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A B S T R A C T   

Subsea engineering operations, including subsea inspection, installation and maintenance, heavily rely on the 
seamless interaction between remotely operated vehicles (ROV) and human operators. Subsea ROV control has 
always been a great challenge to human operators due to the dynamics of the subsea environment such as un
certainty of turbulence, affected visibility and interference with subsea ecosystems. Compared to engineering 
work on the ground, subsea engineering tasks are usually finished in a limited vision field with drift and 
localization problems. However, the traditional ROV feedback system, the live video streaming, cannot provide 
direct and intuitive perceptions of remote ROV workspace as well as a clear indication of the workspace un
certainties. Therefore, this research proposes a Virtual Reality augmented visual feedback system with haptic 
simulators to generate immersive, intuitive and effective feedback for human operators. The system can generate 
visual and haptic feedback as indications of flow conditions based on sensory data. A human subject experiment 
was performed to verify the effectiveness of this system. The result indicated that this system could significantly 
assist human operators in precepting the flow conditions in the ROV workspace in a more immersive and 
intuitive way.   

1. Introduction 

Subsea engineering, i.e., activities below waterline related to the 
construction, inspection, and manipulation of manmade systems, plays a 
vital role in offshore energy, aquaculture, sustainability, disaster pre
paredness, seafloor mining and cabling, and maritime transport 
[11,38,39]. Currently, subsea engineering operations highly rely on 
remotely operated vehicles (ROV), i.e., underwater teleoperated robotic 
systems [4]. Due to the rapidly decreasing cost of deployment and 
improved versatility of ROVs, in certain subsea areas, the global ROV 
market has observed a substantial growth with emerging engineering 
applications at scale [8]. It is expected that the next-generation subsea 
engineering will be greatly benefited from the broader utilization of 
ROVs with desired agility, safety and endurance [33]. However, despite 
the promising benefits of the broader and increasing utilization of 
various ROV systems in the future subsea engineering, the ROV operator 
remains a highly specialized area with a high barrier to broader 
participation. Most ROV-related jobs require strict professional prepa
ration (ocean sciences, mechanical engineering, and diving knowledge) 
that takes many years of training. The existing ROV service workforce 
consists of marine engineers, professional divers, and robot service 

providers, and only a small portion holds licenses for certain tasks. 
Provided the increased demand for subsea engineering workforce, there 
is a foreseeable shortage of ROV operators in the near future. A recent 
survey shows that the need for ROV pilots is expected to increase 130% 
on an annual basis [31]. It has also been noted that the harsh subsea 
environment and difficult robot controls are major obstacles for the 
future subsea workforce to utilize or team up with underwater ROVs. 

The fundamental problem of ROV operations is related to the lack of 
effective human-robot interaction (HRI) methods to meet the unique 
challenges of subsea workplaces. With the traditional ROV control sys
tem, an operator controls the ROV on a vessel above sea level with the 
assistance of live video streaming captured by the camera equipped on 
ROVs [70]. However, the complex information of the subsea environ
ment, such as dynamic internal currents, low visibility, and unexpected 
contacts with marine lives, cannot be fully transited by 2D videos, which 
might undermine human sensation of subsea environments and result in 
inappropriate operations [26,32,49]. Human operators often lose sense 
of orientation due to subsea currents without assistance from the system. 
And for subsea manipulation, installation, and maintenance, it is 
extremely hard for human operators to stabilize the ROV in volatile body 
of water only based on live videos. Such an inability to directly sense 
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water flows can break the feedback loop for accurate ROV control ac
tions, resulting in an induced perceptual-motor malfunction [25]. For 
complex motor tasks, humans rely on multi-sensory channels, such as 
visual and somatosensory feedback, to make sense of the consequence of 
any initiated action [63]. Literature has well recognized the benefits of 
simulating multi-sensory feedback, including visual, auditory and haptic 
feedback, as augmented HRI methods for robot teleoperation to improve 
motor performance [72]. But it is less clear whether the knowledge 
gained from land applications can be readily transferred to the subsea 
ROV interface designs, as many characteristics of subsea environment 
can be considered novel and alien to human operators, such as the 
feeling of hydrodynamic forces. It is also unknown how the multi- 
sensory feedback system can be optimized to improve human ROV 
control performance in the subsea engineering. 

This paper proposes a sensory augmentation system that converts 
novel subsea environmental parameters into human-perceivable sensa
tions, including simulating the hydrodynamic features as visual feed
back and haptic feedback. Based on the novel design, an experiment was 
performed to compare how different modes of sensory feedback could 
influence the human sensations of hydrodynamic features, and ulti
mately, how it could assist in ROV navigation in the subsea environment 
with low visibility. Human operators were asked to control the ROV for 
straight-line navigation with traditional visual feedback, haptic feed
back, augmented visual (vector-field) feedback, and a combination of 
haptic with visual visualization respectively in a high-fidelity Virtual 
Reality (VR) environment. The remainder of the paper introduces the 
point of departure, the design of the sensory augmentation system, the 
human-subject experiment and the findings. 

2. Literature review 

2.1. Remotely operated vehicles (ROV) for subsea operations 

ROV is a type of tethered underwater vehicle designed for under
water intervention, exploration, equipment installation and data 
collection [8,42,43]. ROVs can be classified differently depending on the 
size, the cost, and the designed functionalities. Based on their working 
depth and payloads, ROVs can be categorized as micro class (100 m, 5 
kg), mini class (300 m, 10 kg), light work class (2000 m, 100 kg) and 
heavy work class (3000 m, 300 kg) [43]. Based on their main designed 
functionalities, ROVs can be further classified as education class, in
spection class and work class [59]. Inspection class ROVs are the most 
widely used type for subsea exploration and offshore inspection. Espe
cially for oil and gas companies, in order to prevent financial and 
environmental disasters caused by leaking, ROVs are frequently used for 
the inspection of thousands of kilometers of pipelines, and the inspection 
tasks can be performed 24 h and 7 days sometimes [69]. Inspection class 
ROVs are usually equipped with various sensors for data collection and 
monitoring [10]. Work class inspection ROVs are the most versatile ones 
equipped with underwater manipulation capabilities, such as robotic 
arms. They are capable of heavy operation works like subsea mainte
nance for oil and gas industries and the ocean science community [30]. 

Although vary in capabilities and sensors carried on, all types of 
ROVs have basic capabilities of maneuverability along more than one 
principal axis and state estimation. Usually, pilots on a vessel above sea 
level control the ROV with the assistance of live video streaming 
captured by equipped cameras. However, this traditional vision-based 
feedback could only provide limited information for human operators. 
Especially in the subsea environment, low visibility would undermine 
the human perception of the workspace, and 2D video provides little 
information about ocean waves and currents [13,34]. Such inconsis
tency between the ROV workspace and human perception can break the 
feedback loop for accurate ROV control actions, resulting in an induced 
perceptual-motor malfunction (Finney 2015). The lack of necessary in
formation is a critical problem for certain kinds of tasks. For example, for 
subsea pipeline inspection and maintenance, the body of the ROV needs 

to hold its position stably, which requires a better perception and un
derstanding of the surrounding environment [9,34]. Besides, complex 
and high-turbidity currents can significantly influence ROV’s self- 
stabilization and cause disorientation in subsea exploration [61]. 

Currently, literature shows that more efforts have been made on 
improving ROV algorithms, such as self-stabilization using adaptive 
nonlinear feedback controller [54], disturbance rejection controller to 
improve maneuvering accuracy [9] and vision-based color correction 
and tracking algorithm for high depth and low light ecosystems [3]. 
These algorithms are aimed at controlling problems of the system and to 
some extent resolving the low visibility vision challenge. However, 
humans are the commander of the ROV system and are responsible for 
all the important control actions. Improving ROV algorithms but lack of 
effort in transferring environmental information to human operations 
can still undermine control operations in the complex and dynamic 
subsea environment. Effective methods for transferring main hydrody
namic features data to humans in an intuitive way, and how this new 
feedback could influence human navigation and control performance in 
complex subsea navigation are still largely unknown. 

2.2. ROV drifting in navigation 

Navigation planning are critical for ROV teleoperation in subsea 
engineering. However, due to the low visibility and subsea currents, 
precise navigation controls in the subsea environment are extremely 
challenging compared to applications on land [32]. Drifting is a pre
vailing issue in ROV navigation. Subsea engineering would not always 
take place in static flows. Currents can push the ROV away from its 
original route [35], and high-turbidity currents can also bring an 
extreme burden on subsea installations and maintenance [27]. The 
drifting rate caused by subsea currents can be several kilometers per 
hour sometimes [15]. All these factors make ROV navigation in subsea 
environments nontrivial. 

At present, there are two main methods for subsea anti-drifting 
correction in ROV navigation. One method is to utilize Simultaneous 
Localization and Mapping (SLAM) to extract visual feature points and 
establish a subsea map [40]. This process can be integrated with high- 
accuracy sensor data, such as Doppler Velocity Log (DVL), for a better 
mapping result [58]. The problem with this method is the lack of visual 
objects in subsea environments from which visual SLAM can extract 
sufficient feature points. And the integration with high-accuracy sensors 
could be too expensive for inspection-class vehicles. Another method is 
closed-loop controls based on machine learning [24]. A representative 
method is the predictive coding (PC)/biased competition (BC)-divisive 
input modulation (DIM) system [1]. Instead of using visual data, this 
method fuses multi high-accuracy sensor data such as the inertial 
measurement unit (IMU), differential global positioning systems 
(DGPS), ultra-short baseline (USBL) and DVL data, to enable automated 
pose and position correction of ROV at the low error rate to a mean of 
3.96 m [1]. Although improved a lot in accuracy compared to previous 
SLAM method, the machine learning based closed-loop control method 
requires a large number of high-accuracy sensors, and thus the cost 
could be an adoption obstacle. Besides, most existing ROV anti-drifting 
and localization methods focus more on an automated workflow instead 
of incorporating human-in-the-loop needs. There is no effective inter
face design for human operators to visualize and comprehend the 
navigational decisions made by SLAM and automated control algo
rithms. Such a lack of automation transparency may result in extra 
cognitive load, reduced situational awareness, and worsened trust and 
performance [14]. Despite the advances of automated anti-drifting and 
localization methods, a better human-machine interaction method is 
needed to grant human operators with the ability to intuitively sense the 
surrounding environment without distracting attention in ROV 
operations. 
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2.3. VR-based ROV teleoperation 

Virtual Reality (VR) is an emerging human-computer simulated 
interface widely used in medical, flight simulation, automobile industry 
design and military training purposes [45], for rendering realistic scenes 
and providing rich spatial information [7,71]. Literature has shown a 
great interest in utilizing VR in robot teleoperation due to the benefits of 
coupling perception and controls between humans and robots 
[12,17,72]. Such a close sensation pairing can assist in better planning 
motions and interactions in difficult tasks that require both robotic and 
human intelligence [62]. In ROV teleoperation, VR has been considered 
a promising solution for lowering the barriers to human-in-the-loop ROV 
teleoperation [64,65]. Several studies have tested the advantages of 
utilizing VR in ROV teleoperation in different tasks, such as underwater 
capture tasks [23] and deep ocean remote control [36]. 

Compared to traditional video streaming, VR can be programmed to 
provide additional visual feedback such as user interface (UI) design for 
work progress [44,67] and path optimization plan [60]. In addition, VR 
can also serve as a multisensory augmentation platform, i.e., providing 
multimodal visual, auditory, and haptic feedback associated with an 
intended action to improve motor performance [50,72,73]. Haptic de
vices can be integrated with VR platforms to generate haptotactile 
stimulation (e.g., vibrations and force feedback) on the user’s body in 
correspondence with the occurring events [51,52]. Specifically, in ROV 
control, VR-based sensory stimulation can generate feedback such as the 
indication of hydrodynamic conditions, which may significantly 
improve human sensation and spatial awareness. Pilot efforts have been 
done to capture underwater environmental information and apply cor
responding haptic feedbacks to human operators. For example, Ame
miya and Maeda designed a system to combine pressure and torsion 
forces and generate an illusional feeling of external force for a kines
thetic perception of the ROV [2]. Ciriello et al. developed a linear- 
oscillating actuator using asymmetric drivers to create equivalent 
pressure signals [16]. Shazali tested a gyro effect haptic actuator to 
simulate torque feedback even when ungrounded [46]. However, these 
preliminary efforts were only tested in the limited pre-designed work
space and were not integrated with the VR system for more immersive 

visual-haptic feedback. To provide environmental information more 
efficiently to human operators for decision-making, we propose a VR 
augmented visual and haptic integration feedback system for subsea 
ROV navigation control. 

3. Human-subject experiment and system 

3.1. Overview 

Due to the insufficiency of the current ROV teleoperation system in 
immersive, intuitive, and effective feedback, we have developed a VR- 
based sensory augmentation system that provides both augmented vi
sual feedback and haptic feedback for a shared perception between the 
remote ROV system and the human operator. In order to compare how 
different types of feedback affect ROV operations, a benchmarking 
human-subject experiment was performed based on a sensory augmen
tation system as shown in Fig. 1. First, a realistic subsea environment 
was developed based on the crest ocean system [28] with multi prede
signed subsea current areas, and a virtual sensory system was developed 
and embedded in the Unity game engine [55]. The sensory augmenta
tion system can obtain the hydrodynamic forces of the water body in the 
close proximity of the ROV, and convert the raw sensor data into human- 
perceivable sensations as augmented visual feedback (i.e., displayed as 
visuals in a VR headset) and as haptic feedback (i.e., vibrations on the 
haptic suit). More details about the sensory augmentation system can be 
found in our previous publications [74,75]. In this paper, we focus on 
reporting the human subject experiment performed to verify the effec
tiveness of the proposed system. 

Specifically, participants were required to operate an ROV in a VR 
simulator for a straight-line navigation task. To finish the task success
fully, human subjects must be able to resist the drift caused by subsea 
currents based on the feedback signals provided by the system. Each 
subject was asked to complete four experiment trials in a shuffled order, 
including the Control condition with only the video streaming from the 
ROV, the Visual condition that visualized hydrodynamic flows as vector 
arrows in the VR headset, the Haptic condition that simulated the hy
drodynamic forces as haptotactile feedback of different directions and 

Fig. 1. System architecture and experiment design for VR-haptic feedback system for ROV teleoperation.  
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magnitude on the haptic suit, and the Multi-Feedback conditions that 
provided both the visual and haptic feedback. Performance and human 
function data were collected automatically via the VR system, including 
navigation route, time of completion, eye tracking data, as well as 
psychometric surveys about demographic information, Trust Scale 
questionnaire [41] and NASA Task Load Index (NASA-TLX) [29]. 

3.2. VR environment 

The subsea VR environment was developed in Unity 2020.4.25f 
based on our previous systems [19–22,47,66]. As shown in Fig. 2, a 
realistic subsea environment was developed based on the crest ocean 
system [28], which ensured a high-fidelity ocean wave simulation and 
subsea light rendering. The background watercolor and effective camera 
field of view (FOV) could be adjusted to users’ needs. In the experiment, 
the camera FOV was set to the range of 0 to 5 m to simulate visibility 
conditions in most offshore subsea environments. Besides, the Unity 
visual effect graph (VFX) [56] was applied to simulate the floating dust 
that human operators usually rely on for locomotion controls of ROV. 

The device setup is demonstrated in Fig. 3. For ROV control, a 
joystick control method was designed based on the real ROV control 
system [6]. A bHaptics suit [5] was used for generating haptic feedback. 
Aiming to obtain the ROV trajectory data and human performance data, 
a system integrating an HTC VIVE head mounted display (HMD) with 
the Tobii Pro eye tracker [53] in Unity was used in the experiment. 
Several C# scripts were developed to collect the ROV navigation tra
jectory data as well as humans’ eye movement and pupil size at a fre
quency of 50 Hz. 

3.3. VR-based sensory augmentation system 

In order to test how different immersive and intuitive feedback could 
affect the ROV operation performance, we deployed a comprehensive 
VR-based sensory augmentation system, including the virtual ROV 
operation module, visual module, particle flow simulation module, 
virtual sensor module and haptic suit module. The system architecture is 
demonstrated in Fig. 4. Experiment participants could control the virtual 
ROV in VR with joysticks. User inputs, as well as hydrodynamic condi
tions, determined the ROV movements in the simulation environment. 
Augmented visual feedback, i.e., the visual condition, and virtual par
ticle flows for simulating the hydrodynamic interactions were generated 
based on the particle systems of the physics engine. Particularly, the 
simulated particle flows would physically interact with the ROV model 
and hence the virtual sensors could capture the key parameters of the 
hydrodynamic flows. Finally, the dynamic data was sent to the haptic 
suit plugin via Python Unity Socket [48] and the corresponding vibra
tion intensity was generated and sent to the haptic suit. 

For the visual feedback, except for the basic visual indications such 

as the floating dust (Fig. 5a), this system also provided a visual (Fig. 5b) 
to indicate the flow speed and directions. Each arrow in the visual would 
point to the flow direction at that area, and the length of the arrow 
indicated the flow speed, i.e., a longer arrow represented a higher flow 
speed. The system received the data of hydrodynamic conditions and 
generated the local transform for each vector. After converting the local 
transform with the global transform of the ROV, all the vectors could be 
arrayed with the orientation and scale adjusted depending on the pose of 
the camera. 

For haptic feedback, a particle flow and virtual sensor system was 
designed to simulate the hydrodynamic conditions and generate the 
corresponding haptic feedback. Data collected by ROV sensors are 
usually spatially and temporally sparse, resulting in incomprehensive 
sensory coverage and a low refresh rate of haptic feedback. As a result, a 
data augmentation process is necessary to enhance the data density, 
feedback coverage and refresh rate. In our system, the particle system 
was applied to simulate the physical interactions with the ROV in a 
realistic way, as demonstrated in Fig. 6. The particle simulation was 
based on the acoustic Doppler current profiler (ADCP) data, which 
contained flow direction and magnitude. The particle emitter would 
generate particle flows with same direction and magnitude around vir
tual ROV model. The particle flows could physically perform as real 
based on Unity physical engine, and virtual sensor system recorded 
physical interaction events and converted them to haptic intensity. To 
balance the simulation fidelity and the CPU cost, the activated particle 
number was set to 800 and the refresh rate was set to 2 Hz. A series of 

Fig. 2. Example scene of subsea environment reconstruction.  

Fig. 3. ROV operation device setup.  
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virtual sensors were distributed around the ROV model (Fig. 6b). A 
mapping method was developed to map the data from the virtual sensors 
to the haptic suit (Fig. 6b&c). In total, there were 12 virtual sensors on 
each side of the ROV to trigger all 40 vibrators on the haptic suit. A script 
was developed to extract near-field particles’ velocity when they collide 

with each virtual sensor. The flow intensity is calculated as Eq. 1: 

Msensor =
∑

mi*v̂i (1) 

Where mi is the mass of particle i, v̂i is the normal vector of the 

Fig. 4. Architecture of VR-Haptic feedback system.  

Fig. 5. Visual feedback examples: (a) Control condition: only floating dust; (b) Visual condition: vector field with floating dust.  

Fig. 6. Virtual sensory system and device mapping: (a) Particle flow; (b) Virtual sensory distribution and normal velocity projection; (c) Haptic suit sensor mapping.  
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velocity of particle i, which is the projection of speed perpendicular to 
the contact surface, as shown in Fig. 5b. When particles collide with the 
virtual sensor, the sum of normal momentum 

∑
m*v̂i is calculated as the 

representation of the flow intensity. No mass difference was designed in 
this particle system because the hydrodynamic features were manifested 
as the pressure gradient, so the mass m can be equally set to 1.0 in 
practice. Each virtual sensor collected particle data when a collision 
happened. To map the haptic suit output range, a conversion function 
was applied to discount the larger raw flow intensity data to a range of 
0 to 1 cm/s^2: 

I =
e0.33*Msensor − 1
e0.33*Msensor + 1

(2) 

Where Msensor represents the flow intensity sent by the sensors 
calculated in Eq. 1.After the intensity value of each virtual sensor was 
calculated in Unity, the intensity array was sent to the Python terminal 
via the Python-Unity-Socket [48] to trigger the haptic suit. With this 
system being well designed, operators could clearly feel the changes in 
the strength and direction of the water flow with their body feeling. 

In summary, differentiation of particle flow direction and strength 
via visual and haptic feedback was achieved in this system. Virtual ar
rows were utilized in VR to indicate the direction of flow, with the length 
of the arrows representing the flow strength. Additionally, a haptic suit 
with 40 vibrating units was used to provide haptic feedback to the 
operator. A virtual sensor system with 24 virtual sensors was created in 
VR, which mapped to the 40 real units on the haptic suit. The virtual 
sensors were able to physically interact with particles in VR based on a 
physical engine, and the particle data was recorded to generate haptic 
feedback on the haptic suit. The use of this haptic suit allowed for the 
simulation of realistic oceanic sensations for the operator. For example, 
a strong vibration in the front represents that a strong flow is pushing 
operators backward. For the reference of feedback system demo, please 
refer to this link (https://drive.google.com/file/d/1PNwltmf9Qb 
NdM5_Be4AOUnAvLP5xc2Bf/view?usp=share_link). 

3.4. Data collection and analysis 

The experiment was a straight-line navigation task with multiple 
checkpoints. Straight-line navigation is an essential skill for novice ROV 
operators before they could handle complex control actions, and is basic 
for many ROV operation tasks, such as pipeline inspection and ocean 
exploration. Besides, straight-line navigation task is a relatively simple 
and basic task for novices, which is less influenced by human knowledge 
and experience, and is a proper metric to evaluate the effect of sensory 
augmentation method. Specifically, a total of five checkpoints as well as 
several subsea current zones were aligned along the way for each of the 
experiment trials. Participants were required to operate the ROV for 
straight-line navigation, and to resist the effect of subsea currents to 
reach all the checkpoints along the line. The experiment was based on 
within-subject design, with a minimum sample size as 25 based on 
power analysis (significance level as 0.05, desired power as 0.8, and 
effect size as 0.8) [57]. Each participant began with a training session to 
familiarize themselves with the control and feedback system, the use of 
VR and haptic device, as well as the procedure of the experiment. The 
training session was repeated three times to ensure that participants 
fully adapted to different kinds of feedback methods. After that, subjects 
were asked to finish four experiment trials in a random order, including 
the control condition, the visual condition, the haptic condition, and the 
multi-feedback condition. This kind of random design aimed to elimi
nate potential learning effect. The flow patterns were designed different 
between each experiment condition, but the average flow speed was 
calibrated as 0 m/s and the maximum flow magnitude was calibrated as 
0.75 m/s in every condition to ensure a similar difficulty level. For each 
condition, realistic underwater renderings were optimized to support 
basic ROV navigation with camera streaming, including the rendering of 
floating dust and air bubbles to indicate the waterflow directions and 

speed. The distance and the number of subsea current zones (i.e., indi
cating current waterflow directional changes) between each pair of 
checkpoints are shown in Table. 1. The total distance was 90 m and the 
average ROV navigating speed was set to 1 m/s. The estimated finishing 
time for each condition without any delay would be 1.5 min. The dif
ficulty of the task gradually increased along the navigation, with a 
longer distance to arrive at the next checkpoint and with more subsea 
current direction changes as disturbances. 

During the experiment, our system could automatically record the 
ROV trajectory, the number of checkpoints reached, and human 
assessment data (such as gaze tracking). The average deviation from the 
straight line davg was used to evaluate the overall task performance in 
terms of keeping the straight-line navigation, which was the sum devi
ation of each frame divided by the total number of frames. As shown in 
Eq.3, di is the deviation from the straight line in each frame and Itotal is 
the total frame number. 

davg =

∑
|di|

Itotal
(3) 

The number of checkpoints reached in the experiment was used as a 
secondary metric for task performance evaluation. Besides, the pupillary 
size was used for cognitive load analysis. As the literature indicates, 
pupillary diameter and eye blink rate are closely related to cognitive 
load and mental fatigue levels [68]. After each experiment trial, par
ticipants were asked to finish two surveys, including a NASA-TLX [29] 
for the workload level evaluation and a Trust Scale survey [41] for trust 
level analysis. Besides, they were asked to finish a demographic survey 
before the experiment, including information about gender, age, college 
major, experience and self-evaluation. At the end of the entire experi
ment, they were also asked to provide retrospective opinions about the 
proposed system and the suitability of haptic intensity. All results were 
analyzed with the Wilcoxon tests as preliminary analysis found that data 
did not satisfy the normality assumption [18]. 

4. Results 

4.1. Participants 

In total, 30 participants were recruited for the human subject 
experiment. As shown in Table 2, all participants were aged from 19 
years old to 37 years old (mean = 25.2, std. = 4.06). There were 18 
males and 12 females respectively. Among all participants, most were 
from engineering majors (25 or 86.7%) such as Civil Engineering and 
Aerospace and Mechanical Engineering, and a small portion of partici
pants (5 or 16.7%) were recruited from non-engineering majors such as 
digital arts and law. Despite the difference in educational background, 
all participants were trained carefully until they reported that they felt 
fully adapted to the control of the ROV navigation with our system. 

To be noted, we found a significant individual difference among the 
participants in terms of preference to the provided feedback methods. At 
the end of the entire experiment, participants were asked about their 
overall preference of feedback systems. In the follow-up analyses, we 
further found that the performance and human assessment data showed 
a significant difference among different preference groups. As a result, 
we will present the aggregated analysis results that incorporated all 
preference groups, and preference-based analysis for each of the pref
erence groups. The method for clustering participants into preference 
groups will be introduced in detail later. 

4.2. Aggregated analysis 

First, we analyzed the task performance in terms of deviation and 
number of checkpoints reached. We tracked the deviation of ROV nav
igation path from the desired straight line, as shown in Fig. 7. The 
average deviation (m) per navigated distance (m) for the control, haptic, 
visual and multi-feedback conditions were 7.739 m, 2.714 m, 3.514 m 
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and 2.282 m respectively. A significant improvement in terms of drifting 
control was observed in the haptic condition and the multi-feedback 
condition. The result showed that it was harder for participants to 
localize the next checkpoint without additional feedback provided. It 
was because the drifting due to the changing hydrodynamic flows kept 

pushing the ROV from the desired path. In addition, because the visi
bility was low, participants could not see the checkpoint unless the ROV 
was close enough (within 5 m given the visibility range). Given the 
haptic feedback and/or the additional visual feedback, participants 
could maintain a relatively smooth path of the ROV in a trajectory closer 
to the desired straight line, and thus had a better chance of visualizing 
the next checkpoint. 

We also analyzed the number of checkpoints reached, as shown in 
Fig. 8a. The Wilcoxon test showed significant differences between the 
control condition and the haptic condition (p < 0.0001), between the 
control condition and the visual condition (p = 0.0002), and between 
the control condition and the multi-feedback condition (p < 0.0001). 
However, there was no significant difference between the haptic con
dition and the visual condition (p = 0.19), between the haptic condition 
and multi feedback condition (p = 0.65), or between the visual condition 
and the multi feedback condition (p = 0.10). 

As for the average deviation, as shown in Fig. 8b, there was a sig
nificant difference between the control condition and the haptic con
dition (p < 0.0001), between the control condition and the visual 
condition (p = 0.0007), and between the control condition and the 
multi-feedback condition (p < 0.0001). There was not a significant 
difference between the haptic condition and the visual condition (p =

Table 1 
Distance (m) and number of subsea current zones between each pair of checkpoints.  

Areas start ~ checkpoint1 checkpoint 1 ~ checkpoint 2 checkpoint 2 ~ checkpoint 3 checkpoint 3 ~ checkpoint 4 checkpoint 4 ~ end 

Distance 8 12 15 25 30 
No. of subsea current zones 1 1 2 3 3  

Table 2 
Background information of participants (n = 30).  

Category Item Number Percentage 

Gender Male 18 60.00% 
Female 12 40.00% 

Age 
Under 20 1 3.33% 
20 to 29 24 80.00% 
Above 30 5 16.67% 

College Major 
Engineering 25 83.3% 
Non-Engineering 5 16.7% 

Feedback Method Preferred 

Control Condition 0 – 
Haptic Feedback 10 33.33% 
Visual Feedback 7 23.33% 
Multi-Feedback 13 43.34% 

VR/3D Gaming Experience 
Quite Familiar 10 33.33% 
Several Trials 17 56.67% 
Never 3 10.00%  

Fig. 7. ROV navigation trajectories of the four conditions: (a) Control condition (deviation per navigated meter: 7.739 m); (b) Haptic condition (deviation per 
navigated meter: 2.714 m); (c) Visual condition (deviation per navigated meter: 3.514 m); (d) Multi-feedback condition (deviation per navigated meter: 2.282 m). 
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0.70), between the haptic condition and multi-feedback condition (p =
0.30), or between the visual condition and the multi-feedback condition 
(p = 0.21) in terms of the average deviation. 

Then we analyzed the cognitive load based on the pupillary size and 
survey data, as shown in Fig. 9. For the cognitive load, which is repre
sented by the pupillary diameters shown in Fig. 9a, participants showed 
a lower cognitive load in the haptic condition (p < 0.0001), the visual 
condition (p = 0.0033) and the multi feedback condition (p = 0.002) 
compared to the control condition. There was no significant difference 
between the haptic condition and the visual condition (p = 0.89), be
tween the haptic condition and multi-feedback condition (p = 0.52), or 
between the visual condition and the multi-feedback condition (p =

0.78). The NASA-TLX workload analysis showed a similar result as 
demonstrated in Fig. 9b. Participants reported a lower workload in the 
haptic condition (p = 0.0003), the visual condition (p = 0.0004), and the 
multi-feedback condition compared to the control condition (p =

0.0006). As for the trust scale analysis in Fig. 9c, there were significant 
differences between the control condition and the haptic condition (p <
0.0001), between the control condition and the visual condition (p <
0.0001), and between the control condition and the multi feedback 
condition (p < 0.0001). In addition, participants also showed higher 
trust levels in the haptic condition (p = 0.047) and in the multi feedback 
condition (p = 0.0002) compared to the visual condition. 

In general, with the sensory augmentation methods (including the 

Fig. 8. Performance result: (a) number of checkpoints reached; (b) Average deviation.  

Fig. 9. Cognitive load and survey results: (a) Pupillary size; (b) NASA TLX survey; (c) Trust scale survey.  
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haptic feedback, visual visualization and multi-feedback), task perfor
mance, cognitive load and perceived trust were significantly improved 
in all the metrics. Yet, no significant difference was observed among the 
three sensory augmentation conditions. Participants only showed a 
lower trust with the visual feedback compared to the haptic feedback 
and the multi feedback. As discussed earlier, participants reported 
significantly different preferences to the provided sensory feedback 
methods. As such, we analyzed the performance and perception data for 
each of the preference groups. 

4.3. Preference group based analysis 

Although no significant differences in terms of performance and 
perception data were observed among the three sensory augmentation 
conditions, we found that participants reported distinct preferences for 
the provided sensory augmentation methods. It suggests that partici
pants may have presented different abilities to digest spatial information 
from different modes of data (i.e., visual and haptic data), resulting in a 
vast individual difference within the haptic condition or the visual 
condition. For example, certain groups of people may be more sensitive 
to the haptic feedback than others, and hence tend to perceive the spatial 
information provided by the haptic feedback in a more effective way. 
We performed a post-experiment survey to solicit their perceived ben
efits and difficulties with the haptic and visual feedback provided in the 
experiment, as a basis for clustering participants into different prefer
ence groups. 

We first found a split of preferences for different feedback methods as 
shown in Table 2. Specifically, the result showed that 10 participants 
(33.33%) preferred haptic feedback, 7 participants (23.33%) preferred 
visual feedback, and 13 participants (43.33%) preferred the multi- 
feedback method. We further found that participants also reported 
problems or concerns with different feedback methods. As shown in 
Table 3, 8 participants (26.67%) reported that the haptic intensity was 
improper (either too strong or too weak to be informative), labeled as 
“problems with haptic feedback”, 10 participants (33.33%) reported 
that the visual feedback shown as visual were confusing and/or blocked 
their views, labeled as “problems with visual feedback”, 3 participants 
(10.00%) reported issues with both haptic and visual feedback, labeled 
as “problem with both feedback”, and 9 participants (30.00%) did not 
report any problems, labeled as “no concerns”. 

We found that data about concerns or problems does not completely 
compatible with the preference results. For example, a person could 
report a preference for haptic feedback but still complained about 
problems with the haptic feedback (too strong or too weak). It indicates 
that each participant may have inclined to a certain feedback method 
with some level of concerns. In order to roughly quantify the inclination 
to a certain feedback method, we defined a rating method to incorporate 
both the reported preference and reported concerns. Specifically, if a 
participant reported a preference for a certain feedback method and did 
not report any problems with the preferred feedback method, it would 
be marked as a high level of preference. If a person reported a preference 
for a certain feedback method, but also reported certain problems with 
the same feedback method, it would be marked as a medium level of 
preference. The rest would be marked as low levels of preference. And in 
a more special case, when a person reported preferring to the multi- 
feedback method, but reported perceived problems with a certain 
feedback mode (haptic or visual feedback), then the person would be 

assigned to the preference group with no reported problems. In this way, 
we have clustered 30 participants into two preference groups, namely 
the “visual preference group” and “haptic preference group” as shown in 
Table 4. 

Then we compared the two preference groups in terms of perfor
mance and perception results, as illustrated in Fig. 10. As for the number 
of checkpoints reached, the visual preference group outperformed the 
haptic preference group with the visual feedback (p = 0.018), but no 
significant difference was observed with the haptic feedback. On the 
other hand, the haptic preference group ended up with a higher average 
deviation with the visual feedback (p = 0.0005). Besides, there was a 
significant difference in the trust scale survey. The visual preference 
group trusted visual feedback significantly more. No significant differ
ence was observed in the pupillary diameters and NASA TLX survey 
results. Generally, the two preference groups showed significantly 
different performance patterns. It suggests that users could be catego
rized based on their preference for the feedback method, and person
alized feedback solutions should be applied to each individual 
depending on the specific preference and potential problems with any 
feedback method. 

We also analyzed performance and perception results for each pref
erence group. As shown in Fig. 11, in the haptic preference group, 
participants reached a higher number of checkpoints in the haptic 
condition than the control group (p = 0.0004) as well as the visual 
condition (p = 0.0052), while maintaining a significantly lower average 
deviation in the haptic condition than the control condition (p < 0.0001) 
as well as the visual condition (p = 0.0079). The number of checkpoints 
reached in the multi-feedback condition was significantly higher than 
the control condition (p = 0.0014) as well as than the visual condition (p 
= 0.018), and the average deviation was significantly lower in the multi- 
feedback group than the control group (p = 0.0079). Besides, subjects 
showed a higher trust level in the haptic group (p = 0.0022) and multi- 
feedback group (p = 0.0038) compared to the visual group in this 
category. On the other side, there was no significant difference between 
the control group and the visual group (p = 0.093 for the checkpoints 
reached and p = 0.26 for average deviation), and between the haptic 
group and the multi-feedback group (p = 0. 66 for the checkpoints 
reached and p = 0.75 for average deviation). In general, for those who 
highly relied on haptic feedback, visual augmentation could not provide 
effective information for their operations. They showed significantly 
poorer performance as well as lower trust in the visual feedback. When 
visual feedback was integrated with the haptic feedback, subjects’ per
formance was not influenced and they could keep a similar deviation 
and trust in the system. For this category, both the haptic feedback 
system and the multi-feedback system could be the effective design for 
sensory augmentation in subsea engineering. 

Different from the haptic preference group, the visual preference 
group showed a significantly different behavior pattern. As shown in 
Fig. 12, for the checkpoints reached in the experiment, there was not a 
significant difference between the haptic group and multi-feedback 
group (p = 0.24), between the haptic group and the visual group (p =
0.066), and between the visual group and multi-feedback group (p >
0.9). On the other hand, no significant difference was observed in the 
average deviation between the visual group and the multi-feedback 
group (p = 0.45), but it was significantly lower in the visual group (p 
= 0.0012) and the multi feedback group (p = 0.040) compared to the 
haptic group. There is an additional finding in this preference group 
that, although subjects showed a better performance with visual feed
back, they did not show higher reliability on the visual system. For the 

Table 3 
Subjects’ comfortability with haptic and visual augmentation feedback.  

Reported Problems Number Percentage 

No Concerns 9 30.00% 
Problems with Haptic Feedback 8 26.67% 
Problems with Visual Feedback 10 33.33% 
Problems with both Feedback 3 10.00%  

Table 4 
Feedback method preference group.  

Preference groups Number Percentage 

Visual preference group 13 43.33% 
Haptic preference group 17 56.67%  
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trust scale survey, there was a similar score between the haptic group 
and the visual group (p = 0.34). Nonetheless, subjects showed higher 
trust in the multi-feedback group than in the visual group (p = 0.017) 
and the haptic group (p = 0.030). In general, although a relatively better 
performance was observed in the visual group, the performance differ
ence was not as significant as that in the haptic preference group. 
Especially, subjects were not that reliant on visual feedback. Taking both 
the operation performance and subjects’ evaluation of trust into 
consideration, the best design for this preference group should be the 
multi-feedback system. 

Although our results indicated that the population could be divided 
into two different groups, measured by their subjective preferences, and 
such a categorization may significantly affect the level of benefits of 
different sensory augmentation feedback methods, we could not explain 
what demographic factors the root cause of different preferences could 
be, including gender, college majors, age, etc. Mann-Whitney analysis 
[37] was applied to test if the above factors are determinants of the two 
preference groups. Unfortunately, there was not any relationship be
tween the preference groups and gender (p = 0.55), learning back
ground (p = 0.76), VR/3D-gaming background (p = 0.25) as well as age 
(p = 0.96). We also analyzed eye tracking pattern for human navigation 
preference and strategy, but there was still no difference. Operators were 
keeping looking around trying to find checkpoints no matter what kind 
of feedback they were relying on. 

5. Discussions 

In general, the experiment results revealed the potential benefits of 
integrating sensory augmentation methods in current ROV control sys
tems. The results verified that with sensory augmentation feedback, 
either haptic feedback, visual feedback, or a combination of both, to 
indicate hydrodynamic conditions in the proximity, the performance 
and perception results of ROV operators could be significantly improved 

in ROV navigation operations and the anti-drifting operations. Specif
ically, the number of checkpoints reached, average deviation, and trust 
levels were all improved with haptic, visual and multi-feedback 
methods, in comparison with the control condition where only camera 
feedback was used. Nonetheless, no significant differences were 
observed between the visual and haptic methods. We further found that 
participants reported different preferences to the provided feedback 
methods, and/or problems with a certain feedback method. Based on the 
reported preference and concerns, we categorized the participants into 
two preference groups, namely the “visual preference group” and the 
“haptic preference group”. The visual preference group showed a sub
jective inclination to use visual feedback, and the haptic preference 
group showed a subjective inclination to use haptic feedback. Based on 
the categorization of preference, we further analyzed the performance 
and perception data for each preference group. We found that personal 
preference indeed affected the impact of different feedback methods. 
Specifically, haptic feedback tended to lead to better task performance 
and a higher trust level for those who reported a preference for haptic 
feedback or companied less about the haptic feedback method. Simi
larly, visual feedback tended to lead to better task performance and a 
higher trust level for those who reported a preference for visual feedback 
or companied less about the visual feedback method. We also observed 
similar patterns in the cognitive load data measured by NASA TLX and 
pupillary dilation. 

We also found that the multi-feedback method seemed to be the most 
favorable and practical sensory augmentation method for all partici
pants. Therefore, we propose a reasonable design for the next- 
generation sensory augmentation system for the ROV controls. Firstly, 
since combining multi-feedback does not seem to distract operators or 
decrease operation effectiveness, a reasonable solution is to provide 
both haptic and visual augmentation feedback to provide as much 
assistance as possible. On the other hand, an ON/OFF switch function 
could be designed in the system if necessary. For example, not all the 

Fig. 10. Performance difference in two categories. (a) Numbers of checkpoints reached. (b) Average deviation. (c) Pupil diameters. (d) NASA TLX results. (e) Trust 
scale survey results. 
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operators preferred to rely on visual feedback and too many visualiza
tion elements (such as vector field) would also block operators’ views or 
make them confused, as 43.33% of subjects had complained in the 
experiment. Therefore, haptic feedback could be designed as the 
fundamental sensory augmentation method as an indication of hydro
dynamic conditions. An ON/OFF function could be designed for turning 
on additional visual cues when needed. In contrast, for those who rely 
more on haptic feedback, visual feedback could be designed as the basic 
feedback method with haptic feedback as the secondary guilds. Another 
reasonable design is to differentiate the application proximities of the 
two feedback methods. For example, the visual can be designed to 
represent far-field flow conditions while haptic feedback can be used as 
an indicator of near-field interactions between currents and the ROV 
system. 

There are also some limitations and future works for this study. The 
experiment only tested a most simple task condition. The experiment 
result is sufficient to support our system effectiveness in routine navi
gation tasks, where only motion and rotation actions are involved and 
flow conditions are often stable. However, ROV operators are facing so 
many unique challenges, and they need to take different control actions 
based on task requirement. There are also complex stabilization/dock
ing tasks involving physical interaction with the environment and 
complex dynamic flow conditions, which cannot be represented by this 
simple experiment. Therefore, in the future, we will develop a real ROV 
teleoperation system with this proposed sensory augmentation system, 
based on a mini class ROV, BlueROV2, and test the system efficiency on 

those complex ROV operations. Besides, we will further improve the 
system to fit those unique task features by enhancing simulation data 
resolution and developing more intuitive control method. 

6. Conclusions 

Subsea engineering is highly dependent on ROVs. At present, ROV 
control mainly relies on traditional control kiosks and feedback 
methods, such as the use of joysticks and camera displays equipped on a 
surface vessel. However, due to the complexity of the subsea environ
ment, including dynamic internal currents, low visibility, and unex
pected contact with marine lives, traditional 2D video streaming method 
cannot provide enough information for human awareness of subsea 
environments, which might result in decreased performance or safety 
issues in ROV operations. This paper proposes a sensory augmentation 
method to enhance the ROV operator’s perception through novel feed
back methods, including simulating the hydrodynamic features of the 
surrounding subsea environment as visual feedback, haptic feedback, or 
a combination of both. To verify which feedback method is appropriate 
for ROV navigation control tasks, a human subject experiment was 
performed to test if the human operator could resist drift and keep 
straight-line navigation with haptic feedback, visual feedback, and 
multi-feedback. The result showed that with sensory augmentation 
methods, human operators’ performance was significantly improved. 
We also found that personal preference to or concerns about a specific 
feedback method could affect the level of benefits of the corresponding 

Fig. 11. Results for the haptic preference group. (a) Numbers of checkpoints reached. (b) Average deviation. (c) Pupil diameters. (d) NASA TLX results. (e) Trust 
scale survey results. 

P. Xia et al.                                                                                                                                                                                                                                      



Automation in Construction 154 (2023) 104987

12

feedback method. The limitation of this study is that the root cause for 
different preferences was not discovered by our data. There was no 
relationship between performance and the surveyed demographic fac
tors including gender, age, college major backgrounds as well as sub
jects’ self-evaluation. Further studies are needed. 

In conclusion, with the urgent need for subsea engineering, new 
human-robot interaction designs are needed to enhance the human 
sensation of the subsea environment. We expect that the proposed new 
method of ROV feedback and controls can help advance a booming 
subsea engineering industry that requires a strong integration between 
human intelligence and robots to tackle environmental complexity and 
task dynamics. Without losing the generalizability, this method is ex
pected to enable a much closer human-ROV collaboration for subsea 
inspection and survey, i.e., the maneuver and navigation controls of 
remote ROVs for sensor data collection and scanning of vessels and 
subsea structure inspection in offshore zones. It can make the key tasks 
easier, including navigation (localization and state estimation), control 
(path planning and maneuvering through complex environments) and 
perception (for robot position control and the inspection task). This 
method is also strongly positioned for better accessibility and inclusion 
because it aims to lower the career barrier for a traditionally highly 
professional area. The sensory augmentation method for robotic control 
may help mitigate the age requirement, promoting career longevity. The 
new technology may also help salvage the careers of experienced 
workers who have suffered from career injuries, such as diving diseases. 
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