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Abstract

We describe an experimental protocol for the creation of a three-
dimensional topological defect, a skyrmion, in a pseudo-spin-1/2
Bose-Einstein condensate (BEC) confined in a spin-independent har-
monic trap. We show that one can imprint the skyrmion on the
BEC within a few tens of microseconds using a Raman process
with the structured laser fields. We numerically solved the mean-
field Gross-Pitaevskii equation to examine our imprinting scheme,
and found that all parameters we use are experimentally feasible.
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1 Introduction

Topological defects in quantum fluids, and specifically spinor superfluids, have
been an important topic in quantum physics for decades. Perhaps the earliest
examples involved the role of such defects in understanding the properties
of superfluid 3He [1–4]. More recently, the realization of samples of ultracold
atoms has offered an ideal system for studying topological defects in spinor
superfluids, including defects such as vortices and skyrmions. Various methods
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have been developed to create topological defects in a spinor Bose–Einstein
condensate (BEC). These include applying a time dependent inhomogeneous
magnetic field (i.e. a moving, structured magnetic field) to the BEC [5–10] as
well as a phase imprinting scheme based on a Raman process using structured
laser fields [11–18]. Among the spectrum of possible topological defects, the
skyrmion – a map from a monopole on a n-sphere to the Rn space – has drawn
particular attention because its connections not only to superfluids, but also
to liquid crystals, magnetic semiconductors and superconductors [3, 4, 19–22].
Furthermore, the ease with which atomic BECs can be of manipulated and
controlled of makes the spinor BEC an ideal system in which to study the
properties and dynamics of the skyrmion.

To create topological defects in a BEC, the Raman process imprinting
scheme is known for its simplicity and speed. To date, however, the Raman
technique has only been used to create two-dimensional topological defects
such as vortices and two-dimensional skyrmions. In this work, we propose
an imprinting scheme to create a three-dimensional skyrmion with spatially
varying three-dimensional features that belong to the third homotopy group
π3 [24] by introducing a third far-detuned laser to the Raman interaction.
The imprinting scheme is designed for a pseudo-spin-1/2 BEC trapped in a
spherically symmetric harmonic potential, and the imprinting time scale is
several tens of microseconds. We verified our scheme by numerically simulat-
ing the imprinting process based on mean-field Gross-Pitaevskii theory and we
have found good agreement with our theoretical predictions. We then deter-
mine practical experimental parameters that could be used to realize the 3D
skyrmion.

This paper is organized as follows: in section.2, we discuss the general the-
ory of a pseudo-spin-1/2 BEC, how to map a 3D Skyrmion to the wavefunction
of a pseudo-spin-1/2 BEC and imprint the topological defect onto a BEC by
allowing the BEC state to time evolve under a certain Hamiltonian. In section.3
we construct the desired spatially varying effective two-level Hamiltonian via
a Raman process with multiple off-resonant lasers. In section.4 we examine
the effectiveness of our imprinting scheme by a mean-field Gross-Pitaevskii
numerical simulation of the imprinting process. Then in section.5 we briefly
discuss how to observe the topological defects created in the experiment, and
we summarize and conclude the paper in section.6.

2 3D Skyrmion in a pseudo-spin-1/2
Bose-Einstein condensate

2.1 General theory of pseudo-spin-1/2 spinor
Bose-Einstein condensate

Generally, for a pseudo-spin-1/2 BEC, the spinor wavefunction can be written
as

ψ⃗(r⃗, t) =
√
ρ(r⃗, t)ζ⃗(r⃗, t)eiφ, (1)



Springer Nature 2021 LATEX template

3D Skyrmion imprinting in a BEC 3

where
√
ρ(r⃗, t) is the scalar part of the wavefunction with spatially varying

density ρ(r⃗, t), ζ⃗(r⃗, t) = (ζ1, ζ2)
T is the spinor part of the wavefunction that

satisfies |ζ⃗|2 = 1, and φ = φ(r⃗, t) is the local U(1) gauge phase. The scalar
part of the wavefunction satisfies∫

ρ(r⃗, t)d3r = N, (2)

where N is the number of atoms in the BEC.
Since the spinor part ζ⃗ is normalized, we can write the spinor as

ζ⃗ = (x1 ± ix2, x3 ± ix4)
T , (3)

where x1, x2, x3 and x4 ∈ R, and they satisfy the normalization condition
|x1|2 + |x2|2 + |x3|2 + |x4|2 = 1. Therefore, the spinor ζ⃗ can be regarded
as a vector defined on a three-dimensional sphere, S3, in four-dimensional
Euclidean space, R4 (see for example details given in Ref.[24]). Consider a
monopole vector field on S3, where the vectors are perpendicular to the sphere
at every point. Generally, one can parameterize a point on S3 in the spherical
coordinates (λ,β,η)

x1 = cosλ

x2 = sinλ cosβ

x3 = sinλ sinβ cos η (4)

x4 = sinλ sinβ sin η,

where λ ∈ [0, π], β ∈ [0, π], η ∈ [0, 2π). If we map the monopole field on S3 to
three-dimensional Euclidean space, R3, parameterized by (r,θ,ϕ) (stereographic
projection), then the vector field in R3 forms a 3D skyrmion. To get a picture of
a 3D skyrmion, one can start from the interpretation and visualization of a 2D
skyrmion. By considering a monopole spin texture on a two-dimensional sphere
S2 and unwraping the sphere into a 2D Euclidean space R2 via stereographic
projection the result is a 2D skyrmion spin texture on the 2D plane. Similarly,
if we consider a monopole spin texture on a three-dimensional sphere S3,
and unwrap the three-dimensional sphere into a 3D Euclidean space R3, the
resulting spin texture in R3 is a 3D skyrmion. Specifically, if we construct a
map between (λ,β,η) and (r,θ,ϕ) then the three-dimensional spinor ζ⃗(r⃗) will
carry the 3D skyrmion spin texture (see also Ref.[23, 24]). One can tell if the
system carries the 3D skyrmion by calculating the winding number (charge)
[23–26],

Q =
1

2π2

∫
Σ

sin2 λ sinβ|∂(λ, β, η)
∂(r, θ, ϕ)

|d3r, (5)

where |∂(λ,β,η)∂(r,θ,ϕ) | is the Jacobian between coordinates (λ, β, η) and (r, θ, ϕ), and

Σ is any closed surface enclosing the 3D skyrmion.
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2.2 Imprinting a 3D skyrmion in a Bose-Einstein
condensate

In section.2.1, we discussed the general theory of mapping a 3D skyrmion in R4

to a pseudo-spin-1/2 BEC wavefunction in R3. In this section, we address the
issue of how to imprint such a topological defect onto the spinor wavefunction
of a BEC.

Like in the previous works on imprinting topological defects on spinor BECs
[11–18], we consider using a monopole-like synthetic magnetic field to cause
the spatially varying spin rotation to imprint the topological structure on the
spin-1/2 BEC. Specifically, we consider a Hamiltonian of the form

He =
1

2
ℏαr⃗ · σ⃗, (6)

where α is the amplitude of the interaction, r⃗ = (x, y, z)T and σ⃗ = (σx, σy, σz)
T

is the vector of Pauli matrices. Such a Hamiltonian takes the same form as the
Hamiltonian of a spin-1/2 system interacting with a monopole-like magnetic
field. Using the Hamiltonian in eqn.(6), we can construct the time evolution
operator, U(r⃗, t) = e−iHet/ℏ, with the exact form

U = cos γ1 − in⃗ · σ⃗ sin γ

=

(
cos γ − i sin γ cos θ −i sin γ sin θe−iϕ

−i sin γ sin θeiϕ cos γ + i sin γ cos θ

)
, (7)

where γ = γ(r, t) = αrt/2ℏ, n⃗ = (sin θ cosϕ, sin θ sinϕ, cos θ)T is the unit
vector on S2 and 1 is the identity matrix. If we apply the time evolution
operator to the spinor wavefunction with initial spinor state ζ⃗0 = (1, 0)T , then
the spinor state after evolving under He for a time T0 becomes

ζ⃗s =

(
cos γ − i sin γ cos θ
−i sin γ sin θeiϕ

)
= Uζ⃗0. (8)

Considering eqn.(4) and eqn.(7), if we let γ = λ, θ = β and ϕ = η, then the
gauge transformation U becomes the map between S3 and R3.

In our setup, the BEC is confined in an isotropic harmonic trap with a
Thomas-Fermi radius R0. If we let the evolution time be T0 = 2ℏπ/αR0, then

we get γ ∈ [0, π] if r ∈ [0, R0], θ ∈ [0, π] and ϕ ∈ [0, 2π), and ζ⃗s given by eqn.(8)
carries the 3D skyrmion. Therefore, by constructing the desired Hamiltonian
in eqn.(6), one can dynamically imprint the 3D skyrmion to a pseudo-spin-
1/2 BEC in a harmonic trap, where the spinor wavefunction will take the

form ψ⃗(r⃗) =
√
ρ(r⃗)ζ⃗s and ρ(r⃗) is the Thomas-Fermi profile. By recognizing

λ = γ = αrT0/2ℏ, β = θ, η = ϕ and using eqn.(5), we find the winding number
Q = 1, which indicates that the spinor given by eqn.(8) carries a 3D skyrmion
with winding number Q = 1 in R3.
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Fig. 1: (a).Level diagram of the system. (b).Laser configurations.

3 Experimental Implementation

Our 3D skyrmion imprinting scheme relies on the Hamiltonian in eqn.(6),
which is realized in our experimental protocol by using structured laser beams
with different spatial modes.

Generally, the atom-laser interaction can be described by a semi-classical
electric dipole interaction Hamiltonian, Hdipole = −d⃗ · E⃗, where d⃗ is the dipole

moment of the atom and E⃗ is the electric field. In our calculation we take
87Rb BEC as an example, and the pseudo-spin-1/2 states are chosen to be in
the F = 1 hyperfine ground state manifold of 87Rb in a bias magnetic field,
B⃗. Specifically, |1⟩ = |5S1/2, F = 1,mF = −1⟩ and |2⟩ = |5S1/2, F = 1,mF =
1⟩. The other states considered in the Raman process are |3⟩ = |5P1/2, F =
1,mF = −1⟩, |4⟩ = |5P1/2, F = 1,mF = 0⟩, |5⟩ = |5P1/2, F = 1,mF =
1⟩, |6⟩ = |5P1/2, F = 2,mF = −1⟩, |7⟩ = |5P1/2, F = 1,mF = 0⟩, |8⟩ =
|5P1/2, F = 2,mF = 1⟩, |9⟩ = |5P1/2, F = 2,mF = −2⟩ and |10⟩ = |5P1/2, F =
2,mF = 2⟩. All of the Raman lasers are far detuned from resonance, and the
one-photon detunings are much larger than the linewidth of any states that
we consider. The energy diagram is shown in Fig.(1).

Starting from Hdipole, one can use second-order perturbation theory to
construct the effective Hamiltonian of the Raman process [11, 27, 28], and
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write down the effective two-level Hamiltonian

He =
1

2
[χa0|Ωa|2 + χb0|Ωb|2 + χc0|Ωc|2]1

+
1

2
χnd|Ωa||Ωb|(cosϕσx + sinϕσy) (9)

+
1

2
[χa|Ωa|2 + χb|Ωb|2 + χc|Ωc|2 + δ]σz,

where ϕ is the relative phase between lasers a and b. The coefficients are defined
as

χa0 =
C2

1,4

∆a1,4
+

C2
1,7

∆a1,7
+

C2
2,10

∆a2,10
,

χb0 =
C2

1,9

∆b1,9
+

C2
2,4

∆b2,4
+

C2
2,7

∆b2,7
,

χc0 =
C2

13

∆c1,3
+

C2
1,6

∆c1,6
+

C2
2,5

∆c2,5
+

C2
2,8

∆c2,8
,

χa =
C2

1,4

∆a1,4
+

C2
1,7

∆a1,7
−

C2
2,10

∆a2,10
, (10)

χb =
C2

1,9

∆b1,9
−

C2
2,4

∆b2,4
−

C2
2,7

∆b2,7
,

χc =
C2

13

∆c1,3
+

C2
1,6

∆c1,6
−

C2
2,5

∆c2,5
−

C2
2,8

∆c2,8
,

χnd = (
1

∆a1,4
+

1

∆b2,4
)C1,4C2,4 + (

1

∆a1,7
+

1

∆b2,7
)C1,7C2,7,

where the Rabi frequencies are given by Ωk = d⃗D1 · E⃗k/ℏ, and the one-photon
detunings by ∆ki,j = ωk − (ωi − ωj). In both definitions, k = a, b, c, i = 1, 2

and j = 4, 5, 6, 7, 8, 9, 10. In the definition of Ωk, d⃗D1 is the dipole moment
for the D1 transitions of 87Rb and Ci,j are the Clebsch-Gordon coefficients for
specific transitions.

To create the synthetic magnetic monopole field Hamiltonian, we need each
the components of σx, σy and σz to be proportional to x, y, z with the same
magnitudes. To achieve this, we consider introducing different spatial modes
to lasers a, b, c. In our protocol, we consider laser a to be a Gaussian beam
along the z-axis, laser b to be a Laguerre-Gaussian beam, LG10, along the
z-axis and laser c to be a superposition of a Gaussian beam and a Hermite-
Gaussian beam, HG01, of the same frequency along the y-axis. In addition, we
consider the size of the atom cloud to be much smaller than the beam waists,
w0, so that in the regime we consider, x, y, z ≪ w0 (wide-beam approxima-
tion). In this case, the Rayleigh range of the beams are much larger than the
size of the BEC. Therefore, we can regard the Gaussian beam as plane wave,
and assume that all of the Gouy phases and quadratic phases of the beams are
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negligible. Notice that the 1 component is approximately uniform if we take
the wide beam approximation since all of the spatial dependent terms are neg-
ligible due to the small ratio (x2 + y2)/w2

0 and (x2 + z2)/w2
0. Note that since

x = ρ cosϕ and y = ρ sinϕ, the second term in eqn.(9) is automatically propor-
tional to xσx+yσy. The exact analytical forms of the laser beams are written as

Ωa = Ω̃aexp{− ρ2

w2
0
}, Ωb = Ω̃b

ρ
w0
exp{−iϕ}exp{− ρ2

w2
0
}, ΩG

c = Ω̃G
c exp{−x2+z2

w2
0

}

and ΩH
c = Ω̃H

c
z
w0
exp{−x2+z2

w2
0

}. We define Ω̃a, Ω̃b, Ω̃
H
c , and Ω̃G

c as the spatially

independent magnitude of the Rabi frequencies of each beam, where super-
scripts H and G stand for Hermit-Gaussian and Gaussian beams. Since we
take the wide-beam approximation, we can regard exp{−(x2 + y2)/w2

0} and
exp{−(x2+ z2)/w2

0} to be 1. To make the σz component proportional to z, we
need to make sure that the Rabi frequencies satisfy the following conditions:

Ω̃G2
c +

χaΩ̃
2
a + δ

χc
= 0,

2χcΩ̃
G
c Ω̃

H
c cos θc = χndΩ̃aΩ̃b, (11)

where θc is the relative phase between the two components of laser c. In
the wide-beam approximation, ρ

w0
≪ 1 and z

w0
≪ 1, and thus we can

neglect the spatially dependent AC Stark shift terms in the diagonal matrix
elements, namely, χa0Ω̃

2
a + χc0Ω̃

G2
c ≫ χb0Ω̃

2
b , χc0Ω̃

H2
c , χa0Ω̃

2
a + χc0Ω̃

G2
c ≫

2χc0Ω̃
G
c Ω̃

H
c cos θc and 2χcΩ̃

G
c Ω̃

H
c cos θc ≫ χbΩ̃

2
b , χcΩ̃

H2
c . From the above

conditions and eqn.(11) we get

Ω̃G
c =

√
−χaΩ̃2

a + δ

χc
,

Ω̃H
c =

χndΩ̃aΩ̃b

2 cos θc

√
−χc(χaΩ̃2

a + δ)
. (12)

When all these conditions are satisfied the effective Hamiltonian can be well
approximated by

He(r⃗) ≈ ℏα(xσx + yσy + zσz), (13)

where we ignored the 1 term as it only introduced a global phase to the system
under the wide-beam limit and can not be measured.

In addition, it is worthwhile to mention the case of an asymmetric har-
monic trap with trapping frequencies (ω⊥, ω⊥, ωz), where ω⊥ and ωz are
the trapping frequency along the radial and longitudinal directions, respec-
tively, and the BEC in the trap is no longer spherically symmetric. One
can overcome such a problem by transforming into a rescaled coordinates
defined by (x

′
, y

′
, z

′
) = (w⊥

w0
x, w⊥

w0
y, wz

w0
z), then the trap becomes spherically

symmetric in this stretched (rescaled) coordinate system and the mathe-
matical formalism stays the same as the case in a spherically symmetric
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harmonic trap. This can be achieved by adjusting the Raman field ampli-
tudes Ωb and ΩH

c to match the aspect ratio of the trap, so that they take the

form Ωb = Ω̃
′

b
ρ

w⊥
exp{−iϕ}exp{− ρ2

w2
0
} and ΩH

c = Ω̃H,′

c
z
wz
exp{−x2+z2

w2
0

}, where
Ω̃

′

b = Ω̃bw⊥/w0 and Ω̃H,′

c = Ω̃H
c wz/w0, respectively.

To implement the laser field c, we can separate two of the beams transmit-
ted through an acousto-optical modulator (AOM), and keep one as a Gaussian
beam, and then use a digital-micromirror device(DMD), spatial light modu-
lator (SLM) or other methods to produce a Hermite-Gaussian beam from the
second. We can then merge the two beams to get laser c. For our example
in section.4, we can calculate the Rabi frequencies to be Ω̃a ≈ 271.17kHz,

Ω̃b ≈ 27.12kHz, Ω̃c
G ≈ 557.67kHz and Ω̃c

H ≈ 26.15kHz. The correspond-
ing bias magnetic field is B = 10G and the two-photon detuning δ = 0. The
laser frequencies considered in our calculations are ωa = ωL − 2π × 440MHz
with σ+ polarization, ωb = ωL − 2π × 454MHz with σ− polarization and
ωc = ωL + 2π × 400MHz with π polarization, where ωL is the angular fre-
quency corresponding to the 87Rb D1 transition, as shown in Fig.1. All of the
parameters considered in our calculations can be easily achieved in the lab.

4 Numerical simulations

For a single particle, one can apply the evolution operator in eqn.(7) to the

spinor state ξ⃗0, and in theory the 3D skyrmion will be imprinted to the spinor
wavefunction after certain time T0. However, there exists a non-linear inter-
action for a BEC in a dipole trap, which may affect the imprinting process.
Therefore, it is necessary to examine the dynamical imprinting scheme of
the 3D skyrmion with the non-linear interaction taken into account. In the
mean-field limit, the BEC wavefunction, ψ⃗, satisfies a Gross-Pitaevskii (GP)
equation

iℏ
∂ψ⃗(r⃗, t)

∂t
= (

p2

2M
+ Vtrap +He(r⃗) +Hint)ψ⃗(r⃗, t), (14)

where Vtrap = 1
2Mω2

0r
2 is the trapping potential, Hint =

∫
(c0S

2
0 + c2S

2
3)dr

3

is the nonlinear interaction potential between particles with S0 = |ψ⃗(r⃗)|2, and
S3 = ψ⃗†σ3ψ⃗ and M is the atomic mass.

With the GP equation, we next turn to numerical simulation to examine
the effectiveness of our 3D skyrmion imprinting scheme. By applying a finite-
element discrete variable representation method [29] and real time propagation
with a fourth-order Runge-Kutta method, we perform a numerical simulation
of eqn.(14). The pulse duration is T0 = 2ℏπ/αR0 ≈ 40µs, αR0 = 250ω0,
c0 = 6.72×103ℏω0r

3
0 and c1 = −0.005c0. R0 ≈ 6r0 is the Thomas-Fermi radius

of the BEC cloud with N = 105 atoms confined in the trapping potential Vtrap
at zero temperature, ω0 = 2π×100Hz, t0 = 2πω−1

0 and r0 =
√
ℏ/Mω0 ≈ 1µm

are the trap units for 87Rb.
The numerical simulation versus theoretical calculation results from eqn.(8)

are shown in Fig.2. In Fig.2 (a) and (b), we show the population density of
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（a） （b）

（c） （d）

Fig. 2: Population density and phase factor on state |1⟩ and |2⟩ in z = 0
plane ((a) numerical results, (b) theoretical results) and in y = 0 plane ((c)
numerical results, (d) theoretical results). The good agreement between the-
oretical calculation and GP equation simulation indicates the effectiveness of
the imprinting scheme of the 3D skyrmion. t.u. indicates trap units.

each state, |ψ1(x, y, 0)|2 and |ψ2(x, y, 0)|2, in z = 0 plane, as well as the phase
factor of each component. In Fig.2 (c) and (d), we show the population density
of each state |ψ1(x, 0, z)|2 and |ψ2(x, 0, z)|2, in y = 0 plane and the phase
factor of each component. The figures show a good agreement between the
numerical simulation results and the theoretical calculations along with the
desired spin texture, such as the vortex ring on |2⟩ component indicated by
eqn.(8). Thus, by allowing the BEC to evolve in time from the initial state
(1, 0)T in a 3D monopole synthetic magnetic field, one can imprint a three-
dimensional skyrmion on a pseudo-spin-1/2 BEC even with the non-linear
interaction of the BEC taken into consideration.
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5 Observation

For a pseudo-spin-1/2 spinor, one can identify the spatially dependent spinor
state by measuring the Stokes parameters (or Bloch vectors). For any spinor

ξ⃗ = (ξ1, ξ2)
T , the Stokes parameters can be defined as

s1 = ξ∗1ξ2 + ξ1ξ
∗
2

s2 = −i(ξ∗1ξ2 − ξ1ξ
∗
2) (15)

s3 = |ξ1|2 − |ξ2|2,

which satisfy |s1|2 + |s2|2 + |s3|2 = 1. If we construct the spinor in eqn.(3),
then we can write the Stokes parameters using the coordinates on S3, and the
vector field formed by the Stokes parameters in R3 will become a map from S3

to R3. Therefore, by measuring the spatially varying map of Stokes parameters,
one can reconstruct the 3D skyrmion imprinted in the spinor wavefunction.

To measure the Stokes parameters in our experimental protocol, one can
turn off the bias magnetic field, release the BEC from the optical dipole
trap, and let the condensate expand during free fall. One can then take
a Stern-Gerlach time-of-flight (TOF) image of the ultra cold atom cloud
[6, 8, 9, 12, 13, 17, 28] to obtain separated absorption images of the two spin
components. By imaging along the y and z-axis, one gets the projections of the
spinor population densities to each direction, which can be used to calculate
the Stokes parameters of the spinor gas. To measure different Stokes param-
eters, one can apply a spin rotation after the imprinting process, which can
be achieved in many ways such as with radio-frequency [30] or Raman pulses
[14]. Using the Stern-Gerlach TOF imaging along different directions, one can
identify the topological structure in the BEC cloud and find it is consistent
with theoretical calculations.

6 Conclusion and discussion

In this work, we proposed an experimental protocol for imprinting a three-
dimensional skyrmion in a ultracold Bose-Einstein condensate via a Raman
process with structured laser beams. Our protocol is based on the demon-
strated vortex and two-dimensional skyrmion imprinting techniques, and so
it is straightforward to implement in the laboratory. By comparing our cal-
culations to a numerical mean-field Gross-Pitaevskii equation simulation, we
examined the effectiveness of our imprinting protocol. Also, the imprinting
Raman pulse is short enough to avoid the influence of the nonlinear interaction
in the BEC, as is verified by our numerical calculation.

Although we only discussed the imprinting scheme of 3D skyrmion with
topological charge Q = 1, one can extend our method to imprint 3D skyrmions
with higher topological charge (e.g.Q = 2). This could be done by changing
the effective two-level coupling Hamiltonian, He, from the form of a monopole-
like synthetic magnetic field to a multipole-like synthetic magnetic field [31].
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Similar to the monopole case, a multipole-like field could be realized by the
superposition of structured optical fields. Our protocol also works for fermionic
systems as long as the laser frequencies and detunings are chosen properly.
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