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Abstract. We consider the dynamic assortment optimization problem under the multino-
mial logit model with unknown utility parameters. The main question investigated in this
paper is model mis-specification under the e-contamination model, which is a fundamental
model in robust statistics and machine learning. In particular, throughout a selling horizon
of length T, we assume that customers make purchases according to a well-specified
underlying multinomial logit choice model in a (1 — ¢)-fraction of the time periods and
make arbitrary purchasing decisions instead in the remaining e-fraction of the time peri-
ods. In this model, we develop a new robust online assortment optimization policy via an
active-elimination strategy. We establish both upper and lower bounds on the regret, and
we show that our policy is optimal up to a logarithmic factor in T when the assortment
capacity is constant. We further develop a fully adaptive policy that does not require any
prior knowledge of the contamination parameter ¢. In the case of the existence of a subop-
timality gap between optimal and suboptimal products, we also established gap-
dependent logarithmic regret upper bounds and lower bounds in both the known-¢ and
unknown-¢ cases. Our simulation study shows that our policy outperforms the existing

policies based on upper confidence bounds and Thompson sampling.
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Supplemental Material: The supplementary material is available at https://doi.org/10.1287/opre.2020.

0281.
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1. Introduction

Operations problems, ranging from assortment opti-
mization to supply chain management, are built on an
underlying probabilistic model. When real-world out-
comes follow this model, existing optimization techni-
ques are able to provide accurate solutions. However,
these model assumptions are only abstractions of reality
and do not perfectly capture the sophisticated natural en-
vironment. In other words, these models are inherently
mis-specified to a certain degree. Accordingly, model
mis-specification and robust estimation have been impor-
tant topics in the statistics literature (Huber and Ronchetti
2011). However, this literature primarily focuses on esti-
mation or prediction from a given data set, which is insuf-
ficient for modern operations settings where decision
making plays a vital role. Unfortunately, most decision-
making policies are derived from optimization problems
that explicitly rely on the probabilistic model, so they are
inherently not robust to model mis-specification. Can we
design robust policies for these operations problems?

This paper studies model mis-specification for an im-
portant problem in revenue management—dynamic as-
sortment optimization—under a popular ¢-contamination
model (which will be introduced in the next para-
graph). Assortment optimization has a wide range of
applications in retailing and online advertising. Given a
large number of substitutable products, the assortment
optimization problem involves selecting a subset of
products (also known as an assortment) to offer a cus-
tomer such that the expected revenue is maximized. To
model customers’ choice behavior when facing a set of
offered products, discrete choice models have been
widely used, and one of the most popular such models
is the multinomial logit model (MNL) (McFadden 1974).
In dynamic assortment optimization, the customers’
choice behavior (e.g., mean utilities of products in an
MNL) is not known a priori and must be learned online,
which is often the case in practice, as historical data are
often insufficient (e.g., fast fashion sale or online adver-
tising). More specifically, the seller offers an assortment
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to each arriving customer for a finite time horizon T,
observes the purchase behavior of the customer, and
then, updates the utility estimate. The goal of the seller is
to maximize the cumulative expected revenue over T
periods. Because of its practical relevance, dynamic as-
sortment optimization has received much attention in lit-
erature (Caro and Gallien 2007; Rusmevichientong et al.
2010; Saure and Zeevi 2013; Agrawal et al. 2017, 2019).

All of these existing works assume that each arriving
customer makes her purchase according to an underly-
ing choice model. Yet, in practice, a small fraction of
customers could make “outlier” purchases. To model
such outlier purchases, we adopt a natural robust
model in the statistical literature—the e-contamination
model (Huber 1964), which dates back to the 1960s and
is perhaps the most widely used model in robust statis-
tics. In the general setup of the e-contamination model,
we are given n independent and identically distributed
samples drawn from a distribution (1 —e¢)Py+¢Q,
where Py denotes the distribution of interest P, param-
eterized by 0 (e.g., a Gaussian distribution with mean
0), and Q is an arbitrary contamination distribution.
The parameter ¢ >0, which is usually very small,
reflects the level at which contamination occurs, so a
larger ¢ value means more observations are contami-
nated. The standard objective is to identify or estimate
the parameter 0 of the distribution of interest in the pres-
ence of corrupted observations from Q. For the purpose
of dynamic assortment optimization in the presence of
outlier customers, the Py distribution represents the
choice model for the majority of customers, which are
“typical” (with O being the parameter of an underlying
MNL choice model of interest), whereas the Q distribu-
tion corresponds to choice models of “outlier” custo-
mers, and ¢ reflects the proportion of outlier customers.
For dynamic assortment optimization, we also deviate
from the standard parameter estimation objective and
focus on designing online decision-making policies.

In the classical e-contamination model, the “outlier dis-
tribution” Q stays stationary for all samples. To make the
contamination model more practical in the online assort-
ment optimization setting, we strengthen the model in
two ways.

1. Instead of assuming a fixed corruption distribu-
tion Q for all outlier customers, we allow Q to change
over different time periods (i.e., Q; is the outlier distri-
bution for customers at time period ¢).

2. Instead of assuming that each time f is corrupted
“uniformly at random,” we assume that outlier custo-
mers appear in at most T time periods. The purchase
pattern and arrivals of outlier customers can, how-
ever, be arbitrary and even adaptive to the assortment
decisions or customer purchase activities prior to time
period t. The corrupted time periods and associated
Qy’s are unknown to the seller.

This setting is much richer than the “random arrival
setting” and more realistic in practice. Indeed, in a holi-
day season, consecutive time periods might contain
anomalous or outlier purchasing behavior, which can-
not be capture by “random corruption” in the original
e-contamination model. The details of our outlier cus-
tomer model will be rigorously specified in Section 3.

The main goal of the paper is to develop a robust
dynamic assortment policy under this e-contaminated
MNL. Our first observation is that popular policies
in the literature, including upper confidence bounds
(UCBs) (Agrawal et al. 2019) and Thompson sampling
(TS) (Agrawal et al. 2017), no longer work in this model.
The reason is that these policies cannot use typical cus-
tomers who arrive later in the selling period to correct
for misleading customers who arrive early on, and
hence, even a small number of outlier customers can
lead to poor performance. Further, although it is well
known that randomization is crucial in any adversarial
setting (see, e.g., Auer et al. 2002, Bubeck and Cesa-
Bianchi 2012) to hedge against outliers, UCB is a deter-
ministic policy, whereas Thompson sampling provides
very little randomization via posterior sampling. We
explain these failures in more detail in Sections 3 and 8
later in this paper.

To address the contaminated setting, we develop a
novel active-elimination algorithm for robust dynamic
planning, which gradually eliminates those items that
are not in the optimal assortment with high probability
(see Algorithm 1). Compared with the existing meth-
ods mentioned (Agrawal et al. 2017, 2019), our active-
elimination method has several important technical
novelties. First, our active-elimination policy imple-
ments the randomization in a much more explicit
way by sampling from a carefully constructed small set
of “active” products. Second, the existing UCB and
Thompson sampling algorithms for MNL rely on an
epoch-based strategy (i.e., repeatedly offering the same
assortment until no purchase) to enable an unbiased
estimation of utility parameters. This procedure is in-
herently fragile because the stopping time of an epoch
relies on a single no-purchase activity, which can be
easily manipulated by outlier customers; a few outliers
can greatly affect the stopping times. The failure of
such an epoch-based strategy implies that unbiased
estimation of utility parameters is no longer possible.
To overcome this challenge, we propose a new utility
estimation strategy based on geometrically increasing
offering time periods. We conduct a careful perturba-
tion analysis to control the bias of these estimates,
which leads to new confidence bounds for our active-
elimination algorithm (see Section 4 for more details).

We provide theoretical guarantees for our proposed
robust policy via regret analysis and information-
theoretic lower bounds. In particular, let T be the selling
horizon, N be the total number of products, and K be
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the cardinality constraint of an assortment (see Section
3). For the reasonable setting where ¢ is not too large,
our active-elimination algorithm (Algorithm 1) achieves
O(eK>T + VKNT) regret when ¢ (or a reasonable upper
bound of ¢) is known (see Theorem 1), where O( ) only

resses log(T) factors. Compared with the Q(eT +
\/NE% ) lower bound (see Proposition 1), our upper bound
is tight up to polynomial factors involving K and other
logarithmic factors. We also remark that the special case
of ¢ =0 reduces to the existing setting studied in Agra-
wal et al. (2017, 2019) and Chen and Wang (2018), in
which no outlier customers are present. Compared with
existing results, our regret bound is tight except for
an additional O(VK) factor, which represents the cost
of being adaptive to outlier customers (see Section 4.2
for more discussions). We emphasize that in a typical
assortment optimization problem, the capacity of an
assortment K is usually a small constant, especially rela-
tive to T and N.

The result assumes that an upper bound on the out-
lier proportion ¢ is given as prior knowledge. Although
in some cases, we may be able to estimate ¢ from histor-
ical data, this is not always possible, which motivates
the design of fully adaptive policies that do not require
¢ as an input. Inspired by the “multilayer active arm
race” from the multiarmed bandits (MABs) literature
(Lykouris et al. 2018), we propose an adaptive robust
dynamic assortment optimization policy in Algorithm
3. Our policy runs multiple “threads” of known-¢ algo-
rithms on a geometric grid of ¢ values in parallel, and
as we show, it achieves O(eT + VNT) regret, where 0
suppresses log(T) and K factors (see Theorem 2). Here,
the (cumulative) regret is defined as the sum of the dif-
ferences between the expected rewards (revenues) of
the optimal assortment and the assortments the retailer
offers at each time period. Algorithm 3 and its analysis
in Section 5 provide more details.

Finally, in the case of well-separated problem instances
(i.e., there is a large suboptimality gap 8 > 0 between opti-
mal and suboptimal assortments), built on the same pro-
posed algorithm, we establish much improved regret

upper bounds of O(¢K2T log T + K2Nlog?T/B) when ¢ is
known (see Theorem 3). When ¢ is unknown, the adap-
tive policy achieves the regret O(eT+N/ ) x poly(K,
log(NT)) or O(¢T/p+N/p) x poly(K,log(NT)), which-
ever is smaller (see Theorem 4). For both upper bounds
in the well-separated case, the dependency on the time
horizon T is logarithmic when the corruption level ¢ is
small. We also prove lower bounds on the regret when a
suboptimality gap of at least § > 0 exists.

The rest of the paper is organized as follows. Section
2 introduces the related work. Section 3 describes the
problem formulation. The first active-elimination pol-
icy and the regret bounds are presented in Section 4,
whereas the adaptive algorithm is presented in Section

5. The gap-dependent regret analysis and log T-type
regret bounds are provided in Section 6. Numerical
illustrations are provided in Section 8, with the conclu-
sion in Section 9. The proof the lower-bound result is
provided in the supplementary material. Proofs of
some technical lemmas are relegated to the supplemen-
tary material as well.

2. Related Works

Static assortment optimization with known choice
behavior has been an active research area since the
seminal works by van Ryzin and Mahajan (1999) and
Mahajan and van Ryzin (2001). Motivated by fast fash-
ion retailing, dynamic assortment optimization, which
adaptively learns unknown customers’ choice behav-
ior, has received increasing attention in the context
of data-driven revenue management. The work by
Caro and Gallien (2007) first studied the dynamic
assortment optimization problem under the assump-
tion that demands for different products are indepen-
dent. Recent works by Rusmevichientong et al. (2010),
Saure and Zeevi (2013), Agrawal et al. (2017, 2019),
Chen and Wang (2018), and Chen et al. (2021a, b) incor-
porated MNL models into dynamic assortment optimi-
zation and formulated the problem as an online regret
minimization problem. In particular, for the standard
MNL model, Agrawal et al. (2017, 2019) developed
UCB- and Thompson sampling-based approaches for
online assortment optimization. Moreover, some recent
works (Cheung and Simchi-Levi 2017, Oh and Iyengar
2019, Chen et al. 2020) study dynamic assortment opti-
mization based on contextual MNL models, where
the utility takes the form of an inner product between a
feature vector and the coefficients. The present work
focuses on the standard noncontextual MNL model, but
a natural direction for future work is to extend our
results to the contextual setting.

All works outlined assume that an underlying MNL
choice model is correctly specified. However, model
mis-specification is common in practice, and robust sta-
tistics, one of the most important branches in statistics,
is a natural tool to address such mis-specification.
The e-contamination model, which was proposed by
Huber (1964), is perhaps the most widely used robust
model and has recently attracted much attention from
the machine learning community (see, e.g., Chen et al.
2016; Diakonikolas et al. 2017, 2018; and reference
therein). Despite this attention, online learning in the
e-contamination model or its generalizations is rela-
tively unexplored. In the online setting, Esfandiari et al.
(2018) studied online allocation under a mixing adver-
sarial and stochastic model, but the setting does not
require any learning component. For online learning,
the recent works of Lykouris et al. (2018) and Gupta
et al. (2019) studied the contaminated stochastic MAB,
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but because of the complex structure of discrete choice
models, these results do not directly apply to our set-
ting. Indeed, a straightforward analogy between assort-
ment optimization and MAB is to treat each feasible
assortment as an arm, but directly using this mapping
will result in a large regret because of the exponentially
many possible assortments.

In learning and decision-making settings, a few recent
works investigate the impact of model mis-specification
in revenue management (e.g., see Cooper et al. 2006 for
capacity booking problems and Besbes and Zeevi 2015
for dynamic pricing). In particular, Besbes and Zeevi
(2015) show that a class of pricing policies based on lin-
ear demand functions performs well even when the
underlying demand is not linear. Cooper et al. (2006)
also identified some cases where simple decisions are
optimal under mis-specification. However, our setting
is quite different, as the widely used UCB and Thomp-
son sampling policies are not robust under our model.
On the other hand, our new active-elimination policy
is robust to model mis-specification and additionally,
achieves near-optimal regret when the model is well
specified.

Finally, the successive-elimination and active-elimination
strategies have been extensively studied in the (stochas-
tic) multiarmed bandit literature. Interested readers
can refer to the works of Auer (2002), Even-Dar et al.
(2006), and Auer and Ortner (2010) for details.

3. Problem Formulation
There are N items, each associated with a known reve-
nue parameter r; € [0,1] and an unknown utility param-
eter v; € [0,1]. At each time f, a customer arrives for a
total of T time periods. The retailer then provides an
assortment S; C [N] to the customer, subject to a capacity
constraint |S;| < K. The customer then chooses at most
one item #; € 5; to purchase, upon which the retailer col-
lects a revenue of ;. If the customer chooses to purchase
nothing (denoted by #;=0), then the retailer collects no
revenue.

At each time f, the arriving customer is assumed to
be one of the following two types.

1. A typical customer makes purchases i; € S; U {0}
according to an MNL choice model:

(4]

Prli; =ilSi] = —=—,
o + Z]'ES[Z)]‘

v =1. (1)

We assume that v; € [0, 1].

2. An outlier customer makes purchases 7; € 5; U {0}
according to an arbitrary unknown distribution Q; (mar-
ginalized on S; U {0}). The distribution Q; can poten-
tially change with f.

We note that the MNL model in Equation (1) to-
gether with the constraint that v; € [0,1] implies that
“no purchase” is the most probable (or equally

probable) outcome for a typical customer. This assump-
tion has been made in the operations literature (see, e.g.,
Agrawal et al. 2017). Such an assumption that v; <1 for
all 7 is, however, only for the ease of presentation, and
the assumption can be easily relaxed to v; < C, for some
known constant upper bound C, > 0. With the relaxed
boundedness condition, one can enlarge the constructed
confidence intervals Az(t+1) (see the definition in
Algorithm 1) by multiplying a C, factor, and the other
parts of our analysis/algorithms remain the same.

We consider the following e-contamination model.

Al. (Bounded adversaries.) The number of outlier
customers throughout T time periods does not exceed
eT, where ¢ € [0,1) is a problem parameter;

A2. (Adaptive adversaries.) The choice model Q; for
an outlier customer at time ¢ can be adversarially and
adaptively chosen based on the previous customers,
offered assortments, and past purchasing activity.

A rigorous mathematical formulation is as follows.
For any time period t=1,2,...,T, let ¢, € {0,1} be the
indicator variable of whether customer at time ¢ is an
outlier (¢, =1 if customer ¢ is an outlier and 0 other-
wise), S; C [N] be the assortment provided at time ¢,
and i; € S; U {0} be the purchasing activity of the cus-
tomer. The protocol is formally defined as follows.

Definition 1 (Definition of the Protocol). We define the
following.

1. An adaptive adversary consists of T arbitrary measur-
able functions Ay, ..., Ay, where s : {P_, Qr, St it} 1
> (¢,, Q:) produces the type of the customer (typical or
outlier) ¢, and the outlier distribution Q; at time period t,
from the filtration F;_1 = {¢_, Q«, St i} r<s_1-

2. An admissible policy consists of T random functions
sBl/ .. '/g‘BT/ where th : {S’[ri’f}rétfl 5 produces a
randomized assortment S; C [N], |S;| < K at time period
t, from the filtration G;_1 = {S¢,ir}<_1-

3. If ¢, =0, then i, is realized according to model (1)
conditioned on S;; otherwise, if ¢, = 1, then i, is realized
according to model Q.

The objective of the retailer is to develop an admissi-
ble dynamic assortment optimization strategy that is
competitive with a certain “benchmark” assortment.
Unlike the classical setting, the definition of regret is a
bit more complicated because of the presence of both
typical and adversarial customers. To shed light on the
subtle differences between different benchmark assort-
ments, in this paper we consider two different types of
cumulative regret, as introduced here. To simplify nota-
tions, we use P; to denote the customer’s choice model
at time ¢. More specifically, P, is the “typical” model in
Equation (1) (denoted as P; = {v}) if a typical customer
arrives at time t, and P;=Q, if an outlier customer
arrives at time t. We use R(S; P) to denote the expected
revenue collected by offering assortment S if the custo-
mer’s choice model is modeled by P.
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1. The typically optimal, typically evaluated (TOTE)
regret is defined as

t=1

T
Regret'*"(T) := lz R(S';{v}) — R(Sy; {v})} :
)
where 5" =arg maXgcyy | SlsKR(S ;{v}) is the optimal

assortment for typical customers.
2. The best-in-hindsight (BIH) regret is defined as

RegretB'H(T) ‘=  max
SCINI, |S|<K

T

E|Y R(S;Py) R(st;Pt)].
t=1

3)

The TOTE regret uses the optimal assortment for
typical customers S* as the benchmark. Furthermore,
the TOTE regret is always measured in the difference
of expected revenue on typical customers, regardless
of whether a typical customer or an outlier customer
is present at time t. On the other hand, the BIH regret
measures the performance differences on the actual
choice model P; of the incoming customers. In other
words, it compares the performance of the dynamic
assortment planning algorithm with the optimal assort-
ment on both typical and outlier customers. The BIH
regret also coincides with the “best stationary bench-
mark” regret considered in most fully adversarial mul-
tiarmed bandit problems.

There is an important relationship between these
two definitions of regret as characterized in the fol-
lowing statement.

Fact 1. Regret®™(T) < Regret"™T8(T) + ¢T.

Proof. Let S be the optimal assortment for typical cus-
tomers and S be the assortment attaining the maximum
in the definition of Regret®"(T). Note that during time
periods ¢ that P; = {0}, R(S;{0v}) — R(S;; {v}) < R(S*; {0}
— R(Ss;{v}). During time periods ¢ that P;= Q,, we have
|(R(S; Q1) — R(S5;Q1) ~ (R(S;Q1) = R(S5 Q)| <1 be-
cause the expected revenue of any assortment under
any choice model is at most one by normalization.
Because there are ¢T outlier time periods, we have that
RegretB'H(T) < RegretTOTE (T)+eT. O

Fact 1 shows that the difference between the TOTE
regret and the BIH regret is at most ¢T. Therefore, we
shall focus solely on the TOTE regret in terms of the
upper bound, which always exhibits an ¢T additive term
in the bounds. Such an upper bound implies the same
regret bound for Regret®"(T), up to a term of ¢T. For
the lower bound, we consider the BIH regret, which is
standard in the literature.

4. An Active-Elimination Policy

To motivate our policy, we first briefly explain why the
popular UCBs and Thompson sampling fail in the pres-
ence of outlier customers. These algorithms are designed
for the uncontaminated setting where € = 0, so the confi-
dence bounds (in UCB policies) and posterior updates
(in Thompson sampling policies) are designed under
the assumption that all customers follow the same MNL
model. Unfortunately, in the presence of outlier custo-
mers, the confidence intervals are too narrow, and the
posterior updates are too aggressive. With these update
strategies, a small number of outlier customers pre-
ferring items unpopular to typical customers could
“swing” the algorithms’ parameter estimates, which can
lead to the belief that these unpopular items are actually
popular. This subsequently leads to poor exploration of
the popular items, which eventually hurts performance.
As a numerical demonstration, we construct a concrete
setting in Section 8, where the performance of UCB and
Thompson sampling policies degrades considerably in
the presence of outlier customers.

We propose an active-elimination policy for dynamic
assortment optimization in the presence of outlier cus-
tomers. A pseudocode description is given in Algo-
rithm 1. Although Algorithm 1 requires the knowledge
of ¢ (or an upper bound ¢) (see Theorem 1) as input, we
emphasize that such a requirement can be completely
removed by designing more complex policies, as we
will show in Section 5. To highlight our main idea, we
state Algorithm 1 up front as the prior knowledge of ¢
simplifies both the algorithm and its analysis.

Algorithm 1 (An Active-Elimination Algorithm for Robust
Dynamic Assortment Optimization)
1: Input: time horizon T, outlier proportion €, reve-
nue parameters {r;}, capacity constraint K.

2: Output: a sequence of assortments {S;}/_, attain-

ing good regret.
3: Set 0¥ =1,A:(0)=1, A? = [N], Tp = 128(K + 1)
NInT;

4: fort=0,1,2,... do

5. *Compute S =arg maxs o s < csR(S; 5
for every i e A7;
Compute y'V = max;_ AmR(S@ 5y,
Update ATV = {ie A®:R(SD;5) +2A(1) >
a7
8 Set m;=0 and ny(i)=0 for all ie A™Y; set
T, =2%Ty;
9:  for the next T, time periods do
10: Sample i € A"V uniformly at random;
11 Provide the assortment S to the incoming
customer and observe purchase i;;
12: Update n; «—n; +1{i; =i} and ng(i) < np(i)

+1{i; = 0};
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13:  end for
14:  Update estimates o\"*"

o =max{1l,n;/ny(i)} for
(7+1),

everyi€ A
15:  Define &, =min{1,€T/T.}, N, = |[A™|, and
compute error upper bound as

Ar(t+1)
eT
Te <———s;
SAK+1)

={ 16K(K+1) (% +4/ gfl\;flnT + 2]\;}1117")
T T

KNInT
T.

1,

+16 otherwise

16: end for

17: Remarks:

18: *For any set of {0}, R(S;0) = (3_,c57i01)/ (1 + s
0;); the optimization can be computed efficiently.
See Section 4.1 for details.

At a high level, Algorithm 1 operates in epochs T =
0,1,... with geometrically increasing lengths, and it
only performs item estimation or assortment updates
between epochs. At any time ¢, the algorithm maintains
an active set of items A C [N] consisting of all items
that could potentially form a “good” assortment and
estimates of parameters {;} for all active items 7 in A.
For each time period t in a single epoch 7, a random item
i is sampled from the current active item set, and a
“near-optimal” assortment is built, which must contain
the target item 7. Once an epoch 7 ends, parameter esti-
mates of {0;} are updated, and the active set A is
shrunk based on the updated estimates to exclude sub-
optimal items. We will ensure that with high probabil-
ity, the optimal assortment S* is always a subset of
active sets for all epochs (see Lemma 3).

We now detail all notation used in Algorithm 1.

7 € N: the indices of epochs whose lengths increase
geometrically (T, = 2"Ty);

5 e [0, 1]N : the estimates of preference parameters
(of tyFical customers) at epoch T;

A C [N]: the subset of active items, which are to
be explored uniformly at random in epoch 7;

1 €[0,1] (see step 6): the estimated expected reve-
nue of the optimal assortment calculated based on the
active item subset A and current preference esti-
mates 97;

S(Ti) C[N] (see ste? 5): an optimal assortment com-
puted based on AT and 59 which must include the
specific item i; this assortment is used to explore and
estimate the utility parameter v; of item 7;

n;,no(i) € N (see step 12): counters used in the esti-
mate of v;; note that for any supplied assortment S, we
only record the number of times a customer purchases

item i (accumulated by #;) and the number of times
a customer makes no purchases (accumulated by 1¢(7));
other purchasing activities (e.g., purchases of an item
¢ € S other than i) will not be recorded;

As(t+1)€[0,1]: length of confidence intervals used
to eliminate items from A™*; its length depends on
both the epoch index 7 and the prior knowledge of the
outlier proportion €.

In the rest of the section, we first give a brief descrip-
tion of how to compute S in line 5 efficiently. Then,
we detail the regret upper bound of Algorithm 1 and
provide the proof.

Algorithm 2 (Assortment Optimization with Additional
Constraints)

1: Input: revenue parameters {r;}_,, estimated pref-
erence parameters {0;}"_;, must-have item i, capac-
ity constraint K, stopping accuracy 6;

: Output: assortment S, |§ | <K,ie S that maximizes

R(S;9).

. Initialization: ay =0 and o, = 1; S= 0;

: while o, —ay > 6 do

amid < (ar+au)/2;

For each j#i, sort ¢;:=(r;— (mia)V; in des-

cending order, and let W := {j #i: ;= 0} be the

subset consisting of all items other than i with

nonnegative i;;

7:  Compute t:=1), +the (K— 1)1p]. in ¥ with the
largest values;

8 If > amq, then set S = {i} U {the (K — 1) items
in W with the largest 1/1]. values} and ay «— amig;

N

else set v, «— niq-
9: end while

4.1. Solving the Optimization Problem

The implementation of most steps of Algorithm 1 is
straightforward, except for the computation of the
assortments S, which require further algorithmic
development. This computation can be formulated as

the following combinatorial optimization problem:

3 cti0
N eS']¥]
max R(S;0)= max “—=—
|S|<K,i€S ISI<K,ies 1+ EjeSvf

(4)

for a specific i € [N]. This optimization problem is simi-
lar to the classical capacity-constrained assortment opti-
mization (see, e.g., Rusmevichientong et al. 2010), but
the additional constraint i € S in (4) yields a subtle differ-
ence. For the purpose of completeness, we provide an
efficient optimization method with binary search for
solving Equation (4). Pseudocode is provided in Algo-
rithm 2.

For any a € (0,1], we want to check whether there
exists SC[N],|S|<K,i€S such that R(S;0)>a or

equivalently, Zjesr]@ >a+a jES?/]\j‘ Reorganizing the
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terms, we only need to check whether there exists |S| <
K, i€ S such that } . s(r; — )0; > a. Because i € S must
hold, we only need to check whether there exists S’ C
[NT\{i},1S’| < K— 1 such that

(ri—a)o; + Y (rj—a)o; 2 a. G)

jes’

In order to check whether there exists such an S’, we
include all j € [N]\{i} with the largest (K — 1) positive
values of (r; — )} into the set of S” and check whether
Equation (5) is satisfied. If Equation (5) holds, the cur-
rent revenue value of & can be obtained, and otherwise,
the current value of a cannot be obtained. We then
solve the optimization problem by a standard binary
search on a. We also note that (¥ in line 6 is a standard
static capacitated assortment optimization, which can
be solved efficiently (see Rusmevichientong et al. 2010).

4.2. Regret Analysis
The following theorem is our main regret upper-bound
result for Algorithm 1.

Theorem 1. Suppose € > ¢ and N < T. Then, there exists a
universal constant Co < oo such that for sufficiently large
T, the TOTE regret of Algorithm 1 is upper bounded by

Co X (?KZT log T + (K>VE + VK){/NTlog’T
+K2Nlog2T>.

Furthermore, if € <1/K3 holds, then the regret upper bound
can be simplified to

@) (EKZT log T+ /KNT 1og3T) : (6)

Combined with Fact 1, we know that Equation (6)
also serves as an upper bound for the BIH regret.

Remark 1. We note that Theorem 1 could be implied
for every value of ¢ if there exists an adversarial bandit

algorithm that achieves O(VNT) BIH regret under
fully adversarial settings. For multiarmed bandit, such
an algorithm exists (Auer et al. 2002), rendering gap-
independent analysis of the &-contamination model
trivial. However, for the assortment selection problem
under the MNL model, the work of Han et al. (2021)
shows that any algorithm must suffer a regret lower

bound of O (mm{ T, ( Z[\g) T}) against best-in-

hindsight benchmarks in the fully adversarial setting.
As the term (ZI\<[> is typically prohibitively large in

practice, such a negative result shows that Theorem 1
cannot be obtained by simple black-box reduction to a

fully adversarial problem in the assortment selection
question.

To complement Theorem 1, we state the following
proposition establishing some lower bounds for the
different types of regret considered in this paper.

Proposition 1. Let ¢y > 0 be a universal constant and 1 be
any admissible policy. Suppose also that K < N /4.
1. The BIH regret of Tt on worst-case problem instances is

at least co X VNT.
2. For 0 <& <1, suppose there are |eT] outlier custo-
mers. Then, the TOTE regret of m on worst-case problem

instances is lower bounded by at least cy X (T + VNT).

The first property of Proposition 1 is proved by sim-
ply setting ¢ = 0 and using existing lower-bound results
for dynamic assortment planning with no outlier custo-
mers (see, e.g., Chen and Wang 2018). The proof of the
second property is achieved by considering the two

terms T and VNT separately. The complete proof of

Proposition 1 is given in the supplementary material.
The claims in Proposition 1 lead to a challenging

open problem on the BIH regret upper bound when

e2\/N/T, at which time the T term would dominate

the VNT term (see Equation (6)). In such cases, we con-
jecture that the optimal regret upper bounds would be

VNT, implying that our current result in Theorem 1 is
suboptimal when ¢ is very large. The question of achiev-

ing O(WNT) regret upper bound for all ¢ levels requires
fully adversarial bandit algorithms for dynamic assort-
ment optimization, which is very challenging and an
open question as far as we know.

An important special case of Theorem 1is ¢ =€ =0,
which reduces to the well-studied dynamic assortment
optimization problem without outlier customers. For
such settings, Agrawal et al. (2017, 2019) give algo-

rithms with a regret upper bound of O(VNT), which
matches the lower bound of Q(VNT) given in Chen
and Wang (2018) up to polylogarithmic terms. Com-
paring their results with Theorem 1, we observe that
our result at ¢ = € = 0 matches the O(VNT) regret bound
except for an additional term of O(VK). This O(VK) fac-
tor stems from our active-elimination protocol and our
technique for estimating the utility parameters, both of
which are essential for handling outlier customers when
€ > 0. We believe that removing this factor is technically
quite challenging and leave it as an interesting open
question. We also note that the capacity constraint K is
typically a very small constant in practice, and hence, an
additional O(VK) term is likely negligible.

Our regret upper bound in Theorem 1 also yields
meaningful guarantees when ¢ is not zero. For example,
with ¢ = O(T~'/%), meaning that O(T%*) of T customers
are outliers, Theorem 1 provides an O(K2T**log T)
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regret upper bound. This guarantee is nontrivial because
itis sublinear in T, although it is larger than the standard
O(VNT) bound for the uncontaminated setting. Thus,
Theorem 1 reveals the trade-off and impact of a small
proportion of outlier customers on the performance of
dynamic assortment optimization algorithms/systems.

4.3. Proof Sketch of Theorem 1

In this section, we sketch the proof of Theorem 1. Key

lemmas and their implications are given, whereas the

complete proofs of the presented lemmas are deferred to

the supplementary material accompanying this paper.
We first state a lemma that upper bounds the estima-

i)\(T+1)

tionerror [0, ' —v;].

Lemma 1. Suppose Ty > 128(K + 1)’N;InT and min{1,
eT/T.} < 1/4(K +2). With probability 1 — O(toN/T?), it
holds for all T satisfying T > max{e, e}T/4(K+1)andie
AT that |5§T+1) —v;| <AL, T+ 1), where

AZ(Z,T+1):8(K+1) (82T+ STN;lnT_‘_ZI\;T;nT)
T T

(1+ Vs)oN,InT
T, ’

+8 (7)

where e, is defined as e, = min{1,eT/T,}, N, = | AV
and VS = Z].GS(TI')ZJ]'.

Lemma 1 shows that, with high probability, the esti-

. +1
mation error between 1757 ) and v;, the true preference

parameter of item i for typical customers, can be upper
bounded by A7 (i, 7 + 1), which is a function of K, 7, T, ¢,
and N, = |A™V|. It should be noted that the definition
of Al(i,T+1) involves unknown quantities (mostly
Vs = Z}. <5 vj) and hence, cannot be directly used in an

algorithm. The definition of &g(’[ +1) in Algorithm 1,
on the other hand, involves only known quantities and
estimates. In Corollary 1, we will establish the connec-
tion between Ay (i, + 1) and K;(T +1).

Our next lemma derives how the estimated expected
revenue R(S;0) deviates from the true value R(S;v) by
using upper bounds on the estimation errors between 0
and v.

Lemma 2. For any SC[N],|S| <K, and {v;}, it holds
that

o~ 25 |0 — v
IR(S;0) = R(S;0)| < M
1+ st

The proof uses only elementary algebra.

Combining Lemmas 1 and 2, we show that the &g(’[)
quantities defined in our algorithm serve as valid upper

bounds on the estimation error between R(S; #T)) and
R(S;0).

Corollary 1. For every t and |S| <K, S< A", condi-
tioned on the success events of Lemma 1 on epochs up to ,
it holds that |R(S; Z/){T)) —R(S;v)| < 35(’[) < Kmax{g,g}(’c),
where A is defined in Algorithm 1.

Our next lemma is an important structural lemma,
which states that, with high probability, any item in the
optimal assortment S* is never excluded from active

item sets A for all epochs .

Lemma 3. If € > ¢, then with probability 1 — O(toN/T?),
it holds that S* € A for all 7.

This structural lemma yields two important conse-
quences. First, because “good” items remain within the
active item subsets A", each of the assortments S
computed in step 5 of Algorithm 1 will have relatively
high expected revenue. Second, the fact that §* ¢ A
implies that the optimistic estimates )(? will always be
based on the expected revenue of the actual optimal
assortment R(S*;v). This justifies the elimination step 7,
in which we discard all items whose best assortment
has significantly lower revenue than y(?).

The proof of Lemma 3 is based on an inductive argu-
ment, which shows that if 5* belongs to A at the
beginning of every epoch 7, then any item in S* will not
be removed (with high probability) by step 7. The intui-
tion for this is that the optimal assortment containing
any i € 5" is S* itself, whose revenue cannot be too far
away from ¥ because of Lemmas 1 and 2. The com-
plete proof of Lemma 3 is provided in the supplemen-
tary material.

Finally, our last technical lemma upper bounds the
per-period regret incurred by Algorithm 1.

Lemma 4. Suppose S* C A holds for all ©. Then, with
probability 1 — O(toN/T2), for every T < g and i € A,
it holds that R(S;v) — R(SY;v) < 4A#(7).

Given the established technical lemmas, we are now
ready to give the proof of Theorem 1.

Proof. Let v be the smallest integer such that T >
€T /4(K +1). For all epochs 7 < 7%, the induced cumu-
lative regret can be upper bounded by

> T <T.<eT. (8)

<"
In the rest of this proof, we upper bound the regret
incurred from epochs 7 > 7*. By Lemma 4, the regret
incurred by a single time period in epoch 7 is upper
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bounded by 4A(7) with high probability. The total
regret accumulated in epoch 7 is then upper bounded

by 455(7) x T,. Hence, the regret accumulated on the
entire T time periods is upper bounded by

To -
szg(T)T,
7=0

A™Dog T K2|A™V|log T
< K%e, +K2H€ A 8- 4 &
Tzo: T, T,

K|A™V|log T
T,

To 2 =1 At+1) 21 A(t+1)
- K8T+K2 €lA |2TlogT+K |AY " |log T
| T. \ T? T,

K|A™V|log T

X T,

T X T, 9)
< 1oK?eT + K?\/eT log T (Z \/ ] AT |>
T<To
+/Klog T(Z \/ TTlA(TH)I)
T<T(

+ K2 log T(Z |A(7+1) |>

T<To

< 1oK*eT + 10k*\/eNT log T + 1o0K*N log T

+,/Klong\/Z|A“+1>| x 3T (10)

T<Tp T<Tp

<K%Tlog T +K*\/eNTlog T + /K log T X /10N

x VT + K*N log’T

KT log T + (K*Ve + VK)\/NT1og T + K®N log?T.
(1)
Here, in Equation (10), we apply the Cauchy-Schwartz

inequality. The final inequality holds because 7 =
O(log T). O

5. Adaptation to Unknown Outlier
Proportion ¢

In this section, we describe a more complex algorithm

for robust dynamic assortment optimization where the

outlier proportion ¢ is unknown a priori. Inspired by the

“multilayer active arm race” for multiarmed bandits,

because of Lykouris et al. (2018), Algorithm 3 runs mul-
tiple “threads” of known-¢ algorithms on a geometric
grid of ¢ values in parallel while carefully coordinating
between the threads. The pseudocode of the proposed
adaptive algorithm is given in Algorithm 3.

We note that for two threads j' < j, we have & > ¢,
which implies that the confidence interval length
3@]., (T +1) is typically longer than A ¢ (7 +1). Therefore,
the thread ;" is less aggressive than the thread j in terms
of eliminating items (i.e., an item eliminated by thread j
may remain active in thread j’). More detailed explana-
tions of key steps in Algorithm 3 are summarized.

Algorithm 3 (Dynamic Assortment Optimization Robust
to Unknown Outlier Proportion ¢)
1: Input: lower bound on outlier proportion e =277/,
J=llog,/N/T]+1;
2: Output: a sequence of assortments {S,;}, attaining
good regret for any ¢;

3: Construct a grid of outlier proportion values {&; ]].;01 ,
where £ =27;
4: Construct | threads j<], each with & outlier
proportion;
5: For each i € [N] and j<], set 707 =1, &g/.(()) =1,
A = [N], Tg = 64(K + 1)’InT;
: fort=0,1,2... do
forj=0,1,...,]—1do
If j> 0, then update A(T) = A(T) N A](TJ{D,
*Compute y(T) and S(i) for each i € .A(T), and

update A(Hl)
10: end for
11:  for the next T; = 2T time periods do
12: Sample thread j<] with probability g;:=

2707/ -27);

o ® N

13: Sample item i € A(Hl) uniformly at random;

14: if Tthere exists &) > gj such that R(S,; ¥ 5 k)
<\ —7A4,(7) then

15: Restart Algorithm 3 with ] « ] —1;

16: end if

17: Provide assortment S(Ti?j to the incoming cus-
tomer, and observes purchase i;

18: Update nJI: — n]l: +1{i; =i} and nﬁ(i) — n{)(i)
+ 1{Zt = O},

19:  end for

20:  Update estimates 5\ = = max{1, 7, /no(z)} for
allj<Jandie A](-Hl),

21:  For every j <], compute &g/.("[ +1) with T, T,
replaced by Tj := o, T and Ty ; := p;T+;
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22: end for
23: *Using the procedure outlined in Algorithm 2.

24: 5% and y{") are estimates of v and computed

(™ values maintained in thread k.

1. Independence of threads. Different threads j<],
which correspond to different hypothetical values of &
(denoted as &;), are largely independent from each

other, maintaining their own parameter estimates 27(7)’j ,

active item set A](Hl), and confidence intervals &gi

(t +1). Coordination among threads only appears in
two steps in Algorithm 3: step 8, which maintains a
hierarchical “nested” structure of the active item sets

A(T+1)
i
update rules for | <~ ] —1 by comparing the obtained

optimistic assortment among different threads. Further
details are given in subsequent bullets.

2. Heterogeneous sampling of different threads. At
each time period f when a potential customer arrives, a
random thread j<] is selected to provide assortments.
The random thread, however, is not selected uniformly
at random but according to a specifically designed dis-
tribution, with the probability of selecting thread j

among the threads, and step 15, which provides

equal to p; = 270D /(1 —27). Intuitively, such a sam-
pling distribution “favors” the more aggressive threads
with smaller hypothetical &; values.

This sampling scheme is motivated by the fact that
threads with larger &; values typically incur large regret
because their elimination rules are conservative, so
many suboptimal items i remain active for many
rounds. The probability of choosing these threads with
large &; values should be small to ensure low regret of
the overall policy.

At the same time, threads corresponding to smaller &;
values might also incur large regret, as their overly
aggressive-elimination rule might remove the optimal
assortment S* from consideration. To avoid large regret
from these threads, step 15 coordinates among all of the
threads and checks for inconsistencies, as we describe here.

3. Coordination and interaction among threads. As
we mentioned, the coordination and interaction among
different threads only happen in steps 8 and 15 in Algo-
rithm 3. Here, we discuss these two steps in detail.

Step 8 aims at maintaining a “nested” structure

among the active subsets A](»TH), such that A](-Hl) c

A](,T D for anyj’ <jatany epoch 7. We remark that such

a nested structure should be expected even without
this step because thread j' <j is less aggressive than

thread j, in the sense that confidence intervals A & (t+
1) are typically longer than A ¢(T+1). Hence, one

should expect that thread j* has a larger active set.
Nevertheless, because of stochastic fluctuations, such

nested structures might be violated. Therefore, we
explicitly enforce a nesting structure at the start of
every epoch 7 via step 8.

Step 15 is a statistical test that tries to detect whether
¢; is small relative to the actual (unknown) outlier pro-
portion ¢. This test crucially ensures that we do not con-
tinue to select an overly aggressive thread, which as we
have mentioned, may incur large regret because of
eliminating the optimal assortment S*. Step 15 detects
such events by evaluating the optimistic assortment

S (T)] using the information from threads j* < j, which use
less aggressive-elimination rules. In detail, we check if
the optimistic assortment si?j is near optimal using the
utility estimates and confidence intervals from thread
j'. If the check fails and we see that S(T'/)]. is suboptimal,
we know that thread j has eliminated the optimal
assortment S* from its active set A](f), which subse-

quently leads to the conclusion that &; is too small.
Then, we terminate the current thread and restart the
algorithm with | < J — 1.

We also remark on the time complexity of Algorithm
3. There are O(log(T/N)) values on the ¢-grid. At each
time period t, a thread ?] is chosen. Then, at most N
combinatorial optimization problems are solved, and
each combinatorial optimization takes O(NK log T)
time. Therefore, the total time complexity of the pro-
posed algorithm is O(NKT log®T).

In the rest of this section, we state our regret upper-
bound result for the adaptive Algorithm 3 as well as a
sketch of its proof.

5.1. Regret Analysis and Proof Sketch

We establish the following regret upper bound for
Algorithm 3. We note that all the regret mentioned in
this section is the TOTE regret.

Theorem 2. Suppose Algorithm 3 is run with an initial

value of | = [log,(\/N/T)|+ 1. Then, there exists a con-
stant C1 = poly(K,log(NT)) such that, for any € € [0,1/2]
and sufficiently large T, the regret of Algorithm 3 is upper
bounded by

C1 % (T + VNT).

Remark 2. In the statement of Theorem 2, C; = poly
(K,10g(NT)) means C; = (K log(NT)) for some univer-
sal constant ¢ < co. For notational simplicity, we did not
work out the exact constant c in the expression of C;.
The complete proof of Theorem 2 as well as the
proofs of technical lemmas are relegated to the sup-
plementary material. Here, we sketch the key steps in
the proof. The first step is the following lemma, which
shows that for threads with & >¢, the optimal
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assortment S* is never removed from their active item
sets with high probability.

Lemma 5. With probability 1 — O(toNJ/T?), it holds for
all Tand € > ¢ that S* C .A](-T).

Lemma 5 is similar in spirit to the structural results
established in Lemma 3 for Algorithm 1, but it is only
applicable to thread j with & >e¢. The remaining
threads, with &; < ¢, are too aggressive in their elimina-

tion strategy, so we cannot guarantee that 5* C A;Hl)
for all 7. We will see how to upper bound the regret
from these threads later in this section.

Our next lemma analyzes step 15 of the algorithm.

Lemma 6. If &) > ¢, then with probability 1 — O(toNJ/T),
Algorithm 3 will not be restarted.

At a high level, Lemma 6 states that if step 15 is trig-
gered (which causes | < | — 1 and a restart of the entire
algorithm), the smallest hypothetical value &; must be
below the actual value of ¢. First, this ensures that the
algorithm does not restart too often, but more impor-
tantly, it guarantees that the actual ¢ always falls
between &) and €] throughout the entire selling period.

The proof of Lemma 6 is based on Lemma 5. In particu-
lar, the condition in step 15 of Algorithm 3 compares the
optimistic assortments S(Ti,)j in thread j with estimates in
threads j* < j, which have larger ¢; values. If hypotheti-
cally, &; is larger than or equal to ¢, then by Lemma 6, we

know that §* C .A](,T D for all j’ <j, and therefore, the esti-

mated optimality of S(Tl?j should be consistent in all

threads j* <j. Hence, any inconsistency detected by step
15 must imply that €; < &, which justifies decreasing J.
We now present two lemmas that upper bound the
regret accumulated by different threads, which requires
some new notation. For 0 <j <], let R(¢;) denote the
cumulative regret incurred during the time periods in
which thread j is run. Clearly, the total regret incurred is
upper bounded by 3°.;R(&)). Using linearity of the
expectation, it then suffices to upper bound E[R(g;)] for
every j<J. The next two lemmas provide these upper
bounds for two different scenarios. For notational sim-
plicity, we use < to hide poly(K, log(NT)) factors.

Lemma 7. For all j <] satisfying &; > ¢, E[R(€))] S >
E[A- (1) X o/T:].

T<To

Lemma 8. For all j<] satisfying &; < e and any &>
max{€;, e}, it holds that E[R(E)] <Y E[&?k(f)x
pjTT]'

These two lemmas upper bound the total accumu-
lated regret of threads 0 < j < ] separately for the case of

7<Tp

€;> ¢ and & < e. The case of €; > ¢ is relatively straight-
forward to prove because S*C A](Hl) as shown in

Lemma 5, so an argument similar to the proof of Theo-
rem 1 applies. On the other hand, the case of ¢; < ¢ is
more difficult because S* might be eliminated in these
threads. For Lemma 8, which considers this case, we
carefully analyze the stopping rule in step 15, essen-
tially showing that the check in step 15 will trigger as
soon as the regret per time period is too high for these
threads. The complete proofs of both lemmas, as well
as the complete proof of Theorem 2, are deferred to the
supplementary material.

6. Instance-Dependent Analysis

Recall that S* is the optimal assortment. For any given
item i, let S*® = arg max, 5|k s5;R(S) is the optimal
assortment containing the specific item i. Define the
suboptimality “gap” f as

B:=R(S) — ry;g}(R(S*’(i)). (12)

Intuitively, the suboptimality gap defined in Equation
(12) measures how “well defined” the optimal assort-
ment S* is in the sense that the inclusion of any nonopti-
mal item i ¢ S* would result in at least a drop of § in
expected revenue/reward, regardless of how other
products in the assortment are selected. If a problem
instance has a large suboptimality gap parameter f,
it implies that the optimal assortment S* is easier to
learn (because nonoptimal products are easier to be
ruled out), and therefore, smaller cumulative regret is
expected.

It is also worthwhile to compare the gap parameter
defined in Equation (12) with those defined in earlier
works. In the work of Rusmevichientong et al. (2010), a
nonparametric gap f’ is defined as

min{min; v;, min;4; |v; — v;|,
ming jy+¢s,1 | T () — T (s,t) [}
(1 4+ Kmax;v;)

g :
where J(i,]) := (riv; — rjv;)/(vi — vj). It is clear that a
strictly positive f° implies that all utility parameters
{v;} are distinct. On the other hand, it is easy to construct
problem instances with duplicate v; parameters (indicat-
ing that some products have the same utility / popularity
for incoming customers) and zero p’, whereas our
defined suboptimality gap f could still be strictly posi-
tive. Indeed, consider the following problem instance
with n=3 products and K=2 capacity constraint, with
(v1,v2,v3) =(0.5,0.5,1) and (r1,72,73) =(0.2,0.5,0.6). It
is easy to verify that in this problem instance, ' =0,
whereas = 0.06 > 0.

In the remainder of this section, we will use the con-
cept of suboptimality gap defined in Equation (12) to
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improve our regret upper bounds in Theorems 1 and 2,
obtaining log(T)-type gap-dependent regret bounds
similar to bounds for stochastic multiarmed bandits.
Both our Algorithms 1 and 3 remain unchanged, whereas
the regret analysis is modified to take into consideration
the  parameter.

6.1. Gap-Dependent Analysis of Algorithm 1
(Known Corruption Level)

We first consider Algorithm 1 designed for the setting

in which a good upper bound € on the true corruption

level ¢ is known. The following lemma is the key

lemma in the gap-dependent setting.

Lemma 9. Let f be defined in Equation (12), and suppose
B >0. Then, with probability 1— O(toN/T?), for every
epoch T satisfying

T: >«

Xmax{gKZT K?\/gNTlog T K®NlogT KN log T
B’ p S A &

(13)
for some universal constant iy > 0, it holds that AT = g+,

We note that in (13), € is an upper-bound estimate of
€. At a high level, Lemma 9 states that if T, is suffi-

ciently large, the active product set A only consists of
the optimal assortment for typical customers S*. Intui-
tively, this is because when T is large, the confidence

bound &g(’l’) is much shorter. When the confidence
interval cannot cover the underlying suboptimality gap
B, the nonoptimal products i ¢ S* will be automatically
eliminated. A complete proof of Lemma 9 is given in
the supplementary material.

With Lemma 9, we can prove the following theorem
on gap-dependent regret upper bounds for Algorithm
1 with a known upper bound € on .

Theorem 3. Let 8 be defined in Equation (12) and > 0.
Assume also for simplicity that € S1/K3. The expected
cumulative TOTE regret of Algorithm 1 is upper bounded by

K2Nlog?T
where C{, < oo is a universal constant.
We remark that the log?T term in the second —KZN}SOgZT

term in the regret upper bound most likely arises from

the doubling epochs {A™} used in our proposed
active-elimination algorithms, where the total number
of epochs 7 could be logarithmic in T. It is an interest-
ing open technical question to further improve the sec-
ond term in (14) to be linear in log T, which should be

possible at least in the case of ¢ (or its suitable upper
bound €) being known.

6.2. Gap-Dependent Analysis of Algorithm 3
(Unknown Corruption Level)

When the corruption level ¢ is unknown and no good

estimate is available a priori, Algorithm 3 partitions the

possible corruption levels into a logarithmic grid

{5]}1];01 and runs Algorithm 1 on different levels of &; in

parallel. To analyze its regret performance from a gap-
dependent perspective, we again discuss the two cases
of &j > ¢ and &; < ¢ separately.

In the case of 3] > ¢ (i.e., overestimating the true cor-
ruption level ¢), Lemma 5 shows that with high proba-
bility, the optimal assortment S* will not be removed

from A](-T). Subsequently, Lemma 9 can be directly ap-
plied, with a union bound on the failure probability
overj<], 5, > ¢, as the following corollary.

Corollary 2. For j<] and epoch t, recall the definitions
that Tj = o;T and T ; = p;T., where p; = 270D /1-27)
is the sampling probability for thread j and T, = 2T is the
“normal” length epoch t. Let T; be the smallest integer

such that T satisfies Equation (13) or more specifically,

TT},]‘ > K(,)
S { §K2T, KA\JENTlog T K2N1og T KNlog T}
B’ B B R '
(15)
where «(, > 0 is a universal constant. Then, for all T’ > T]*-,
A](T) =G

Subsequently, Lemma 7 leads to the following corollary.
Corollary 3. For all j<] satisfying &; > ¢, E[R(€))] <
E[Z«f,&&(’f) X pjTT], where T is defined in Corollary 2.

-

We next consider the case of 5] < &. Because the con-

straint A](fr)l c A](.T) is enforced in Algorithm 3 all the time,

we know that A](»T) =S* implies A](fr)l = §* with probabil-

ity 1. Consequently, Lemma 8 implies the following.
Corollary 4. For all j<] satisfying &; <& and any &
> max{g}, ¢}, it holds that E[R(&))] <E [z A (1)
©;T-], where T} is defined in Corollary 2 for thread k.

T<T

With Corollaries 2—4 in place, we are ready to state
our gap-dependent analysis for Algorithm 3 with
unknown corruption level ¢.

Theorem 4. Suppose Algorithm 3 runs with an initial
value of | = [log,(v/N/T)]| + 1. Suppose also that the gap
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parameter p defined in Equation (12) is strictly positive.
Then, the cumulative TOTE regret of Algorithm 3 can be
upper bounded by

(eT + N/ﬁz) x poly(K,log(NT)),

where in the regret upper bound, we hide polynomial depen-
dency on Kand log N,log T terms.

Remark 3. An alternative upper bound of (¢T/p+
N/B) x poly(K,log(NT)) can also be proved, which
could be larger or smaller than the one presented in
Theorem 4 depending on the values of ¢ and f5.

Comparing Theorem 4 with Theorem 3, we notice
an additional 1/f term in either the ¢T or the N/
term in Theorem 3. Such a worsened dependency
likely arises from the layered approach taken to
address unknown ¢ values, which also delivered sub-
optimal regret guarantees (compared with when ¢ is
known a priori) in robust multiarmed bandit pro-
blems (Lykouris et al. 2018, Gupta et al. 2019).

6.3. A Lower Bound on Gap-Dependent Regret
We complement our gap-dependent regret upper-
bound results in the previous sections by stating a
lower bound on gap-dependent regret in dynamic
assortment optimization with outlier customers.

Theorem 5. Let K, B be constants independent of T, satis-
fying B<min{1/16,1/K} and K <2. Suppose also that
&,N can potentially change with T and that > \/N/T,
K < N/4. Then, for sufficiently large T, the worst-case BIH
regret of any admissible policy is lower bounded by

co X (min{eT, VeNT} + N ?ﬁg T>,

where c, > 0 is a universal constant independent of N, T, K,

and p.

Remark 4. The lower-bound result in Theorem 5
assumes the algorithm has full knowledge of the cor-
ruption level .

Remark 5. As Theorem 5 only concerns the BIH
regret, a similar lower bound for the TOTE regret can
be established. More specifically, the Q(eT) lower
bound in Proposition 1 still applies because there is no

additional constraints/assumptions imposed on out-
NlogT
Kp

Theorem 5 is obtained by simply setting ¢ = 0, which
applies to the TOTE-regret notion too. Hence, a lower

bound of Q(£T+N1;ﬁg T) can be established for the

TOTE regret in the gap-dependent setting.

Comparing Theorem 5 with Theorem 3 (our regret
upper bound with knowledge of ¢), we notice that the
K2N1og®T/B term matches the N log T/(KB) term in

lower bound in

lier customers. Furthermore, the

Theorem 5 up to polynomial dependency on K and
log T. As discussed in the works of Agrawal et al.
(2017, 2019), in revenue management applications, the
capacity constraint K is usually very small and there-
fore, treated as a constant. On the other hand, there is
a gap between the ¢K?TlogT term in the upper

bound and the min{e¢T,VeNT} term in the lower
bound, particularly when ¢ is relatively large com-
pared with N/T. We are at the moment unsure which
one is tight. However, in order for the lower bound to
be tight, it requires fully adversarial algorithms for
dynamic assortment optimization, which has already
been an open question as discussed before. Finally,
the lower bound in Theorem 5 assumes the knowl-
edge of the corruption level ¢. The lower bound for
cases when ¢ is unknown is significantly more compli-
cated and could involve whether the upper bounds
are tight in log T terms and the distinction between
regret and pseudoregret notions (Lykouris et al. 2018),
which are out of the scope of this paper.

7. Uniform Contamination Models

In this section, we study an umniform contamination
model that is slightly weaker than the fully adaptive
adversary protocol defined in Definition 1. Instead of
allowing for the contaminated time periods to be
adversarially selected and potentially concentrated or
widely spread in any manner, in this section we impose
the following additional assumption to constrain the
distribution and pattern of contaminated time periods.

Definition 2 (Uniform Contamination Protocol). {¢,};_,
are independent identically distributed random vari-
ables with Pr[¢, = 1] = ¢ and Q; = Q for some unknown
underlying outlier demand distribution Q, where ¢ €
[0,1] is a parameter characterizing outlier portions.

We study the uniform contamination model for two
purposes. First, it allows us to construct an information-

theoretical lower bound of Q) (min{eT, (ZI\J) T}) ,

showing that the regret upper bounds established in pre-
vious sections are tight up to K factors when (II\<]> isnot

too small. As the uniform contamination model imposes
stronger conditions, such a lower bound is also applica-
ble to the general model studied in previous sections as
well. Second, with the uniform contamination model,
we designed a robust planning algorithm based on the
UCB framework that improves an O(K) factor in the €T
term of the regret upper bound.

7.1. Lower Bound

We establish the following information-theoretical
lower bound on any admissible assortment optimiza-
tion policy for the uniform contamination model.
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Theorem 6. Fix ¢ €(0,1), and suppose (ZI\<[> > 2. There

exists a numerical constant Cx >0 depending only on K,
such that for any admissible policy T, it holds that

Reeret®™(T) = E
egret™ (1) = max

N
ZQKXmin{ST, (K)T}'

where Py is the typical distribution if p, = 0 and P,=Q is the
outlier distribution if ¢, =1, with {th}tTﬂ being realized

according to the uniform contamination protocol described in
Definition 2.

XT:R(S;PO - R(St}Pt)]
=1

The proof of Theorem 6 is presented in the supple-
mentary material. At a high level, the proof is based on
a key technical result from Han et al. (2021), which states
that, for any S C [N], |S| < K, there exists a distribution
U over ve [0,1]N such that Eou[Po(-|S")] =Py for all
§"# S and E,,[Py(-|S")] =Py for §" =S for two differ-
ent distribution Py, P; where P, is the distribution under
the MNL model parameterized by v. Using such a con-
struction for the outlier distribution together with stan-
dard bandit lower-bound arguments (see, e.g., Bubeck
and Cesa-Bianchi 2012), we can prove Theorem 6.

Remark 6. Together with the Q(VNT) regret lower
bound established in Chen and Wang (2018) for
K < N/4, Theorem 6 implies a regret lower bound of

Q<min{sT+\/NT,1 / <II\<])T}) for the BIH regret.

N
K
very large, in practice the lower bound could be sim-
plified to Q(eT + VNT), which matches our lower
bound for the TOTE regret in Proposition 1 in the main
text.

As the second term involves ( ), which is typically

Remark 7. The problem setting for which the lower
bound in Theorem 6 applies involves notably much
stronger assumptions compared with the settings stud-
ied prior to this section and in the subsequent subsec-
tion, where we will present another upper bound. This
makes the lower bound mathematically stronger. More
specifically, the following differences apply.

1. In the uniform contamination model, each time
period is contaminated (corrupted) in a uniform, sto-
chastic manner; on the other hand, in the general
model studied in previous sections, the contamination
or corruption patterns are arbitrary and adaptively
adversarial.

2. The adversarial demand models {Qt}tT:1 constructed
in Theorem 6 have two additional structures.

a. If {Q;}, are understood as adaptively adversa-
rially chosen distributions, then each Q; falls into the
class of MNL demand models with adaptively adver-
sarially chosen utility parameters {v;}|, € [0,1]",
which is weaker than the assumption that each Q;
could be any adversarially chosen demand model.

b. The {Qt}thl constructed in Theorem 6 also
have the structure of Q; = Q, with Q being a fixed
demand distribution that is not necessarily an
MNL model. This matches the definition of uni-
form contamination models in Definition 2.

7.2. Upper Bound

In this section, we adapt the MNL-bandit algorithm
(Agrawal et al. 2019) designed originally for the stochas-
tic assortment optimization problem to the uniform con-
tamination setting by using median estimators with
inflated upper confidence estimates. We then derive a
regret upper bound that improves an O(K) factor on the
contamination-related term compared with the regret
upper bound obtained in Theorem 1 for the general con-
tamination model.

Algorithm 4 (MNL Bandit with Inflated UCBs for the
Uniform Contamination Model)

1: Input: time horizon T, outlier proportion €, reve-
nue parameters {r;}},, capacity K;

2: Output: a sequence of assortments {St}tT:1 attain-

ing good regret;

3: Initialize: for each i€[N],mi=p,=L;=0,7;=
Voo, C1 =44/3 In(NT?), C, = 384(1 + 2eK)eK, C3 =
8¢, Cy = 168%(1+K)*, t=1;

4: while T time periods have yet been reached do

iU

5. Compute S; «— arg maXsc(y; |s|<k E:iilsa,

6:  Offer assortment S, repetitively until a no-purchase

action occurs; let 11, (7) be the number of times prod-
uctiis purchased fori € S;

7: Update: m; <~ m;+1, p, < p; +n.(i), L < L; +1

+Z]-651n7(j) forallie Sy;

8:  Foreachie€ S, compute

~ P . G G GL;
g Pi U,»<—min{1,vi+ + 24 )
i vmio mg

9: end while

Algorithm 4 gives a pseudocode description of the
proposed MNL-bandit algorithm variant with inflated
UCBs. Compared with the existing MNL-bandit algo-
rithm (Agrawal et al. 2019), the key difference is the
definition of the inflated upper confidence estimates v;,
which involves not only the stochastic confidence term
Ci/4/m; but also, a term C,L; that is related to estima-
tion errors resulting from corrupted time periods. Note
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that the “offer-until-no-purchase” strategy and the in-
flated confidence intervals are designed specifically for
the uniform contamination model in Definition 2; for
the general contamination model studied in previous
sections, such strategies would not work, particularly
when adversarial corruptions are concentrated to-
gether, in which case the inflated confidence intervals
might fail to capture the estimation error.

The following theorem upper bounds the cumulative
regret of Algorithm 4.

Theorem 7. Suppose ¢ <€ €[0,1/2] and {gbt,Qt}thl are
realized according to the uniform contamination model
defined in Definition 2. Then, it holds that

Regret™©TE(T) < 2(1 +4€K) x (C4KT +2C; VKNT
+ 2(C2 + C3KT)11’1T),

where RegretTOTE(T) is the TOTE regret over T periods
defined in Equation (2), which upper bounds the BIH regret
in Equation (3) by definition.

Remark 8. Suppose Ci,C,,C3,Cy4 are selected as in
Algorithm 4 and ¢ <1/K'5. The regret upper bound in

Theorem 7 could then be reduced to O(1/KNT In(NT?)
+€KT InT).

Because of space constraints, the complete proof of The-
orem 7 is placed in the supplementary material. Compar-
ing with the regret upper bound in Theorem 1, we notice
an improvement of an O(K) factor in the €T term.

8. Numerical lllustration

In this brief experimental section, we provide some
numerical illustrations that demonstrate the robustness of
our proposed policy and the benefits over existing nonro-
bust approaches for dynamic assortment optimization,
including TS (Agrawal et al. 2017) and UCBs (Agrawal
etal. 2019). We construct the following data instance.

1. K of N items have revenue parameters r; =1 and
preference parameters v; = 0.

2. For the other (N —K) items, both their revenue
and preference parameters (r;, v;) are uniformly distrib-
uted on [0.1,0.2].

3. For the first [¢T] time periods, the arriving custo-
mers are outliers with choice models Q; = Q, where Q is
an MNL-parameterized choice model with preference
parameters set as v; = 1 if v;=0 and v = v; otherwise.

This instance reflects two important properties of outlier
customers in practice, namely that they have significantly
different preferences from typical customers and that they
arrive in consecutive time periods (e.g., during a holiday
season). In particular, the instance consists of K items with
very high revenue but very low preference parameters
so that few customers will buy them. Under normal cir-
cumstances, a dynamic assortment optimization algorithm

would identify the unpopularity of these K items very
quickly and stop recommending them. However, as the
outlier customers prefer these K items over the others,
these items appear popular and profitable in the early time
periods, which may mislead the algorithm. As these algo-
rithms are highly unpopular in the latter time periods, a
robust algorithm should not be severely impacted by these
outlier customers.

For the baseline methods, the TS method is tuning
free with a noninformative Beta(1,1) prior on each
item. For the UCB algorithm, we find the value in the
multiplier (C;) when constructing upper confidence
bands that gives the best performance (in the original
paper of Agrawal et al. 2019, C; = 48 for theoretical pur-
poses). Each method is run for 100 independent trials,
and the mean average regret (i.e., the cumulative regret
over T) is reported. The standard deviations of all the
methods are sufficiently small and thus, omitted for
better visualization.

In Figure 1, we report the results for all methods
under various settings of T, N, K, and ¢. The experimen-
tal settings are chosen as N € {100,300}, K € {10,20},
£€{0,0.05,0.1}, and T ranging from T=1,000 to T=
20,000. From Figure 1, we can see that when ¢ is strictly
greater than zero, our proposed algorithms will stabi-
lize at a mean regret level (0.02-0.06) that is much lower
than the nonrobust TS and UCB methods. More impor-
tantly, the average regret (i.e., cumulative regret
divided by T) for our method decreases as a function of
the time horizon, a phenomenon that does not happen
for TS/UCB, especially when ¢ is large. This confirms
that these latter two methods are not robust to outlier
customers and further confirms the effectiveness of our
proposed algorithms for robust dynamic assortment
optimization. For the no contamination case of ¢ =0,
whereas our proposed algorithms perform slightly
worse than the baselines, the decreasing rates of aver-
age regrets are the same. When there is no contamina-

tion, although the main term in our regret VNT is still
tight, there might be extra overhead in the regret bound
through dependency on K and log T factors.

9. Conclusions and Future Work
In this paper, we extend the e-contamination model from
statistics to the online decision-making setting and study
the dynamic assortment optimization problem with out-
lier customers. We propose a new active-elimination pol-
icy that is robust to adversarial corruptions and establish
a near-optimal regret bound. We further develop an
adaptive policy that does not require any prior knowl-
edge of the corruption proportion «.

One interesting problem is to sharpen upper and
lower regret bounds in the gap-dependent case. Be-
yond this technical question, we hope that this work
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Figure 1. (Color online) Comparison of Average Regret (i.e., Regret Divided by T) Between Our Proposed Algorithms and
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inspires future work on model mis-specification in rev-
enue management, which we believe is a practically
important research direction. We look forward to pur-
suing this direction in future work.
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