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Subsea construction operations heavily rely on remotely operated vehicles (ROV). Due to the dynamics of the
subsea environment such as uncertain turbulences, affected visibility and interference with subsea ecosystems,
control of subsea ROV is challenging for human operators, especially for construction professionals who have
never been exposed to such an environment. The traditional visual feedback method can hardly provide direct
and intuitive cues about workplace uncertainties, especially the flow conditions, which makes the ROV operation
a work with a high mental load and high training barrier. To augment human sensation of the ROV and
workplace status, this research proposes a hierarchical intuitive control method based on Virtual Reality (VR)
and haptic simulators. A distributed sensor system that allows a flexible add-on sensor package for subsea
environmental data collection is applied to the ROVs to collect hydrodynamic data of subsea workplaces. Then, a
Digital Twins (DT) module receives and integrates all data to drive a simulation approach for data augmentation.
Last, multi-level sensory feedback methods, including far-field augmented 3D visual feedback, near-field haptic
suit tactile feedback, and micro-field haptic suit turbulence feedback are generated and sent to human operators
through haptic devices. Compared to previous studies, this system reconstructs the realistic subsea environment
with detailed hydrodynamic features in VR digital twin. Whole-body level haptic feedback is realized based on
hydrodynamic information. This proposed system ensures an immersive awareness of the proximity conditions
and predictions of potential damage and status changes during ROV operations. As a result, a less-trained
operator can pilot the ROV based on intuition to maximize the performance and avoid potential mistakes.

1. Introduction 8.5% during 2021-2026 (WBOC, 2021).

Subsea engineering operations benefit from ROVs because of their

According to the National Oceanic and Atmospheric Administration
(NOAA), about 95% of the world’s oceans and 99% of the ocean floor are
unexplored (Baird, 2005). Augmentation of human abilities in subsea
engineering work, such as offshore construction and inspection (e.g.,
floating cities and offshore wind farms) and subsea exploration and
operations (e.g., offshore mining, subsea cables, and energy harvesting),
provides a historic opportunity for the new economic growth and sci-
entific discoveries. There is an urgent need to seek versatile,
high-efficiency, low-risk-cost subsea engineering solutions. In practice,
remotely operated vehicles (ROVs) have been an effective tool for sub-
sea exploration and operations for decades (Kennedy et al., 2019). The
applications of ROVs have been increasing rapidly in recent years and
are expected to continue growing in the future (Brun, 2012). Global
Underwater ROV Market Size is projected to reach $124.6 million by
2026, from $76 million in 2020, at a compound annual growth rate of
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agility, safety, and endurance (Li et al., 2018), but the teleoperation of
ROVs can still be challenging and risky due to the mismatch between the
complexity of subsea workspace and the environmental perception of
human operators. In general, a typical ROV system consists of a sub-
mersible vehicle, a surface control unit, and a tether management sys-
tem (Salgado-Jimenez et al., 2010). Technicians from above sea level,
usually working on a vessel, can take control of the whole system to
accomplish complex tasks with the live video streaming captured by the
cameras equipped on the ROVs (Zhang et al., 2017). The complexity of
the subsea environment, such as the dynamic internal currents, low
visibility, and unexpected contacts with marine life, may undermine the
stability of the ROVs, or the stabilization control (Khadhraoui et al.,
2016). Although many ROV studies are focusing on autonomous algo-
rithms, such a certain level of self-stabilization and even self-navigation
functions nowadays, human controls are still necessary for complex
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tasks that require precise operations (Fossen, 2011). Human sensori-
motor control relies on multimodal sensory feedback, such as the visual
and somatosensory cues, to make sense of the consequence of any
initiated action (Wood et al., 2013). In ROV teleoperations, only visual
feedback is provided in existing methods. The lack of ability to perceive
various subsea environmental and spatial features, such as the inability
to directly sense water flows and pressure changes, can break the critical
feedback loop for accurate motor actions, resulting in an induced per-
ceptual-motor malfunction (Finney, 2015). Especially in future ROV
application scenarios, there will be complex and diverse tasks for ROVs,
such as navigation in tight, cluttered, and unstructured environments;
stabilization in highly dynamic flow conditions; repeated dock-
ing/undocking operations, etc., which all require varieties of environ-
mental information and in-situ perception of the ROV workspace
(Lachaud et al., 2018; Xia et al., 2022). In addition, the information
about the ambient fluid environment at different spatiotemporal scales
would also benefit ROV operations substantially (Lin and Yang, 2020).
There is an urgent need to grant ROV operators the ability to “see, hear
and feel” the subsea workplaces and ROV status with multisensory ca-
pacity in an intuitive way (Moniruzzaman et al., 2021; Xia et al., 2022).

This research proposes a virtual telepresence system based on VR and
a sensory augmentation simulator to mitigate the perceptual-motor
malfunction, and enhance human perception as well as operation ac-
curacy in ROV teleoperation. In order to provide multi-level information
to meet the versatility of future ROV teleoperation, a hierarchical haptic
simulator is proposed to simulate the following subsea environmental
features on the body of the human operator via haptotactile sensations:
1) near-field (<3 m) and small-scale hydrodynamics around the ROVs
that could affect the vehicle stabilization and maneuverability; and 2)
far-field (>3 m) mean hydrodynamic flows that are critical to the ROV
navigation and motion planning. Besides, an augmented force rendering
with a pair of high-fidelity haptic gloves for sensing micro-scale turbu-
lence is provided as well to further extend human sensation. The multi-
level environmental information is collected by ROV-equipped sensors,
sent to the Digital Twin module for data fusion and reconstruction, and
converted into different scales of visual and haptic feedback through
different devices accordingly. Compared to previous VR and haptic
teleoperation studies, this system reconstructs a realistic subsea envi-
ronment with both visual objects and hydrodynamic features in VR
digital twin. A whole-body coverage haptic feedback is generated to
provide sufficient environmental information for ROV operation. With
this integrated VR-Haptic sensory feedback system, the human sensation
of the robot workspace is extended, which will benefit ROV tele-
operation for future complex subsea operations.

2. Literature review
2.1. ROV operations and controls

ROVs are a common type of unmanned underwater vehicles (UUVs)
that are widely used in a wide range of subsea applications. These ap-
plications include underwater intervention, exploration and surveys,
equipment installation and retrieval, sample collections, and photog-
raphy/filmography, to name a few (Brun, 2012; NOAA, 2021). The
differentiating characteristics of ROVs from autonomous underwater
vehicles (AUVs), the other common type of UUVs, include their large
numbers of maneuvering degrees of freedom; expendability to be
outfitted with a wide range of monitoring and navigational payloads;
and versatility in fulfilling needs for underwater intervention and
manipulation tasks when equipped with manipulators (Azis et al., 2012;
Brun, 2012; Paull et al.,, 2013). As the name indicates, ROVs are
designed to be remotely operable through a tether connecting the
vehicle and the remote operator. For larger ROV systems that need to be
deployed from a surface vessel, an intermediate cable management
system is often necessary to reach deeper depths. The umbilical cable
provides a high-speed data connection between the vehicle and the
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remote operator, making real-time data streaming and high-frequency
remote control possible (Filaretov et al., 2018; Song et al., 2020).

ROVs can be classified differently depending on their typical di-
mensions, costs, functionalities, etc. Based on their main purposes,
existing ROV platforms can be loosely categorized as education/
hobbyist-class, inspection/survey-class, and work-class (Song et al.,
2020). Education-class ROVs are often smaller in size and designed with
an open architecture, making them an ideal platform for universities and
research institutes that desire low-cost platforms with good expend-
abilities (Wang et al., 2019). The BlueROV series by Blue Robotics is an
example of this type of platform (BlueRobotics, 2021).
Inspection/survey-class ROVs are often equipped with different types of
sensing instruments for data collection and monitoring (Capocci et al.,
2017). A wide range of ROVs is full within this category, including the
commercially available Sabertooth ROV by Saab Seaeye (Johansson
et al., 2010). The work-class ROVs are the most versatile ones that are
often equipped with underwater manipulation capabilities. They play an
essential role nowadays in many of the routine operations of oil and gas
industries and the ocean science community (Nakajoh et al., 2012). An
emerging category is the residential-class ROVs that are designed to be
deployed at the work site for an extended period with support from
underwater docking stations and subsea cables for power and commu-
nication (Jacoff et al., 2015).

Although ROVs vary in their sensing and actuation capabilities, they
typically have basic capabilities such as maneuverability along more
than one principal axes, state estimation, and communication through
the umbilical cable or additional wireless means. For work-class ROVs,
more sophisticated actuation and sensing capabilities are often available
to ensure operational accuracy and improve system reliability (Finney,
2015). For instance, to improve the vehicle control robustness in dy-
namic and uncertain conditions, a disturbance rejection controller can
be implemented to improve the maneuvering accuracy in the event
where unknown environmental forces appear to act on the vehicle (Cao
et al.,, 2020). This capability becomes very essential to ROVs when
performing intervention or manipulation tasks, where the body of the
ROVs needs to hold its position to allow precise control of the end
effector. However, existing station holding controllers often act as
after-the-effect disturbance compensators, meaning that the controller
will not take effect until a position holder error appears due to distur-
bances (Caccavale and Villani, 2002; Wang et al., 2017). Such a vehicle
stabilization method creates control delays and inaccuracies for ROVs.
Similarly, more capable ROVs are equipped with navigational sensors
with improved range, precision, and long-term accuracy. These navi-
gational sensors allow the ROVs to maintain a better positioning accu-
racy, which is of utmost importance for underwater navigation where
satellite-based localization services are not available and persistent
localization is inherently challenging (Paull et al., 2013).

ROV technologies have gradually matured over the past few decades.
Nonetheless, operating an ROV is still a challenging and demanding task
even for experienced ROV pilots with years of background in ocean
engineering, especially for complex subsea inspection, installation and
maintenance tasks. Operations in these tasks can entail risks of com-
placency, misjudgment and loss of manoeuverability due to a lack of
environmental information (Utne et al., 2019). However, current efforts
in ROV technologies development do not help reduce the high barriers
to entry for ROV piloting. On the one hand, many studies focused on
improving traditional visual feedback and joystick controller, such as
photo-model-based stereo-vision 3D perception (Tian et al., 2019) and
extra steering for ROV control systems by tracking the gamepad orien-
tation (Abdulov and Abramenkov, 2021). These methods highly relied
on operators’ skills and did not resolve the perceptual-motor malfunc-
tion problem (Finney, 2015). On the other hand, more and more studies
focused on autonomous algorithms, including automatic docking
(Qomaruzzaman and Mardiyanto, 2018), autonomous inspection
(Amundsen et al., 2021), and autonomous manipulation (Yeu et al.,
2019). Yet, the subsea environment is much more complex than the
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traditional engineering workplace, such as highly dynamic fluid envi-
ronments with many unknown disturbances. It is extremely hard for
autonomous algorithms to cover all the work requirements, and human
operators are necessary in the loop. Future ROVs should possess high
levels of autonomy with human control in the loop and be capable of
relaying underwater perceptions of different modalities back to the
human operator in real time, creating an intuitive and immersive
piloting experience.

2.2. VR-based robot teleoperation

Traditional robot teleoperation, especially ROV teleoperation, highly
relied on camera view display and all kinds of joystick panel control
(Kent et al., 2017). Many studies focused on improving teleoperation by
designing efficient teleoperation interface (Kent et al., 2017; Labonte
et al., 2010) and additional workload analysis (Lin et al., 2019). These
kinds of control methods still lacked sufficient sensory feedback, which
might result in lower spatial perception in complex environments
(Lathan and Tracey, 2002). Virtual Reality (VR) is an emerging
human-computer interface for rendering realistic environment scenes
and for providing rich spatial information (Brooks, 1999; Zheng et al.,
1998). VR for human-robot collaboration (HRC) has brought the bene-
fits of coupling the perception and controls between human agents and
robots (Chakraborti et al., 2017). Such a close sensation pairing can
result in a better plan of motions and interactions in difficult tasks that
require both robotic and human intelligence (Williams et al., 2019). For
robot teleoperation, compared to traditional 2D imagery or video
feedback above, the advantage of VR is to provide a direct and immer-
sive 3D visualization of the target object or scene within the surrounding
workplace, therefore converting richer environmental information and
relationship between multi objects to human users, and lowering the
communication and control barriers (Kaminka, 2013).

In addition to augmenting visual feedback, it is recently noted that
VR can also serve as the platform for multisensory augmentation, i.e.,
providing multimodal visual, auditory, and haptic cues associated with
an intended action to improve the motor performance (Sugiyama and
Liew, 2017; Zhou et al., 2020a, 2020b; Zhu et al., 2021). Especially,
haptic devices combined with a VR simulation can generate haptotactile
stimulation (e.g., vibrations and force feedback) on the user’s body in
correspondence with the occurring events (Tian et al., 2017, 2021).
These haptotactile signals may be used as feedback cues signing for the
human operator’s sensation to help understand the motion and status of
ROVs, which is expected to further improve human spatial awareness
and control ability of ROVs. In fact, some studies have already tested the
efficacy of capturing underwater environmental information and
sending the simulated haptic signals back to humans. For example, a
linear-oscillating actuator using asymmetric drivers was developed to
create equivalent pressure signals (Ciriello et al., 2013), such as pushing
or hydrostatic pressure in remote system operations. A gyro effect haptic
actuator was tested to simulate torque feedback even when ungrounded
(Shazali, 2018). The combined pressure and torsion forces applied to the
user’s body can produce the illusional feeling of external force and
incorporated by the user’s proprioceptors, generating a kinesthetic
perception of the ROVs (Amemiya and Maeda, 2009). These preliminary
“one-size-fits-all” efforts could only work in the pre-designed workspace
with limited depth and zones, which could hardly capture multi-level
hydrodynamic features in underwater workplaces. Lacking detailed in-
formation for different spatiotemporal scales, these methods may not be
effective for ROV operations occurring in diverse and complex work-
spaces. Given the emergence of resident ROV systems, challenges for the
large-scale ROV navigation and precision operations such as dock-
ing/undocking are both significant, which is missing in the current
sensory feedback methods. A system is needed to capture high-fidelity
hydrodynamic data at both the micro and macro levels, as well as sim-
ulations to create a unique immersive sensory-rich environment for ROV
operators. The system should also be able to augment human ability in
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critical decision-making such as navigation path planning. We propose
to utilize the framework of digital twin simulation to integrate the data
processing and decision-making needs in the VR.

2.3. Digital Twin for complex work interface

Digital Twin (DT) is a comprehensive digital representation con-
necting to physical products. It includes properties, conditions, and
behaviors of the real-life object through models and data (Haag and
Anderl, 2018; Tao et al., 2018). An effective DT should have basic
functions of modeling, simulation, verification, validation, accreditation
(VV&A), data fusion, interaction and collaboration, and service (Jones
et al., 2020; Tao et al., 2018). In practice, DT is a great tool for data
fusion and augmentation, including integrating different sources of data
and filling gaps in the collected data. For example, for geometrical
variations management, a concept of Skin Model Shapes was proposed
to connect all different views throughout the product life-cycle and
operations in a comprehensive model that incorporates manufacturing
process planning and inspection process planning (Schleich et al., 2016;
Schleich et al., 2017). To monitor machining operations and predict
surface roughness, a method was developed by Cai et al. and Tao et al. to
integrate sensor data and manufacturing data as the basis for building
the DT of a vertical milling machine (Ricks et al., 2015; Tao et al., 2018).
Especially for subsea environment data, there is much-complicated in-
formation from a variety of sensors and methods. Tremendous data is
obtained by different kinds of sensors for all purposes, including tem-
perature sensors, hydro pressure sensors, acoustic doppler for turbidity,
etc. (Williamson et al., 2015). Multiple methods are applied to predict
ocean conditions, such as machine learning methods for modeling a
bigger range of workplaces (Brunton et al., 2020) and Smoothed Particle
Hydrodynamics (SPH) for simulating free surface flows (Liu and Liu,
2010). Such a huge amount of data results in a burden on data percep-
tion and analysis for human operators. Therefore, it deserves a further
investigation to integrate all kinds of data in DT and send it to human
operators effectively for future ROV subsea tasks.

Plus, DT can be used as an effective optimization tool. For example,
DT for manufacturing can offer an opportunity to simulate and optimize
the production system, including logistical aspects and visualization of
the manufacturing process (Kritzinger et al., 2018). In robot applica-
tions, DT can serve as a platform for path planning. Simulated envi-
ronments can be built in DT based on the physical environment, and
path planning algorithms such as A* (Tseng et al., 2014) can be inte-
grated to generate the shortest route path to target points. For example,
a robot path planning algorithm that integrates human-predicted tra-
jectories by a context-aware Long Short-Term Memory (LSTM) model
was successfully designed by Hu et al. to navigate a robot at an un-
structured construction site (Hu et al., 2020). However, for subsea
environment path planning, it is more challenging due to the complexity
of the subsea environment and the unique locomotion features of ROVs.
Except for obstacles, potential dangers such as high turbidity areas are
required to be avoided as well for ROV navigation. These kinds of in-
formation are lacking in current ROV operation studies. Therefore,
further efforts are necessary to develop a multi-level hydrodynamic in-
formation display method and a subsea-adapted path plan function in
the DT module.

3. System design
3.1. System architecture

The existing ROV control and feedback systems still focus on the
camera view display and joystick controller. Although efforts were paid
to efficient UI design (Labonte et al., 2010), workload analysis (Riddle,
2002) and autonomous algorithms (Amundsen et al., 2021; Qomar-
uzzaman and Mardiyanto, 2018), these methods could not provide
enough sensory feedback for effective environmental spatial perception.
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Especially, the complexity of the subsea environment, such as the dy-
namic internal currents, low visibility, and unexpected contact with
marine life, may undermine the stability of the ROVs and result in a high
career barrier. A new method is necessary to provide human operators
with sufficient and immersive feedback of the surrounding workspace.
Therefore, this study presents the design of a system combining the VR
simulation and a whole-body haptic device to augment the human op-
erator’s sensation in ROV teleoperation. Fig. 1 illustrates the architec-
ture of the proposed human-robot sensory transfer system for
simplifying ROV teleoperation. The proposed system consists of five
modules, including Subsea Sensing Module, ROV module, Robotic Simu-
lation, and Control Module, Workplace Model, and User Interface. The
details of each module are described as follows.

VR and haptic feedback methods have been commonly used in robot
teleoperation, such as robotic arms (Zhou et al., 2020) and snake robot
teleoperation (Zhu et al., 2022). Compared to these studies, our system
contributes in two aspects. Firstly, previous studies consider VR as an
immersive visual augmentation method, while our system improves it as
a DT simulator and data center. Different kinds of sensory data are sent
to VR and used to reconstruct a realistic subsea environment, including
not only visual objects but also hydrodynamic features. Several algo-
rithms are developed to categorize all kinds of data and generate
multi-level feedback based on hydrodynamic features, such as
micro-field haptic glove feedback, near-field haptic suit feedback, and
far-field visual augmentation feedback. Secondly, many haptic-related
studies are limited to a hand-held level, i.e., developing hand-held
haptic device (Chen et al., 2019) and robotic arm sensory feedback (Li
et al., 2019). Except for the hand-held device, our system extends the
haptic feedback to a whole-body level. Several algorithms are developed
to adjust hydrodynamic features to body-covered haptic intensity
values.

Computers in Industry 145 (2023) 103836

3.2. Subsea sensing module

Subsea workplaces will be substantially different from our estab-
lished workplaces, and thus the human operator may not perceive the
environmental data in the desired way. As a result, we expect the sensing
system to capture the key characteristics of a dynamic underwater
environment for sensory augmentation. The Subsea sensing module
builds on a multi-level sensor network to collect real-time subsea envi-
ronmental data pertaining to the hydrodynamic features and tempera-
ture changes. The sensor network captures three levels of sensor data to
meet the sensing needs, including far-field hydrodynamic status based
on an acoustic Doppler current profiler (ADCP) (Kostaschuk et al., 2005)
to collect underwater wave profiles in the 3-20 m proximity; and near
field (0.1-3 m) and micro field (<0.1 m) turbulence based on in-situ
sensors equipped on the ROVs. The far-field sensing aims to identify
the sudden change of underwater waves on a bigger scale or the
so-called “seamount”. The existence of seamounts often poses significant
risks to the teleoperation of ROVs as they usually intensify the tidal flow
and water stratification, interrupting the ongoing ROV operation pro-
files. As for the in-situ sensor, we leverage an artificial skin — an inno-
vative distributed sensor system that allows a flexible add-on sensor
package. It uses an array of paired differential pressure sensors mounted
on electronics boards. The boards are embedded in elastomers with
hardware that allow them to connect to a 3D printed scaffolding or a
custom shell. A hydrodynamic force measurement module is fabricated
and installed onto the ROVs to enable the vehicle to sense near-field
flows and hydrodynamic forces. Different scales of flow sensing mea-
surements are collected by the sensor module and sent to the DT simu-
lation and optimization module for data fusion, smoothing, and
reconstruction. The artificial skin sensing system enables fast distur-
bance detection and rejection to improve vehicle control accuracy. The
design of the in-situ sensor is based on our previous works (Krieg et al.,
2011; Krieg et al., 2019; Krieg et al., 2015) on lateral-line sensory
mechanisms within fish which consist of specialized “hair cells”
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throughout the body surface capable of detecting pressure gradients and
shear stress. Sensing signals include temperature, pressure gradient, and
shear stress sensors distributed throughout a custom shell designed to fit
the surface of the ROVs. All these visual and haptic feedbacks is sent to
the operation module to generate a real-time and realistic sense of the
ROV workspace for humans through multi-modal sensory devices. In
addition, to enable the continuous operation and long-term availability,
the proposed system is designed to be a resident system with a docking
station that can be deployed for long terms and tasked remotely from a
remote station on land (Song et al., 2020). The docking station can
utilize power and communication interfaces available from existing
cabled subsea observatories (Pawlak et al., 2009), marine renewable
energy harvesting systems, or inter-continental telecommunication
infrastructure (Wallen et al., 2019). The ROVs can be connected to a
docking station through a cable management system for high reliability
and bandwidth in data transfer, and the docking station is connected to a
remote human operator via the Internet. The bioinspired flow sensing
system is integrated with the vehicle to provide in-situ hydrodynamic
force measurements. In addition, the DT simulated environment can be
also used as a fast training of new operators and provide pre-mission
evaluation for operation plans.

3.3. ROV module

The vehicle used in this project is based on a BlueROV2 platform
with a heavy configuration. The BlueROV2 is an open-source under-
water vehicle equipped with six thrusters in a vectored configuration.
The heavy configuration provides control in all six DOFs. The based
vehicle is powered by an onboard 18Ah battery, giving 2-3 h of battery
life with a single charge. On top of the base platform, our vehicle is
upgraded with a Jetson Xavier NX backseat computer (NVIDIA, 2021) to
perform high-level sensor fusion and closed-loop control autonomy. The
vehicle is outfitted with a bottom-facing single-beam echosounder that
measures distances concerning the seafloor for up to 50 m, and a 360-de-
gree scanning imaging sonar for underwater perception. In addition, the
vehicle is equipped with a Nortek Doppler velocity log with current
profiling capability that allows the vehicle to measure the relative ve-
locity concerning the seafloor as well as the far-field flow velocity for
augmenting the operator’s situational awareness in the digital-twin
environment. The vehicle is outfitted with forward and bottom-facing
cameras, a 360-degree scanning sonar for obstacle detection, collision
avoidance, and mapping, a custom-integrated wireless charging and
communication system, and a 1-MHz compact acoustic Doppler current
profiler (ADCP) to provide volumetric far-field flow measurements. The
near-field flow and hydrodynamic force sensor are added to the vehicle
as a separate module at locations free from structural obstructions,
which may create vortex shedding and affect the sensing quality. This
novel sensor system allows the vehicle to directly measure the hydro-
dynamic disturbances and compensate accordingly before positioning
error starts to appear (Krieg et al., 2019), improving the vehicle control
accuracy and responsiveness. We developed a “backseat driver”
computing method to realize the open-loop control needs. As discussed
earlier, there may be a disconnection between the control commends
issued by the human operator and the actual reaction of the ROVs due to
the changing hydrodynamic conditions in the subsea workplace. As a
result, a resolver is used to generate the correct rendering of ROV ki-
nematics in VR. The same applies to the controlling of the real ROVs, as
the real system also needs to match the control commands and mirror
the behaviors in the VR environment. The same hybrid solver will be
applied to the backseat driver’s computer. In addition, near-field flow
sensing measurements can be reflected on the haptic suite and gloves on
the pilot to enhance the situational awareness of the pilot.

3.4. Robotic simulation and control module

Physics engine simulation data and sensor data from the remote
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ROVs need to be transferred to Robot Operating System (ROS) seam-
lessly to enable ROV simulation and controls. Building on our previous
work (Zhou, 2020), we will examine a data synchronization system for
VR and robotic systems. The system features two functions: converting
environmental parameters extracted from the workplace model (hy-
drodynamics, objects, and interactions) to ROS to rebuild the 3D scene
in ROS Gazebo for robot simulation, and to enable the control com-
mands for the ROVs. Rosbridge is used to provide a JSON API for
transferring data between ROS and Unity (Crick et al., 2017). Rosbridge
also provides a WebSocket server for web browsers to interact with,
serving as a connection between ROS and the network (Crick et al.,
2017). ROS server converts ROV dynamics data into JSON messages via
rosbridge and publishes it to the website or receives JSON message from
the Internet and converts it to ROS message (Crick et al., 2017; Quigley
et al., 2009). On the Unity side, we use ROS#, a set of open-source
software libraries in C#, for communicating with ROS from.NET ap-
plications, in particular, Unity (GitHub, 2019). ROS# establishes a
WebSocket in Unity so that Unity can connect to a computer with a
specific IP address through the network and transfer data. It also helps
build nodes that publish and subscribe to topics from ROS in Unity.
ROS# converts data into JSON and publishes it or converts the received
data into the original format. We grant the ROS server and Unity’s
WebSocket the same IP address so that the ROS server can publish the
processed topics to the ROS platform, and Unity can subscribe to all
topics on ROS platforms through ROS#.

The robotic simulation and control module also supports an intuitive
control of the remote ROVs via natural body motions. As shown in Fig. 2.
Human control input parameters, including local rotation of HTC
trackers, body postures, and a secondary auxiliary controller, are
designed to match ROV control parameters such as rotation, moving,
and some specific control functions. The local rotation of the human
body is sent to ROVs for pitch, roll, and yaw control, which ensures
ROVs’ orientation consistent with human body motion. Human body
postures are designed to control ROVs moving in the subsea environ-
ment. For example, ROV pitches down when the human operator leans
forward. A secondary auxiliary control method, the HTC VIVE controller
is introduced for vertical up and down operations and function control.
Specifically, the y-axis input value of the touchpad was used to control
up and down for ROVs, with the x-axis value for speed control. The
Boolean value of the trigger button was designed to control the system
on and off. This kind of control method requires long time engagement
in VR with body motion, which might not be feasible for humans with
motion sickness or missions lasting for hours. A practical application in
the future is to integrate this control method with autonomous system to
reduce operation time and human fatigue.

Another need for seamless ROV teleoperation is to render the kine-
matics features of the remote ROVs in VR (e.g., speed, gesture, etc.). This
is because the locomotion control signals from the human operator are
not always realized on the remote ROVs due to the dynamic subsea
environment. For instance, a human operator may lean forward by 10
degrees to command the corresponding 10-degree negative pitch of the
ROVs. Nonetheless, the real ROVs may only demonstrate a 5-degree
pitch due to the liquid viscosity underwater. As such, the reactions of
the ROV kinematics must be regenerated despite what controls are given
by the human operator. In our system, we don’t rely on the real ROV
kinematics data (collected from the onboard sensors) because of the
possible tracking errors or telecommunication latencies. Instead, we rely
on the real-time ROS Gazebo simulation to recover the predicted ROV
kinematics status. The challenge would be to reproduce the robotic
dynamics in ROS Gazebo in a precise and accurate manner. We will use a
hybrid solver that solves both the linear elasticity and hydrodynamic
changes of the simulated ROVs in Gazebo, such as (Chitta et al., 2012).

3.5. Workplace model module

The real-time sensor data is then used to model spatiotemporal
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dynamics of a subsea zone in the vicinity of the robot. To generate an
immersive visualization of the subsea workplace, a game engine Unity
v2020.1 (Unity, 2022) is used. Unity can model the far-field sensor data
as vectors and render the entire space as Virtual Reality displays.
Another key feature of the proposed system is to convert the hydrody-
namic features into human-perceivable sensations, i.e., vibrotactile
cues. To realize this function, a physics game engine NVIDIA PhysX is
used (version 9.19) to simulate underwater (PhysX, 2022). Especially
the smoothed particle hydrodynamics (SPH) method (Monaghan, 1992)
of PhysX is used to simulate the hydrodynamic changes based on the
sensor data. The raw data is used to determine the initial conditions of
the particle emitters. Then a collision detection mechanism is used to
examine the collision events between each particle and the virtual ROV
model. The collision frequency and magnitude will be used to generate
haptics of different levels (see the next section).

The proposed human-underwater robot interaction requires real-
time modeling and visualization for “making sense” of the dynamic,
dangerous, and underexplored subsea workplaces. It needs to address
the challenges of both data sparsity and data overload that could happen
and are equally destructive in the effort of modeling the subsea work-
space. A unique challenge of HRC in subsea operations is the over-
whelming data that needs to be processed and digested instantaneously.
The stepstone for a better underwater HRC is reducing the complexity of
underwater data processing via what we call "sparse data modeling".
Therefore, this digital twin simulation and optimization module is
developed to integrate sensor data and hydrodynamic model for a better
quality of workspace modeling.

In offshore environments, invisible flow structures are generated at
different spatiotemporal scales, such as internal waves and shear in-
stabilities. Intense internal waves can impact the navigation safety and
operation of underwater robots. Shear instabilities can greatly enhance
turbulence generation, which can result in high turbidity that scatters
light and affects water clarity and optic sensors. The location and timing
of these underwater processes are hard to predict; however, they often
leave unique surface signatures that can be detected by remote sensing
imagery (Chickadel et al., 2011; Klemas, 2012; Plant et al., 2009). It is
therefore important to integrate local sensors with ocean observation
network data to provide accurate descriptions of the working environ-
ment. We propose a hierarchal process to model subsea workplaces: (i)
For modeling an environment in close proximity to the underwater
robot, we will apply the robot-carried sensors to infer the turbidity,

pressure, and temperature with hydrodynamic numerical simulation.
The idea is to estimate workplace characteristics within a small radius
(<3 m) centered around the underwater robot. (ii) For modeling the
bigger range of the workplaces (>3 m), we propose to relate the surface
roughness information with hydrodynamic processes in the water col-
umn. How to integrate data from observation networks with in-situ
measurement by underwater robots and visualize the data to provide
workers direct link on how the magnitude, extent, and process of large
hydrodynamic events affect the operation of underwater robots remains
a great challenge. Statistical and numerical models are powerful tools to
forecast ocean conditions, but the hydrodynamic numerical simulations
are expensive and too slow for real-time underwater robot simulation
and controls. As a result, we use reduced-order models (Noack et al.,
2011) to efficiently capture low-dimensional descriptions of the essen-
tial flow patterns at a fraction of the cost. With the large volume of data
from observation networks and high-resolution numerical simulations in
the vicinity of the underwater robot, we developed a physics-informed
data-driven model. The model is based on the physical principles (con-
servation laws), and the low-dimensional model approximate is imple-
mented using the Deep Convolutional Generative Adversarial Network
(DCGAN) machine learning techniques (Brunton et al., 2020; Loiseau
et al., 2018). We applied the validated high-resolution numerical
simulation data to train the network offline. The DCGAN network first
extracts the spatial-temporal coherent flow structures of the
high-dimensional fluid fields as low-dimensional latent variables. The
governing equation of the low-dimensional representation of fluid field
is solved following the same physical principles. The low-dimensional
results are then projected back to the high-resolution space to provide
an accurate prediction of key characteristics of the flow that are
important to workers. The data-driven model can be used to forecast
circulation patterns, sea state, and turbidity that affects optical sensors
on underwater robots. In addition, using in-situ data collected by robots,
the data-driven model could better capture and predict extreme events
that are difficult to predict by classic hydrodynamic models.

3.6. User interface module

VR and haptic devices are applied in this module. Compared to other
studies, this system considers VR as an DT simulator and data center
instead of immersive visual augmentation method. Due to the
complexity and uncertainty in subsea tasks, much more levels of
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information would be involved in the system, especially hydrodynamic
features. VR is the great tool for data fusion and augmentation to
reconstruct a realistic DT environment with physically information.
Specifically, the proposed sensor module provides all kinds of necessary
fluid information at different spatiotemporal scales. However, data
collected by ROV sensors are spatially and temporally sparse, resulting
in an incomprehensive sensory coverage and a low refresh rate of haptic
feedback. Therefore, after the data fusion in the DT simulation and
optimization module, improved data will be sent to the operator module
for generating real-time and high-refresh-rate feedback. Fig. 3 demon-
strates the architecture of the user interface module.

The VR environment is adjusted to the subsea workspace. The
interactive VR system is developed based on our previous works (Du
et al., 2016, 2017, 2018a, 2018b; Shi et al., 2018; Zhou et al., 2020a,
2020b; Zhu et al., 2021). A set of scripts have been developed for the
ROV locomotion and navigation controls in the VR environment. The
rendering of the subsea environment changes accordingly to provide a
realistic sense of navigation in the simulation environment as in the real
remote workplace. In addition, a hierarchical particle fluid simulation
system is developed to receive real sensor data and generate a simulated
flow, which hits sensors around the ROV model and creates denser data
(in addition to the raw sensor data) with a higher refresh rate. This
shows the first function we plan to achieve with the DT module, i.e.,
augmenting the raw sensor data with additional simulated data points.
The user interface module is further realized with a Unity data
augmentation system and haptic feedback system, as described later.

3.6.1. Unity data augmentation system

As shown in Fig. 4, the Unity data augmentation system includes the
far-field visual augmentation and the near-field particle simulation.
Another ROV model was used in the Unity DT fluid simulation. For the
far-field data, a series of vectors are visualized to indicate the overall
hydrodynamic patterns necessary for the operator’s navigation decision-
making, including fluid directions, speed, and hydrodynamic gradient
extensions. Vector arrows are rendered in the DT simulation as shown in
Fig. 4b. These vectors change the direction the same as flow data, with
the length of the vector indicating the flow speed. Specifically, vectors
with longer lengths indicate faster and stronger water flows. Compared
to traditional camera view feedback, VR provides more enriched spatial
information with immersive and interactive visual feedback. Besides,
the VR system can provide the path planning function by displaying the
identified optimal trajectories to the operator. The operator then has the
option to either use these optimal trajectories as references during
manual piloting or convert to autonomous controls that allow the
autopilot of the ROVs to follow those trajectories. By allowing the
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operator to configure the priorities of optimization (e.g., prioritizing
travel distance over energy consumption), the proposed system frees the
operator from low-level vehicle maneuver controls ta high-level mission
control. Such a hierarchical system design can simplify the overall
piloting effort during routine operations and reduce operation inaccu-
racy due to human errors.

On the other hand, for the near-field waterbody surrounding the
ROVs, a position-based particle system is applied to simulate the phys-
ical interactions with the ROVs in a realistic way (Fig. 4a). Position-
Based Dynamics (PBD) is a proper method to simulate realistic fluid
conditions, which allows the similar incompressibility and convergence
in result compared to the Smoothed Particle Hydrodynamic method
(Macklin and Miiller, 2013). In this study, Obi Fluid (Obi, 2019; Vir-
tualMethod, 2021) is selected as the core near-field particle simulation
method. The activated particle number is set to 650 for balancing the
simulation fidelity and CPU cost. Virtual particles can physically interact
with ROV models in Unity as shown in Fig. 4c. The simulated emitter
parameters would be used to fill the data gaps in raw sensor data (such
as before real raw data was received or the gaps in sensor placement),
but the raw sensor data still shares a higher priority. If any divergence
between the DT simulation and raw data is sensed, raw data will over-
ride DT simulation results.

To be noted, the ROV-equipped sensors are effective in providing
pressure descent data, and hence are effective for constructing realistic
fluid meshes. But the raw sensor data would not provide parameters
indicating flow intensity which is also needed for the DT simulation.
Therefore, a script is developed to extract near-field particles’ velocity
when they collide with sensors around the ROV model. The flow in-
tensity is calculated as Eq. 1:

Foonsor = »_mi % ; m

Where m; is the mass of particle I, ¥; is the normal vector of the velocity
of particle I, i.e., the projection of speed perpendicular to the contact
surface, as shown in Fig. 5. In this equation, for each virtual sensor, a
sum of normal momentum for all the particles colliding with the senor,
S m=x* vy, is calculated as the representation of flow intensity. In this
particle fluid simulation, the mass difference of each particle does not
need to be considered because the hydrodynamic features are man-
ifested as the pressure gradient. As a result, the mass m can be equally set
to 1.0 in the equation. All the virtual sensors around the ROVs collect
particle velocity data when a collision happens, and the final sum value
is sent to haptic devices with a haptic intensity value from a proper
range. With this method, human operators can feel the changes in the
strength and direction of the water flow.

[Environment Information
—_— _—

Visual
feedback

Better control

-
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ROV !
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Fig. 3. Integrated multi-level VR-Haptic system, including digital twin simulation environment and haptic emulator.
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Fig. 4. Hierarchical fluid simulation in the Digital Twin reconstruction with another ROV model. (a) Near-field particle simulation. (b) Vector field for far-field visual
augmentation. (c¢) Particle interactions with the ROV model.

Fig. 5. Example of virtual sensor intensity in DT module: normal vector for intensity calculation.
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Similarly, the micro-field haptic glove feedback is realized with the
same method. We used HaptX gloves as the user interface. Each HaptX
Glove features over 130 discrete points of tactile feedback that physi-
cally displace the user’s palm up to 2 mm (HaptX, 2021). HaptX Gloves
also feature the strong force feedback, with exo-tendons that apply up to
40 pounds of dynamic force feedback per hand (8 1bs./35 N per finger)
(Fig. 6). A haptic glove location model is created in VR to reflect the
motions of operator’s hands. When virtual fluid collides with the virtual
glove model in Unity, the system generates a higher resolution haptic
cue for simulating the micro-scale haptic feedback. To be noted, the
same particle system is used for glove-based haptic stimulation but with
a higher resolution, as hands are more sensitive to bodies in terms of
haptic sensation.

3.6.2. Haptic feedback system

Different from other haptic related studies, except for hand-held
level haptic feedback, this system also develops a whole-body
coverage haptic map to hydrodynamic features. Fig. 7 demonstrates
the user setup for haptic feedback system. The motion of fluid sur-
rounding the ROVs can be sensed with virtual sensor objects in the Unity
game engine. A total of 40 sensors on the haptic suit are matched with 24
virtual sensors equipped on the ROV model in VR. Since it is CPU-
consuming for an increased number of sensors which could signifi-
cantly decrease system performance. In addition, the haptic sensory
channel of the human body is not sensitive enough to sense minor dif-
ferences between adjacent sensors. As a result, we designed a mapping
method to project the data of four virtual sensors to eight vibrators in
two rows on the haptic suit for the upper and lower parts of the body, as
shown in Fig. 7. In total, there are 12 virtual sensors on each side of the
ROV to trigger all 40 vibrators on the haptic suit. The haptic suit will
vibrate based on the flow intensity parameters sent by virtual sensors. At
the same time, human operators can sense the micro-turbulence via the
haptic gloves. With vibrating intensity changing on both sides of the
human body, operators can easily sense the hydrodynamic changes and
reactively maneuver ROVs for other tasks. We use a dynamic collision

Computers in Industry 145 (2023) 103836

detector, to examine whether a particle collided with the dynamic rigid
body (i.e., the virtual ROV model) during the last simulation step. Then
two methods from PhysX are used to read position and velocity
information.

To be noted, the flow intensity representation generated in DT
cannot be directly used for triggering the haptic suit. The haptic in-
tensity should be set in a proper range, otherwise, human operators
would feel uncomfortable due to the strong vibrations. We estimated
that a comfortable upper limit for the vibration should be no more than
1.5 em/s? according to our user experience test. Aimed to convert flow
intensity to the identified haptic intensity range, a formula was devel-
oped to adjust the values as Eq. 2. The purpose is to discount the large
range of the raw flow data to a proper range for haptic intensity, where
Fsensor represents the flow intensity sent by the sensors.

Intensity = 1.5er”‘”;1 (@3]
elsensor 1

For micro-field haptic stimulation, a haptic glove device HaptX was
selected to generate micro-turbulence haptics. As mentioned, HaptX is a
pneumatic haptic glove with air channels to deliver high resolution and
high displacement tactile feedback (Perret and Vander Poorten, 2018).
Facebook Meta lab has also shown a prototype VR glove with inflatable
plastic pads arranged to fit the wearer’s palm and generate force feed-
back (Robertson, 2021). All these devices have improved with a better
tactile feedback accuracy and can extend Human-VR interaction. In our
design, HaptX glove was used because of its full palm and fingers
covering air channels design. Human operator wearing the haptic gloves
can move their hands to where he/she wants to perceive minor hydro-
dynamic changes at the micro-level. Micro-scale turbulence data is sent
to haptic glove actuators, where palm-level haptics are generated for the
human operator. There are two main advantages of this multi-level
design. On one hand, accurate and high-fidelity hydrodynamic fea-
tures are required for specific ROV tasks, such as docking, and under-
water inspection in an environment with many obstacles. Lack of
accurate and high-resolution turbulence information may undermine

-—

Fig. 6. User setup with HTC Vive, haptic suit, and haptic gloves.
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Fig. 7. Map of virtual sensors in DT module matching haptic suit vibrators.

the human perception of the potential danger, resulting in improper
decision-making and failure of collision avoidance. On the other hand,
too much information could induce cognitive load and mental fatigue.
For example, for simple inspection and routine navigation tasks, such
kind of micro-scale turbulence information is of no use to send to the
human operator. With haptic gloves and multi-level design, the human
operator can decide when to use what levels of sensation (far-field, near
field, and micro-level), based on the task context.

4. Demonstration case

A case study was performed to test the system’s effectiveness in a
simulated ROV navigation task. Practically, drift caused by unpredict-
able subsea currents is a great challenge for current subsea ROV oper-
ations (Leabourne et al., 1997). Deviating from the target route may
cause stabilization problems and disorientation (Capocci et al., 2018;
Leabourne et al., 1997). This case study aimed to augment the human
sensation of subsea currents with the new-designed feedback system and
assist human operators in resisting drift. The subjects were required to
control the ROV model in the VR environment for straight-line naviga-
tion in the x direction. Five checkpoints were distributed on a straight
line at x = 8 m, x = 20 m, x = 35 m, x = 60 m, and x = 90 m. Multiple
current fields were set along the route, and the component on the z di-
rection caused the drift from the straight line. Subjects were asked to
control the ROV by joystick with (test condition) and without the pro-
posed augmented sensory system (control condition) respectively. The
flow components in these two conditions were shown in Table 1. The
current fields distribution was designed with the same number of total
fields and the same average flow speed, but with different velocities in
each single field area. Such kind of design is to eliminate human learning
effect in the second condition. In total, we tested 10 subjects for this case
study. Besides, a body motion control case demo with the proposed
sensory augmentation methods was also demonstrated.

Fig. 8 showed the overall performance of body motion control &
sensory augmentation system on aspects of control, deviation and
feedback values. Definitions of axis of rotation and directions of move-
ment was shown in Fig. 9a. The haptic intensity values were updated
13.3 Hz. With the intuitive feeling of the human body, the operator
could react rapidly to haptic intensity changes, as illustrated in Fig. 8a.
Operator’s body motion control could generally resist the drift caused by
the current speed in the z direction. Besides, the deviation can be
controlled at a relatively low level. The deviation, absolute deviation,

and average deviation were plotted in Fig. 8b. The final average devi-
ation was about 0.9163 m. Fig. 8c and Fig. 8d demonstrated the haptic
intensity changes during the case study. The total 24 sensors were
grouped into 4 areas based on their positions on human bodies. The
changes in flow speed in different directions could trigger different
sensor areas, which could be easily sensed. For example, an increasing
flow speed on the positive z direction represented a stronger flow
colliding with the right part of human bodies, and the average haptic
intensity of 6 sensors on the right part would increase significantly.

As for the subjects’ performance in the case study, we plotted tra-
jectory patterns of two conditions in the same figure, and calculated
average deviation for all subjects as task performance measurement. As
demonstrated in Fig. 9b, the red point represented the trajectory of the
control condition, and the blue point represented the trajectory of the
test condition. The trajectory of test condition was significantly
concentrated to the straight line while the control condition trajectories
were more scattered. Specifically, the average deviation of the control
condition was 4.9933 m and the average deviation of the test condition
was 1.6006 m. With our sensory augmentation system, subjects could
intuitively sense the flow intensity and control the ROV to resist the drift
effect as well as keep straight-line navigation.

In conclusion, the result showed that there was a significant differ-
ence in vibration patterns for different flow conditions, indicating an
effective way of using haptics to transfer underwater hydrodynamic
conditions. Besides, the participants could easily identify different ROV
positions and locomotion conditions based on the information provided
by the multi-level sensory feedback system, which helped them under-
stand ROV work status and thus engage in the most proper control op-
erations in future diverse and complex work environments.

5. Discussion and conclusions

This paper introduces the design of an innovative system for the
intuitive teleoperation of subsea ROVs with VR and haptic simulation.
Multi-level sensory data from ROVs is collected and sent to a digital twin
simulation environment for data augmentation. Three types of sensory
augmentation methods, namely far-field augmented visual feedback,
near-field haptic suit feedback, and micro-field haptic glove feedback,
are generated to enhance human situational awareness of the ROV
workspace with higher efficiency compared to traditional 2D video
streaming feedback. This VR-Haptic integrated environment immerses
the human operator in a high-fidelity sensory stimulation system,

Table 1
Current fields distribution and speed components in two directions.
Currents range x (m) 0-8 8-20 20-26 26-34 35-45 45-51 52-58 61-71 72-82 84-90
Control condition Vi(m/s) 0.15 0.1 0.2 -0.35 0.15 0.25 0.2 -0.05 0 -0.067
V,(m/s) 0.45 -0.3 0.5 0.2 0.3 -0.35 -0.55 -0.5 0.2 0.2
Test condition V,(m/s) 0 0.3 0.3 -0.35 -0.4 0.25 0.2 0.1 -0.1 -0.33
V,(m/s) 0.45 -0.3 0.2 0.55 0.15 0.2 -0.7 -0.6 0.45 0.15
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streamlining the HRC workflow. As a result, the human operator can
easily sense the state of ROVs through visual and haptic channels and
intuitively issue adequate control commands. Literature has verified

11

that this kind of multi-sensory feedback system could increase situa-
tional awareness of human operators (Xia et al., 2022; Zhu et al., 2021;
Zhu et al., 2022), which enables future engineers to enter a subsea era in
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a safer, less costly way. And our case study also verified the effectiveness
of the proposed system. In conclusion, by integrating multi-levels of
sensory information and feedback, this research provides an immersive
and interactive control system for future ROV operations. This research
is strongly positioned for better accessibility and inclusion because it
aims to lower the career barrier for a traditionally highly professional
area. The proposed underwater human-robot interaction approach will
greatly simplify the requirement of engineering, science, and robotics
knowledge for subsea engineering and underwater robot operation jobs.
The sensory augmentation method for robotic control will mitigate the
age requirement, promoting career longevity. The new technology will
also help salvage the careers of experienced workers who have suffered
from career injuries, such as diving diseases. In addition, the system
could be used as a platform for fresh operator training as well to lower
the training cost.

Besides, neurophysiological sensors are expected to be adopted to
help assess the functions and performance of human operators during
ROV operations using our system. It is expected that by integrating the
robot control systems with the Unity engine, VR-Haptic-assisted ROV
teleoperation can be accomplished in a participatory and inclusive way.
With the increasing adoption of VR and haptic methods, the enhanced
sensory feedback can help future engineers manage complex underwater
tasks with ease. This ROV teleoperation system will ultimately lead to a
Robot as a Service (RaaS) model that consists of a cyber-physical unit to
facilitate the seamless integration of underwater robots and human
operators into a shared cloud environment. It is envisioned that this
RaaS model will greatly diversify the subsea workforce and broaden
participation in subsea engineering, inspection, and scientific discovery.

There are still many challenges for us to resolve to make this tech-
nology viable. The first challenge relates to the technological maturity.
Realizing the proposed system would require a significant change to the
current ROV designs, including equipping the ROV systems with new
sensors that can collect high-fidelity underwater environment data, such
as pressure sensors on the surface of ROVs and Doppler sensors for far
field hydrodynamic sensing. A new data and telecommunication infra-
structure is also needed for transferring the potentially big amount of
data to support the human-robot sensory transfer. Transforming current
systems to new proposed system required time and money, and the
initial cost may become a burden for many businesses. On the other
hand, this method also has limitation in weariness after long time
operation in VR. Human operators might get fatigue after missions of
several hours. Autonomous technologies should be involved to reduce
human operation time and workload in the future.
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