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Subsea engineering operations, including subsea inspection, installation and maintenance, heavily rely on the
seamless interaction between remotely operated vehicles (ROV) and human operators. Subsea ROV control has
always been a great challenge to human operators due to the dynamics of the subsea environment such as un-
certainty of turbulence, affected visibility and interference with subsea ecosystems. Compared to engineering
work on the ground, subsea engineering tasks are usually finished in a limited vision field with drift and
localization problems. However, the traditional ROV feedback system, the live video streaming, cannot provide
direct and intuitive perceptions of remote ROV workspace as well as a clear indication of the workspace un-
certainties. Therefore, this research proposes a Virtual Reality augmented visual feedback system with haptic
simulators to generate immersive, intuitive and effective feedback for human operators. The system can generate
visual and haptic feedback as indications of flow conditions based on sensory data. A human subject experiment
was performed to verify the effectiveness of this system. The result indicated that this system could significantly
assist human operators in precepting the flow conditions in the ROV workspace in a more immersive and

intuitive way.

1. Introduction

Subsea engineering, i.e., activities below waterline related to the
construction, inspection, and manipulation of manmade systems, plays a
vital role in offshore energy, aquaculture, sustainability, disaster pre-
paredness, seafloor mining and cabling, and maritime transport
[11,38,39]. Currently, subsea engineering operations highly rely on
remotely operated vehicles (ROV), i.e., underwater teleoperated robotic
systems [4]. Due to the rapidly decreasing cost of deployment and
improved versatility of ROVs, in certain subsea areas, the global ROV
market has observed a substantial growth with emerging engineering
applications at scale [8]. It is expected that the next-generation subsea
engineering will be greatly benefited from the broader utilization of
ROVs with desired agility, safety and endurance [33]. However, despite
the promising benefits of the broader and increasing utilization of
various ROV systems in the future subsea engineering, the ROV operator
remains a highly specialized area with a high barrier to broader
participation. Most ROV-related jobs require strict professional prepa-
ration (ocean sciences, mechanical engineering, and diving knowledge)
that takes many years of training. The existing ROV service workforce
consists of marine engineers, professional divers, and robot service
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providers, and only a small portion holds licenses for certain tasks.
Provided the increased demand for subsea engineering workforce, there
is a foreseeable shortage of ROV operators in the near future. A recent
survey shows that the need for ROV pilots is expected to increase 130%
on an annual basis [31]. It has also been noted that the harsh subsea
environment and difficult robot controls are major obstacles for the
future subsea workforce to utilize or team up with underwater ROVs.
The fundamental problem of ROV operations is related to the lack of
effective human-robot interaction (HRI) methods to meet the unique
challenges of subsea workplaces. With the traditional ROV control sys-
tem, an operator controls the ROV on a vessel above sea level with the
assistance of live video streaming captured by the camera equipped on
ROVs [70]. However, the complex information of the subsea environ-
ment, such as dynamic internal currents, low visibility, and unexpected
contacts with marine lives, cannot be fully transited by 2D videos, which
might undermine human sensation of subsea environments and result in
inappropriate operations [26,32,49]. Human operators often lose sense
of orientation due to subsea currents without assistance from the system.
And for subsea manipulation, installation, and maintenance, it is
extremely hard for human operators to stabilize the ROV in volatile body
of water only based on live videos. Such an inability to directly sense
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water flows can break the feedback loop for accurate ROV control ac-
tions, resulting in an induced perceptual-motor malfunction [25]. For
complex motor tasks, humans rely on multi-sensory channels, such as
visual and somatosensory feedback, to make sense of the consequence of
any initiated action [63]. Literature has well recognized the benefits of
simulating multi-sensory feedback, including visual, auditory and haptic
feedback, as augmented HRI methods for robot teleoperation to improve
motor performance [72]. But it is less clear whether the knowledge
gained from land applications can be readily transferred to the subsea
ROV interface designs, as many characteristics of subsea environment
can be considered novel and alien to human operators, such as the
feeling of hydrodynamic forces. It is also unknown how the multi-
sensory feedback system can be optimized to improve human ROV
control performance in the subsea engineering.

This paper proposes a sensory augmentation system that converts
novel subsea environmental parameters into human-perceivable sensa-
tions, including simulating the hydrodynamic features as visual feed-
back and haptic feedback. Based on the novel design, an experiment was
performed to compare how different modes of sensory feedback could
influence the human sensations of hydrodynamic features, and ulti-
mately, how it could assist in ROV navigation in the subsea environment
with low visibility. Human operators were asked to control the ROV for
straight-line navigation with traditional visual feedback, haptic feed-
back, augmented visual (vector-field) feedback, and a combination of
haptic with visual visualization respectively in a high-fidelity Virtual
Reality (VR) environment. The remainder of the paper introduces the
point of departure, the design of the sensory augmentation system, the
human-subject experiment and the findings.

2. Literature review
2.1. Remotely operated vehicles (ROV) for subsea operations

ROV is a type of tethered underwater vehicle designed for under-
water intervention, exploration, equipment installation and data
collection [8,42,43]. ROVs can be classified differently depending on the
size, the cost, and the designed functionalities. Based on their working
depth and payloads, ROVs can be categorized as micro class (100 m, 5
kg), mini class (300 m, 10 kg), light work class (2000 m, 100 kg) and
heavy work class (3000 m, 300 kg) [43]. Based on their main designed
functionalities, ROVs can be further classified as education class, in-
spection class and work class [59]. Inspection class ROVs are the most
widely used type for subsea exploration and offshore inspection. Espe-
cially for oil and gas companies, in order to prevent financial and
environmental disasters caused by leaking, ROVs are frequently used for
the inspection of thousands of kilometers of pipelines, and the inspection
tasks can be performed 24 h and 7 days sometimes [69]. Inspection class
ROVs are usually equipped with various sensors for data collection and
monitoring [10]. Work class inspection ROVs are the most versatile ones
equipped with underwater manipulation capabilities, such as robotic
arms. They are capable of heavy operation works like subsea mainte-
nance for oil and gas industries and the ocean science community [30].

Although vary in capabilities and sensors carried on, all types of
ROVs have basic capabilities of maneuverability along more than one
principal axis and state estimation. Usually, pilots on a vessel above sea
level control the ROV with the assistance of live video streaming
captured by equipped cameras. However, this traditional vision-based
feedback could only provide limited information for human operators.
Especially in the subsea environment, low visibility would undermine
the human perception of the workspace, and 2D video provides little
information about ocean waves and currents [13,34]. Such inconsis-
tency between the ROV workspace and human perception can break the
feedback loop for accurate ROV control actions, resulting in an induced
perceptual-motor malfunction (Finney 2015). The lack of necessary in-
formation is a critical problem for certain kinds of tasks. For example, for
subsea pipeline inspection and maintenance, the body of the ROV needs
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to hold its position stably, which requires a better perception and un-
derstanding of the surrounding environment [9,34]. Besides, complex
and high-turbidity currents can significantly influence ROV’s self-
stabilization and cause disorientation in subsea exploration [61].

Currently, literature shows that more efforts have been made on
improving ROV algorithms, such as self-stabilization using adaptive
nonlinear feedback controller [54], disturbance rejection controller to
improve maneuvering accuracy [9] and vision-based color correction
and tracking algorithm for high depth and low light ecosystems [3].
These algorithms are aimed at controlling problems of the system and to
some extent resolving the low visibility vision challenge. However,
humans are the commander of the ROV system and are responsible for
all the important control actions. Improving ROV algorithms but lack of
effort in transferring environmental information to human operations
can still undermine control operations in the complex and dynamic
subsea environment. Effective methods for transferring main hydrody-
namic features data to humans in an intuitive way, and how this new
feedback could influence human navigation and control performance in
complex subsea navigation are still largely unknown.

2.2. ROV drifting in navigation

Navigation planning are critical for ROV teleoperation in subsea
engineering. However, due to the low visibility and subsea currents,
precise navigation controls in the subsea environment are extremely
challenging compared to applications on land [32]. Drifting is a pre-
vailing issue in ROV navigation. Subsea engineering would not always
take place in static flows. Currents can push the ROV away from its
original route [35], and high-turbidity currents can also bring an
extreme burden on subsea installations and maintenance [27]. The
drifting rate caused by subsea currents can be several kilometers per
hour sometimes [15]. All these factors make ROV navigation in subsea
environments nontrivial.

At present, there are two main methods for subsea anti-drifting
correction in ROV navigation. One method is to utilize Simultaneous
Localization and Mapping (SLAM) to extract visual feature points and
establish a subsea map [40]. This process can be integrated with high-
accuracy sensor data, such as Doppler Velocity Log (DVL), for a better
mapping result [58]. The problem with this method is the lack of visual
objects in subsea environments from which visual SLAM can extract
sufficient feature points. And the integration with high-accuracy sensors
could be too expensive for inspection-class vehicles. Another method is
closed-loop controls based on machine learning [24]. A representative
method is the predictive coding (PC)/biased competition (BC)-divisive
input modulation (DIM) system [1]. Instead of using visual data, this
method fuses multi high-accuracy sensor data such as the inertial
measurement unit (IMU), differential global positioning systems
(DGPS), ultra-short baseline (USBL) and DVL data, to enable automated
pose and position correction of ROV at the low error rate to a mean of
3.96 m [1]. Although improved a lot in accuracy compared to previous
SLAM method, the machine learning based closed-loop control method
requires a large number of high-accuracy sensors, and thus the cost
could be an adoption obstacle. Besides, most existing ROV anti-drifting
and localization methods focus more on an automated workflow instead
of incorporating human-in-the-loop needs. There is no effective inter-
face design for human operators to visualize and comprehend the
navigational decisions made by SLAM and automated control algo-
rithms. Such a lack of automation transparency may result in extra
cognitive load, reduced situational awareness, and worsened trust and
performance [14]. Despite the advances of automated anti-drifting and
localization methods, a better human-machine interaction method is
needed to grant human operators with the ability to intuitively sense the
surrounding environment without distracting attention in ROV
operations.
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2.3. VR-based ROV teleoperation

Virtual Reality (VR) is an emerging human-computer simulated
interface widely used in medical, flight simulation, automobile industry
design and military training purposes [45], for rendering realistic scenes
and providing rich spatial information [7,71]. Literature has shown a
great interest in utilizing VR in robot teleoperation due to the benefits of
coupling perception and controls between humans and robots
[12,17,72]. Such a close sensation pairing can assist in better planning
motions and interactions in difficult tasks that require both robotic and
human intelligence [62]. In ROV teleoperation, VR has been considered
a promising solution for lowering the barriers to human-in-the-loop ROV
teleoperation [64,65]. Several studies have tested the advantages of
utilizing VR in ROV teleoperation in different tasks, such as underwater
capture tasks [23] and deep ocean remote control [36].

Compared to traditional video streaming, VR can be programmed to
provide additional visual feedback such as user interface (UI) design for
work progress [44,67] and path optimization plan [60]. In addition, VR
can also serve as a multisensory augmentation platform, i.e., providing
multimodal visual, auditory, and haptic feedback associated with an
intended action to improve motor performance [50,72,73]. Haptic de-
vices can be integrated with VR platforms to generate haptotactile
stimulation (e.g., vibrations and force feedback) on the user’s body in
correspondence with the occurring events [51,52]. Specifically, in ROV
control, VR-based sensory stimulation can generate feedback such as the
indication of hydrodynamic conditions, which may significantly
improve human sensation and spatial awareness. Pilot efforts have been
done to capture underwater environmental information and apply cor-
responding haptic feedbacks to human operators. For example, Ame-
miya and Maeda designed a system to combine pressure and torsion
forces and generate an illusional feeling of external force for a kines-
thetic perception of the ROV [2]. Ciriello et al. developed a linear-
oscillating actuator using asymmetric drivers to create equivalent
pressure signals [16]. Shazali tested a gyro effect haptic actuator to
simulate torque feedback even when ungrounded [46]. However, these
preliminary efforts were only tested in the limited pre-designed work-
space and were not integrated with the VR system for more immersive
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visual-haptic feedback. To provide environmental information more
efficiently to human operators for decision-making, we propose a VR
augmented visual and haptic integration feedback system for subsea
ROV navigation control.

3. Human-subject experiment and system
3.1. Overview

Due to the insufficiency of the current ROV teleoperation system in
immersive, intuitive, and effective feedback, we have developed a VR-
based sensory augmentation system that provides both augmented vi-
sual feedback and haptic feedback for a shared perception between the
remote ROV system and the human operator. In order to compare how
different types of feedback affect ROV operations, a benchmarking
human-subject experiment was performed based on a sensory augmen-
tation system as shown in Fig. 1. First, a realistic subsea environment
was developed based on the crest ocean system [28] with multi prede-
signed subsea current areas, and a virtual sensory system was developed
and embedded in the Unity game engine [55]. The sensory augmenta-
tion system can obtain the hydrodynamic forces of the water body in the
close proximity of the ROV, and convert the raw sensor data into human-
perceivable sensations as augmented visual feedback (i.e., displayed as
visuals in a VR headset) and as haptic feedback (i.e., vibrations on the
haptic suit). More details about the sensory augmentation system can be
found in our previous publications [74,75]. In this paper, we focus on
reporting the human subject experiment performed to verify the effec-
tiveness of the proposed system.

Specifically, participants were required to operate an ROV in a VR
simulator for a straight-line navigation task. To finish the task success-
fully, human subjects must be able to resist the drift caused by subsea
currents based on the feedback signals provided by the system. Each
subject was asked to complete four experiment trials in a shuffled order,
including the Control condition with only the video streaming from the
ROV, the Visual condition that visualized hydrodynamic flows as vector
arrows in the VR headset, the Haptic condition that simulated the hy-
drodynamic forces as haptotactile feedback of different directions and
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Fig. 1. System architecture and experiment design for VR-haptic feedback system for ROV teleoperation.
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magnitude on the haptic suit, and the Multi-Feedback conditions that
provided both the visual and haptic feedback. Performance and human
function data were collected automatically via the VR system, including
navigation route, time of completion, eye tracking data, as well as
psychometric surveys about demographic information, Trust Scale
questionnaire [41] and NASA Task Load Index (NASA-TLX) [29].

3.2. VR environment

The subsea VR environment was developed in Unity 2020.4.25f
based on our previous systems [19-22,47,66]. As shown in Fig. 2, a
realistic subsea environment was developed based on the crest ocean
system [28], which ensured a high-fidelity ocean wave simulation and
subsea light rendering. The background watercolor and effective camera
field of view (FOV) could be adjusted to users’ needs. In the experiment,
the camera FOV was set to the range of 0 to 5 m to simulate visibility
conditions in most offshore subsea environments. Besides, the Unity
visual effect graph (VFX) [56] was applied to simulate the floating dust
that human operators usually rely on for locomotion controls of ROV.

The device setup is demonstrated in Fig. 3. For ROV control, a
joystick control method was designed based on the real ROV control
system [6]. A bHaptics suit [5] was used for generating haptic feedback.
Aiming to obtain the ROV trajectory data and human performance data,
a system integrating an HTC VIVE head mounted display (HMD) with
the Tobii Pro eye tracker [53] in Unity was used in the experiment.
Several C# scripts were developed to collect the ROV navigation tra-
jectory data as well as humans’ eye movement and pupil size at a fre-
quency of 50 Hz.

3.3. VR-based sensory augmentation system

In order to test how different immersive and intuitive feedback could
affect the ROV operation performance, we deployed a comprehensive
VR-based sensory augmentation system, including the virtual ROV
operation module, visual module, particle flow simulation module,
virtual sensor module and haptic suit module. The system architecture is
demonstrated in Fig. 4. Experiment participants could control the virtual
ROV in VR with joysticks. User inputs, as well as hydrodynamic condi-
tions, determined the ROV movements in the simulation environment.
Augmented visual feedback, i.e., the visual condition, and virtual par-
ticle flows for simulating the hydrodynamic interactions were generated
based on the particle systems of the physics engine. Particularly, the
simulated particle flows would physically interact with the ROV model
and hence the virtual sensors could capture the key parameters of the
hydrodynamic flows. Finally, the dynamic data was sent to the haptic
suit plugin via Python Unity Socket [48] and the corresponding vibra-
tion intensity was generated and sent to the haptic suit.

For the visual feedback, except for the basic visual indications such
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HTC VIVE HMD

bHaptics suit

Xbox controller

Fig. 3. ROV operation device setup.

as the floating dust (Fig. 5a), this system also provided a visual (Fig. 5b)
to indicate the flow speed and directions. Each arrow in the visual would
point to the flow direction at that area, and the length of the arrow
indicated the flow speed, i.e., a longer arrow represented a higher flow
speed. The system received the data of hydrodynamic conditions and
generated the local transform for each vector. After converting the local
transform with the global transform of the ROV, all the vectors could be
arrayed with the orientation and scale adjusted depending on the pose of
the camera.

For haptic feedback, a particle flow and virtual sensor system was
designed to simulate the hydrodynamic conditions and generate the
corresponding haptic feedback. Data collected by ROV sensors are
usually spatially and temporally sparse, resulting in incomprehensive
sensory coverage and a low refresh rate of haptic feedback. As aresult, a
data augmentation process is necessary to enhance the data density,
feedback coverage and refresh rate. In our system, the particle system
was applied to simulate the physical interactions with the ROV in a
realistic way, as demonstrated in Fig. 6. The particle simulation was
based on the acoustic Doppler current profiler (ADCP) data, which
contained flow direction and magnitude. The particle emitter would
generate particle flows with same direction and magnitude around vir-
tual ROV model. The particle flows could physically perform as real
based on Unity physical engine, and virtual sensor system recorded
physical interaction events and converted them to haptic intensity. To
balance the simulation fidelity and the CPU cost, the activated particle
number was set to 800 and the refresh rate was set to 2 Hz. A series of

Fig. 2. Example scene of subsea environment reconstruction.
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Fig. 5. Visual feedback examples: (a) Control condition: only floating dust; (b) Visual condition: vector field with floating dust.

Fig. 6. Virtual sensory system and device mapping: (a) Particle flow; (b) Virtual sensory distribution and normal velocity projection; (c) Haptic suit sensor mapping.

virtual sensors were distributed around the ROV model (Fig. 6b). A with each virtual sensor. The flow intensity is calculated as Eq. 1:
mapping method was developed to map the data from the virtual sensors R
to the haptic suit (Fig. 6b&c). In total, there were 12 virtual sensors on Moensor = Z mi=vi ™

each side of the ROV to trigger all 40 vibrators on the haptic suit. A script

. . ) . Where m; is the mass of particle i, V; is the normal vector of the
was developed to extract near-field particles’ velocity when they collide
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velocity of particle i, which is the projection of speed perpendicular to
the contact surface, as shown in Fig. 5b. When particles collide with the
virtual sensor, the sum of normal momentum Y m*V; is calculated as the
representation of the flow intensity. No mass difference was designed in
this particle system because the hydrodynamic features were manifested
as the pressure gradient, so the mass m can be equally set to 1.0 in
practice. Each virtual sensor collected particle data when a collision
happened. To map the haptic suit output range, a conversion function
was applied to discount the larger raw flow intensity data to a range of
0tolcm/s"2:

033 Meensor __ |

1 (2)

= 03 M 4 |
Where M. represents the flow intensity sent by the sensors
calculated in Eq. 1.After the intensity value of each virtual sensor was
calculated in Unity, the intensity array was sent to the Python terminal
via the Python-Unity-Socket [48] to trigger the haptic suit. With this
system being well designed, operators could clearly feel the changes in
the strength and direction of the water flow with their body feeling.

In summary, differentiation of particle flow direction and strength
via visual and haptic feedback was achieved in this system. Virtual ar-
rows were utilized in VR to indicate the direction of flow, with the length
of the arrows representing the flow strength. Additionally, a haptic suit
with 40 vibrating units was used to provide haptic feedback to the
operator. A virtual sensor system with 24 virtual sensors was created in
VR, which mapped to the 40 real units on the haptic suit. The virtual
sensors were able to physically interact with particles in VR based on a
physical engine, and the particle data was recorded to generate haptic
feedback on the haptic suit. The use of this haptic suit allowed for the
simulation of realistic oceanic sensations for the operator. For example,
a strong vibration in the front represents that a strong flow is pushing
operators backward. For the reference of feedback system demo, please
refer to this link (https://drive.google.com/file/d/1PNwltmf9Qb
NdM5_Be4AOUnAvLP5xc2Bf/view?usp=share_link).

3.4. Data collection and analysis

The experiment was a straight-line navigation task with multiple
checkpoints. Straight-line navigation is an essential skill for novice ROV
operators before they could handle complex control actions, and is basic
for many ROV operation tasks, such as pipeline inspection and ocean
exploration. Besides, straight-line navigation task is a relatively simple
and basic task for novices, which is less influenced by human knowledge
and experience, and is a proper metric to evaluate the effect of sensory
augmentation method. Specifically, a total of five checkpoints as well as
several subsea current zones were aligned along the way for each of the
experiment trials. Participants were required to operate the ROV for
straight-line navigation, and to resist the effect of subsea currents to
reach all the checkpoints along the line. The experiment was based on
within-subject design, with a minimum sample size as 25 based on
power analysis (significance level as 0.05, desired power as 0.8, and
effect size as 0.8) [57]. Each participant began with a training session to
familiarize themselves with the control and feedback system, the use of
VR and haptic device, as well as the procedure of the experiment. The
training session was repeated three times to ensure that participants
fully adapted to different kinds of feedback methods. After that, subjects
were asked to finish four experiment trials in a random order, including
the control condition, the visual condition, the haptic condition, and the
multi-feedback condition. This kind of random design aimed to elimi-
nate potential learning effect. The flow patterns were designed different
between each experiment condition, but the average flow speed was
calibrated as 0 m/s and the maximum flow magnitude was calibrated as
0.75 m/s in every condition to ensure a similar difficulty level. For each
condition, realistic underwater renderings were optimized to support
basic ROV navigation with camera streaming, including the rendering of
floating dust and air bubbles to indicate the waterflow directions and
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speed. The distance and the number of subsea current zones (i.e., indi-
cating current waterflow directional changes) between each pair of
checkpoints are shown in Table. 1. The total distance was 90 m and the
average ROV navigating speed was set to 1 m/s. The estimated finishing
time for each condition without any delay would be 1.5 min. The dif-
ficulty of the task gradually increased along the navigation, with a
longer distance to arrive at the next checkpoint and with more subsea
current direction changes as disturbances.

During the experiment, our system could automatically record the
ROV trajectory, the number of checkpoints reached, and human
assessment data (such as gaze tracking). The average deviation from the
straight line dq,; was used to evaluate the overall task performance in
terms of keeping the straight-line navigation, which was the sum devi-
ation of each frame divided by the total number of frames. As shown in
Eq.3, d; is the deviation from the straight line in each frame and I, is
the total frame number.

3l

avg —

3

1 total

The number of checkpoints reached in the experiment was used as a
secondary metric for task performance evaluation. Besides, the pupillary
size was used for cognitive load analysis. As the literature indicates,
pupillary diameter and eye blink rate are closely related to cognitive
load and mental fatigue levels [68]. After each experiment trial, par-
ticipants were asked to finish two surveys, including a NASA-TLX [29]
for the workload level evaluation and a Trust Scale survey [41] for trust
level analysis. Besides, they were asked to finish a demographic survey
before the experiment, including information about gender, age, college
major, experience and self-evaluation. At the end of the entire experi-
ment, they were also asked to provide retrospective opinions about the
proposed system and the suitability of haptic intensity. All results were
analyzed with the Wilcoxon tests as preliminary analysis found that data
did not satisfy the normality assumption [18].

4. Results
4.1. Participants

In total, 30 participants were recruited for the human subject
experiment. As shown in Table 2, all participants were aged from 19
years old to 37 years old (mean = 25.2, std. = 4.06). There were 18
males and 12 females respectively. Among all participants, most were
from engineering majors (25 or 86.7%) such as Civil Engineering and
Aerospace and Mechanical Engineering, and a small portion of partici-
pants (5 or 16.7%) were recruited from non-engineering majors such as
digital arts and law. Despite the difference in educational background,
all participants were trained carefully until they reported that they felt
fully adapted to the control of the ROV navigation with our system.

To be noted, we found a significant individual difference among the
participants in terms of preference to the provided feedback methods. At
the end of the entire experiment, participants were asked about their
overall preference of feedback systems. In the follow-up analyses, we
further found that the performance and human assessment data showed
a significant difference among different preference groups. As a result,
we will present the aggregated analysis results that incorporated all
preference groups, and preference-based analysis for each of the pref-
erence groups. The method for clustering participants into preference
groups will be introduced in detail later.

4.2. Aggregated analysis

First, we analyzed the task performance in terms of deviation and
number of checkpoints reached. We tracked the deviation of ROV nav-
igation path from the desired straight line, as shown in Fig. 7. The
average deviation (m) per navigated distance (m) for the control, haptic,
visual and multi-feedback conditions were 7.739 m, 2.714 m, 3.514 m


https://drive.google.com/file/d/1PNwltmf9QbNdM5_Be4AOUnAvLP5xc2Bf/view?usp=share_link
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Distance (m) and number of subsea current zones between each pair of checkpoints.

Areas start ~ checkpointl checkpoint 1 ~ checkpoint 2 checkpoint 2 ~ checkpoint 3 checkpoint 3 ~ checkpoint 4 checkpoint 4 ~ end
Distance 8 12 15 25 30
No. of subsea current zones 1 1 2 3 3
bl pushing the ROV from the desired path. In addition, because the visi-
Table 2 . . . bility was low, participants could not see the checkpoint unless the ROV
Background information of participants (n = 30). iy . c et .
was close enough (within 5 m given the visibility range). Given the
Category Item Number Percentage haptic feedback and/or the additional visual feedback, participants
Gender Male 18 60.00% could maintain a relatively smooth path of the ROV in a trajectory closer
Female 12 40.00% to the desired straight line, and thus had a better chance of visualizing
A gg‘zerzio ;4 ;63200/?’/ the next checkpoint.
ge 0 .00% . .
Above 30 5 16.67% . We also anglyzed the number of ’che?c'kpomts. reached, as shown in
College Mai Engineering 25 83.3% Fig. 8a. The Wilcoxon test showed significant differences between the
otlege Major Non-Engineering 5 16.7% control condition and the haptic condition (p < 0.0001), between the
Control Cozgiﬁl‘(’“ 0 S control condition and the visual condition (p = 0.0002), and between
Feedback Method Preferred Haptic Feedbac 10 33.33% the control condition and the multi-feedback condition (p < 0.0001).
Visual Feedback 7 23.33% L . A
Multi-Feedback 13 43.34% However, there was no significant difference between the haptic con-
Quite Familiar 10 33.33% dition and the visual condition (p = 0.19), between the haptic condition
VR/3D Gaming Experience Several Trials 17 56.67% and multi feedback condition (p = 0.65), or between the visual condition
Never 3 10.00%

and 2.282 m respectively. A significant improvement in terms of drifting
control was observed in the haptic condition and the multi-feedback
condition. The result showed that it was harder for participants to
localize the next checkpoint without additional feedback provided. It
was because the drifting due to the changing hydrodynamic flows kept
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and the multi feedback condition (p = 0.10).

As for the average deviation, as shown in Fig. 8b, there was a sig-
nificant difference between the control condition and the haptic con-
dition (p < 0.0001), between the control condition and the visual
condition (p = 0.0007), and between the control condition and the
multi-feedback condition (p < 0.0001). There was not a significant
difference between the haptic condition and the visual condition (p =
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Fig. 7. ROV navigation trajectories of the four conditions: (a) Control condition (deviation per navigated meter: 7.739 m); (b) Haptic condition (deviation per
navigated meter: 2.714 m); (c) Visual condition (deviation per navigated meter: 3.514 m); (d) Multi-feedback condition (deviation per navigated meter: 2.282 m).
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0.70), between the haptic condition and multi-feedback condition (p =
0.30), or between the visual condition and the multi-feedback condition
(p = 0.21) in terms of the average deviation.

Then we analyzed the cognitive load based on the pupillary size and
survey data, as shown in Fig. 9. For the cognitive load, which is repre-
sented by the pupillary diameters shown in Fig. 9a, participants showed
a lower cognitive load in the haptic condition (p < 0.0001), the visual
condition (p = 0.0033) and the multi feedback condition (p = 0.002)
compared to the control condition. There was no significant difference
between the haptic condition and the visual condition (p = 0.89), be-
tween the haptic condition and multi-feedback condition (p = 0.52), or
between the visual condition and the multi-feedback condition (p =

0.78). The NASA-TLX workload analysis showed a similar result as
demonstrated in Fig. 9b. Participants reported a lower workload in the
haptic condition (p = 0.0003), the visual condition (p = 0.0004), and the
multi-feedback condition compared to the control condition (p =
0.0006). As for the trust scale analysis in Fig. 9¢, there were significant
differences between the control condition and the haptic condition (p <
0.0001), between the control condition and the visual condition (p <
0.0001), and between the control condition and the multi feedback
condition (p < 0.0001). In addition, participants also showed higher
trust levels in the haptic condition (p = 0.047) and in the multi feedback
condition (p = 0.0002) compared to the visual condition.

In general, with the sensory augmentation methods (including the
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Fig. 9. Cognitive load and survey results: (a) Pupillary size; (b) NASA TLX survey; (c) Trust scale survey.
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haptic feedback, visual visualization and multi-feedback), task perfor-
mance, cognitive load and perceived trust were significantly improved
in all the metrics. Yet, no significant difference was observed among the
three sensory augmentation conditions. Participants only showed a
lower trust with the visual feedback compared to the haptic feedback
and the multi feedback. As discussed earlier, participants reported
significantly different preferences to the provided sensory feedback
methods. As such, we analyzed the performance and perception data for
each of the preference groups.

4.3. Preference group based analysis

Although no significant differences in terms of performance and
perception data were observed among the three sensory augmentation
conditions, we found that participants reported distinct preferences for
the provided sensory augmentation methods. It suggests that partici-
pants may have presented different abilities to digest spatial information
from different modes of data (i.e., visual and haptic data), resulting in a
vast individual difference within the haptic condition or the visual
condition. For example, certain groups of people may be more sensitive
to the haptic feedback than others, and hence tend to perceive the spatial
information provided by the haptic feedback in a more effective way.
We performed a post-experiment survey to solicit their perceived ben-
efits and difficulties with the haptic and visual feedback provided in the
experiment, as a basis for clustering participants into different prefer-
ence groups.

We first found a split of preferences for different feedback methods as
shown in Table 2. Specifically, the result showed that 10 participants
(33.33%) preferred haptic feedback, 7 participants (23.33%) preferred
visual feedback, and 13 participants (43.33%) preferred the multi-
feedback method. We further found that participants also reported
problems or concerns with different feedback methods. As shown in
Table 3, 8 participants (26.67%) reported that the haptic intensity was
improper (either too strong or too weak to be informative), labeled as
“problems with haptic feedback”, 10 participants (33.33%) reported
that the visual feedback shown as visual were confusing and/or blocked
their views, labeled as “problems with visual feedback”, 3 participants
(10.00%) reported issues with both haptic and visual feedback, labeled
as “problem with both feedback”, and 9 participants (30.00%) did not
report any problems, labeled as “no concerns”.

We found that data about concerns or problems does not completely
compatible with the preference results. For example, a person could
report a preference for haptic feedback but still complained about
problems with the haptic feedback (too strong or too weak). It indicates
that each participant may have inclined to a certain feedback method
with some level of concerns. In order to roughly quantify the inclination
to a certain feedback method, we defined a rating method to incorporate
both the reported preference and reported concerns. Specifically, if a
participant reported a preference for a certain feedback method and did
not report any problems with the preferred feedback method, it would
be marked as a high level of preference. If a person reported a preference
for a certain feedback method, but also reported certain problems with
the same feedback method, it would be marked as a medium level of
preference. The rest would be marked as low levels of preference. And in
a more special case, when a person reported preferring to the multi-
feedback method, but reported perceived problems with a certain
feedback mode (haptic or visual feedback), then the person would be

Table 3

Subjects’ comfortability with haptic and visual augmentation feedback.
Reported Problems Number Percentage
No Concerns 9 30.00%
Problems with Haptic Feedback 8 26.67%
Problems with Visual Feedback 10 33.33%
Problems with both Feedback 3 10.00%
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assigned to the preference group with no reported problems. In this way,
we have clustered 30 participants into two preference groups, namely
the “visual preference group” and “haptic preference group” as shown in
Table 4.

Then we compared the two preference groups in terms of perfor-
mance and perception results, as illustrated in Fig. 10. As for the number
of checkpoints reached, the visual preference group outperformed the
haptic preference group with the visual feedback (p = 0.018), but no
significant difference was observed with the haptic feedback. On the
other hand, the haptic preference group ended up with a higher average
deviation with the visual feedback (p = 0.0005). Besides, there was a
significant difference in the trust scale survey. The visual preference
group trusted visual feedback significantly more. No significant differ-
ence was observed in the pupillary diameters and NASA TLX survey
results. Generally, the two preference groups showed significantly
different performance patterns. It suggests that users could be catego-
rized based on their preference for the feedback method, and person-
alized feedback solutions should be applied to each individual
depending on the specific preference and potential problems with any
feedback method.

We also analyzed performance and perception results for each pref-
erence group. As shown in Fig. 11, in the haptic preference group,
participants reached a higher number of checkpoints in the haptic
condition than the control group (p = 0.0004) as well as the visual
condition (p = 0.0052), while maintaining a significantly lower average
deviation in the haptic condition than the control condition (p < 0.0001)
as well as the visual condition (p = 0.0079). The number of checkpoints
reached in the multi-feedback condition was significantly higher than
the control condition (p = 0.0014) as well as than the visual condition (p
=0.018), and the average deviation was significantly lower in the multi-
feedback group than the control group (p = 0.0079). Besides, subjects
showed a higher trust level in the haptic group (p = 0.0022) and multi-
feedback group (p = 0.0038) compared to the visual group in this
category. On the other side, there was no significant difference between
the control group and the visual group (p = 0.093 for the checkpoints
reached and p = 0.26 for average deviation), and between the haptic
group and the multi-feedback group (p = 0. 66 for the checkpoints
reached and p = 0.75 for average deviation). In general, for those who
highly relied on haptic feedback, visual augmentation could not provide
effective information for their operations. They showed significantly
poorer performance as well as lower trust in the visual feedback. When
visual feedback was integrated with the haptic feedback, subjects’ per-
formance was not influenced and they could keep a similar deviation
and trust in the system. For this category, both the haptic feedback
system and the multi-feedback system could be the effective design for
sensory augmentation in subsea engineering.

Different from the haptic preference group, the visual preference
group showed a significantly different behavior pattern. As shown in
Fig. 12, for the checkpoints reached in the experiment, there was not a
significant difference between the haptic group and multi-feedback
group (p = 0.24), between the haptic group and the visual group (p =
0.066), and between the visual group and multi-feedback group (p >
0.9). On the other hand, no significant difference was observed in the
average deviation between the visual group and the multi-feedback
group (p = 0.45), but it was significantly lower in the visual group (p
= 0.0012) and the multi feedback group (p = 0.040) compared to the
haptic group. There is an additional finding in this preference group
that, although subjects showed a better performance with visual feed-
back, they did not show higher reliability on the visual system. For the

Table 4

Feedback method preference group.
Preference groups Number Percentage
Visual preference group 13 43.33%
Haptic preference group 17 56.67%
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Fig. 10. Performance difference in two categories. (a) Numbers of checkpoints reached. (b) Average deviation. (c) Pupil diameters. (d) NASA TLX results. (e) Trust

scale survey results.

trust scale survey, there was a similar score between the haptic group
and the visual group (p = 0.34). Nonetheless, subjects showed higher
trust in the multi-feedback group than in the visual group (p = 0.017)
and the haptic group (p = 0.030). In general, although a relatively better
performance was observed in the visual group, the performance differ-
ence was not as significant as that in the haptic preference group.
Especially, subjects were not that reliant on visual feedback. Taking both
the operation performance and subjects’ evaluation of trust into
consideration, the best design for this preference group should be the
multi-feedback system.

Although our results indicated that the population could be divided
into two different groups, measured by their subjective preferences, and
such a categorization may significantly affect the level of benefits of
different sensory augmentation feedback methods, we could not explain
what demographic factors the root cause of different preferences could
be, including gender, college majors, age, etc. Mann-Whitney analysis
[37] was applied to test if the above factors are determinants of the two
preference groups. Unfortunately, there was not any relationship be-
tween the preference groups and gender (p = 0.55), learning back-
ground (p = 0.76), VR/3D-gaming background (p = 0.25) as well as age
(p = 0.96). We also analyzed eye tracking pattern for human navigation
preference and strategy, but there was still no difference. Operators were
keeping looking around trying to find checkpoints no matter what kind
of feedback they were relying on.

5. Discussions

In general, the experiment results revealed the potential benefits of
integrating sensory augmentation methods in current ROV control sys-
tems. The results verified that with sensory augmentation feedback,
either haptic feedback, visual feedback, or a combination of both, to
indicate hydrodynamic conditions in the proximity, the performance
and perception results of ROV operators could be significantly improved
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in ROV navigation operations and the anti-drifting operations. Specif-
ically, the number of checkpoints reached, average deviation, and trust
levels were all improved with haptic, visual and multi-feedback
methods, in comparison with the control condition where only camera
feedback was used. Nonetheless, no significant differences were
observed between the visual and haptic methods. We further found that
participants reported different preferences to the provided feedback
methods, and/or problems with a certain feedback method. Based on the
reported preference and concerns, we categorized the participants into
two preference groups, namely the “visual preference group” and the
“haptic preference group”. The visual preference group showed a sub-
jective inclination to use visual feedback, and the haptic preference
group showed a subjective inclination to use haptic feedback. Based on
the categorization of preference, we further analyzed the performance
and perception data for each preference group. We found that personal
preference indeed affected the impact of different feedback methods.
Specifically, haptic feedback tended to lead to better task performance
and a higher trust level for those who reported a preference for haptic
feedback or companied less about the haptic feedback method. Simi-
larly, visual feedback tended to lead to better task performance and a
higher trust level for those who reported a preference for visual feedback
or companied less about the visual feedback method. We also observed
similar patterns in the cognitive load data measured by NASA TLX and
pupillary dilation.

We also found that the multi-feedback method seemed to be the most
favorable and practical sensory augmentation method for all partici-
pants. Therefore, we propose a reasonable design for the next-
generation sensory augmentation system for the ROV controls. Firstly,
since combining multi-feedback does not seem to distract operators or
decrease operation effectiveness, a reasonable solution is to provide
both haptic and visual augmentation feedback to provide as much
assistance as possible. On the other hand, an ON/OFF switch function
could be designed in the system if necessary. For example, not all the
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scale survey results.

operators preferred to rely on visual feedback and too many visualiza-
tion elements (such as vector field) would also block operators’ views or
make them confused, as 43.33% of subjects had complained in the
experiment. Therefore, haptic feedback could be designed as the
fundamental sensory augmentation method as an indication of hydro-
dynamic conditions. An ON/OFF function could be designed for turning
on additional visual cues when needed. In contrast, for those who rely
more on haptic feedback, visual feedback could be designed as the basic
feedback method with haptic feedback as the secondary guilds. Another
reasonable design is to differentiate the application proximities of the
two feedback methods. For example, the visual can be designed to
represent far-field flow conditions while haptic feedback can be used as
an indicator of near-field interactions between currents and the ROV
system.

There are also some limitations and future works for this study. The
experiment only tested a most simple task condition. The experiment
result is sufficient to support our system effectiveness in routine navi-
gation tasks, where only motion and rotation actions are involved and
flow conditions are often stable. However, ROV operators are facing so
many unique challenges, and they need to take different control actions
based on task requirement. There are also complex stabilization/dock-
ing tasks involving physical interaction with the environment and
complex dynamic flow conditions, which cannot be represented by this
simple experiment. Therefore, in the future, we will develop a real ROV
teleoperation system with this proposed sensory augmentation system,
based on a mini class ROV, BlueROV2, and test the system efficiency on
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those complex ROV operations. Besides, we will further improve the
system to fit those unique task features by enhancing simulation data
resolution and developing more intuitive control method.

6. Conclusions

Subsea engineering is highly dependent on ROVs. At present, ROV
control mainly relies on traditional control kiosks and feedback
methods, such as the use of joysticks and camera displays equipped on a
surface vessel. However, due to the complexity of the subsea environ-
ment, including dynamic internal currents, low visibility, and unex-
pected contact with marine lives, traditional 2D video streaming method
cannot provide enough information for human awareness of subsea
environments, which might result in decreased performance or safety
issues in ROV operations. This paper proposes a sensory augmentation
method to enhance the ROV operator’s perception through novel feed-
back methods, including simulating the hydrodynamic features of the
surrounding subsea environment as visual feedback, haptic feedback, or
a combination of both. To verify which feedback method is appropriate
for ROV navigation control tasks, a human subject experiment was
performed to test if the human operator could resist drift and keep
straight-line navigation with haptic feedback, visual feedback, and
multi-feedback. The result showed that with sensory augmentation
methods, human operators’ performance was significantly improved.
We also found that personal preference to or concerns about a specific
feedback method could affect the level of benefits of the corresponding
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survey results.

feedback method. The limitation of this study is that the root cause for
different preferences was not discovered by our data. There was no
relationship between performance and the surveyed demographic fac-
tors including gender, age, college major backgrounds as well as sub-
jects’ self-evaluation. Further studies are needed.

In conclusion, with the urgent need for subsea engineering, new
human-robot interaction designs are needed to enhance the human
sensation of the subsea environment. We expect that the proposed new
method of ROV feedback and controls can help advance a booming
subsea engineering industry that requires a strong integration between
human intelligence and robots to tackle environmental complexity and
task dynamics. Without losing the generalizability, this method is ex-
pected to enable a much closer human-ROV collaboration for subsea
inspection and survey, i.e., the maneuver and navigation controls of
remote ROVs for sensor data collection and scanning of vessels and
subsea structure inspection in offshore zones. It can make the key tasks
easier, including navigation (localization and state estimation), control
(path planning and maneuvering through complex environments) and
perception (for robot position control and the inspection task). This
method is also strongly positioned for better accessibility and inclusion
because it aims to lower the career barrier for a traditionally highly
professional area. The sensory augmentation method for robotic control
may help mitigate the age requirement, promoting career longevity. The
new technology may also help salvage the careers of experienced
workers who have suffered from career injuries, such as diving diseases.
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