360-degree scanning sonar for obstacle detection, collision 
avoidance, and mapping, a custom-integrated wireless charging and 
communication system, and a 1-MHz compact acoustic Doppler current 
profiler (ADCP) to provide volumetric far-field flow measurements. The 
near-field flow and hydrodynamic force sensor are added to the vehicle 
as a separate module at locations free from structural obstructions, 
which may create vortex shedding and affect the sensing quality. This 
novel sensor system allows the vehicle to directly measure the hydro
dynamic disturbances and compensate accordingly before positioning 
error starts to appear (Krieg et al., 2019), improving the vehicle control 
accuracy and responsiveness. We developed a “backseat driver” 
computing method to realize the open-loop control needs. As discussed 
earlier, there may be a disconnection between the control commends 
issued by the human operator and the actual reaction of the ROVs due to 
the changing hydrodynamic conditions in the subsea workplace. As a 
result, a resolver is used to generate the correct rendering of ROV ki
nematics in VR. The same applies to the controlling of the real ROVs, as 
the real system also needs to match the control commands and mirror 
the behaviors in the VR environment. The same hybrid solver will be 
applied to the backseat driver’s computer. In addition, near-field flow 
sensing measurements can be reflected on the haptic suite and gloves on 
the pilot to enhance the situational awareness of the pilot. 

3.4. Robotic simulation and control module 

Physics engine simulation data and sensor data from the remote 

ROVs need to be transferred to Robot Operating System (ROS) seam
lessly to enable ROV simulation and controls. Building on our previous 
work (Zhou, 2020), we will examine a data synchronization system for 
VR and robotic systems. The system features two functions: converting 
environmental parameters extracted from the workplace model (hy
drodynamics, objects, and interactions) to ROS to rebuild the 3D scene 
in ROS Gazebo for robot simulation, and to enable the control com
mands for the ROVs. Rosbridge is used to provide a JSON API for 
transferring data between ROS and Unity (Crick et al., 2017). Rosbridge 
also provides a WebSocket server for web browsers to interact with, 
serving as a connection between ROS and the network (Crick et al., 
2017). ROS server converts ROV dynamics data into JSON messages via 
rosbridge and publishes it to the website or receives JSON message from 
the Internet and converts it to ROS message (Crick et al., 2017; Quigley 
et al., 2009). On the Unity side, we use ROS#, a set of open-source 
software libraries in C#, for communicating with ROS from.NET ap
plications, in particular, Unity (GitHub, 2019). ROS# establishes a 
WebSocket in Unity so that Unity can connect to a computer with a 
specific IP address through the network and transfer data. It also helps 
build nodes that publish and subscribe to topics from ROS in Unity. 
ROS# converts data into JSON and publishes it or converts the received 
data into the original format. We grant the ROS server and Unity’s 
WebSocket the same IP address so that the ROS server can publish the 
processed topics to the ROS platform, and Unity can subscribe to all 
topics on ROS platforms through ROS#. 

The robotic simulation and control module also supports an intuitive 
control of the remote ROVs via natural body motions. As shown in Fig. 2. 
Human control input parameters, including local rotation of HTC 
trackers, body postures, and a secondary auxiliary controller, are 
designed to match ROV control parameters such as rotation, moving, 
and some specific control functions. The local rotation of the human 
body is sent to ROVs for pitch, roll, and yaw control, which ensures 
ROVs’ orientation consistent with human body motion. Human body 
postures are designed to control ROVs moving in the subsea environ
ment. For example, ROV pitches down when the human operator leans 
forward. A secondary auxiliary control method, the HTC VIVE controller 
is introduced for vertical up and down operations and function control. 
Specifically, the y-axis input value of the touchpad was used to control 
up and down for ROVs, with the x-axis value for speed control. The 
Boolean value of the trigger button was designed to control the system 
on and off. This kind of control method requires long time engagement 
in VR with body motion, which might not be feasible for humans with 
motion sickness or missions lasting for hours. A practical application in 
the future is to integrate this control method with autonomous system to 
reduce operation time and human fatigue. 

Another need for seamless ROV teleoperation is to render the kine
matics features of the remote ROVs in VR (e.g., speed, gesture, etc.). This 
is because the locomotion control signals from the human operator are 
not always realized on the remote ROVs due to the dynamic subsea 
environment. For instance, a human operator may lean forward by 10 
degrees to command the corresponding 10-degree negative pitch of the 
ROVs. Nonetheless, the real ROVs may only demonstrate a 5-degree 
pitch due to the liquid viscosity underwater. As such, the reactions of 
the ROV kinematics must be regenerated despite what controls are given 
by the human operator. In our system, we don’t rely on the real ROV 
kinematics data (collected from the onboard sensors) because of the 
possible tracking errors or telecommunication latencies. Instead, we rely 
on the real-time ROS Gazebo simulation to recover the predicted ROV 
kinematics status. The challenge would be to reproduce the robotic 
dynamics in ROS Gazebo in a precise and accurate manner. We will use a 
hybrid solver that solves both the linear elasticity and hydrodynamic 
changes of the simulated ROVs in Gazebo, such as (Chitta et al., 2012). 

3.5. Workplace model module 

The real-time sensor data is then used to model spatiotemporal 
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dynamics of a subsea zone in the vicinity of the robot. To generate an 
immersive visualization of the subsea workplace, a game engine Unity 
v2020.1 (Unity, 2022) is used. Unity can model the far-field sensor data 
as vectors and render the entire space as Virtual Reality displays. 
Another key feature of the proposed system is to convert the hydrody
namic features into human-perceivable sensations, i.e., vibrotactile 
cues. To realize this function, a physics game engine NVIDIA PhysX is 
used (version 9.19) to simulate underwater (PhysX, 2022). Especially 
the smoothed particle hydrodynamics (SPH) method (Monaghan, 1992) 
of PhysX is used to simulate the hydrodynamic changes based on the 
sensor data. The raw data is used to determine the initial conditions of 
the particle emitters. Then a collision detection mechanism is used to 
examine the collision events between each particle and the virtual ROV 
model. The collision frequency and magnitude will be used to generate 
haptics of different levels (see the next section). 

The proposed human-underwater robot interaction requires real- 
time modeling and visualization for “making sense” of the dynamic, 
dangerous, and underexplored subsea workplaces. It needs to address 
the challenges of both data sparsity and data overload that could happen 
and are equally destructive in the effort of modeling the subsea work
space. A unique challenge of HRC in subsea operations is the over
whelming data that needs to be processed and digested instantaneously. 
The stepstone for a better underwater HRC is reducing the complexity of 
underwater data processing via what we call "sparse data modeling". 
Therefore, this digital twin simulation and optimization module is 
developed to integrate sensor data and hydrodynamic model for a better 
quality of workspace modeling. 

In offshore environments, invisible flow structures are generated at 
different spatiotemporal scales, such as internal waves and shear in
stabilities. Intense internal waves can impact the navigation safety and 
operation of underwater robots. Shear instabilities can greatly enhance 
turbulence generation, which can result in high turbidity that scatters 
light and affects water clarity and optic sensors. The location and timing 
of these underwater processes are hard to predict; however, they often 
leave unique surface signatures that can be detected by remote sensing 
imagery (Chickadel et al., 2011; Klemas, 2012; Plant et al., 2009). It is 
therefore important to integrate local sensors with ocean observation 
network data to provide accurate descriptions of the working environ
ment. We propose a hierarchal process to model subsea workplaces: (i) 
For modeling an environment in close proximity to the underwater 
robot, we will apply the robot-carried sensors to infer the turbidity, 

pressure, and temperature with hydrodynamic numerical simulation. 
The idea is to estimate workplace characteristics within a small radius 
(<3 m) centered around the underwater robot. (ii) For modeling the 
bigger range of the workplaces (>3 m), we propose to relate the surface 
roughness information with hydrodynamic processes in the water col
umn. How to integrate data from observation networks with in-situ 
measurement by underwater robots and visualize the data to provide 
workers direct link on how the magnitude, extent, and process of large 
hydrodynamic events affect the operation of underwater robots remains 
a great challenge. Statistical and numerical models are powerful tools to 
forecast ocean conditions, but the hydrodynamic numerical simulations 
are expensive and too slow for real-time underwater robot simulation 
and controls. As a result, we use reduced-order models (Noack et al., 
2011) to efficiently capture low-dimensional descriptions of the essen
tial flow patterns at a fraction of the cost. With the large volume of data 
from observation networks and high-resolution numerical simulations in 
the vicinity of the underwater robot, we developed a physics-informed 
data-driven model. The model is based on the physical principles (con
servation laws), and the low-dimensional model approximate is imple
mented using the Deep Convolutional Generative Adversarial Network 
(DCGAN) machine learning techniques (Brunton et al., 2020; Loiseau 
et al., 2018). We applied the validated high-resolution numerical 
simulation data to train the network offline. The DCGAN network first 
extracts the spatial-temporal coherent flow structures of the 
high-dimensional fluid fields as low-dimensional latent variables. The 
governing equation of the low-dimensional representation of fluid field 
is solved following the same physical principles. The low-dimensional 
results are then projected back to the high-resolution space to provide 
an accurate prediction of key characteristics of the flow that are 
important to workers. The data-driven model can be used to forecast 
circulation patterns, sea state, and turbidity that affects optical sensors 
on underwater robots. In addition, using in-situ data collected by robots, 
the data-driven model could better capture and predict extreme events 
that are difficult to predict by classic hydrodynamic models. 

3.6. User interface module 

VR and haptic devices are applied in this module. Compared to other 
studies, this system considers VR as an DT simulator and data center 
instead of immersive visual augmentation method. Due to the 
complexity and uncertainty in subsea tasks, much more levels of 

Fig. 2. Map of natural body-motion parameters to ROV control parameters.  
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information would be involved in the system, especially hydrodynamic 
features. VR is the great tool for data fusion and augmentation to 
reconstruct a realistic DT environment with physically information. 
Specifically, the proposed sensor module provides all kinds of necessary 
fluid information at different spatiotemporal scales. However, data 
collected by ROV sensors are spatially and temporally sparse, resulting 
in an incomprehensive sensory coverage and a low refresh rate of haptic 
feedback. Therefore, after the data fusion in the DT simulation and 
optimization module, improved data will be sent to the operator module 
for generating real-time and high-refresh-rate feedback. Fig. 3 demon
strates the architecture of the user interface module. 

The VR environment is adjusted to the subsea workspace. The 
interactive VR system is developed based on our previous works (Du 
et al., 2016, 2017, 2018a, 2018b; Shi et al., 2018; Zhou et al., 2020a, 
2020b; Zhu et al., 2021). A set of scripts have been developed for the 
ROV locomotion and navigation controls in the VR environment. The 
rendering of the subsea environment changes accordingly to provide a 
realistic sense of navigation in the simulation environment as in the real 
remote workplace. In addition, a hierarchical particle fluid simulation 
system is developed to receive real sensor data and generate a simulated 
flow, which hits sensors around the ROV model and creates denser data 
(in addition to the raw sensor data) with a higher refresh rate. This 
shows the first function we plan to achieve with the DT module, i.e., 
augmenting the raw sensor data with additional simulated data points. 
The user interface module is further realized with a Unity data 
augmentation system and haptic feedback system, as described later. 

3.6.1. Unity data augmentation system 
As shown in Fig. 4, the Unity data augmentation system includes the 

far-field visual augmentation and the near-field particle simulation. 
Another ROV model was used in the Unity DT fluid simulation. For the 
far-field data, a series of vectors are visualized to indicate the overall 
hydrodynamic patterns necessary for the operator’s navigation decision- 
making, including fluid directions, speed, and hydrodynamic gradient 
extensions. Vector arrows are rendered in the DT simulation as shown in 
Fig. 4b. These vectors change the direction the same as flow data, with 
the length of the vector indicating the flow speed. Specifically, vectors 
with longer lengths indicate faster and stronger water flows. Compared 
to traditional camera view feedback, VR provides more enriched spatial 
information with immersive and interactive visual feedback. Besides, 
the VR system can provide the path planning function by displaying the 
identified optimal trajectories to the operator. The operator then has the 
option to either use these optimal trajectories as references during 
manual piloting or convert to autonomous controls that allow the 
autopilot of the ROVs to follow those trajectories. By allowing the 

operator to configure the priorities of optimization (e.g., prioritizing 
travel distance over energy consumption), the proposed system frees the 
operator from low-level vehicle maneuver controls ta high-level mission 
control. Such a hierarchical system design can simplify the overall 
piloting effort during routine operations and reduce operation inaccu
racy due to human errors. 

On the other hand, for the near-field waterbody surrounding the 
ROVs, a position-based particle system is applied to simulate the phys
ical interactions with the ROVs in a realistic way (Fig. 4a). Position- 
Based Dynamics (PBD) is a proper method to simulate realistic fluid 
conditions, which allows the similar incompressibility and convergence 
in result compared to the Smoothed Particle Hydrodynamic method 
(Macklin and Müller, 2013). In this study, Obi Fluid (Obi, 2019; Vir
tualMethod, 2021) is selected as the core near-field particle simulation 
method. The activated particle number is set to 650 for balancing the 
simulation fidelity and CPU cost. Virtual particles can physically interact 
with ROV models in Unity as shown in Fig. 4c. The simulated emitter 
parameters would be used to fill the data gaps in raw sensor data (such 
as before real raw data was received or the gaps in sensor placement), 
but the raw sensor data still shares a higher priority. If any divergence 
between the DT simulation and raw data is sensed, raw data will over
ride DT simulation results. 

To be noted, the ROV-equipped sensors are effective in providing 
pressure descent data, and hence are effective for constructing realistic 
fluid meshes. But the raw sensor data would not provide parameters 
indicating flow intensity which is also needed for the DT simulation. 
Therefore, a script is developed to extract near-field particles’ velocity 
when they collide with sensors around the ROV model. The flow in
tensity is calculated as Eq. 1: 

Fsensor =
∑

mi ∗ v̂i (1)  

Where mi is the mass of particle I, v̂i is the normal vector of the velocity 
of particle I, i.e., the projection of speed perpendicular to the contact 
surface, as shown in Fig. 5. In this equation, for each virtual sensor, a 
sum of normal momentum for all the particles colliding with the senor, 
∑

m ∗ v̂i, is calculated as the representation of flow intensity. In this 
particle fluid simulation, the mass difference of each particle does not 
need to be considered because the hydrodynamic features are man
ifested as the pressure gradient. As a result, the mass m can be equally set 
to 1.0 in the equation. All the virtual sensors around the ROVs collect 
particle velocity data when a collision happens, and the final sum value 
is sent to haptic devices with a haptic intensity value from a proper 
range. With this method, human operators can feel the changes in the 
strength and direction of the water flow. 

Fig. 3. Integrated multi-level VR-Haptic system, including digital twin simulation environment and haptic emulator.  
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Fig. 4. Hierarchical fluid simulation in the Digital Twin reconstruction with another ROV model. (a) Near-field particle simulation. (b) Vector field for far-field visual 
augmentation. (c) Particle interactions with the ROV model. 

Fig. 5. Example of virtual sensor intensity in DT module: normal vector for intensity calculation.  
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Similarly, the micro-field haptic glove feedback is realized with the 
same method. We used HaptX gloves as the user interface. Each HaptX 
Glove features over 130 discrete points of tactile feedback that physi
cally displace the user’s palm up to 2 mm (HaptX, 2021). HaptX Gloves 
also feature the strong force feedback, with exo-tendons that apply up to 
40 pounds of dynamic force feedback per hand (8 lbs./35 N per finger) 
(Fig. 6). A haptic glove location model is created in VR to reflect the 
motions of operator’s hands. When virtual fluid collides with the virtual 
glove model in Unity, the system generates a higher resolution haptic 
cue for simulating the micro-scale haptic feedback. To be noted, the 
same particle system is used for glove-based haptic stimulation but with 
a higher resolution, as hands are more sensitive to bodies in terms of 
haptic sensation. 

3.6.2. Haptic feedback system 
Different from other haptic related studies, except for hand-held 

level haptic feedback, this system also develops a whole-body 
coverage haptic map to hydrodynamic features. Fig. 7 demonstrates 
the user setup for haptic feedback system. The motion of fluid sur
rounding the ROVs can be sensed with virtual sensor objects in the Unity 
game engine. A total of 40 sensors on the haptic suit are matched with 24 
virtual sensors equipped on the ROV model in VR. Since it is CPU- 
consuming for an increased number of sensors which could signifi
cantly decrease system performance. In addition, the haptic sensory 
channel of the human body is not sensitive enough to sense minor dif
ferences between adjacent sensors. As a result, we designed a mapping 
method to project the data of four virtual sensors to eight vibrators in 
two rows on the haptic suit for the upper and lower parts of the body, as 
shown in Fig. 7. In total, there are 12 virtual sensors on each side of the 
ROV to trigger all 40 vibrators on the haptic suit. The haptic suit will 
vibrate based on the flow intensity parameters sent by virtual sensors. At 
the same time, human operators can sense the micro-turbulence via the 
haptic gloves. With vibrating intensity changing on both sides of the 
human body, operators can easily sense the hydrodynamic changes and 
reactively maneuver ROVs for other tasks. We use a dynamic collision 

detector, to examine whether a particle collided with the dynamic rigid 
body (i.e., the virtual ROV model) during the last simulation step. Then 
two methods from PhysX are used to read position and velocity 
information. 

To be noted, the flow intensity representation generated in DT 
cannot be directly used for triggering the haptic suit. The haptic in
tensity should be set in a proper range, otherwise, human operators 
would feel uncomfortable due to the strong vibrations. We estimated 
that a comfortable upper limit for the vibration should be no more than 
1.5 cm/s2 according to our user experience test. Aimed to convert flow 
intensity to the identified haptic intensity range, a formula was devel
oped to adjust the values as Eq. 2. The purpose is to discount the large 
range of the raw flow data to a proper range for haptic intensity, where 
Fsensor represents the flow intensity sent by the sensors. 

Intensity = 1.5
eFsensor − 1
eFsensor + 1

(2) 

For micro-field haptic stimulation, a haptic glove device HaptX was 
selected to generate micro-turbulence haptics. As mentioned, HaptX is a 
pneumatic haptic glove with air channels to deliver high resolution and 
high displacement tactile feedback (Perret and Vander Poorten, 2018). 
Facebook Meta lab has also shown a prototype VR glove with inflatable 
plastic pads arranged to fit the wearer’s palm and generate force feed
back (Robertson, 2021). All these devices have improved with a better 
tactile feedback accuracy and can extend Human-VR interaction. In our 
design, HaptX glove was used because of its full palm and fingers 
covering air channels design. Human operator wearing the haptic gloves 
can move their hands to where he/she wants to perceive minor hydro
dynamic changes at the micro-level. Micro-scale turbulence data is sent 
to haptic glove actuators, where palm-level haptics are generated for the 
human operator. There are two main advantages of this multi-level 
design. On one hand, accurate and high-fidelity hydrodynamic fea
tures are required for specific ROV tasks, such as docking, and under
water inspection in an environment with many obstacles. Lack of 
accurate and high-resolution turbulence information may undermine 

Fig. 6. User setup with HTC Vive, haptic suit, and haptic gloves.  
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the human perception of the potential danger, resulting in improper 
decision-making and failure of collision avoidance. On the other hand, 
too much information could induce cognitive load and mental fatigue. 
For example, for simple inspection and routine navigation tasks, such 
kind of micro-scale turbulence information is of no use to send to the 
human operator. With haptic gloves and multi-level design, the human 
operator can decide when to use what levels of sensation (far-field, near 
field, and micro-level), based on the task context. 

4. Demonstration case 

A case study was performed to test the system’s effectiveness in a 
simulated ROV navigation task. Practically, drift caused by unpredict
able subsea currents is a great challenge for current subsea ROV oper
ations (Leabourne et al., 1997). Deviating from the target route may 
cause stabilization problems and disorientation (Capocci et al., 2018; 
Leabourne et al., 1997). This case study aimed to augment the human 
sensation of subsea currents with the new-designed feedback system and 
assist human operators in resisting drift. The subjects were required to 
control the ROV model in the VR environment for straight-line naviga
tion in the x direction. Five checkpoints were distributed on a straight 
line at x = 8 m, x = 20 m, x = 35 m, x = 60 m, and x = 90 m. Multiple 
current fields were set along the route, and the component on the z di
rection caused the drift from the straight line. Subjects were asked to 
control the ROV by joystick with (test condition) and without the pro
posed augmented sensory system (control condition) respectively. The 
flow components in these two conditions were shown in Table 1. The 
current fields distribution was designed with the same number of total 
fields and the same average flow speed, but with different velocities in 
each single field area. Such kind of design is to eliminate human learning 
effect in the second condition. In total, we tested 10 subjects for this case 
study. Besides, a body motion control case demo with the proposed 
sensory augmentation methods was also demonstrated. 

Fig. 8 showed the overall performance of body motion control & 
sensory augmentation system on aspects of control, deviation and 
feedback values. Definitions of axis of rotation and directions of move
ment was shown in Fig. 9a. The haptic intensity values were updated 
13.3 Hz. With the intuitive feeling of the human body, the operator 
could react rapidly to haptic intensity changes, as illustrated in Fig. 8a. 
Operator’s body motion control could generally resist the drift caused by 
the current speed in the z direction. Besides, the deviation can be 
controlled at a relatively low level. The deviation, absolute deviation, 

and average deviation were plotted in Fig. 8b. The final average devi
ation was about 0.9163 m. Fig. 8c and Fig. 8d demonstrated the haptic 
intensity changes during the case study. The total 24 sensors were 
grouped into 4 areas based on their positions on human bodies. The 
changes in flow speed in different directions could trigger different 
sensor areas, which could be easily sensed. For example, an increasing 
flow speed on the positive z direction represented a stronger flow 
colliding with the right part of human bodies, and the average haptic 
intensity of 6 sensors on the right part would increase significantly. 

As for the subjects’ performance in the case study, we plotted tra
jectory patterns of two conditions in the same figure, and calculated 
average deviation for all subjects as task performance measurement. As 
demonstrated in Fig. 9b, the red point represented the trajectory of the 
control condition, and the blue point represented the trajectory of the 
test condition. The trajectory of test condition was significantly 
concentrated to the straight line while the control condition trajectories 
were more scattered. Specifically, the average deviation of the control 
condition was 4.9933 m and the average deviation of the test condition 
was 1.6006 m. With our sensory augmentation system, subjects could 
intuitively sense the flow intensity and control the ROV to resist the drift 
effect as well as keep straight-line navigation. 

In conclusion, the result showed that there was a significant differ
ence in vibration patterns for different flow conditions, indicating an 
effective way of using haptics to transfer underwater hydrodynamic 
conditions. Besides, the participants could easily identify different ROV 
positions and locomotion conditions based on the information provided 
by the multi-level sensory feedback system, which helped them under
stand ROV work status and thus engage in the most proper control op
erations in future diverse and complex work environments. 

5. Discussion and conclusions 

This paper introduces the design of an innovative system for the 
intuitive teleoperation of subsea ROVs with VR and haptic simulation. 
Multi-level sensory data from ROVs is collected and sent to a digital twin 
simulation environment for data augmentation. Three types of sensory 
augmentation methods, namely far-field augmented visual feedback, 
near-field haptic suit feedback, and micro-field haptic glove feedback, 
are generated to enhance human situational awareness of the ROV 
workspace with higher efficiency compared to traditional 2D video 
streaming feedback. This VR-Haptic integrated environment immerses 
the human operator in a high-fidelity sensory stimulation system, 

Fig. 7. Map of virtual sensors in DT module matching haptic suit vibrators.  

Table 1 
Current fields distribution and speed components in two directions.  

Currents range x (m) 0–8 8–20 20–26 26–34 35–45 45–51 52–58 61–71 72–82 84–90 

Control condition Vx(m/s) 0.15 0.1 -0.2 -0.35 0.15 0.25 -0.2 -0.05 0 -0.067 
Vz(m/s) 0.45 -0.3 0.5 0.2 0.3 -0.35 -0.55 -0.5 0.2 0.2 

Test condition Vx(m/s) 0 0.3 0.3 -0.35 -0.4 0.25 0.2 0.1 -0.1 -0.33 
Vz(m/s) 0.45 -0.3 0.2 0.55 0.15 0.2 -0.7 -0.6 0.45 0.15  
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streamlining the HRC workflow. As a result, the human operator can 
easily sense the state of ROVs through visual and haptic channels and 
intuitively issue adequate control commands. Literature has verified 

that this kind of multi-sensory feedback system could increase situa
tional awareness of human operators (Xia et al., 2022; Zhu et al., 2021; 
Zhu et al., 2022), which enables future engineers to enter a subsea era in 

Fig. 8. Demo case result of body motion control. (a) Human body motion control speed change. (b) Deviation. (c) Haptic intensity changes in z direction. (d) Haptic 
intensity changes in x direction. 

Fig. 9. (a) Axis of rotation and directions. (b) Trajectory patterns for control condition and test condition.  
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a safer, less costly way. And our case study also verified the effectiveness 
of the proposed system. In conclusion, by integrating multi-levels of 
sensory information and feedback, this research provides an immersive 
and interactive control system for future ROV operations. This research 
is strongly positioned for better accessibility and inclusion because it 
aims to lower the career barrier for a traditionally highly professional 
area. The proposed underwater human-robot interaction approach will 
greatly simplify the requirement of engineering, science, and robotics 
knowledge for subsea engineering and underwater robot operation jobs. 
The sensory augmentation method for robotic control will mitigate the 
age requirement, promoting career longevity. The new technology will 
also help salvage the careers of experienced workers who have suffered 
from career injuries, such as diving diseases. In addition, the system 
could be used as a platform for fresh operator training as well to lower 
the training cost. 

Besides, neurophysiological sensors are expected to be adopted to 
help assess the functions and performance of human operators during 
ROV operations using our system. It is expected that by integrating the 
robot control systems with the Unity engine, VR-Haptic-assisted ROV 
teleoperation can be accomplished in a participatory and inclusive way. 
With the increasing adoption of VR and haptic methods, the enhanced 
sensory feedback can help future engineers manage complex underwater 
tasks with ease. This ROV teleoperation system will ultimately lead to a 
Robot as a Service (RaaS) model that consists of a cyber-physical unit to 
facilitate the seamless integration of underwater robots and human 
operators into a shared cloud environment. It is envisioned that this 
RaaS model will greatly diversify the subsea workforce and broaden 
participation in subsea engineering, inspection, and scientific discovery. 

There are still many challenges for us to resolve to make this tech
nology viable. The first challenge relates to the technological maturity. 
Realizing the proposed system would require a significant change to the 
current ROV designs, including equipping the ROV systems with new 
sensors that can collect high-fidelity underwater environment data, such 
as pressure sensors on the surface of ROVs and Doppler sensors for far 
field hydrodynamic sensing. A new data and telecommunication infra
structure is also needed for transferring the potentially big amount of 
data to support the human-robot sensory transfer. Transforming current 
systems to new proposed system required time and money, and the 
initial cost may become a burden for many businesses. On the other 
hand, this method also has limitation in weariness after long time 
operation in VR. Human operators might get fatigue after missions of 
several hours. Autonomous technologies should be involved to reduce 
human operation time and workload in the future. 
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