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Abstract. We consider the dynamic assortment optimization problem under the multino
mial logit model with unknown utility parameters. The main question investigated in this 
paper is model mis-specification under the ε-contamination model, which is a fundamental 
model in robust statistics and machine learning. In particular, throughout a selling horizon 
of length T, we assume that customers make purchases according to a well-specified 
underlying multinomial logit choice model in a (1 � ε)-fraction of the time periods and 
make arbitrary purchasing decisions instead in the remaining ε-fraction of the time peri
ods. In this model, we develop a new robust online assortment optimization policy via an 
active-elimination strategy. We establish both upper and lower bounds on the regret, and 
we show that our policy is optimal up to a logarithmic factor in T when the assortment 
capacity is constant. We further develop a fully adaptive policy that does not require any 
prior knowledge of the contamination parameter ε. In the case of the existence of a subop
timality gap between optimal and suboptimal products, we also established gap- 
dependent logarithmic regret upper bounds and lower bounds in both the known-ε and 
unknown-ε cases. Our simulation study shows that our policy outperforms the existing 
policies based on upper confidence bounds and Thompson sampling.
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1. Introduction
Operations problems, ranging from assortment opti
mization to supply chain management, are built on an 
underlying probabilistic model. When real-world out
comes follow this model, existing optimization techni
ques are able to provide accurate solutions. However, 
these model assumptions are only abstractions of reality 
and do not perfectly capture the sophisticated natural en
vironment. In other words, these models are inherently 
mis-specified to a certain degree. Accordingly, model 
mis-specification and robust estimation have been impor
tant topics in the statistics literature (Huber and Ronchetti 
2011). However, this literature primarily focuses on esti
mation or prediction from a given data set, which is insuf
ficient for modern operations settings where decision 
making plays a vital role. Unfortunately, most decision- 
making policies are derived from optimization problems 
that explicitly rely on the probabilistic model, so they are 
inherently not robust to model mis-specification. Can we 
design robust policies for these operations problems?

This paper studies model mis-specification for an im
portant problem in revenue management—dynamic as
sortment optimization—under a popular ε-contamination 
model (which will be introduced in the next para
graph). Assortment optimization has a wide range of 
applications in retailing and online advertising. Given a 
large number of substitutable products, the assortment 
optimization problem involves selecting a subset of 
products (also known as an assortment) to offer a cus
tomer such that the expected revenue is maximized. To 
model customers’ choice behavior when facing a set of 
offered products, discrete choice models have been 
widely used, and one of the most popular such models 
is the multinomial logit model (MNL) (McFadden 1974). 
In dynamic assortment optimization, the customers’ 
choice behavior (e.g., mean utilities of products in an 
MNL) is not known a priori and must be learned online, 
which is often the case in practice, as historical data are 
often insufficient (e.g., fast fashion sale or online adver
tising). More specifically, the seller offers an assortment 
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to each arriving customer for a finite time horizon T, 
observes the purchase behavior of the customer, and 
then, updates the utility estimate. The goal of the seller is 
to maximize the cumulative expected revenue over T 
periods. Because of its practical relevance, dynamic as
sortment optimization has received much attention in lit
erature (Caro and Gallien 2007; Rusmevichientong et al. 
2010; Saure and Zeevi 2013; Agrawal et al. 2017, 2019).

All of these existing works assume that each arriving 
customer makes her purchase according to an underly
ing choice model. Yet, in practice, a small fraction of 
customers could make “outlier” purchases. To model 
such outlier purchases, we adopt a natural robust 
model in the statistical literature—the ε-contamination 
model (Huber 1964), which dates back to the 1960s and 
is perhaps the most widely used model in robust statis
tics. In the general setup of the ε-contamination model, 
we are given n independent and identically distributed 
samples drawn from a distribution (1 � ε)Pθ + εQ, 
where Pθ denotes the distribution of interest P, param
eterized by θ (e.g., a Gaussian distribution with mean 
θ), and Q is an arbitrary contamination distribution. 
The parameter ε > 0, which is usually very small, 
reflects the level at which contamination occurs, so a 
larger ε value means more observations are contami
nated. The standard objective is to identify or estimate 
the parameter θ of the distribution of interest in the pres
ence of corrupted observations from Q. For the purpose 
of dynamic assortment optimization in the presence of 
outlier customers, the Pθ distribution represents the 
choice model for the majority of customers, which are 
“typical” (with θ being the parameter of an underlying 
MNL choice model of interest), whereas the Q distribu
tion corresponds to choice models of “outlier” custo
mers, and ε reflects the proportion of outlier customers. 
For dynamic assortment optimization, we also deviate 
from the standard parameter estimation objective and 
focus on designing online decision-making policies.

In the classical ε-contamination model, the “outlier dis
tribution” Q stays stationary for all samples. To make the 
contamination model more practical in the online assort
ment optimization setting, we strengthen the model in 
two ways. 

1. Instead of assuming a fixed corruption distribu
tion Q for all outlier customers, we allow Q to change 
over different time periods (i.e., Qt is the outlier distri
bution for customers at time period t).

2. Instead of assuming that each time t is corrupted 
“uniformly at random,” we assume that outlier custo
mers appear in at most εT time periods. The purchase 
pattern and arrivals of outlier customers can, how
ever, be arbitrary and even adaptive to the assortment 
decisions or customer purchase activities prior to time 
period t. The corrupted time periods and associated 
Qt’s are unknown to the seller.

This setting is much richer than the “random arrival 
setting” and more realistic in practice. Indeed, in a holi
day season, consecutive time periods might contain 
anomalous or outlier purchasing behavior, which can
not be capture by “random corruption” in the original 
ε-contamination model. The details of our outlier cus
tomer model will be rigorously specified in Section 3.

The main goal of the paper is to develop a robust 
dynamic assortment policy under this ε-contaminated 
MNL. Our first observation is that popular policies 
in the literature, including upper confidence bounds 
(UCBs) (Agrawal et al. 2019) and Thompson sampling 
(TS) (Agrawal et al. 2017), no longer work in this model. 
The reason is that these policies cannot use typical cus
tomers who arrive later in the selling period to correct 
for misleading customers who arrive early on, and 
hence, even a small number of outlier customers can 
lead to poor performance. Further, although it is well 
known that randomization is crucial in any adversarial 
setting (see, e.g., Auer et al. 2002, Bubeck and Cesa- 
Bianchi 2012) to hedge against outliers, UCB is a deter
ministic policy, whereas Thompson sampling provides 
very little randomization via posterior sampling. We 
explain these failures in more detail in Sections 3 and 8
later in this paper.

To address the contaminated setting, we develop a 
novel active-elimination algorithm for robust dynamic 
planning, which gradually eliminates those items that 
are not in the optimal assortment with high probability 
(see Algorithm 1). Compared with the existing meth
ods mentioned (Agrawal et al. 2017, 2019), our active- 
elimination method has several important technical 
novelties. First, our active-elimination policy imple
ments the randomization in a much more explicit 
way by sampling from a carefully constructed small set 
of “active” products. Second, the existing UCB and 
Thompson sampling algorithms for MNL rely on an 
epoch-based strategy (i.e., repeatedly offering the same 
assortment until no purchase) to enable an unbiased 
estimation of utility parameters. This procedure is in
herently fragile because the stopping time of an epoch 
relies on a single no-purchase activity, which can be 
easily manipulated by outlier customers; a few outliers 
can greatly affect the stopping times. The failure of 
such an epoch-based strategy implies that unbiased 
estimation of utility parameters is no longer possible. 
To overcome this challenge, we propose a new utility 
estimation strategy based on geometrically increasing 
offering time periods. We conduct a careful perturba
tion analysis to control the bias of these estimates, 
which leads to new confidence bounds for our active- 
elimination algorithm (see Section 4 for more details).

We provide theoretical guarantees for our proposed 
robust policy via regret analysis and information- 
theoretic lower bounds. In particular, let T be the selling 
horizon, N be the total number of products, and K be 
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the cardinality constraint of an assortment (see Section 
3). For the reasonable setting where ε is not too large, 
our active-elimination algorithm (Algorithm 1) achieves 
eO(εK2T +

ffiffiffiffiffiffiffiffiffiffi
KNT

√
) regret when ε (or a reasonable upper 

bound of ε) is known (see Theorem 1), where eO(·) only 
suppresses log(T) factors. Compared with the Ω(εT +ffiffiffiffiffiffiffi

NT
√

) lower bound (see Proposition 1), our upper bound 
is tight up to polynomial factors involving K and other 
logarithmic factors. We also remark that the special case 
of ε � 0 reduces to the existing setting studied in Agra
wal et al. (2017, 2019) and Chen and Wang (2018), in 
which no outlier customers are present. Compared with 
existing results, our regret bound is tight except for 
an additional O(

ffiffiffiffi
K

√
) factor, which represents the cost 

of being adaptive to outlier customers (see Section 4.2
for more discussions). We emphasize that in a typical 
assortment optimization problem, the capacity of an 
assortment K is usually a small constant, especially rela
tive to T and N.

The result assumes that an upper bound on the out
lier proportion ε is given as prior knowledge. Although 
in some cases, we may be able to estimate ε from histor
ical data, this is not always possible, which motivates 
the design of fully adaptive policies that do not require 
ε as an input. Inspired by the “multilayer active arm 
race” from the multiarmed bandits (MABs) literature 
(Lykouris et al. 2018), we propose an adaptive robust 
dynamic assortment optimization policy in Algorithm 
3. Our policy runs multiple “threads” of known-ε algo
rithms on a geometric grid of ε values in parallel, and 
as we show, it achieves eO(εT +

ffiffiffiffiffiffiffi
NT

√
) regret, where eO 

suppresses log(T) and K factors (see Theorem 2). Here, 
the (cumulative) regret is defined as the sum of the dif
ferences between the expected rewards (revenues) of 
the optimal assortment and the assortments the retailer 
offers at each time period. Algorithm 3 and its analysis 
in Section 5 provide more details.

Finally, in the case of well-separated problem instances 
(i.e., there is a large suboptimality gap β > 0 between opti
mal and suboptimal assortments), built on the same pro
posed algorithm, we establish much improved regret 
upper bounds of eO(εK2T log T + K2Nlog2T=β) when ε is 
known (see Theorem 3). When ε is unknown, the adap
tive policy achieves the regret eO(εT + N=β2) × poly(K, 
log(NT)) or eO(εT=β+ N=β) × poly(K, log(NT)), which
ever is smaller (see Theorem 4). For both upper bounds 
in the well-separated case, the dependency on the time 
horizon T is logarithmic when the corruption level ε is 
small. We also prove lower bounds on the regret when a 
suboptimality gap of at least β > 0 exists.

The rest of the paper is organized as follows. Section 
2 introduces the related work. Section 3 describes the 
problem formulation. The first active-elimination pol
icy and the regret bounds are presented in Section 4, 
whereas the adaptive algorithm is presented in Section 

5. The gap-dependent regret analysis and log T-type 
regret bounds are provided in Section 6. Numerical 
illustrations are provided in Section 8, with the conclu
sion in Section 9. The proof the lower-bound result is 
provided in the supplementary material. Proofs of 
some technical lemmas are relegated to the supplemen
tary material as well.

2. Related Works
Static assortment optimization with known choice 
behavior has been an active research area since the 
seminal works by van Ryzin and Mahajan (1999) and 
Mahajan and van Ryzin (2001). Motivated by fast fash
ion retailing, dynamic assortment optimization, which 
adaptively learns unknown customers’ choice behav
ior, has received increasing attention in the context 
of data-driven revenue management. The work by 
Caro and Gallien (2007) first studied the dynamic 
assortment optimization problem under the assump
tion that demands for different products are indepen
dent. Recent works by Rusmevichientong et al. (2010), 
Saure and Zeevi (2013), Agrawal et al. (2017, 2019), 
Chen and Wang (2018), and Chen et al. (2021a, b) incor
porated MNL models into dynamic assortment optimi
zation and formulated the problem as an online regret 
minimization problem. In particular, for the standard 
MNL model, Agrawal et al. (2017, 2019) developed 
UCB- and Thompson sampling-based approaches for 
online assortment optimization. Moreover, some recent 
works (Cheung and Simchi-Levi 2017, Oh and Iyengar 
2019, Chen et al. 2020) study dynamic assortment opti
mization based on contextual MNL models, where 
the utility takes the form of an inner product between a 
feature vector and the coefficients. The present work 
focuses on the standard noncontextual MNL model, but 
a natural direction for future work is to extend our 
results to the contextual setting.

All works outlined assume that an underlying MNL 
choice model is correctly specified. However, model 
mis-specification is common in practice, and robust sta
tistics, one of the most important branches in statistics, 
is a natural tool to address such mis-specification. 
The ε-contamination model, which was proposed by 
Huber (1964), is perhaps the most widely used robust 
model and has recently attracted much attention from 
the machine learning community (see, e.g., Chen et al. 
2016; Diakonikolas et al. 2017, 2018; and reference 
therein). Despite this attention, online learning in the 
ε-contamination model or its generalizations is rela
tively unexplored. In the online setting, Esfandiari et al. 
(2018) studied online allocation under a mixing adver
sarial and stochastic model, but the setting does not 
require any learning component. For online learning, 
the recent works of Lykouris et al. (2018) and Gupta 
et al. (2019) studied the contaminated stochastic MAB, 
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but because of the complex structure of discrete choice 
models, these results do not directly apply to our set
ting. Indeed, a straightforward analogy between assort
ment optimization and MAB is to treat each feasible 
assortment as an arm, but directly using this mapping 
will result in a large regret because of the exponentially 
many possible assortments.

In learning and decision-making settings, a few recent 
works investigate the impact of model mis-specification 
in revenue management (e.g., see Cooper et al. 2006 for 
capacity booking problems and Besbes and Zeevi 2015
for dynamic pricing). In particular, Besbes and Zeevi 
(2015) show that a class of pricing policies based on lin
ear demand functions performs well even when the 
underlying demand is not linear. Cooper et al. (2006) 
also identified some cases where simple decisions are 
optimal under mis-specification. However, our setting 
is quite different, as the widely used UCB and Thomp
son sampling policies are not robust under our model. 
On the other hand, our new active-elimination policy 
is robust to model mis-specification and additionally, 
achieves near-optimal regret when the model is well 
specified.

Finally, the successive-elimination and active-elimination 
strategies have been extensively studied in the (stochas
tic) multiarmed bandit literature. Interested readers 
can refer to the works of Auer (2002), Even-Dar et al. 
(2006), and Auer and Ortner (2010) for details.

3. Problem Formulation
There are N items, each associated with a known reve
nue parameter ri ∈ [0, 1] and an unknown utility param
eter vi ∈ [0, 1]. At each time t, a customer arrives for a 
total of T time periods. The retailer then provides an 
assortment St ⊆ [N] to the customer, subject to a capacity 
constraint |St | ≤ K. The customer then chooses at most 
one item it ∈ St to purchase, upon which the retailer col
lects a revenue of rit . If the customer chooses to purchase 
nothing (denoted by it� 0), then the retailer collects no 
revenue.

At each time t, the arriving customer is assumed to 
be one of the following two types. 

1. A typical customer makes purchases it ∈ St ∪ {0}

according to an MNL choice model:

Pr[it � i |St] �
vi

v0 +
P

j∈St
vj

, v0 � 1: (1) 

We assume that vi ∈ [0, 1].
2. An outlier customer makes purchases it ∈ St ∪ {0}

according to an arbitrary unknown distribution Qt (mar
ginalized on St ∪ {0}). The distribution Qt can poten
tially change with t.

We note that the MNL model in Equation (1) to
gether with the constraint that vi ∈ [0, 1] implies that 
“no purchase” is the most probable (or equally 

probable) outcome for a typical customer. This assump
tion has been made in the operations literature (see, e.g., 
Agrawal et al. 2017). Such an assumption that vi ≤ 1 for 
all i is, however, only for the ease of presentation, and 
the assumption can be easily relaxed to vi ≤ Cv for some 
known constant upper bound Cv > 0. With the relaxed 
boundedness condition, one can enlarge the constructed 
confidence intervals b∆ε (τ+ 1) (see the definition in 
Algorithm 1) by multiplying a Cv factor, and the other 
parts of our analysis/algorithms remain the same.

We consider the following ε-contamination model. 
A1. (Bounded adversaries.) The number of outlier 

customers throughout T time periods does not exceed 
εT, where ε ∈ [0, 1) is a problem parameter;

A2. (Adaptive adversaries.) The choice model Qt for 
an outlier customer at time t can be adversarially and 
adaptively chosen based on the previous customers, 
offered assortments, and past purchasing activity.

A rigorous mathematical formulation is as follows. 
For any time period t � 1, 2, : : : , T, let φt ∈ {0, 1} be the 
indicator variable of whether customer at time t is an 
outlier (φt � 1 if customer t is an outlier and 0 other
wise), St ⊆ [N] be the assortment provided at time t, 
and it ∈ St ∪ {0} be the purchasing activity of the cus
tomer. The protocol is formally defined as follows.

Definition 1 (Definition of the Protocol). We define the 
following. 

1. An adaptive adversary consists of T arbitrary measur
able functions A1, : : : , AT, where At : {φτ, Qτ, Sτ, iτ}τ≤t�1 
⊢→ (φt, Qt) produces the type of the customer (typical or 
outlier) φt and the outlier distribution Qt at time period t, 
from the filtration F t�1 � {φτ, Qτ, Sτ, iτ}τ≤t�1.

2. An admissible policy consists of T random functions 
P1, : : : , PT, where Pt : {Sτ, iτ}τ≤t�1 ⊢→ St produces a 
randomized assortment St ⊆ [N], |St | ≤ K at time period 
t, from the filtration Gt�1 � {Sτ, iτ}τ≤t�1.

3. If φt � 0, then it is realized according to model (1) 
conditioned on St; otherwise, if φt � 1, then it is realized 
according to model Qt.

The objective of the retailer is to develop an admissi
ble dynamic assortment optimization strategy that is 
competitive with a certain “benchmark” assortment. 
Unlike the classical setting, the definition of regret is a 
bit more complicated because of the presence of both 
typical and adversarial customers. To shed light on the 
subtle differences between different benchmark assort
ments, in this paper we consider two different types of 
cumulative regret, as introduced here. To simplify nota
tions, we use Pt to denote the customer’s choice model 
at time t. More specifically, Pt is the “typical” model in 
Equation (1) (denoted as Pt � {v}) if a typical customer 
arrives at time t, and Pt� Qt if an outlier customer 
arrives at time t. We use R(S; P) to denote the expected 
revenue collected by offering assortment S if the custo
mer’s choice model is modeled by P. 
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1. The typically optimal, typically evaluated (TOTE) 
regret is defined as

RegretTOTE(T) :� E
XT

t�1
R(S∗; {v}) � R(St; {v})

" #

,

(2) 

where S∗ � arg maxS⊆[N], | S | ≤KR(S; {v}) is the optimal 
assortment for typical customers.

2. The best-in-hindsight (BIH) regret is defined as

RegretBIH(T) :� max
S⊆[N], | S | ≤K

E
XT

t�1
R(S; Pt) � R(St; Pt)

" #

:

(3) 

The TOTE regret uses the optimal assortment for 
typical customers S∗ as the benchmark. Furthermore, 
the TOTE regret is always measured in the difference 
of expected revenue on typical customers, regardless 
of whether a typical customer or an outlier customer 
is present at time t. On the other hand, the BIH regret 
measures the performance differences on the actual 
choice model Pt of the incoming customers. In other 
words, it compares the performance of the dynamic 
assortment planning algorithm with the optimal assort
ment on both typical and outlier customers. The BIH 
regret also coincides with the “best stationary bench
mark” regret considered in most fully adversarial mul
tiarmed bandit problems.

There is an important relationship between these 
two definitions of regret as characterized in the fol
lowing statement.

Fact 1. RegretBIH(T) ≤ RegretTOTE(T) + εT.

Proof. Let S∗ be the optimal assortment for typical cus
tomers and eS be the assortment attaining the maximum 
in the definition of RegretBIH(T). Note that during time 
periods t that Pt � {v}, R(eS; {v}) � R(St; {v}) ≤ R(S∗; {v}

� R(St; {v}). During time periods t that Pt � Qt, we have 
| (R(eS; Qt) � R(St; Qt)) � (R(S∗; Qt) � R(St; Qt)) | ≤ 1 be
cause the expected revenue of any assortment under 
any choice model is at most one by normalization. 
Because there are εT outlier time periods, we have that 
RegretBIH(T) ≤ RegretTOTE(T) + εT. w

Fact 1 shows that the difference between the TOTE 
regret and the BIH regret is at most εT. Therefore, we 
shall focus solely on the TOTE regret in terms of the 
upper bound, which always exhibits an εT additive term 
in the bounds. Such an upper bound implies the same 
regret bound for RegretBIH(T), up to a term of εT. For 
the lower bound, we consider the BIH regret, which is 
standard in the literature.

4. An Active-Elimination Policy
To motivate our policy, we first briefly explain why the 
popular UCBs and Thompson sampling fail in the pres
ence of outlier customers. These algorithms are designed 
for the uncontaminated setting where ε � 0, so the confi
dence bounds (in UCB policies) and posterior updates 
(in Thompson sampling policies) are designed under 
the assumption that all customers follow the same MNL 
model. Unfortunately, in the presence of outlier custo
mers, the confidence intervals are too narrow, and the 
posterior updates are too aggressive. With these update 
strategies, a small number of outlier customers pre
ferring items unpopular to typical customers could 
“swing” the algorithms’ parameter estimates, which can 
lead to the belief that these unpopular items are actually 
popular. This subsequently leads to poor exploration of 
the popular items, which eventually hurts performance. 
As a numerical demonstration, we construct a concrete 
setting in Section 8, where the performance of UCB and 
Thompson sampling policies degrades considerably in 
the presence of outlier customers.

We propose an active-elimination policy for dynamic 
assortment optimization in the presence of outlier cus
tomers. A pseudocode description is given in Algo
rithm 1. Although Algorithm 1 requires the knowledge 
of ε (or an upper bound ε) (see Theorem 1) as input, we 
emphasize that such a requirement can be completely 
removed by designing more complex policies, as we 
will show in Section 5. To highlight our main idea, we 
state Algorithm 1 up front as the prior knowledge of ε 
simplifies both the algorithm and its analysis.

Algorithm 1 (An Active-Elimination Algorithm for Robust 
Dynamic Assortment Optimization) 

1: Input: time horizon T, outlier proportion ε, reve
nue parameters {ri}, capacity constraint K.

2: Output: a sequence of assortments {St}
T
t�1 attain

ing good regret.
3: Set bv(0)

≡ 1, b∆ε(0) � 1, A(0) � [N], T0 � 128(K + 1)
2 

N ln T;
4: for τ � 0, 1, 2, : : : do
5: *Compute S(i)

τ � arg maxS⊆A(τ), | S | ≤K, i∈SR(S; bv(τ)
)

for every i ∈ A(τ);
6: Compute γ(τ) � maxi∈A(τ) R(S(i)

τ ; bv(τ)
);

7: Update A(τ+1) � {i ∈ A(τ) : R(S(i)
τ ; bv(τ)

) + 2b∆ε(τ) ≥

γ(τ)};
8: Set ni � 0 and n0(i) � 0 for all i ∈ A(τ+1); set 

Tτ � 2τT0;
9: for the next Tτ time periods do

10: Sample i ∈ A(τ+1) uniformly at random;
11: Provide the assortment S(i)

τ to the incoming 
customer and observe purchase it;

12: Update ni ← ni + 1{it � i} and n0(i) ← n0(i)
+ 1{it � 0};
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13: end for
14: Update estimates bv(τ+1)

i � max{1,ni=n0(i)} for 
every i ∈ A(τ+1);

15: Define ετ � min{1,εT=Tτ}, Nτ � |A(τ+1) | , and 
compute error upper bound as

b∆ε(τ+ 1)

�

1, Tτ <
εT

4(K + 1)
;

16K(K + 1)
ετ
2 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ετNτlnT
Tτ

s

+
2NτlnT

3Tτ

 !

+ 16
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KNτlnT

Tτ

r

, otherwise

8
>>>>>>>>><

>>>>>>>>>:

16: end for
17: Remarks:
18: *For any set of {bv}, R(S; bv) � (

P
i∈Sribvi)=(1 +

P
i∈S 

bvi); the optimization can be computed efficiently. 
See Section 4.1 for details.

At a high level, Algorithm 1 operates in epochs τ �

0, 1, : : : with geometrically increasing lengths, and it 
only performs item estimation or assortment updates 
between epochs. At any time t, the algorithm maintains 
an active set of items A ⊆ [N] consisting of all items 
that could potentially form a “good” assortment and 
estimates of parameters {bvi} for all active items i in A. 
For each time period t in a single epoch τ, a random item 
i is sampled from the current active item set, and a 
“near-optimal” assortment is built, which must contain 
the target item i. Once an epoch τ ends, parameter esti
mates of {bvi} are updated, and the active set A is 
shrunk based on the updated estimates to exclude sub
optimal items. We will ensure that with high probabil
ity, the optimal assortment S∗ is always a subset of 
active sets for all epochs (see Lemma 3).

We now detail all notation used in Algorithm 1. 
τ ∈ N: the indices of epochs whose lengths increase 

geometrically (Tτ � 2τT0);
bv(τ)

∈ [0, 1]
N: the estimates of preference parameters 

(of typical customers) at epoch τ;
A

(τ+1) ⊆ [N]: the subset of active items, which are to 
be explored uniformly at random in epoch τ;
γ(τ) ∈ [0, 1] (see step 6): the estimated expected reve

nue of the optimal assortment calculated based on the 
active item subset A(τ+1) and current preference esti
mates bv(τ);

S(i)
τ ⊆ [N] (see step 5): an optimal assortment com

puted based on A(τ+1) and bv(τ), which must include the 
specific item i; this assortment is used to explore and 
estimate the utility parameter vi of item i;

ni, n0(i) ∈ N (see step 12): counters used in the esti
mate of vi; note that for any supplied assortment S(i)

τ , we 
only record the number of times a customer purchases 

item i (accumulated by ni) and the number of times 
a customer makes no purchases (accumulated by n0(i)); 
other purchasing activities (e.g., purchases of an item 
ℓ ∈ S(i)

τ other than i) will not be recorded;
b∆ε(τ+ 1) ∈ [0, 1]: length of confidence intervals used 

to eliminate items from A(τ+1); its length depends on 
both the epoch index τ and the prior knowledge of the 
outlier proportion ε.

In the rest of the section, we first give a brief descrip
tion of how to compute bS

(i)
τ in line 5 efficiently. Then, 

we detail the regret upper bound of Algorithm 1 and 
provide the proof.

Algorithm 2 (Assortment Optimization with Additional 
Constraints) 

1: Input: revenue parameters {ri}
n
i�1, estimated pref

erence parameters {bvi}
n
i�1, must-have item i, capac

ity constraint K, stopping accuracy δ;
2: Output: assortment bS, | bS | ≤ K, i ∈ bS that maximizes 

R(bS; bv).
3: Initialization: αℓ � 0 and αu � 1; bS � ∅;
4: while αu � αℓ ≥ δ do
5: αmid ← (αℓ + αu)=2;
6: For each j ≠ i, sort ψj :� (rj �αmid)bvj in des

cending order, and let Ψ :� {j ≠ i : ψj ≥ 0} be the 
subset consisting of all items other than i with 
nonnegative ψj;

7: Compute t :� ψi + the (K � 1)ψj in Ψ with the 
largest values;

8: If t ≥ αmid, then set bS � {i} ∪ {the (K � 1) items 
in Ψ with the largest ψj values} and αℓ ← αmid; 
else set αu ← αmid.

9: end while

4.1. Solving the Optimization Problem
The implementation of most steps of Algorithm 1 is 
straightforward, except for the computation of the 
assortments S(i)

τ , which require further algorithmic 
development. This computation can be formulated as 
the following combinatorial optimization problem:

max
| S | ≤K, i∈S

R(S; bv) � max
| S | ≤K, i∈S

P
j∈Srjbvj

1 +
P

j∈Sbvj
(4) 

for a specific i ∈ [N]. This optimization problem is simi
lar to the classical capacity-constrained assortment opti
mization (see, e.g., Rusmevichientong et al. 2010), but 
the additional constraint i ∈ S in (4) yields a subtle differ
ence. For the purpose of completeness, we provide an 
efficient optimization method with binary search for 
solving Equation (4). Pseudocode is provided in Algo
rithm 2.

For any α ∈ (0, 1], we want to check whether there 
exists S ⊆ [N], |S | ≤ K, i ∈ S such that R(S; bv) ≥ α or 
equivalently, 

P
j∈Srjbvj ≥ α+α

P
j∈Sbvj. Reorganizing the 
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terms, we only need to check whether there exists |S | ≤

K, i ∈ S such that 
P

j∈S(rj � α)bvj ≥ α. Because i ∈ S must 
hold, we only need to check whether there exists S′ ⊆

[N]\{i}, |S′ | ≤ K � 1 such that

(ri � α)bvi +
X

j∈S′

(rj � α)bvj ≥ α: (5) 

In order to check whether there exists such an S′, we 
include all j ∈ [N]\{i} with the largest (K � 1) positive 
values of (rj � α)bvj into the set of S′ and check whether 
Equation (5) is satisfied. If Equation (5) holds, the cur
rent revenue value of α can be obtained, and otherwise, 
the current value of α cannot be obtained. We then 
solve the optimization problem by a standard binary 
search on α. We also note that γ(τ) in line 6 is a standard 
static capacitated assortment optimization, which can 
be solved efficiently (see Rusmevichientong et al. 2010).

4.2. Regret Analysis
The following theorem is our main regret upper-bound 
result for Algorithm 1.

Theorem 1. Suppose ε ≥ ε and N ≤ T. Then, there exists a 
universal constant C0 < ∞ such that for sufficiently large 
T, the TOTE regret of Algorithm 1 is upper bounded by

C0 ×

 

εK2T log T + (K2
ffiffiffi
ε

√
+

ffiffiffiffi
K

√
)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NT log3T
q

+ K2N log2T

!

:

Furthermore, if ε≲1=K3 holds, then the regret upper bound 
can be simplified to

O εK2T log T +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KNT log3T
q� �

: (6) 

Combined with Fact 1, we know that Equation (6) 
also serves as an upper bound for the BIH regret.

Remark 1. We note that Theorem 1 could be implied 
for every value of ε if there exists an adversarial bandit 
algorithm that achieves eO(

ffiffiffiffiffiffiffi
NT

√
) BIH regret under 

fully adversarial settings. For multiarmed bandit, such 
an algorithm exists (Auer et al. 2002), rendering gap- 
independent analysis of the ε-contamination model 
trivial. However, for the assortment selection problem 
under the MNL model, the work of Han et al. (2021) 
shows that any algorithm must suffer a regret lower 

bound of eO min T,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�N

K
�

T
r� �� �

against best-in- 

hindsight benchmarks in the fully adversarial setting. 

As the term N
K

� �

is typically prohibitively large in 

practice, such a negative result shows that Theorem 1
cannot be obtained by simple black-box reduction to a 

fully adversarial problem in the assortment selection 
question.

To complement Theorem 1, we state the following 
proposition establishing some lower bounds for the 
different types of regret considered in this paper.

Proposition 1. Let c0 > 0 be a universal constant and π be 
any admissible policy. Suppose also that K < N=4. 

1. The BIH regret of π on worst-case problem instances is 
at least c0 ×

ffiffiffiffiffiffiffi
NT

√
.

2. For 0 ≤ ε < 1, suppose there are ⌊εT⌋ outlier custo
mers. Then, the TOTE regret of π on worst-case problem 
instances is lower bounded by at least c0 × (εT +

ffiffiffiffiffiffiffi
NT

√
).

The first property of Proposition 1 is proved by sim
ply setting ε � 0 and using existing lower-bound results 
for dynamic assortment planning with no outlier custo
mers (see, e.g., Chen and Wang 2018). The proof of the 
second property is achieved by considering the two 
terms εT and 

ffiffiffiffiffiffiffi
NT

√
separately. The complete proof of 

Proposition 1 is given in the supplementary material.
The claims in Proposition 1 lead to a challenging 

open problem on the BIH regret upper bound when 
ε≳

ffiffiffiffiffiffiffiffiffiffi
N=T

p
, at which time the εT term would dominate 

the 
ffiffiffiffiffiffiffi
NT

√
term (see Equation (6)). In such cases, we con

jecture that the optimal regret upper bounds would be 
ffiffiffiffiffiffiffi
NT

√
, implying that our current result in Theorem 1 is 

suboptimal when ε is very large. The question of achiev
ing eO(

ffiffiffiffiffiffiffi
NT

√
) regret upper bound for all ε levels requires 

fully adversarial bandit algorithms for dynamic assort
ment optimization, which is very challenging and an 
open question as far as we know.

An important special case of Theorem 1 is ε � ε � 0, 
which reduces to the well-studied dynamic assortment 
optimization problem without outlier customers. For 
such settings, Agrawal et al. (2017, 2019) give algo
rithms with a regret upper bound of eO(

ffiffiffiffiffiffiffi
NT

√
), which 

matches the lower bound of Ω(
ffiffiffiffiffiffiffi
NT

√
) given in Chen 

and Wang (2018) up to polylogarithmic terms. Com
paring their results with Theorem 1, we observe that 
our result at ε � ε � 0 matches the eO(

ffiffiffiffiffiffiffi
NT

√
) regret bound 

except for an additional term of O(
ffiffiffiffi
K

√
). This O(

ffiffiffiffi
K

√
) fac

tor stems from our active-elimination protocol and our 
technique for estimating the utility parameters, both of 
which are essential for handling outlier customers when 
ε > 0. We believe that removing this factor is technically 
quite challenging and leave it as an interesting open 
question. We also note that the capacity constraint K is 
typically a very small constant in practice, and hence, an 
additional O(

ffiffiffiffi
K

√
) term is likely negligible.

Our regret upper bound in Theorem 1 also yields 
meaningful guarantees when ε is not zero. For example, 
with ε � O(T�1=4), meaning that O(T3=4) of T customers 
are outliers, Theorem 1 provides an O(K2T3=4log T)
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regret upper bound. This guarantee is nontrivial because 
it is sublinear in T, although it is larger than the standard 
eO(

ffiffiffiffiffiffiffi
NT

√
) bound for the uncontaminated setting. Thus, 

Theorem 1 reveals the trade-off and impact of a small 
proportion of outlier customers on the performance of 
dynamic assortment optimization algorithms/systems.

4.3. Proof Sketch of Theorem 1
In this section, we sketch the proof of Theorem 1. Key 
lemmas and their implications are given, whereas the 
complete proofs of the presented lemmas are deferred to 
the supplementary material accompanying this paper.

We first state a lemma that upper bounds the estima
tion error | bv(τ+1)

i � vi | .

Lemma 1. Suppose T0 ≥ 128(K + 1)
2Nτ ln T and min{1, 

εT=Tτ} ≤ 1=4(K + 2). With probability 1 � O(τ0N=T2), it 
holds for all τ satisfying Tτ ≥ max{ε,ε}T=4(K + 1) and i ∈

A(τ+1) that |bv(τ+1)

i � vi | ≤ ∆∗
ε(i,τ+ 1), where

∆∗
ε(i,τ+ 1) � 8(K + 1)

ετ
2 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ετNτ ln T
Tτ

s

+
2Nτ ln T

3Tτ

 !

+ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1 + VS)viNτ ln T
Tτ

s

, (7) 

where ετ is defined as ετ � min{1,εT=Tτ}, Nτ � |A(τ+1) |

and VS �
P

j∈S(i)
τ

vj.

Lemma 1 shows that, with high probability, the esti
mation error between bv(τ+1)

i and vi, the true preference 
parameter of item i for typical customers, can be upper 
bounded by ∆∗

ε(i,τ+ 1), which is a function of K, τ, T, ε, 
and Nτ � |A(τ+1) | . It should be noted that the definition 
of ∆∗

ε(i,τ+ 1) involves unknown quantities 
�
mostly 

VS �
P

j∈S(i)
τ

vj
�

and hence, cannot be directly used in an 

algorithm. The definition of b∆ε(τ+ 1) in Algorithm 1, 
on the other hand, involves only known quantities and 
estimates. In Corollary 1, we will establish the connec
tion between ∆∗

ε(i,τ+ 1) and b∆ε (τ+ 1).
Our next lemma derives how the estimated expected 

revenue R(S; bv) deviates from the true value R(S; v) by 
using upper bounds on the estimation errors between bv 
and v.

Lemma 2. For any S ⊆ [N], |S | ≤ K, and {bvi}, it holds 
that

|R(S; bv) � R(S; v) | ≤
2
P

i∈S | bvi � vi |

1 +
P

i∈Svi
:

The proof uses only elementary algebra.

Combining Lemmas 1 and 2, we show that the b∆ε(τ)
quantities defined in our algorithm serve as valid upper 
bounds on the estimation error between R(S; bv(τ)

) and 
R(S; v).

Corollary 1. For every τ and |S | ≤ K, S ⊆ A(τ), condi
tioned on the success events of Lemma 1 on epochs up to τ, 
it holds that |R(S; bv(τ)

) � R(S; v) | ≤ b∆ε(τ) ≤ b∆max{ε,ε}(τ), 
where b∆ is defined in Algorithm 1.

Our next lemma is an important structural lemma, 
which states that, with high probability, any item in the 
optimal assortment S∗ is never excluded from active 
item sets A(τ+1) for all epochs τ.

Lemma 3. If ε ≥ ε, then with probability 1 � O(τ0N=T2), 
it holds that S∗ ⊆ A(τ) for all τ.

This structural lemma yields two important conse
quences. First, because “good” items remain within the 
active item subsets A(τ+1), each of the assortments S(i)

τ 

computed in step 5 of Algorithm 1 will have relatively 
high expected revenue. Second, the fact that S∗ ⊆ A(τ+1)

implies that the optimistic estimates γ(τ) will always be 
based on the expected revenue of the actual optimal 
assortment R(S∗; v). This justifies the elimination step 7, 
in which we discard all items whose best assortment 
has significantly lower revenue than γ(τ).

The proof of Lemma 3 is based on an inductive argu
ment, which shows that if S∗ belongs to A(τ) at the 
beginning of every epoch τ, then any item in S∗ will not 
be removed (with high probability) by step 7. The intui
tion for this is that the optimal assortment containing 
any i ∈ S∗ is S∗ itself, whose revenue cannot be too far 
away from γ(τ) because of Lemmas 1 and 2. The com
plete proof of Lemma 3 is provided in the supplemen
tary material.

Finally, our last technical lemma upper bounds the 
per-period regret incurred by Algorithm 1.

Lemma 4. Suppose S∗ ⊆ A(τ) holds for all τ. Then, with 
probability 1 � O(τ0N=T2), for every τ ≤ τ0 and i ∈ A(τ+1), 
it holds that R(S∗; v) � R(S(i)

τ ; v) ≤ 4b∆ε(τ).

Given the established technical lemmas, we are now 
ready to give the proof of Theorem 1.

Proof. Let τ∗ be the smallest integer such that Tτ∗ ≥

εT=4(K + 1). For all epochs τ < τ∗, the induced cumu
lative regret can be upper bounded by

X

τ<τ∗

Tτ ≤ Tτ∗ ≤ εT: (8) 

In the rest of this proof, we upper bound the regret 
incurred from epochs τ ≥ τ∗. By Lemma 4, the regret 
incurred by a single time period in epoch τ is upper 
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bounded by 4b∆ε (τ) with high probability. The total 
regret accumulated in epoch τ is then upper bounded 
by 4b∆ε (τ) × Tτ. Hence, the regret accumulated on the 
entire T time periods is upper bounded by
Xτ0

τ�0
4b∆ε(τ)Tτ

≲
Xτ0

τ�0

0

B
@K2ετ + K2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ετ |A(τ+1) | log T
Tτ

s

+
K2 |A(τ+1) | log T

Tτ

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K |A(τ+1) | log T
Tτ

s 1

C
A × Tτ

≤
Xτ0

τ�0

0

B
@

K2εT
Tτ

+ K2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε |A(τ+1) |T log T
T2
τ

s

+
K2 |A(τ+1) | log T

Tτ

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K |A(τ+1) | log T
Tτ

s 1

C
A × Tτ (9) 

≤ τ0K2εT + K2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εT log T

p
 
X

τ≤τ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

|A(τ+1) |

q !

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K log T

p
 
X

τ≤τ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tτ |A(τ+1) |

q !

+ K2 log T

 
X

τ≤τ0

|A(τ+1) |

!

≤ τ0K2εT + τ0K2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εNT log T

p
+ τ0K2N log T

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K log T

p
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

τ≤τ0

|A(τ+1) |

s

×

ffiffiffiffiffiffiffiffiffiffiffiffiffi
X

τ≤τ0

Tτ
s

(10) 

≤ K2εT log T + K2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εNT log3T
q

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K log T

p
×

ffiffiffiffiffiffiffiffiffi
τ0N

p

×
ffiffiffiffi
T

√
+ K2N log2T

≲εK2T log T + (K2
ffiffiffi
ε

√
+

ffiffiffiffi
K

√
)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NT log3T
q

+ K2N log2T:

(11) 

Here, in Equation (10), we apply the Cauchy–Schwartz 
inequality. The final inequality holds because τ0 �

O(log T). w

5. Adaptation to Unknown Outlier 
Proportion «

In this section, we describe a more complex algorithm 
for robust dynamic assortment optimization where the 
outlier proportion ε is unknown a priori. Inspired by the 
“multilayer active arm race” for multiarmed bandits, 

because of Lykouris et al. (2018), Algorithm 3 runs mul
tiple “threads” of known-ε algorithms on a geometric 
grid of ε values in parallel while carefully coordinating 
between the threads. The pseudocode of the proposed 
adaptive algorithm is given in Algorithm 3.

We note that for two threads j′ < j, we have bεj′ > bεj, 
which implies that the confidence interval length 
b∆ ε̂ j′ (τ+ 1) is typically longer than b∆ ε̂j (τ+ 1). Therefore, 
the thread j′ is less aggressive than the thread j in terms 
of eliminating items (i.e., an item eliminated by thread j 
may remain active in thread j′). More detailed explana
tions of key steps in Algorithm 3 are summarized.

Algorithm 3 (Dynamic Assortment Optimization Robust 
to Unknown Outlier Proportion ε) 

1: Input: lower bound on outlier proportion ε � 2�J, 
J � ⌊log2

ffiffiffiffiffiffiffiffiffiffi
N=T

p
⌋ + 1;

2: Output: a sequence of assortments {St}t attaining 
good regret for any ε;

3: Construct a grid of outlier proportion values {bεj}
J�1
j�0 , 

where bεj � 2�j;
4: Construct J threads j < J, each with bεj outlier 

proportion;
5: For each i ∈ [N] and j < J, set bv(0), j

≡ 1, b∆ ε̂ j (0) � 1, 
A

(0)
j � [N], T0 � 64(K + 1)

2lnT;
6: for τ � 0, 1, 2: : : do
7: for j � 0, 1, : : : , J � 1 do
8: If j > 0, then update A(τ)

j � A
(τ)
j ∩ A

(τ+1)

j�1 ;
9: *Compute γ(τ)

j and S(i)
τ, j for each i ∈ A

(τ)
j , and 

update A(τ+1)
j ;

10: end for
11: for the next Tτ � 2τT0 time periods do
12: Sample thread j < J with probability }j :�

2�(J�j)=(1 � 2�J);
13: Sample item i ∈ A

(τ+1)
j uniformly at random;

14: if †there exists bεk > bεj such that R(bS
(i)
τ, j; bv

(τ), k
)

< γ(τ)
k � 7b∆ ε̂k (τ) then

15: Restart Algorithm 3 with J ← J � 1;
16: end if
17: Provide assortment S(i)

τ, j to the incoming cus
tomer, and observes purchase it;

18: Update nj
i ← nj

i + 1{it � i} and nj
0(i) ← nj

0(i)
+ 1{it � 0};

19: end for
20: Update estimates bv(τ+1), j

i � max{1,nj
i=nj

0(i)} for 
all j ≤ J and i ∈ A

(τ+1)
j ;

21: For every j ≤ J, compute b∆ε̂ j (τ+ 1) with T, Tτ 
replaced by Tj :� }jT and Tτ, j :� }jTτ;
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22: end for
23: *Using the procedure outlined in Algorithm 2.
24: †bv(τ), k and γ(τ)

k are estimates of v and computed 
γ(τ) values maintained in thread k.

1. Independence of threads. Different threads j < J, 
which correspond to different hypothetical values of ε 
(denoted as bεj), are largely independent from each 
other, maintaining their own parameter estimates bv(τ), j, 
active item set A

(τ+1)
j , and confidence intervals b∆ ε̂ j 

(τ+ 1). Coordination among threads only appears in 
two steps in Algorithm 3: step 8, which maintains a 
hierarchical “nested” structure of the active item sets 
A

(τ+1)
j among the threads, and step 15, which provides 

update rules for J ← J � 1 by comparing the obtained 
optimistic assortment among different threads. Further 
details are given in subsequent bullets.

2. Heterogeneous sampling of different threads. At 
each time period t when a potential customer arrives, a 
random thread j < J is selected to provide assortments. 
The random thread, however, is not selected uniformly 
at random but according to a specifically designed dis
tribution, with the probability of selecting thread j 
equal to }j � 2�(J�j)=(1 � 2�J). Intuitively, such a sam
pling distribution “favors” the more aggressive threads 
with smaller hypothetical bεj values.

This sampling scheme is motivated by the fact that 
threads with larger bεj values typically incur large regret 
because their elimination rules are conservative, so 
many suboptimal items i remain active for many 
rounds. The probability of choosing these threads with 
large bεj values should be small to ensure low regret of 
the overall policy.

At the same time, threads corresponding to smaller bεj 
values might also incur large regret, as their overly 
aggressive-elimination rule might remove the optimal 
assortment S∗ from consideration. To avoid large regret 
from these threads, step 15 coordinates among all of the 
threads and checks for inconsistencies, as we describe here.

3. Coordination and interaction among threads. As 
we mentioned, the coordination and interaction among 
different threads only happen in steps 8 and 15 in Algo
rithm 3. Here, we discuss these two steps in detail.

Step 8 aims at maintaining a “nested” structure 
among the active subsets A

(τ+1)
j , such that A

(τ+1)
j ⊆

A
(τ+1)
j′ for any j′ ≤ j at any epoch τ. We remark that such 

a nested structure should be expected even without 
this step because thread j′ ≤ j is less aggressive than 
thread j, in the sense that confidence intervals b∆ ε̂ j′ (τ+

1) are typically longer than b∆ ε̂ j (τ+ 1). Hence, one 
should expect that thread j′ has a larger active set. 
Nevertheless, because of stochastic fluctuations, such 

nested structures might be violated. Therefore, we 
explicitly enforce a nesting structure at the start of 
every epoch τ via step 8.

Step 15 is a statistical test that tries to detect whether 
bεj is small relative to the actual (unknown) outlier pro
portion ε. This test crucially ensures that we do not con
tinue to select an overly aggressive thread, which as we 
have mentioned, may incur large regret because of 
eliminating the optimal assortment S∗. Step 15 detects 
such events by evaluating the optimistic assortment 
S(·)
τ, j using the information from threads j′ < j, which use 

less aggressive-elimination rules. In detail, we check if 
the optimistic assortment S(·)

τ, j is near optimal using the 
utility estimates and confidence intervals from thread 
j′. If the check fails and we see that S(·)

τ, j is suboptimal, 
we know that thread j has eliminated the optimal 
assortment S∗ from its active set A

(·)
j , which subse

quently leads to the conclusion that bεj is too small. 
Then, we terminate the current thread and restart the 
algorithm with J ← J � 1.

We also remark on the time complexity of Algorithm 
3. There are O(log(T=N)) values on the ε-grid. At each 
time period t, a thread bεj is chosen. Then, at most N 
combinatorial optimization problems are solved, and 
each combinatorial optimization takes O(NK log T)

time. Therefore, the total time complexity of the pro
posed algorithm is O(NKT log2T).

In the rest of this section, we state our regret upper- 
bound result for the adaptive Algorithm 3 as well as a 
sketch of its proof.

5.1. Regret Analysis and Proof Sketch
We establish the following regret upper bound for 
Algorithm 3. We note that all the regret mentioned in 
this section is the TOTE regret.

Theorem 2. Suppose Algorithm 3 is run with an initial 
value of J � ⌊log2(

ffiffiffiffiffiffiffiffiffiffi
N=T

p
)⌋ + 1. Then, there exists a con

stant C1 � poly(K, log(NT)) such that, for any ε ∈ [0, 1=2]

and sufficiently large T, the regret of Algorithm 3 is upper 
bounded by

C1 × (εT +
ffiffiffiffiffiffiffi
NT

√
):

Remark 2. In the statement of Theorem 2, C1 � poly 
(K, log(NT)) means C1 � (K log(NT))

c for some univer
sal constant c < ∞. For notational simplicity, we did not 
work out the exact constant c in the expression of C1.

The complete proof of Theorem 2 as well as the 
proofs of technical lemmas are relegated to the sup
plementary material. Here, we sketch the key steps in 
the proof. The first step is the following lemma, which 
shows that for threads with bεj ≥ ε, the optimal 
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assortment S∗ is never removed from their active item 
sets with high probability.

Lemma 5. With probability 1 � O(τ0NJ=T2), it holds for 
all τ and bεj ≥ ε that S∗ ⊆ A

(τ)
j .

Lemma 5 is similar in spirit to the structural results 
established in Lemma 3 for Algorithm 1, but it is only 
applicable to thread j with bεj ≥ ε. The remaining 
threads, with bεj < ε, are too aggressive in their elimina
tion strategy, so we cannot guarantee that S? ⊆ A

(τ+1)
j 

for all τ. We will see how to upper bound the regret 
from these threads later in this section.

Our next lemma analyzes step 15 of the algorithm.

Lemma 6. If bεJ ≥ ε, then with probability 1 � O(τ0NJ=T), 
Algorithm 3 will not be restarted.

At a high level, Lemma 6 states that if step 15 is trig
gered (which causes J ← J � 1 and a restart of the entire 
algorithm), the smallest hypothetical value bεJ must be 
below the actual value of ε. First, this ensures that the 
algorithm does not restart too often, but more impor
tantly, it guarantees that the actual ε always falls 
between bε0 and bεJ throughout the entire selling period.

The proof of Lemma 6 is based on Lemma 5. In particu
lar, the condition in step 15 of Algorithm 3 compares the 
optimistic assortments S(i)

τ, j in thread j with estimates in 
threads j′ < j, which have larger bεj values. If hypotheti
cally, bεj is larger than or equal to ε, then by Lemma 6, we 
know that S∗ ⊆ A

(τ+1)
j′ for all j′ ≤ j, and therefore, the esti

mated optimality of S(i)
τ, j should be consistent in all 

threads j′ ≤ j. Hence, any inconsistency detected by step 
15 must imply that bεj < ε, which justifies decreasing J.

We now present two lemmas that upper bound the 
regret accumulated by different threads, which requires 
some new notation. For 0 ≤ j < J, let R(bεj) denote the 
cumulative regret incurred during the time periods in 
which thread j is run. Clearly, the total regret incurred is 
upper bounded by 

P
j<J R(bεj). Using linearity of the 

expectation, it then suffices to upper bound E[R(bεj)] for 
every j< J. The next two lemmas provide these upper 
bounds for two different scenarios. For notational sim
plicity, we use ≲ to hide poly(K, log(NT)) factors.

Lemma 7. For all j < J satisfying bεj ≥ ε, E[R(bεj)]≲Pτ≤τ0 

E[b∆bε j
(τ) × }jTτ].

Lemma 8. For all j < J satisfying bεj < ε and any bεk >

max{bεj,ε}, it holds that E[R(bεj)]≲Pτ≤τ0
E[b∆bεk

(τ) ×

}jTτ]:

These two lemmas upper bound the total accumu
lated regret of threads 0 ≤ j < J separately for the case of 

bεj ≥ ε and bεj < ε. The case of bεj ≥ ε is relatively straight
forward to prove because S∗ ⊆ A

(τ+1)
j as shown in 

Lemma 5, so an argument similar to the proof of Theo
rem 1 applies. On the other hand, the case of bεj < ε is 
more difficult because S∗ might be eliminated in these 
threads. For Lemma 8, which considers this case, we 
carefully analyze the stopping rule in step 15, essen
tially showing that the check in step 15 will trigger as 
soon as the regret per time period is too high for these 
threads. The complete proofs of both lemmas, as well 
as the complete proof of Theorem 2, are deferred to the 
supplementary material.

6. Instance-Dependent Analysis
Recall that S∗ is the optimal assortment. For any given 
item i, let S∗, (i) � arg max

| S | ≤K, S�i R(S) is the optimal 
assortment containing the specific item i. Define the 
suboptimality “gap” β as

β :� R(S∗) � max
i∉S∗

R(S∗, (i)): (12) 

Intuitively, the suboptimality gap defined in Equation 
(12) measures how “well defined” the optimal assort
ment S∗ is in the sense that the inclusion of any nonopti
mal item i ∉ S∗ would result in at least a drop of β in 
expected revenue/reward, regardless of how other 
products in the assortment are selected. If a problem 
instance has a large suboptimality gap parameter β, 
it implies that the optimal assortment S∗ is easier to 
learn (because nonoptimal products are easier to be 
ruled out), and therefore, smaller cumulative regret is 
expected.

It is also worthwhile to compare the gap parameter 
defined in Equation (12) with those defined in earlier 
works. In the work of Rusmevichientong et al. (2010), a 
nonparametric gap β′ is defined as

β′ :�

min{mini vi, mini≠j |vi � vj | ,
min(i, j)≠(s, t) |J (i, j) � J (s, t) |}

(1 + K maxivi)
, 

where J (i, j) :� (rivi � rjvj)=(vi � vj). It is clear that a 
strictly positive β′ implies that all utility parameters 
{vi} are distinct. On the other hand, it is easy to construct 
problem instances with duplicate vi parameters (indicat
ing that some products have the same utility/popularity 
for incoming customers) and zero β′, whereas our 
defined suboptimality gap β could still be strictly posi
tive. Indeed, consider the following problem instance 
with n� 3 products and K� 2 capacity constraint, with 
(v1, v2, v3) � (0:5, 0:5, 1) and (r1, r2, r3) � (0:2, 0:5, 0:6). It 
is easy to verify that in this problem instance, β′ � 0, 
whereas β � 0:06 > 0.

In the remainder of this section, we will use the con
cept of suboptimality gap defined in Equation (12) to 
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improve our regret upper bounds in Theorems 1 and 2, 
obtaining log(T)-type gap-dependent regret bounds 
similar to bounds for stochastic multiarmed bandits. 
Both our Algorithms 1 and 3 remain unchanged, whereas 
the regret analysis is modified to take into consideration 
the β parameter.

6.1. Gap-Dependent Analysis of Algorithm 1 
(Known Corruption Level)

We first consider Algorithm 1 designed for the setting 
in which a good upper bound ε on the true corruption 
level ε is known. The following lemma is the key 
lemma in the gap-dependent setting.

Lemma 9. Let β be defined in Equation (12), and suppose 
β > 0. Then, with probability 1 � O(τ0N=T2), for every 
epoch τ satisfying

Tτ ≥ κ0

× max εK2T
β

,
K2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εNT log T
p

β
, K2N log T

β
, KN log T

β2

( )

(13) 

for some universal constant κ0 > 0, it holds that A(τ+1) � S∗.

We note that in (13), ε is an upper-bound estimate of 
ε. At a high level, Lemma 9 states that if Tτ is suffi
ciently large, the active product set A(τ) only consists of 
the optimal assortment for typical customers S∗. Intui
tively, this is because when Tτ is large, the confidence 
bound b∆ε(τ) is much shorter. When the confidence 
interval cannot cover the underlying suboptimality gap 
β, the nonoptimal products i ∉ S∗ will be automatically 
eliminated. A complete proof of Lemma 9 is given in 
the supplementary material.

With Lemma 9, we can prove the following theorem 
on gap-dependent regret upper bounds for Algorithm 
1 with a known upper bound ε on ε.

Theorem 3. Let β be defined in Equation (12) and β > 0. 
Assume also for simplicity that ε≲1=K3. The expected 
cumulative TOTE regret of Algorithm 1 is upper bounded by

C′
0 × εK2T log T +

K2N log2T
β

 !

, (14) 

where C′
0 < ∞ is a universal constant.

We remark that the log2T term in the second K
2Nlog2T
β 

term in the regret upper bound most likely arises from 
the doubling epochs {A(τ)} used in our proposed 
active-elimination algorithms, where the total number 
of epochs τ0 could be logarithmic in T. It is an interest
ing open technical question to further improve the sec
ond term in (14) to be linear in log T, which should be 

possible at least in the case of ε (or its suitable upper 
bound ε) being known.

6.2. Gap-Dependent Analysis of Algorithm 3 
(Unknown Corruption Level)

When the corruption level ε is unknown and no good 
estimate is available a priori, Algorithm 3 partitions the 
possible corruption levels into a logarithmic grid 
{bεj}

J�1
j�0 and runs Algorithm 1 on different levels of bεj in 

parallel. To analyze its regret performance from a gap- 
dependent perspective, we again discuss the two cases 
of bεj ≥ ε and bεj < ε separately.

In the case of bεj ≥ ε (i.e., overestimating the true cor
ruption level ε), Lemma 5 shows that with high proba
bility, the optimal assortment S∗ will not be removed 
from A(τ)

j . Subsequently, Lemma 9 can be directly ap
plied, with a union bound on the failure probability 
over j< J, bεj ≥ ε, as the following corollary.

Corollary 2. For j < J and epoch τ, recall the definitions 
that Tj � }jT and Tτ, j � }jTτ, where }j � 2�(J�j)=(1 � 2�J)

is the sampling probability for thread j and Tτ � 2τT0 is the 
“normal” length epoch τ. Let τ∗

j be the smallest integer 
such that Tτ∗

j , j satisfies Equation (13) or more specifically,

Tτ∗
j ,j ≥κ′

0

× max
bεjK2Tj

β
,
K2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bεjNTjlog T

q

β
, K2N log T

β
, KN log T
β2

8
<

:

9
=

;
,

(15) 

where κ′
0 > 0 is a universal constant. Then, for all τ′ ≥ τ∗

j , 
A

(τ)
j � S∗.

Subsequently, Lemma 7 leads to the following corollary.

Corollary 3. For all j < J satisfying bεj ≥ ε, E[R(bεj)]≲ 
E[
P
τ≤τ∗

j
b∆ ε̂ j (τ) × }jTτ], where τ∗

j is defined in Corollary 2.

We next consider the case of bεj < ε. Because the con
straint A(τ)

j+1 ⊆ A
(τ)
j is enforced in Algorithm 3 all the time, 

we know that A(τ)
j � S∗ implies A(τ)

j+1 � S∗ with probabil
ity 1. Consequently, Lemma 8 implies the following.

Corollary 4. For all j < J satisfying bεj < ε and any bεk 

> max{bεj,ε}, it holds that E[R(bεj)]≲E Pτ≤τ∗
k
b∆ ε̂k (τ)

h
×

}jTτ], where τ∗
k is defined in Corollary 2 for thread k.

With Corollaries 2–4 in place, we are ready to state 
our gap-dependent analysis for Algorithm 3 with 
unknown corruption level ε.

Theorem 4. Suppose Algorithm 3 runs with an initial 
value of J � ⌊log2(

ffiffiffiffiffiffiffiffiffiffi
N=T

p
)⌋ + 1. Suppose also that the gap 
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parameter β defined in Equation (12) is strictly positive. 
Then, the cumulative TOTE regret of Algorithm 3 can be 
upper bounded by

(εT + N=β2) × poly(K, log(NT)), 

where in the regret upper bound, we hide polynomial depen
dency on K and log N, log T terms.

Remark 3. An alternative upper bound of (εT=β+

N=β) × poly(K, log(NT)) can also be proved, which 
could be larger or smaller than the one presented in 
Theorem 4 depending on the values of ε and β.

Comparing Theorem 4 with Theorem 3, we notice 
an additional 1=β term in either the εT or the N=β 
term in Theorem 3. Such a worsened dependency 
likely arises from the layered approach taken to 
address unknown ε values, which also delivered sub
optimal regret guarantees (compared with when ε is 
known a priori) in robust multiarmed bandit pro
blems (Lykouris et al. 2018, Gupta et al. 2019).

6.3. A Lower Bound on Gap-Dependent Regret
We complement our gap-dependent regret upper- 
bound results in the previous sections by stating a 
lower bound on gap-dependent regret in dynamic 
assortment optimization with outlier customers.

Theorem 5. Let K,β be constants independent of T, satis
fying β ≤ min{1=16, 1=K} and K ≤ 2. Suppose also that 
ε, N can potentially change with T and that β ≥

ffiffiffiffiffiffiffiffiffiffi
N=T

p
, 

K < N=4. Then, for sufficiently large T, the worst-case BIH 
regret of any admissible policy is lower bounded by

c′
0 × min{εT,

ffiffiffiffiffiffiffiffiffiffi
εNT

√
} +

N log T
Kβ

� �

, 

where c′
0 > 0 is a universal constant independent of N, T, K, 

and β.

Remark 4. The lower-bound result in Theorem 5
assumes the algorithm has full knowledge of the cor
ruption level ε.

Remark 5. As Theorem 5 only concerns the BIH 
regret, a similar lower bound for the TOTE regret can 
be established. More specifically, the Ω(εT) lower 
bound in Proposition 1 still applies because there is no 
additional constraints/assumptions imposed on out
lier customers. Furthermore, the N log T

Kβ lower bound in 
Theorem 5 is obtained by simply setting ε � 0, which 
applies to the TOTE-regret notion too. Hence, a lower 
bound of Ω εT +

N log T
Kβ

� �
can be established for the 

TOTE regret in the gap-dependent setting.
Comparing Theorem 5 with Theorem 3 (our regret 

upper bound with knowledge of ε), we notice that the 
K2N log2T=β term matches the N log T=(Kβ) term in 

Theorem 5 up to polynomial dependency on K and 
log T. As discussed in the works of Agrawal et al. 
(2017, 2019), in revenue management applications, the 
capacity constraint K is usually very small and there
fore, treated as a constant. On the other hand, there is 
a gap between the εK2T log T term in the upper 
bound and the min{εT,

ffiffiffiffiffiffiffiffiffiffi
εNT

√
} term in the lower 

bound, particularly when ε is relatively large com
pared with N/T. We are at the moment unsure which 
one is tight. However, in order for the lower bound to 
be tight, it requires fully adversarial algorithms for 
dynamic assortment optimization, which has already 
been an open question as discussed before. Finally, 
the lower bound in Theorem 5 assumes the knowl
edge of the corruption level ε. The lower bound for 
cases when ε is unknown is significantly more compli
cated and could involve whether the upper bounds 
are tight in log T terms and the distinction between 
regret and pseudoregret notions (Lykouris et al. 2018), 
which are out of the scope of this paper.

7. Uniform Contamination Models
In this section, we study an uniform contamination 
model that is slightly weaker than the fully adaptive 
adversary protocol defined in Definition 1. Instead of 
allowing for the contaminated time periods to be 
adversarially selected and potentially concentrated or 
widely spread in any manner, in this section we impose 
the following additional assumption to constrain the 
distribution and pattern of contaminated time periods.

Definition 2 (Uniform Contamination Protocol). {φt}
T
t�1 

are independent identically distributed random vari
ables with Pr[φt � 1] � ε and Qt ≡ Q for some unknown 
underlying outlier demand distribution Q, where ε ∈

[0, 1] is a parameter characterizing outlier portions.
We study the uniform contamination model for two 

purposes. First, it allows us to construct an information- 

theoretical lower bound of Ω min εT,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N
K

� �

T

s( ) !

, 

showing that the regret upper bounds established in pre

vious sections are tight up to K factors when N
K

� �

is not 

too small. As the uniform contamination model imposes 
stronger conditions, such a lower bound is also applica
ble to the general model studied in previous sections as 
well. Second, with the uniform contamination model, 
we designed a robust planning algorithm based on the 
UCB framework that improves an O(K) factor in the εT 
term of the regret upper bound.
7.1. Lower Bound
We establish the following information-theoretical 
lower bound on any admissible assortment optimiza
tion policy for the uniform contamination model.
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Theorem 6. Fix ε ∈ (0, 1), and suppose N
K

� �

≥ 2. There 

exists a numerical constant CK > 0 depending only on K, 
such that for any admissible policy π, it holds that

RegretBIH(T) � max
S⊆[N], | S | ≤K

E

"
XT

t�1
R(S; Pt) � R(St; Pt)

#

≥ CK × min
(

εT,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
K

� �

T

s )

, 

where Pt is the typical distribution if φt � 0 and Pt � Q is the 
outlier distribution if φt � 1, with {φt}

T
t�1 being realized 

according to the uniform contamination protocol described in 
Definition 2.

The proof of Theorem 6 is presented in the supple
mentary material. At a high level, the proof is based on 
a key technical result from Han et al. (2021), which states 
that, for any S ⊆ [N], |S | ≤ K, there exists a distribution 
µ over v ∈ [0, 1]

N such that Ev~µ[Pv(· |S′)] ≡ P0 for all 
S′ ≠ S and Ev~µ[Pv(· |S′)] ≡ P1 for S′ � S for two differ
ent distribution P0,P1 where Pv is the distribution under 
the MNL model parameterized by v. Using such a con
struction for the outlier distribution together with stan
dard bandit lower-bound arguments (see, e.g., Bubeck 
and Cesa-Bianchi 2012), we can prove Theorem 6.

Remark 6. Together with the Ω(
ffiffiffiffiffiffiffi
NT

√
) regret lower 

bound established in Chen and Wang (2018) for 
K ≤ N=4, Theorem 6 implies a regret lower bound of 

Ω min εT +
ffiffiffiffiffiffiffi
NT

√
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N
K

� �

T

s( ) !

for the BIH regret. 

As the second term involves N
K

� �

, which is typically 

very large, in practice the lower bound could be sim
plified to Ω(εT +

ffiffiffiffiffiffiffi
NT

√
), which matches our lower 

bound for the TOTE regret in Proposition 1 in the main 
text.

Remark 7. The problem setting for which the lower 
bound in Theorem 6 applies involves notably much 
stronger assumptions compared with the settings stud
ied prior to this section and in the subsequent subsec
tion, where we will present another upper bound. This 
makes the lower bound mathematically stronger. More 
specifically, the following differences apply. 

1. In the uniform contamination model, each time 
period is contaminated (corrupted) in a uniform, sto
chastic manner; on the other hand, in the general 
model studied in previous sections, the contamination 
or corruption patterns are arbitrary and adaptively 
adversarial.

2. The adversarial demand models {Qt}
T
t�1 constructed 

in Theorem 6 have two additional structures. 

a. If {Qt}
T
t�1 are understood as adaptively adversa

rially chosen distributions, then each Qt falls into the 
class of MNL demand models with adaptively adver
sarially chosen utility parameters {vt}

T
t�1 ⊆ [0, 1]

N, 
which is weaker than the assumption that each Qt 
could be any adversarially chosen demand model.

b. The {Qt}
T
t�1 constructed in Theorem 6 also 

have the structure of Qt ≡ Q, with Q being a fixed 
demand distribution that is not necessarily an 
MNL model. This matches the definition of uni
form contamination models in Definition 2.

7.2. Upper Bound
In this section, we adapt the MNL-bandit algorithm 
(Agrawal et al. 2019) designed originally for the stochas
tic assortment optimization problem to the uniform con
tamination setting by using median estimators with 
inflated upper confidence estimates. We then derive a 
regret upper bound that improves an O(K) factor on the 
contamination-related term compared with the regret 
upper bound obtained in Theorem 1 for the general con
tamination model.

Algorithm 4 (MNL Bandit with Inflated UCBs for the 
Uniform Contamination Model) 

1: Input: time horizon T, outlier proportion ε, reve
nue parameters {ri}

N
i�1, capacity K;

2: Output: a sequence of assortments {St}
T
t�1 attain

ing good regret;
3: Initialize: for each i ∈ [N], mi � ρi � Li � 0, vi �

V∞, C1 � 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 ln(NT2)

p
, C2 � 384(1 + 2εK)εK, C3 �

8ε, C4 � 16ε2(1 + K)
2, τ� 1;

4: while T time periods have yet been reached do

5: Compute Sτ ← arg maxS⊆[N], | S | ≤K

P
i∈S

rivi

1+
P

i∈S
vi

;

6: Offer assortment Sτ repetitively until a no-purchase 
action occurs; let nτ(i) be the number of times prod
uct i is purchased for i ∈ Sτ;

7: Update: mi ← mi + 1, ρi ← ρi + nτ(i), Li ← Li + 1 
+
P

j∈Sτnτ(j) for all i ∈ Sτ;
8: For each i ∈ Sτ, compute

bvi ←
ρi
mi

, vi ← min 1, bvi +
C1
ffiffiffiffiffimi

√ +
C2

mi
+

C3Li

mi
+ C4

� �

;

9: end while

Algorithm 4 gives a pseudocode description of the 
proposed MNL-bandit algorithm variant with inflated 
UCBs. Compared with the existing MNL-bandit algo
rithm (Agrawal et al. 2019), the key difference is the 
definition of the inflated upper confidence estimates vi, 
which involves not only the stochastic confidence term 
C1=

ffiffiffiffiffimi
√ but also, a term C2Li that is related to estima

tion errors resulting from corrupted time periods. Note 
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that the “offer-until-no-purchase” strategy and the in
flated confidence intervals are designed specifically for 
the uniform contamination model in Definition 2; for 
the general contamination model studied in previous 
sections, such strategies would not work, particularly 
when adversarial corruptions are concentrated to
gether, in which case the inflated confidence intervals 
might fail to capture the estimation error.

The following theorem upper bounds the cumulative 
regret of Algorithm 4.

Theorem 7. Suppose ε ≤ ε ∈ [0, 1=2] and {φt, Qt}
T
t�1 are 

realized according to the uniform contamination model 
defined in Definition 2. Then, it holds that

RegretTOTE(T) ≤ 2(1 + 4εK) × (C4KT + 2C1
ffiffiffiffiffiffiffiffiffiffi
KNT

√

+ 2(C2 + C3KT)lnT), 

where RegretTOTE(T) is the TOTE regret over T periods 
defined in Equation (2), which upper bounds the BIH regret 
in Equation (3) by definition.

Remark 8. Suppose C1, C2, C3, C4 are selected as in 
Algorithm 4 and ε≲1=K1:5. The regret upper bound in 
Theorem 7 could then be reduced to O(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KNT ln(NT2)

p

+εKT lnT).
Because of space constraints, the complete proof of The

orem 7 is placed in the supplementary material. Compar
ing with the regret upper bound in Theorem 1, we notice 
an improvement of an O(K) factor in the εT term.

8. Numerical Illustration
In this brief experimental section, we provide some 
numerical illustrations that demonstrate the robustness of 
our proposed policy and the benefits over existing nonro
bust approaches for dynamic assortment optimization, 
including TS (Agrawal et al. 2017) and UCBs (Agrawal 
et al. 2019). We construct the following data instance. 

1. K of N items have revenue parameters ri ≡ 1 and 
preference parameters vi ≡ 0.

2. For the other (N � K) items, both their revenue 
and preference parameters (ri, vi) are uniformly distrib
uted on [0:1, 0:2].

3. For the first ⌊εT⌋ time periods, the arriving custo
mers are outliers with choice models Qt ≡ Q, where Q is 
an MNL-parameterized choice model with preference 
parameters set as v′

i � 1 if vi � 0 and v′
i � vi otherwise.

This instance reflects two important properties of outlier 
customers in practice, namely that they have significantly 
different preferences from typical customers and that they 
arrive in consecutive time periods (e.g., during a holiday 
season). In particular, the instance consists of K items with 
very high revenue but very low preference parameters 
so that few customers will buy them. Under normal cir
cumstances, a dynamic assortment optimization algorithm 

would identify the unpopularity of these K items very 
quickly and stop recommending them. However, as the 
outlier customers prefer these K items over the others, 
these items appear popular and profitable in the early time 
periods, which may mislead the algorithm. As these algo
rithms are highly unpopular in the latter time periods, a 
robust algorithm should not be severely impacted by these 
outlier customers.

For the baseline methods, the TS method is tuning 
free with a noninformative Beta(1, 1) prior on each 
item. For the UCB algorithm, we find the value in the 
multiplier (C1) when constructing upper confidence 
bands that gives the best performance (in the original 
paper of Agrawal et al. 2019, C1 � 48 for theoretical pur
poses). Each method is run for 100 independent trials, 
and the mean average regret (i.e., the cumulative regret 
over T) is reported. The standard deviations of all the 
methods are sufficiently small and thus, omitted for 
better visualization.

In Figure 1, we report the results for all methods 
under various settings of T, N, K, and ε. The experimen
tal settings are chosen as N ∈ {100, 300}, K ∈ {10,20}, 
ε ∈ {0, 0:05, 0:1}, and T ranging from T� 1,000 to T�

20,000. From Figure 1, we can see that when ε is strictly 
greater than zero, our proposed algorithms will stabi
lize at a mean regret level (0.02–0.06) that is much lower 
than the nonrobust TS and UCB methods. More impor
tantly, the average regret (i.e., cumulative regret 
divided by T) for our method decreases as a function of 
the time horizon, a phenomenon that does not happen 
for TS/UCB, especially when ε is large. This confirms 
that these latter two methods are not robust to outlier 
customers and further confirms the effectiveness of our 
proposed algorithms for robust dynamic assortment 
optimization. For the no contamination case of ε � 0, 
whereas our proposed algorithms perform slightly 
worse than the baselines, the decreasing rates of aver
age regrets are the same. When there is no contamina
tion, although the main term in our regret 

ffiffiffiffiffiffiffi
NT

√
is still 

tight, there might be extra overhead in the regret bound 
through dependency on K and log T factors.

9. Conclusions and Future Work
In this paper, we extend the ε-contamination model from 
statistics to the online decision-making setting and study 
the dynamic assortment optimization problem with out
lier customers. We propose a new active-elimination pol
icy that is robust to adversarial corruptions and establish 
a near-optimal regret bound. We further develop an 
adaptive policy that does not require any prior knowl
edge of the corruption proportion ε.

One interesting problem is to sharpen upper and 
lower regret bounds in the gap-dependent case. Be
yond this technical question, we hope that this work 
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inspires future work on model mis-specification in rev
enue management, which we believe is a practically 
important research direction. We look forward to pur
suing this direction in future work.

Acknowledgments
The authors thank the department editor, the associated 
editor, and the anonymous referees for many useful sug
gestions and feedback, which greatly improved the paper.

References
Agrawal S, Avandhanula V, Goyal V, Zeevi A (2017) Thompson 

sampling for MNL-bandit. Proc. Conf. Learn. Theory (COLT).
Agrawal S, Avadhanula V, Goyal V, Zeevi A (2019) MNL-bandit: A 

dynamic learning approach to assortment selection. Oper. Res. 
67(5):1453–1485.

Auer P (2002) Using confidence bounds for exploitation-exploration 
trade-offs. J. Machine Learn. Res. 3(November):397–422.

Auer P, Ortner R (2010) UCB revisited: Improved regret bounds for 
the stochastic multi-armed bandit problem. Periodica Math. Hun
garica 61(1–2):55–65.

Figure 1. (Color online) Comparison of Average Regret (i.e., Regret Divided by T) Between Our Proposed Algorithms and 
Baselines 

Note. The time horizon T ranges from 1,000 to 20,000.

Chen, Krishnamurthy, and Wang: Robust Dynamic Assortment Optimization 
16 Operations Research, Articles in Advance, pp. 1–17, © 2023 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

28
.1

22
.1

86
.5

4]
 o

n 
23

 N
ov

em
be

r 2
02

3,
 a

t 1
3:

37
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



Auer P, Cesa-Bianchi N, Freund Y, Schapire RE (2002) The nonsto
chastic multiarmed bandit problem. SIAM J. Comput. 32(1):48–77.

Besbes O, Zeevi A (2015) On the (surprising) sufficiency of linear 
models for dynamic pricing with demand learning. Management 
Sci. 61(4):723–739.

Bubeck S, Cesa-Bianchi N (2012) Regret Analysis of Stochastic and 
Nonstochastic Multi-Armed Bandit Problems (Now Foundations 
and Trends, Boston).

Caro F, Gallien J (2007) Dynamic assortment with demand learning 
for seasonal consumer goods. Management Sci. 53(2):276–292.

Chen M, Gao C, Ren Z (2016) A general decision theory for Huber’s 
ɛ-contamination model. Electronic J. Statist. 10(2):3752–3774.

Chen X, Wang Y (2018) A note on tight lower bound for MNL-bandit 
assortment selection models. Oper. Res. Lett. 46(5):534–537.

Chen X, Wang Y, Zhou Y (2020) Dynamic assortment optimization 
with changing contextual information. J. Machine Learn. Res. 
21(216):1–44.

Chen X, Wang Y, Zhou Y (2021a) Optimal policy for dynamic 
assortment planning under multinomial logit models. Math. 
Oper. Res. 46(4):1639–1657.

Chen X, Shi C, Wang Y, Zhou Y (2021b) Dynamic assortment selec
tion under nested logit models. Production Oper. Management 
30(1):85–102.

Cheung WC, Simchi-Levi D (2017) Thompson sampling for online 
personalized assortment optimization problems with multino
mial logit choice models. Preprint, submitted November 21, 
http://dx.doi.org/10.2139/ssrn.3075658.

Cooper WL, de Mello TH, Kleywegt AJ (2006) Models of the spiral- 
down effect in revenue management. Oper. Res. 54(5):968–987.

Diakonikolas I, Kamath G, Kane D, Li J, Moitra A, Stewart A (2018) 
Robustly learning a gaussian: Getting optimal error, efficiently. 
Proc. ACM-SIAM Sympos. Discrete Algorithms.

Diakonikolas I, Kamath G, Kane DM, Li J, Moitra A, Stewart A 
(2017) Being robust (in high dimensions) can be practical. Proc. 
Internat. Conf. Machine Learn.

Esfandiari H, Korula N, Mirrokni V (2018) Allocation with traffic 
spikes: Mixing adversarial and stochastic models. ACM Trans. 
Econom. Comput. 6(3–4):1–23.

Even-Dar E, Mannor S, Mansour Y (2006) Action elimination and 
stopping conditions for the multi-armed bandit and reinforce
ment learning problems. J. Machine Learn. Res. 7(June):1079–1105.

Gupta A, Koren T, Talwar K (2019) Better algorithms for stochastic 
bandits with adversarial corruptions. Proc. Conf. Learn. Theory.

Han Y, Wang Y, Chen X (2021) Adversarial combinatorial bandits 
with general non-linear reward functions. Proc. Internat. Conf. 
Machine Learn.

Huber PJ (1964) Robust estimation of a location parameter. Ann. 
Math. Statist. 35(1):73–101.

Huber PJ, Ronchetti EM (2011) Robust Statistics, Series in Probability 
and Statistics (Wiley, New York).

Lykouris T, Mirrokni V, Leme RP (2018) Stochastic bandits robust to 
adversarial corruptions. Proc. ACM Sympos. Theory Comput. (STOC).

Mahajan S, van Ryzin G (2001) Stocking retail assortments under 
dynamic consumer substitution. Oper. Res. 49:334–351.

McFadden D (1974) Conditional logit analysis of qualitative choice 
behavior. Zarembka P, ed. Frontiers in Econometrics (Academic 
Press, New York), 105–142.

Oh MH, Iyengar G (2019) Multinomial logit contextual bandits. 
Reinforcement Learn. Real Life (RL4RealLife) Workshop Internat. 
Conf. Machine Learn. (ICML).

Rusmevichientong P, Shen ZJ, Shmoys D (2010) Dynamic assort
ment optimization with a multinomial logit choice model and 
capacity constraint. Oper. Res. 58(6):1666–1680.

Saure D, Zeevi A (2013) Optimal dynamic assortment planning with 
demand learning. Manufacturing Service Oper. Management 15(3):387–404.

van Ryzin G, Mahajan S (1999) On the relationships between inven
tory costs and variety benefits in retail assortments. Management 
Sci. 45:1496–1509.

Xi Chen is an associate professor in the Department of Technology, 
Operations, and Statistics at Stern School of Business, New York Uni
versity. His research interests include statistical machine learning, sto
chastic optimization, and data-driven operations management.

Akshay Krishnamurthy is a principal research manager at Micro
soft Research New York City. His research interests include machine 
learning and statistics, with a particular focus on interactive learning, 
contextual bandits, and reinforcement learning.

Yining Wang is an associate professor at the Naveen Jindal School 
of Management, University of Texas at Dallas. He is generally inter
ested in machine learning and its applications in data-driven opera
tions management, such as dynamic pricing, assortment optimization, 
capacity management and inventory replenishment.

Chen, Krishnamurthy, and Wang: Robust Dynamic Assortment Optimization 
Operations Research, Articles in Advance, pp. 1–17, © 2023 INFORMS 17 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

28
.1

22
.1

86
.5

4]
 o

n 
23

 N
ov

em
be

r 2
02

3,
 a

t 1
3:

37
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 

http://dx.doi.org/10.2139/ssrn.3075658

	Robust Dynamic Assortment Optimization in the Presence of Outlier Customers
	Introduction
	Related Works
	Problem Formulation
	An Active-Elimination Policy
	Adaptation to Unknown Outlier Proportion &#x003B5;
	Instance-Dependent Analysis
	Uniform Contamination Models
	Numerical Illustration
	Conclusions and Future Work


