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Abstract. Wasserstein distributionally robust optimization (DRO) is an approach to opti-
mization under uncertainty in which the decision maker hedges against a set of probability
distributions, specified by a Wasserstein ball, for the uncertain parameters. This approach
facilitates robust machine learning, resulting in models that sustain good performance
when the data are to some extent different from the training data. This robustness is related
to the well-studied effect of regularization. The connection between Wasserstein DRO and
regularization has been established in several settings. However, existing results often
require restrictive assumptions, such as smoothness or convexity, that are not satisfied by
many important problems. In this paper, we develop a general theory for the variation regu-
larization effect of the Wasserstein DRO—a new form of regularization that generalizes
total-variation regularization, Lipschitz regularization, and gradient regularization. Our
results cover possibly nonconvex and nonsmooth losses and losses on non-Euclidean
spaces and highlight the bias-variation tradeoff intrinsic in the Wasserstein DRO, which bal-
ances between the empirical mean of the loss and the variation of the loss. Example applica-
tions include multi-item newsvendor, linear prediction, neural networks, manifold
learning, and intensity estimation for Poisson processes. We also use our theory of varia-
tion regularization to derive new generalization guarantees for adversarial robust learning.
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Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2022.2383.
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1. Introduction
Wasserstein distributionally robust optimization (DRO)
(Wozabal 2014, Mohajerin Esfahani and Kuhn 2018,
Zhao and Guan 2018, Blanchet and Murthy 2019, Gao
and Kleywegt 2022) is a framework for decision making
under uncertainty, including learning, in which the
decision maker has limited knowledge of the data-
generating mechanism. The approach uses a minimax
robust optimization problem:

min
f∈F

sup
P :Wp(P,Pn)≤ρ

Ez~P[ f (z)], (P)
where f (z) represents the loss as a function of the
unknown data z. The inner supremum finds the worst-
case expected loss among a ball of distributions with
radius ρ, containing all distributions that are close, in
p-Wasserstein distance Wp, to the empirical distribu-
tionPn based on a sample of size n. WassersteinDROhas
been applied to problems in machine learning, including
(semi)-supervised learning (Chen and Paschalidis 2018,
Blanchet and Kang 2020), adversarial learning (Staib and

Jegelka 2017, Sinha et al. 2018, Najafi et al. 2019, Levine
and Feizi 2020), reinforcement learning (Abdullah et al.
2019, Smirnova et al. 2019, Derman and Mannor 2020),
and transfer learning (Lee and Raginsky 2018, Volpi et al.
2018,Duchi et al. 2020). Kuhn et al. (2019) provide a recent
survey.

The robustness of solutions produced by Wasserstein
DRO can be related to the well-studied effect of regulari-
zation. The connection between Wasserstein DRO and
regularization has been established in various settings.
Shafieezadeh-Abadeh et al. (2015), Mohajerin Esfahani
and Kuhn (2018), Chen and Paschalidis (2018), Blanchet
et al. (2019), and Shafieezadeh-Abadeh et al. (2019), and
provide equivalence results when p� 1, and Gao et al.
(2017), Volpi et al. (2018), Blanchet et al. (2019), Bartl et al.
(2021), and Blanchet et al. (2022), and provide asymptotic
equivalence results when p ∈ (1,∞). Nonetheless, all the
results mentioned previously are based on restrictive as-
sumptions that limit their application to important classes
of problems in operations research andmachine learning.
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For example, equivalence results for 1-Wasserstein DRO
(Mohajerin Esfahani and Kuhn 2018, Shafieezadeh-
Abadeh et al. 2019) require unbounded support of
distributions and convexity of loss functions, whereas
the distributions used in real-world problems have
bounded support, and many loss functions used in
machine learning are not convex. Also, asymptotic
equivalence results (Gao et al. 2017, Volpi et al. 2018,
Blanchet et al. 2019, Bartl et al. 2021) for p-Wasserstein
DRO require loss functions to be smooth, whereas
some widely used loss functions are merely piecewise
smooth, including newsvendor cost, least absolute
loss, and the rectified linear unit (ReLU) neural net-
work and its variants. Therefore, it is clear that the cur-
rent theory of the regularization effect of Wasserstein
DRO is not complete.

In this paper, we aim to close this gap by providing a
general connection betweenWasserstein DRO and regu-
larization. To this end, we develop a new concept, called
the variation of loss (see Definition 1), denoted as V( f ),
that measures the magnitude of change of the expected
loss as the data distribution is perturbed. It generalizes
total variation for real-valued functions and reduces to
the homogeneous Lipschitz norm for Lipschitz continu-
ous functions and to weighted empirical gradient norm
for differentiable functions. Intuitively, when the varia-
tion of loss is controlled, small perturbations of random
data would have little impact on the expected loss and
thus would not deteriorate the solution quality much.
We develop results that show that Wasserstein DRO (P)
is closely related to a variation regularization problem:

min
f∈F

Ez~Pn[ f (z)] + ρV( f ): (V)
Our results illustrate the variation regularization effect
that is intrinsically associated with Wasserstein DRO.
More specifically, we establish the following results:

(I) For p-Wasserstein DRO, p ∈ (1,∞], we show that for
a broad class of loss functions, possibly nonconvex and
nonsmooth, with high probability, Wasserstein DRO (P)
is asymptotically equivalent to variation regularization
(V) up to a higher orderO(ρ2�p) remainder (Theorem1).

For p< 2, the bound ρp is tight (Example 2), indicating a
qualitative disparity amongdifferentWasserstein orders.

For p � 2 (one of the most popular choices of Wasser-
stein order), we demonstrate our results with multi-item
newsvendor (Example 4) and gradient regularization for
leaky ReLU networks (Example 5). Moreover, our results
hold for general non-Euclidean metric spaces, illustrated
with Laplacian regularization for manifold learning
(Example 9), and score function regularization for inten-
sity estimation of point processes (Example 10).

For p �∞, we apply our results to adversarial robust
learning and establish its equivalence to empirical total-
variation regularization (Example 11).

(II) For 1-Wasserstein DRO (p � 1), we show that the
asymptotic equivalence between Wasserstein DRO (P)

and variation regularization (V) may not hold in general
(Example 6). For this setting we prove a sandwich theo-
rem (Theorem 2 and Corollary 1), that shows that with
high probability, (P) with radius ρ is upper bounded by
(V) with a tuning parameter ρ and lower bounded by
(V) with a tuning parameter ηρ, where η ∈ (0, 1]. This
establishes an approximate equivalence between control
of the Wasserstein robust loss and control of the varia-
tion of the loss function. As applications, we consider
linear prediction with Lipschitz losses (Examples 7 and
8), and we extend the existing equivalence results
(Mohajerin Esfahani and Kuhn 2018, Shafieezadeh-
Abadeh et al. 2019) to a more general class of noncon-
vex functions (Corollary 2).

(III) In addition to understanding the regularization
effect of Wasserstein DRO, our new results enable us to
develop new generalization guarantees for adversarial
robust learning that quantify the gap between the empiri-
cal adversarial risk and population adversarial risk (The-
orem 3). We show that in the adversarial setting, the
generalization behavior of a machine learning model is
affected not only by the complexity of the loss function
class as in classical empirical risk minimization, but also
by the complexity of the slope of the loss function class.

In essence, our analysis is based on Taylor expansions
of the loss function on each data point, sharing the same
spirit as several existing works on smooth losses. Never-
theless, the main challenges for nonsmooth loss func-
tions in a data-driven setting is that perturbing data
points results in a random and nonsmooth change on
the loss function values. Consequently, the existing
arguments cannot be simply adopted, and new proba-
bilistic analysis is needed to analyze the remainder of
the Taylor expansion. We refer to the next section for
more detailed comparisons with the literature.

1.1. Related Work
The relation between robust optimization and regulariza-
tion has been explored for various settings, dating back to
the pioneering work of Xu et al. (2008, 2009). They estab-
lished an equivalence between data-driven robust optimi-
zation and norm regularization for LASSO and support
vector machines, which was generalized to linear and
matrix regression in Bertsimas and Copenhaver (2018),
among others. Given the close relationship betweenWas-
serstein DRO and data-driven robust optimization (Gao
and Kleywegt 2022), it is expected that Wasserstein DRO
would also exhibit a regularization effect. Indeed, the
equivalence between 1-Wasserstein DRO and norm reg-
ularization has been established for piecewise-linear con-
vex losses (Mohajerin Esfahani and Kuhn 2018), logistic
regression (Shafieezadeh-Abadeh et al. 2015, Blanchet
et al. 2019), support vector machines (Blanchet et al.
2019), and linear regression and classification and their
kernelization (Chen and Paschalidis 2018, Shafieezadeh-
Abadeh et al. 2019). All these results require convexity
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and unboundedness of the data space. Blanchet et al.
(2019) established the connection between p-Wasserstein
DRO, p ∈ (1,∞], and norm regularization for certain set-
tings, and studied the optimal selection of Wasserstein
radius. The previous version of this work (Gao et al.
2017) established an asymptotic equivalence between p-
WassersteinDROand gradient regularization for smooth
loss functions and was generalized by Bartl et al. (2021)
under weaker assumptions. Blanchet et al. (2022) estab-
lished a finer analysis of the asymptotic equivalence for
2-Wasserstein DRO, and Volpi et al. (2018) developed an
asymptotic equivalence for its Lagrangian relaxation.
All these results require differentiability of the loss func-
tions, which facilitates the Taylor expansion on each data
point with a remainder that can be bounded easily. The
only exception is Bartl et al. (2021), who also considered
weakly differentiable functions in their remark 11. How-
ever, their analysis relies crucially on a continuous nomi-
nal distribution for which the nondifferentiable points
are negligible, which is not the case when the nominal
distribution is random and discrete, for which each non-
differentiable point leads on a random and nonsmooth
change on theworst-case value. For p �∞, an equivalent
form of Wasserstein DRO has been studied extensively
in the context of adversarial robust learning (Goodfellow
et al. 2015, Lyu et al. 2015, Shaham et al. 2018). Recently,
generalization bounds for adversarial robust learning
have been studied in Yin et al. (2019), Attias et al. (2019),
and Awasthi et al. (2020), and generalization bounds
for other finite p-Wasserstein DRO have been inves-
tigated in Sinha et al. (2018), Lee and Raginsky (2018),
Shafieezadeh-Abadeh et al. (2019), Najafi et al. (2019),
andGao (2022).

In the DRO literature, besides Wasserstein DRO,
other choices of distributional uncertainty sets (ambigu-
ity sets) have been explored (Scarf 1958, Žáčková 1966,
Shapiro and Kleywegt 2002, Calafiore and El Ghaoui
2006, Erdoğan and Iyengar 2006, Popescu 2007, Delage
and Ye 2010, Goh and Sim 2010, Ben-Tal et al. 2013,
Wiesemann et al. 2014, Bayraksan and Love 2015, Jiang
and Guan 2016, Wang et al. 2016). In particular, the
asymptotic equivalence of φ-divergence DRO and var-
iance regularization has been established in Lam (2016),
Gotoh et al. (2018), and Duchi and Namkoong (2019).
Other connections between regularization and various
DRO formulations have been discussed in Gotoh et al.
(2020) and Anderson and Philpott (2022). Rahimian and
Mehrotra (2019) give a recent survey on distributionally
robust optimization.

The paper proceeds as follows. We briefly review
some results forWasserstein DRO in Section 2 and define
variation regularization in Section 3.We establish the con-
nection betweenWassersteinDROandvariation regulari-
zation in Section 4 for p > 1 and Section 5 for p � 1.
Discussion and extension of our results are provided in

Section 6. As an application of our theory, in Section 7, we
study Wasserstein DRO in the context of adversarial
robust learning and derive new generalization bounds.
We conclude the paper in Section 8. Proofs of our results
are deferred to the online appendices.

2. Wasserstein Distributionally Robust
Optimization

In this section, we introduce notation and provide
some results for Wasserstein distributionally robust
optimization.

Throughout this paper, we let p ∈ [1,∞], and we let
q denote its Hölder conjugate, that is, 1=p+ 1=q � 1.
Let Z denote a metric space with metric d(·, ·), measur-
ing the difference between data points. The distance
between a point z ∈ Z and a set D ⊂ Z is defined as
d(z,D) :� infz̃∈Dd(z̃,z). The interior and closure of a
set A are denoted by int(A) and cl(A), respectively.
The diameter of metric space (Z,d) is defined as
diam(Z) :� supz̃ ,z∈Z d(z̃, z). Let limsupz̃→zh(z̃) :� limδ↓0
sup{h(z̃) : 0 < d(z̃,z) < δ}. The sup-norm of a function
h : Z 	→ R is denoted by ‖h‖∞ :� supz∈Z |h(z)|, and
the homogeneous Lipschitz norm of a Lipschitz con-
tinuous function h : Z 	→ R is denoted by ‖h‖Lip :�
supz̃ ,z∈Z[ f (z̃) − f (z)]=d(z̃, z). When Z is a normed space
with norm ‖ · ‖, let ‖ · ‖∗ denote the dual norm, and let
〈 · , · 〉 denote the associated bilinear form. We denote
a�b :�min{a,b}, a�b :�max{a,b}, and a+ :�max{a, 0}.
The support of a distribution Q is denoted by supp Q.
We use O and Op to represent the big O and the big O
in probability notations, respectively, and use Õ when
we omit the polylog term. Let P(Z) denote the set of
all Borel probability measures on Z. For any p ∈ [1,∞)
and Q ∈ P(Z), the Lp(Q)-norm of a Q-measurable

function h : Z 	→ R is denoted by ‖h‖Q,p :�
(∫
Z
hpdQ

)1=p
,

and ‖h‖Q,∞ :�Q− ess supz∈Z h(z).
The Wasserstein distance of order p between distri-

butions P,Q ∈ P(Z) is defined as

Wp(P,Q) :�
inf

γ∈Γ(P,Q)
(E(z̃,z)~γ d(z̃,z)p[ ])1=p, if p ∈ [1,∞),

inf
γ∈Γ(P,Q)

γ− ess sup
Z×Z

d(z, z̃), if p �∞,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
where the minimization is over the set Γ(P,Q) of all
Borel probability distributions on Z × Z with marginal
distributions P and Q. For any p ∈ [1,∞) and z0 ∈ Z,
let Pp(Z) :� {Q ∈ P(Z) : Ez~Q[d(z,z0)p] <∞} denote the
subset of P(Z) with finite pth moment. To ease notation,
we adopt the convention that P∞(Z) :� P(Z).

Given a family F of loss functions f : Z 	→ R, a nomi-
nal distributionQ ∈ Pp(Z), and a radius ρ ≥ 0, the corre-
spondingWasserstein DRO problem is

min
f∈F

sup
P∈P(Z)

{Ez~P[ f (z)] : Wp(P,Q) ≤ ρ}: (P)

Gao, Chen, and Kleywegt: Wasserstein DRO and Variation Regularization
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The dual problem of the inner supremum in (P) is
defined as

min
λ≥0 λρp + Ez~Q sup

z̃∈Z
{ f (z̃) − λd(z̃, z)p}

[ ]{ }
, p ∈ [1,∞),

Ez~Q sup
z̃∈Z

{ f (z̃) : d(z̃, z) ≤ ρ}
[ ]

, p � ∞: (D)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
An important result in Wasserstein distributionally
robust optimization is that strong duality holds under
quite general conditions and in particular for Q � Pn

and the setup described previously (see Lemma EC.1
in Online Appendix EC.1 for more details).

Wedefine theWasserstein regularizerR as the difference
between theWasserstein robust loss and the nominal loss
RQ,p(ρ; f ) :� sup

P∈P(Z)
{Ez~P[ f (z)] : Wp(P,Q) ≤ ρ} − EQ[ f ]:

Often we consider a data-driven problem with data
zni , i � 1, : : : ,n. For some analysis, it is assumed that
the data zni , i � 1, : : : ,n are independent and identically
distributed with distribution Ptrue, although the Was-
serstein DRO approach makes sense also when the
data do not satisfy such an assumption. Thus, we con-
sider a setting in which the empirical distribution Pn :

� 1
n
∑n

i�1 dzni is chosen as the nominal distribution Q,
where dz denotes the Dirac point mass on z. We use
P⊗ or E⊗ to indicate that the probability or expectation
is evaluated with respect to the sampling distribu-
tion, namely the n-fold product distribution ⊗n

i�1Ptrue

over Zn. By definition, when Q � Pn, the Wasser-
stein regularizer RPn,p(ρ; f ) can be viewed as a data-
dependent regularizer of the loss f. Proposition 1 is a
consistency-type result under a growth condition,
which shows that RPn,p(ρ; f ) converges to zero as the
radius shrinks.

Proposition 1 (Consistency). Let p ∈ [1,∞]. Assume that
f is upper semicontinuous for all f ∈ F , and that the follow-
ing growth condition is satisfied when p <∞:

∃ z0 ∈ Z such that sup
f∈F

limsup
d(z̃,z0)→∞

[ f (z̃) − f (z0)]+
d(z̃, z0)p <∞, G( )

where we use the convention that the ratio is zero if
diam(Z) <∞. Then,

lim
ρ→0

RPn,p(ρ; f ) � 0 � RPn,p(0; f ):

The growth condition (G) means that the loss func-
tions should grow no faster than a polynomial of
order p uniformly in F . The assumptions in Proposi-
tion 1 are minimal in the following sense. The upper
semicontinuity of f is necessary to ensure that limρ→0

RPn,p(ρ; f ) � 0, and the growth condition is necessary
to ensure that the Wasserstein robust loss is finite
(Gao and Kleywegt 2022). Proposition 1 generalizes
theorem 3.6(i) in Mohajerin Esfahani and Kuhn (2018)

by relaxing the convergence condition on the radius ρ.
We remark that under additional conditions on the
radius, theorem 3.6 in Mohajerin Esfahani and Kuhn
(2018) proves that the optimal value of the Wasser-
stein DRO converges from above to the optimal value
of the true stochastic program, and the Wasserstein
DRO solution is asymptotically consistent. An impor-
tant goal of this paper is to study the convergence rate
of the Wasserstein regularizerRPn,p(ρ; f ) as ρ→ 0.

3. Variation Regularization
To study the regularization effect of Wasserstein DRO,
in this section, we introduce a new concept, the varia-
tion of a function, inspired from the total variation of
a real-valued function. This is built on the notion of
slope adopted from Cheeger (1999) and Ambrosio et al.
(2008), which measures the modulus of continuity of a
function on a metric space without isolated points.

Definition 1 (Slopes and Variation). The local slope
|∂f |(z) and global slope lf (z) of a function f : Z → R at
z ∈ Z is defined as

|∂f |(z) :� limsup
z̃→z

( f (z̃) − f (z))+
d(z̃,z) ,

lf (z) :� sup
z̃≠z

( f (z̃) − f (z))+
d(z̃,z) :

The variation of a function f with respect to a distribu-
tionQ is defined as

VQ,q( f ) :� ‖ |∂f | ‖Q,q, q ∈ [1,∞),
‖lf ‖Q,∞, q �∞:

{
This definition of slope generalizes the slope for univari-
ate functions. The local slope |∂f |(z) measures the magni-
tude of the change of the loss when perturbing z locally,
whereas the global slope lf (z) measures the largest mag-
nitude of the loss when perturbing z to any point in Z.
Obviously, we have |∂f | ≤ lf . Slopes are well defined for
a very broad class of continuous but not necessarily dif-
ferentiable loss functions on any metric space without
isolated points. The variation VQ,q( f ) is essentially a
weighted average of slopes over all data z ∈ supp Q.
In particular, when f is univariate and differentiable,
VQ,1( f ) reduces to the usual representation of total varia-
tion of a function

∫
R
| f ′(z)|dz. The next example demon-

strates our definition when Z is a Banach space.

Example 1. Suppose Z is a Banach space (B, ‖ · ‖) and
f : B→ R.
(I) When f is differentiable, by definition and

Cauchy-Schwarz inequality, we have

|∂f |(z) � lim sup
z̃→z

f (z̃) − f (z)
‖z̃ − z‖ � lim sup

z̃→z

〈$f (z), z̃ − z〉
‖z̃ − z‖

� ‖$f (z)‖∗:

Gao, Chen, and Kleywegt: Wasserstein DRO and Variation Regularization
4 Operations Research, Articles in Advance, pp. 1–15, © 2022 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

28
.1

22
.1

86
.5

4]
 o

n 
23

 N
ov

em
be

r 2
02

3,
 a

t 1
3:

45
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



(II) When f is Lipschitz, by definition |∂f |(z) ≤
lf (z) ≤ ‖ f ‖Lip. Thus,

‖lf ‖Q,∞ �Q− ess sup
z∈Z

lf (z)

�Q− ess sup
z∈Z

sup
z̃≠z

( f (z̃) − f (z))+
d(z̃, z) :

Thus, by Example 1, if $f existsQ-almost everywhere,
then ‖ |∂f |(z) ‖Q,q � ‖‖$f ‖∗ ‖Q,q for q ∈ [1,∞); if f is Lip-
schitz continuous, then VQ,∞( f ) ≤ ‖ f ‖Lip, and if in
addition supp Q � Z, then VQ,∞( f ) � ‖ f ‖Lip.

As promised, we will bound RQ,p(ρ; f ) using
VQ,q( f ). In particular, if RQ,p(ρ; f ) is shown to be lower
bounded by VQ,q( f ), then minimizing the Wasserstein
robust loss controls the variation of the loss. In Sec-
tions 4 and 5, we show that the variation is a natural
quantity characterizing the convergence rate of the
Wasserstein regularizer RPn,p( f ;ρ) as ρ→ 0 by sepa-
rating the cases of p > 1 and p�1. Quite often, we
focus on a radius selection rule ρn � ρ0=

��
n

√
for some

ρ0 > 0, which has been empirically used in practice
and also theoretically investigated in Blanchet et al.
(2019), Shafieezadeh-Abadeh et al. (2019), Blanchet
et al. (2022), and Gao (2022).

4. Variation Regularization Effect of
p-Wasserstein DRO (p>1)

In this section, we consider p ∈ (1,∞], and the study of
p�1 is relegated to the next section, as they have
essential differences. To ease the exposition, in this
section, we first present our results for piecewise
smooth losses on a Banach space Z, and extension to
general loss functions on a metric space is postponed
to Section 6.2. Throughout this section, we impose the
following two assumptions.

Assumption 1 (Piecewise Smoothness). For every f ∈ F ,
there exists a partition Z �⋃

1≤k≤KfZf ,k, where Zf ,j ∩
Zf ,k � ø for all j≠ k such that f is continuously differentia-
ble on int(Zf ,k), 1 ≤ k ≤ Kf . Moreover, there exists H ∈
L

p
p−2(Ptrue) when p ∈ (2,∞] and H ∈ L∞(Z) when p ∈ (1, 2]

such that for any ε > 0, there exists δ > 0 such that for all
f ∈ F , 1 ≤ k ≤ Kf and z̃,z ∈ int(Zf ,k) with ‖z̃ − z‖ ≤ δ,

‖$f (z̃) −$f (z)‖∗
‖z̃ − z‖ ≤H(z) + ε: S( )

We denote by

Df :�
⋃

1≤k≠j≤Kf

cl(Zf ,j) ∩ cl(Zf ,k)

the union set of intersections of pieces, which is assumed to
be a Ptrue-null set for every f ∈ F .

By definition, all nondifferentiable points of f are
contained in Df . Although Df has Ptrue-measure zero,⋃

f∈FDf may have positive Ptrue-measure.

Assumption 2 (Growth and Jump of Gradient).
(I) When p ∈ (1,∞), assume there exist constants M,L ≥

0 such that for every f ∈ F and z̃,z ∈ Z \Df ,

‖$f (z̃) −$f (z)‖∗ ≤M+ L‖z̃ − z‖p−1:
(II)When p �∞, assume there exist constants M ≥ 0 and

δ0 > 0 such that for every f ∈ F and z̃,z ∈ Z \Df with
‖z̃ − z‖ < δ0,

‖$f (z̃) −$f (z)‖∗ ≤M:

Assumption 2 imposes a growth condition on the gra-
dient norm when p ∈ (1,∞), consistent with the
growth condition (G) on the loss; as well as a bounded
jump condition on f, namely, the gap of gradient
norms around a nondifferentiable point is at most M.
For smooth loss functions, we haveM � 0.

Assumption 1 and the bounded jump condition in
Assumption 2 can be viewed as an extension of twice
differentiability for smooth losses, which together
bound the change of the losses when the data are per-
turbed within in a small neighbor. Assumptions 1 and
2 imply a weaker Assumption 5 in Section 6.2, which
serves as the foundation for Taylor expansion-type
analysis for nonsmooth loss functions.

In Section 4.1, we start by establishing upper and
lower bounds for smooth loss functions. For non-
smooth losses, the probability of observing a nondif-
ferentiable sample point is zero for a single loss
function but may be strictly positive for a family of
loss functions, as the uncountable union of measure-
zero sets can have a positive measure. Furthermore,
it is likely to observe a sample point that is near the
nondifferentiable region, resulting in a nonsmooth
change of the loss when it is adversarially perturbed.
Therefore, to ensure a probabilistic guarantee on the
remainder of Taylor expansion of nonsmooth loss
functions, additional assumptions on the function
class F and the underlying true distribution Ptrue are
needed. In Section 4.2, we study a simple example of
piecewise linear loss to motivate proper assumptions,
and then we develop the result for general piecewise
smooth functions in Theorem 1, which is further gen-
eralized in Section 6.2.

4.1. Smooth Losses
We first establish a result demonstrating the gradient
regularization effect for smooth losses, whose detailed
proof is given in Online Appendix EC.2.2.

Lemma 1. Let p ∈ (1,∞] and ρn � ρ0=
��
n

√
. Assume As-

sumption 1 holds with Kf � 1 for all f ∈ F and Assumption
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2(I) holds. Then there exist constants ρ̄,C > 0 such that for
all ρ0 < ρ̄ and f ∈ F ,∣∣∣∣RPn,p(ρn; f ) − ρnVPn,q( f )

∣∣∣∣ ≤ ρ2�p
n

(
C+ ‖H‖Pn,

p
p−2
1 p > 2
{ })

:

We remark that
(
‖H‖Pn,

p
p−2

− ‖H‖Ptrue,
p

p−2

)
+
is of the order

Op(n−1=2) under mild conditions (such as H has
bounded variance so that Chebyshev’s inequality
holds or H has bounded moment generating function
in a neighborhood of zero so that Chernoff bound
applies). As a result, when ρn �O(n−1=2), Lemma 1
gives a first-order Taylor expansion for the Wasser-
stein regularizer RPn,p(ρ; f ) of smooth losses for p ∈
[2,∞] with a remainder Op(n−1) uniformly for all
f ∈ F . The cases for p � 2 and p ∈ (2,∞) in normed vec-
tor spaces have been developed in Volpi et al. (2018,
section 3.2) and Bartl et al. (2021, remark 8) respec-
tively. When p ∈ (1, 2), the order of the remainder
O(n−p=2) cannot be improved in general, as can be
seen from the following example.

Example 2. Consider f (z) � zp, where p ∈ (1, 2) and z ∈
Z � (R+, | · |). Suppose Ptrue � d0, which implies Pn � d0
almost surely. Observe that

sup
z̃∈R+

{ f (z̃) − f (0) −λ|z̃ − 0|p} � +∞, ∀λ < 1,
0, ∀λ ≥ 1:

{
Thus, by (D), we have

RPn,p(ρ; f ) � min
λ≥0

{
λρp + sup

z̃∈R+
{ f (z̃) − f (0) − λ|z̃ − 0|p}

}
� ρp:

On the other hand, VPn,q( f ) � f ′(0) � 0 almost surely.
Hence,RPn,p(ρ; f ) − ρVPn,q( f ) � ρp for all ρ ≥ 0.

4.2. Nonsmooth Losses
Next, we consider nonsmooth losses. Proofs of the
results in this section can be found in Online Appen-
dix EC.2.3. We start with an illustrating example of
piecewise linear functions.

Example 3. Let Z � [0, 1] ⊂ (R, | · |). Suppose ρn �
ρ0=

��
n

√
for some ρ0 > 0. Consider

fθ(z) � θz�1,where θ ≥ 0,

which is illustrated in Figure 1. Then f ′θ(z) is θ when
z ∈ [0, 1=θ) and is zero when z ∈ (1=θ, 1]. Thus, when-
ever 1=θ ∉ supp Pn, which holds almost surely when
Ptrue is continuous, we have

VPn,1( fθ) � θEPn[1{z < 1=θ}]:

Using the dual form (D),

RPn,∞(ρn; fθ) � EPn

[
sup
0≤z̃≤1

{fθ(z̃) − fθ(z) : |z̃ − z| ≤ ρn}
]

� EPn[ρnθ · 1{z ≤ 1=θ − ρn} + (1 − θz)
· 1 {1=θ − ρn < z < 1=θ}]
� ρnθEPn[1{z < 1=θ}] − θEPn

[(z − (1=θ − ρn))1{1=θ − ρn < z < 1=θ}],
where the second term indicates that for a point z
close to the nondifferentiable point 1=θ of fθ(z), per-
turbing z leads to a change of loss by at most (1−θz),
which is less than ρnθ. It follows that

ρnVPn,∞(fθ) −RPn,∞(ρn; fθ)
� θEPn[(z− (1=θ− ρn))1{1=θ− ρn < z < 1=θ}]
� θEPtrue

[(z− (1=θ− ρn))1{1=θ− ρn < z < 1=θ}] +θεn,

where

εn � EPn[(z− (1=θ− ρn))1{1=θ− ρn < z < 1=θ}]
−EPtrue

[(z− (1=θ− ρn))1{1=θ− ρn < z < 1=θ}]
≤ ρn|Pn{1=θ− ρn < z < 1=θ} −Ptrue{1=θ− ρn

< z < 1=θ}| �Op(1=n):
Then the gap would be of the order Op(1=n) if
EPtrue

[(z− (1=θ− ρn))1{1=θ− ρn < z < 1=θ}] �O(1=n):

The left-hand side equals∫ 1=θ

1=θ−ρn
(z − (1=θ − ρn))dPtrue(z),

which is O(1=n) if Ptrue has a bounded density on
[1=θ− ρn, 1=θ].
Figure 1. (Color online) Plots of fθ(z) � θz�1, z ∈ [0, 1]
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Motivated by Example 3, we impose the following
continuity assumption around nonsmooth points for
the underlying data-generating distribution. Recall
from Assumption 1 that Df is the union of intersec-
tions of pieces of f.

Assumption 3 (Bounded Density).

lim sup
δ↓0

sup
f∈F :Df≠ø

Ptrue{z : 0 < d(z,Df ) < δ}
δ

< ∞:

A sufficient condition to ensure Assumption 3 is that
Ptrue has a bounded density everywhere.

When p ∈ (1,∞), we impose an additional assump-
tion on the normalized gradient norm ‖$f (z)‖∗

‖ ‖$f ‖∗‖Ptrue,q
.

Assumption 4 (Growth of Normalized Gradient Norm). Let

p ∈ (1,∞). For z ∈ Z \Df , define wf (z) :� ‖$f (z)‖∗
‖ ‖$f ‖∗‖Ptrue ,q
( ) 1

p−1.

Assume there exist constants c1, c2, c3 > 0 such that for all
f ∈ F with ‖ ‖$f ‖∗ ‖Ptrue ,q > 0 and Df ≠ ø and for all
z ∈ Z \Df ,

c3 ≤ wf (z)p−1 ≤ c1 + c2d(z,Df )p−1:

This technical assumption specifies the growth and
jump deviated from nondifferentiable points for the
normalized gradient norm wf. The upper bound is
similar to the growth and jump Assumption 2 of ‖$f ‖∗
but imposed on the normalized gradient norm wf.
Whenever the upper bound of Assumption 4 holds, M
in Assumption 2 can be replaced with Δ‖ ‖$f ‖∗ ‖true,q
for some Δ > 0 (see Lemma EC.8 in Online Appendix
EC.2.3). Whenever the lower bound of Assumption 4
holds, ‖ ‖$f ‖∗ ‖true,q and its empirical counterpart have
a bounded ratio. Practical examples satisfying this
condition will be provided in Section 4.3.

We define classes of functions:
Iρ :� {z 	→ 1{d(z,Df ) < ρ} : f ∈ F , Df ≠ ø}: (1)
E :� {d(·,Df ) : f ∈ F with Df ≠ ø}: (2)

Intuitively, the set Iρ is the class of indicator functions
for samples that falls within the margin of the nondiffer-
entiable regions, and the set E is the class of distance
functions describing the distance of samples to the non-
differentiable regions. Both are empty for smooth classes.

Recall the Rademacher complexity of a function class
H with respect to a sample {zni }ni�1 is defined as �n
(H) :� Es suph∈H

1
n
∑n

i�1sih(zni )
[ ]

, where si s are inde-
pendently and identically distributed Rademacher
random variables with P si �61{ } � 1

2. The Rade-
macher complexity of the function class H with res-
pect to Ptrue for sample size n is defined as E⊗[�n(H)].
Recall also that the covering number N (ε;H,dH) of a
function class H with respect to a metric dH is defined
as the smallest cardinality of an ε-cover of H; here Hε

is an ε-cover of H if for each h ∈H, there exists h̃ ∈Hε

such that dH(h̃,h) ≤ ε.

Nowweare ready to state themain result in this section.

Theorem 1 (p-Wasserstein DRO).
(I) Let p �∞. Assume Assumptions 1 and 2 are in force.

Then there exists ρ̄ > 0 such that for all ρ < ρ̄ and f ∈ F ,
|RPn,∞(ρ; f ) − ρVPn,1( f )| ≤ ρ2‖H‖Pn,1

+MEPn[(ρ− d(z,Df ))+]:
(II) Let p ∈ (1,∞) and ρn � ρ0=

��
n

√
. Assume Assumptions

1, 2, and 4 are in force. Then there exist constants
ρ̄,C1,C2 > 0 such that for all ρ0 < ρ̄ and f ∈ F ,

|RPn,p(ρn; f ) − ρnVPn,q( f )| ≤ ρ2�p
n (‖H‖Pn,

p
p−2
1 p > 2
{ }+C1)

+MEPn[(C2ρn − d(z,Df ))+]:
(III) The second term in (I) or (II) can be bounded as fol-

lows. Assume Assumption 3 holds. Let t > 0. Then there
exist constants ρ̄,C > 0 such that for all ρ < ρ̄, with proba-
bility at least 1− e−t, for every f ∈ F ,

EPn[(ρ− d(z,Df ))+] ≤ Cρ2 + 2ρE⊗[�n(Iρ)] + ρ

����
t
2n

√
,

and with probability at least 1− e−t, for every f ∈ F ,
EPn[(ρ− d(z,Df ))+] ≤ 2Cρ2

+ 24ρ��
n

√
∫ 1

0

��������������������������
logN (ερ;E, ‖ · ‖Pn,2)

√
dε+ ρ

����
t
2n

√
:

(I) and (II) bound the gap between Wasserstein re-
gularizer and variation regularizer for p �∞ and
1 < p <∞, respectively, and (III) provides a further
probabilistic bound on the gap. Comparing (I) and
(II), ∞-Wasserstein DRO requires fewer assumptions
on the loss functions and imposes no assumption on
the scaling of the radius than the p-Wasserstein DRO
with p ∈ (1,∞). This is largely because ∞-Wasserstein
only allows local perturbations of data as seen from
the hard distance constraints their dual problems (D),
and thus the gap between the Wasserstein regularizer
and the variation regularizer is small for sufficiently
small radius, regardless of the sample size. In contrast,
for p ∈ (1,∞), we need to impose the scaling ρn �
O(1= ��

n
√ ) to control how far a sample can be perturbed

in the worst case, so that the gap can be properly
bounded by exploiting the assumptions.

Comparedwith the smooth case (Lemma 1), themajor
difference in the nonsmooth case is that the gap involves
a probabilistic term EPn[(ρ− d(z,Df ))+], dependent on
how the sample falls into the ρ-margin of nondiffer-
entiable regions. When ρn �O(1= ��

n
√ ), (III) indicates

that this term isOp(1=n) as long as the Rademacher com-
plexity E⊗[�n(Iρn

)] �O(1= ��
n

√ ) or the entropy integral∫ 1

0

����������������������������
logN (ερn;E, ‖ · ‖Pn,2)

√
dε �Op(1). Examples of such

will be given in Section 4.3, for which we rigorously
prove the bound. Whenever ρ � ρn �O(1= ��

n
√ ) and EPn

[(ρn − d(z,Df ))+] �Op(1=n), an immediate consequence
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of Theorem 1 is that the p-Wasserstein DRO (P), p ∈
(1,∞], is asymptotically equivalent to the empirical var-
iation regularization problem (V):

min
f∈F

sup
P:Wp(P,Pn)≤ρn

Ez~P[ f (z)] �min
f∈F

Ez~Pn[ f (z)] + ρnVPn,q( f )
{ }

+ Op(n−1� p
2):

4.3. Applications
In this section, we instantiate our results using various
examples. For each example,we discusswhy the assump-
tions for the corresponding result hold and provide more
detailed verification of the assumptions in Online Appen-
dix EC.2.4. We illustrate the case p ∈ (1,∞) in multi-item
newsvendor (Example 4) and leaky ReLU neural net-
works (Example 5), and for p �∞, we will demonstrate it
in Section 7 for adversarial learning (Example 11).

4.3.1. Multi-Item Newsvendor. We start with the clas-
sical newsvendor problem with piecewise linear
objective that makes use of Theorem 1.

Example 4 (Multi-Item Newsvendor). Consider a news-
vendor problem in which the decision maker needs to
decide the ordering quantities θ ∈ Rd

+ for d products
before their random demands z are realized. Let h �
(h1, : : : ,hd) and b � (b1, : : : ,bd) be, respectively, the
holding cost vector and back-order cost vector. The
overall cost is given by

fθ(z) �
∑d
j�1

hj(θj − zj)+ + bj(zj −θj)+:

Suppose Z ⊂ (Rd
+, ‖ · ‖2) and Θ ⊂ {θ ∈ Rd

+ : ‖θ‖∞ ≤ B}.
Assume each marginal distribution of Pzj

true has contin-
uous density on R+ bounded by μ.

Let us verify the assumptions required by Theorem
1. First, fθ has 2d pieces determined by the sign of zj −
θj, j � 1, : : : ,d and each piece is linear, thus Assumption 1
is satisfied with H � 0. Second, Assumption 2 is satisfied
with M �∑d

j�1 |hj| + |bj| and L�0. Third, d(z,Dfθ) �
min1≤j≤d|zj −θj|, therebyAssumption 3 holds because
1
δ
Ptrue min

1≤j≤d
|zj −θj| < δ

{ }
≤ 1
δ

∑d
j�1

P
zj
true |zj −θj| < δ

{ } ≤ dμ:

Fourth, Assumption 4 is verified in Lemma EC.12 in
Online Appendix EC.2.4.1.

Let p ∈ (1,∞) and t > 0. Using Lemma EC.13 in

Online Appendix EC.2.4.1,
∫ 1

0

����������������������������
logN (ερn;E, ‖ · ‖Pn,2)

√
dε ≤���������������������

d log (1+B=ρn)
√ + ����

dπ
√

; thus, by Theorem 1, we have
with probability at least 1− e−t, for all θ ∈Θ,∣∣∣∣RPn,p(ρn; fθ) − ρn EPn

∑d
j�1

|hj|q1{zj < θj} + |bj|q1{θj > zj}
[ ]( )1

q∣∣∣∣
≤ C1ρ

2�p
n +C2ρn��

n
√

( ��������������������
dlog (1+B=ρn)

√
+ ����

dπ
√ )

+Mρn

����
t
2n

√
:

4.3.2. Neural Networks. In this section, we consider a
two-layer network with leaky ReLU activations σ(z) �
z if z ≥ 0 and σ(z) � az if z < 0, where a > 0. As before,
we consider a K-class classification. Let z � (x,y) ∈
Z � X × Y, where X ⊂ Rd and Y is the probability sim-
plex in RK. Suppose d(z̃, z) � ‖x̃ − x‖2 +∞1{ỹ � y}.
Example 5 (Leaky ReLU Network). Let θ � (W1,W2),
where W1 ∈ Rd1×d and W2 ∈ RK×d1 are weight matrices.
Define a two-layer ReLUnetworkwith cross-entropy loss:

fθ(z) :� ℓ(W2σ(W1x),y) � −log
∑K

k�1 yk exp (W2,kσ(W1x))∑K
k�1 exp (W2,kσ(W1x)) ,

where W2,k is the kth row of W2. Denote by σ′(x) the
diagonal matrix whose jth diagonal equals 1{xj ≥ 0}.
Using the chain rule, at differentiable point, we have

‖$fθ(z)‖2 � ‖$ℓ(W2σ(W1x),y)�W2σ′(W1x)W1‖2,
where we have adopted the convention that the gra-
dient is a row vector. Assume X is compact; ‖W2‖op
‖W1‖op ≤ 1, where ‖ · ‖op denotes the matrix operator
norm; and the marginal distribution of Px

true on X is
continuous.

Now we verify the assumptions required by Theo-
rem 1. Assumption 1 is satisfied with L � 0 because of
the Lipschitz continuity of ℓ and piecewise linearity of
the ReLU activation function. Assumption 2 is satis-
fied due to the Lipschitz continuity of ℓ and σ. Because
Ptrue is continuous, Dfθ is bounded, and Θ is compact,
the conditional density dPtrue(Dfθ) is uniformly bounded
over θ ∈Θ; hence, Assumption 3 is satisfied. Finally,
Assumption 4 is verified in Online Appendix EC.2.4.2.

Let t> 0 and ρn � ρ0=
��
n

√
. By Lemma EC.15 in Online

Appendix EC.2.4.2, E⊗[�n(Iρ)] ≤
�������������������
Cdd1logd1log (n+1)

n

√
; hence,

using Theorem 1, there exist constants ρ̄,C > 0 such
that for all ρ0 < ρ̄, with probability at least 1− e−t, for
every θ ∈Θ,

|RPn,2(ρn; fθ) − ρn‖ ‖$fθ‖∗ ‖Pn,2|

≤ C1ρ
2
n + 2Mρn

����������������������������
Cdd1logd1log (n+ 1)

n

√
+Mρn

����
t
2n

√
� Õ(dd1=n):

5. Variation Regularization Effect of
1-Wasserstein DRO

In this section, we study p � 1, which turns out to be
qualitatively different from p > 1, as hinted from the
remainder term of Lemma 1. We study a simple exam-
ple in Section 5.1 that motivates our main result in
Section 5.2 and exemplifies our results in Section 5.3.

5.1. Motivating Example

Example 6. Let Z � [0, 1] with d(z̃,z) � |z̃ − z| and Q �
Uniform(0, 1). Consider

Gao, Chen, and Kleywegt: Wasserstein DRO and Variation Regularization
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fθ(z) � (θz−θ+ 1)2+, θ ≥ 1,

illustrated in Figure 2. Then fθ(·) is differentiable and
|∂fθ|(z) � | f ′θ(z)| � 2θ(θz−θ+ 1)+. By Definition 1, we
have VQ,∞(fθ) � ‖lfθ‖Q,∞ � |f ′θ(1)| � 2θ. Let ρ ∈ (0, 1=2).
We claim that the worst-case distribution P∗ has the
form

P∗ �Q|{z<z∗} +Q{z ≥ z∗} · d1, z∗ ∈ [0, 1],
where Q|{z<z∗} is the restriction of Q on {z < z∗}. To see
this, observe from the convexity of f that, for any λ ≥
0, supz̃∈Z{fθ(z̃) − fθ(z) −λ|z̃ − z|} attains its maximum
at z̃ � 1, and there exists z∗ ∈ [0, 1] such that

sup
z̃∈Z

{ fθ(z̃) − fθ(z) −λ|z̃ − z|} > 0, ∀z > z∗,
� 0, ∀z � z∗:

{
Consequently, using the dual formulation (D) and the
structure of the worst-case distribution (Gao and
Kleywegt 2022), we prove the claim. Solving for ρ �
EQ[(1− z)1{z > z∗}] yields z∗ � 1− ����

2ρ
√

. It follows that

RQ,1(ρ; fθ) � EQ[(1− (θz−θ+ 1)2+)1 z > z∗{ }]

�
2ρθ− (2ρ)32θ2=3, θ ≤ 1=

����
2ρ

√
,

2
3θ

+ ����
2ρ

√ − 1=θ, θ > 1=
����
2ρ

√
:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Therefore,

ρVQ,∞(fθ) −RQ,1(ρ; fθ) �
(2ρ)32θ2=3, θ ≤ 1=

����
2ρ

√
,

2ρθ − 2
3θ

− ����
2ρ

√ + 1=θ, θ > 1=
����
2ρ

√
:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
This shows that the remainder ρVQ,∞(fθ) −RQ,1(ρ; fθ)
may not be of the desired order O(ρ2) and can even be
linear in ρ for θ > 1=

����
2ρ

√
. We remark that for any fixed

θ, RQ,1(·; fθ) is not Lipschitz at zero, so there is no
functional V such that the expansion RQ,1(ρ; fθ) �
ρV(fθ) holds.

In Example 6, the worst-case distribution perturbs
points in [z∗, 1], which have large slopes, to the boun-
dary point 1 to maximize the loss. Recall from Defini-
tion 1 that the maximum rate of change of loss by
perturbing a point z equals supz̃≠z ( f (z̃) − f (z))+=‖z̃ − z‖
and that VQ,∞( f ) measures the largest possible change
of loss by perturbation among all z ∈ supp Q. The gap
between these two quantities can lead to a remainder
with an undesired order. Specifically, in Example 6, let
us consider a fixed θ and a sufficiently small ρ.
By definition of the global slope, we have fθ(1) −
fθ(z) � 1− fθ(z) ≤ VQ,∞( f )(1− z) and thus RQ,1(ρ; fθ) �
EQ[(1− fθ(z))1{z > z∗}] ≤ ρVQ,∞(fθ). Thereby, to have
anO(ρ2) remainder, we have to have

1−RQ,1(ρ; fθ)
ρVQ,∞(fθ) � 1− EQ

[ (1− fθ(z))=(1− z)
ρVQ,∞(fθ)

( )
· (1− z)1 z > z∗{ }

]
�O(ρ2):

This means for Q-almost every perturbed point z ∈ Z,
we need

1− (1− fθ(z))=‖1− z‖
VQ,∞(fθ) �O(ρ): (3)

However, for z > z∗, we have

sup z̃≠z (fθ(z̃) − fθ(z))+=‖z̃ − z‖
VQ,∞(fθ) � (1− fθ(z))=(1− z)

VQ,∞(fθ)

� 1− (θz−θ+ 1)2
(1− z) · 2θ � 1−θ(1− z)

2
:

As a consequence, perturbing points close to z∗ �
1− ����

2ρ
√

do not provide sufficient change of the loss
compared with VQ,∞( f ), leading to a large remainder.
We remark that Condition (3) can be even more diffi-
cult to satisfy in the high-dimensional counterpart of
this example. More specifically, consider Z ⊂ [0, 1]d
and fθ � (θ‖z‖2=

��
d

√ −θ+ 1)2+. In this case, the worst-
case distribution would perturb data points to the all-
one vector in Rd, denoted as zmax. Then only points in
the neighborhood {z : ‖z− zmax‖ ≤ cρ} satisfy Condi-
tion (3). Suppose Q is continuous with bounded den-
sity, then this set has Q-measure only O(ρd), where d
is the dimension of Z. Hence, most points being per-
turbed by the worst-case distribution would not sat-
isfy (3).

The previous discussion suggests that for p � 1, the
remainder ρVQ,∞( f ) −RQ,1(ρ; f ) cannot be of the
desired order O(ρ2) in general. Fortunately, as will be
formalized in the next section, one can show that
RQ,1(ρ; f ) achieves a fraction of ρVQ,∞( f ) uniformly
for all f ∈ F under mild conditions. Thereby, the varia-
tion of loss is still under control by minimizing the
Wasserstein robust loss.

Figure 2. (Color online) Plots of fθ(z) � (θz−θ+ 1)2+, z ∈ [0, 1]
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5.2. Sandwich Theorem
Motivated by the discussion in the previous section,
particularly Condition (3), we develop Theorem 2,
which is instantiated under two important situations
(Corollaries 1 and 2). The proofs are given in Online
Appendix EC.3.1.

Define
dF ( f , f̃ ) :� max(‖ f − f̃ ‖∞, |‖ f ‖Lip − ‖ f̃ ‖Lip|):

Theorem 2 (1-Wasserstein DRO). Let p � 1. Assume every
f ∈ F is Lipschitz continuous. Assume further that there
exist constants ε > 0, δn,η ∈ (0, 1] such that for every
f ∈ F , there exist a set Zf ⊂ Z and a measurable map 7f :
Zf → Z such that with probability at least 1− δn,

f (7f (z)) − f (z) ≥ η(‖ f ‖Lip − ε)‖7f (z) − z‖, ∀z ∈ Zf ,

EPn[‖7f (z) − z‖1{z ∈ Zf }] > 0: (T)
Suppose ρ ≤minf∈FEPn[‖7f (z) − z‖1{z ∈ Zf }]. Then with
probability at least 1−N (1n ;F ,dF ) · δn,
ηρVPn,∞( f ) − ρε− (1+ ρ)=n ≤RPn,1(ρ; f ) ≤ ρVPn,∞( f ):

This theorem shows that the Wasserstein regularizer
RPn,1(ρ; f ) is sandwiched by ρVPn,∞( f ) and its fraction
ηρVPn,∞( f ), which, according to the discussion in
Section 5.1, is generally the best one can hope for.
Assumption (T) means that every point z ∈ Zf can be
perturbed to some point 7f (z), resulting in an incre-
ment no less than a fixed fraction of VPn,∞( f ) and that
the total perturbations EPn[d(7f (z),z)1{z ∈ Zf }] have a
positive lower bound uniformly for all f ∈ F . There is a
tradeoff between η and δn: One can increase η at the
cost of a smaller δn. For loss functions that are spurious,
that is, with large probability, ‖$f (z)‖∗ is much smaller
than VPn,∞( f ), we would like to reduce the fraction η to
increase the probability bound δn so that it has a mild
dependence on the dimension of Z. Here we provide
two important situations where the condition (T) can be
satisfied either probabilistically or deterministically.

Corollary 1 (Data-Driven 1-Wasserstein DRO). Assume
every f ∈ F is Lipschitz continuous. Assume every f ∈ F is
h̄-semiconvex, that is, there exists h̄ ∈ R such that

f (z̃) − f (z) ≥ g�(z̃ − z) − h̄‖z̃ − z‖2, ∀z, z̃ ∈ Z,

where g is any element in the subdifferential ∂f (z). Assume
further that there exists η ∈ (0, 1] such that

α :� inf
f∈F

Ptrue

{
z : sup

g∈∂f (z)
‖g‖∗ ≥ η‖ f ‖Lip

}
∈ (0, 1):

Let c < α. Denote by H(a||b) :� alog a
b+ (1− a)log 1−a

1−b.
Then the condition (T) is satisfied by setting

ε � ch̄ρ2, Zf �
{
z : sup

g∈∂f (z)
‖g‖∗ ≥ η‖ f ‖Lip

}
,

δn � exp (−nH(c||α)):

In addition, with probability at least 1− exp −nH(c||α)+(
logN (1n ;F ,dF )),
ηρVPn,∞( f ) − ch̄ρ2 − (1+ ρ)=n ≤RPn,1(ρ; f ) ≤ ρVPn,∞( f ):
An illustration of this result for linear prediction with
Lipschitz loss on a bounded domain is given in Exam-
ple 7 in Section 5.3.

Corollary 2 (Lipschitz Regularization). Assume every f ∈ F
is Lipschitz continuous. Suppose diam(Z) � ∞ and there
exists z0 ∈ Z such that

limsup
‖z̃−z0‖→∞

f (z̃) − f (z0)
‖z̃ − z0‖ � ‖ f ‖Lip, ∀f ∈ F , L( )

then (T) is satisfied for any ε > 0 with η � 1 and δ � 0. In
addition, for all ρ ≥ 0 and f ∈ F ,

RPn,1(ρ; f ) � ρVPn,∞( f ) � ρ‖ f ‖Lip:
This provides a situation of exact equivalence between
Wasserstein DRO and regularization. As detailed in
the proof, if (L) holds for some z0 ∈ Z then it holds for
every z ∈ Z. Hence, Condition (L) means that the Lip-
schitz norm is attained approximately between z ∈
supp Pn and some distant point z̃: for any ε > 0 and r
> 0, there exists z̃ ≕7f (z) such that ‖7f (z) − z‖ > r and
f (7f (z)) − f (z) ≥ (‖ f ‖Lip − ε)‖7f (z) − z‖. The (approxi-
mately) worst-case distribution perturbs some point
zi0 ∈ supp Pn to 7f (zi0) with tiny probability δ=n,
where δ ∈ (0, 1), and therefore has the form

1
n

∑
i≠i0

dzi + 1− δ

n
dzi0 +

δ

n
d7f (zi0 ):

Condition (L) can be satisfied when f is convex and
Lipschitz, which has been considered in Mohajerin
Esfahani and Kuhn (2018) and Shafieezadeh-Abadeh
et al. (2019). It also holds for nonconvex losses; a one-
dimensional example is the inverse S-shaped curve
plotted in Figure 3. We illustrate this corollary in
Example 8 in Section 5.3 for linear prediction with
Lipschitz loss on an unbounded domain.

5.3. Applications
In this section, we consider two examples on linear
prediction, covering two particular cases of p � 1 (Cor-
ollaries 1 and 2). Let z � (x,y), where x ∈ X ⊂ (Rd, ‖ · ‖),
and y ∈ R for regression, whereas for classification,
y ∈ {61}. To ease the exposition, we assume d(z, z̃) �
‖x− x̃‖ +∞ · 1{y≠ ỹ}, thereby we can omit the y-com-
ponent when we compute ‖$f (z)‖∗.
Example 7 (Lipschitz Loss on a Bounded Domain, p5 1).
Suppose the loss function has a form

fθ(z) :� l(θ�x, y) :� ℓ(θ�x − y), regression,
yℓ(θ�x), binary classification,

{
(4)

Gao, Chen, and Kleywegt: Wasserstein DRO and Variation Regularization
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where θ ∈Θ ⊂ {θ ∈ Rd : ‖θ‖∗ ≤ B} for some B > 0 and
ℓ : R→ R is Lℓ-Lipschitz. Denote by l′(·,y) the deriva-
tive of l with respect to its first argument. Assume ℓ

has h̄ℓ-Lipschitz gradient. Assume there exists η ∈
(0, 1] such that

0 < α :�

inf
θ∈Θ

Ptrue{(x,y) : |ℓ′(θ�x− y)| ≥ ηLℓ},
regression,

inf
θ∈Θ

Ptrue{(x,y) : |ℓ′(θ�x)| ≥ ηLℓ},
binary classification:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(5)

Let us verify the assumptions in Corollary 1. We have
‖$fθ(z) ‖∗ � ‖θ‖∗l′(θ�x,y); thus, ‖ fθ‖Lip � ‖θ‖∗sup(x,y)∈Z
l′(θ�x,y) ≤ Lℓ‖θ‖∗ and fθ is h̄ℓB2-semiconvex. More-
over, the constraints in (5) are equivalent to ‖$fθ(z)‖∗
≥ η‖ fθ‖Lip; thereby, α in Corollary 1 is well defined.
By Online Appendix EC.3.2, logN (ε;F ,dF ) ≤ 1+ d log
Lℓdiam(X ) � (Lℓ+Bh̄ℓdiam(X ))

ε

( )
. Let c < α. Then using Corol-

lary 1, with probability at least

1− dexp (−nH(c||α)) + log (1+ nLℓdiam(X ) � n(Lℓ
+ Bh̄ℓdiam(X )))),

it holds for all θ ∈Θ that

ηρn‖θ‖∗max
1≤i≤n

|l′(θ�xni ,y
n
i )|−c h̄ℓB2ρ2

n−(1+ρn)=n
≤RPn,1(ρn;fθ)≤ρn‖θ‖∗max

1≤i≤n |l
′(θ�xni ,y

n
i )|:

Example 8 (Lipschitz Loss on an Unbounded Domain).
Consider the loss function defined in (4). Suppose
X � Rd. Assume additionally limsup |t|→∞ ℓ(t)

|t| � Lℓ. Ex-
amples of ℓ(t) include convex losses such as hinge loss
(1− t)+, softplus (logistic) loss log (1+ et), and nonconvex

losses such as inverse S-shaped curve sgn(t)log 1
2 (1+ et)
( )

.

For classification, assume further that there exists (x0,
y0) ∈ supp Pn with y0 � 1. Then fθ is Lipschitz continuous
with constant bounded by LℓB and limsup‖x‖→∞
l(θ�x,y) � Lℓ‖θ‖∗ � ‖ fθ‖Lip; thus, (L) in Corollary 2 is sat-
isfied, and we have

RPn,1(ρ; fθ) � ρ · ‖fθ‖Lip � ρ · Lℓ‖θ‖∗, ∀θ ∈Θ:

We remark that this result relaxes the convexity
assumption in the equivalence results derived in
Mohajerin Esfahani and Kuhn (2018) and Shafieeza-
deh-Abadeh et al. (2019).

6. Discussions
6.1. Comparison Among Wasserstein Orders
Comparing Theorems 1 and 2, we observe that as the
Wasserstein order p decreases, stronger assumptions
are needed to obtain the asymptotic equivalence
between the Wasserstein DRO and variation regulari-
zation, which sheds light on the modeling choice of
Wasserstein order p. Specifically, when p �∞, only
local assumptions on the continuity and jump are
needed (Assumption 5(I)); when p ∈ [1,∞), global
growth condition is required (Assumptions 5, (II) and
(III)), and the cases p ≥ 2, p < 2 have different orders
of gap O(ρp�2

n ); when p�1, the lower and upper
bound in Theorem 2 cannot be matched in general,
but only a sandwich inequality is available.

As shown in the proof, this can be explained from
the qualitative differences in the worst-case distribu-
tion among p� 1, p ∈ (1, 2), and p ∈ [2,∞]. For p ≥ 2,
the largest distance of perturbation is bounded for all
empirical points with high probability when ρn �
O(1= ��

n
√ ), whereas for p ∈ (1, 2), the worst-case distri-

bution tends to perturb the empirical points with a
large distance, resulting a lower order of the remainder
O(ρp

n); when p � 1, the worst-case distribution can even
perturb the empirical points to arbitrarily far with a tiny
probability (see the comment after Corollary 2).

6.2. Extension to General Losses on a Metric Space
In previous sections, we primarily focus on losses on a
Banach space. In this section, we show that the results
hold for a general metric space without isolated point.

Define

Gf (δ, z) :� sup
z̃∈Z:d(z̃, z)≤δ

f (z̃) − f (z), δ ≥ 0, z ∈ Z: (6)

We impose the following assumption.

Assumption 5 (Growth, Continuity, and Jump).
(I) When p �∞, assume there exists δ0,M ≥ 0, and H ∈

L1(Ptrue) such that for all f ∈ F and all z ∈ Z,

|Gf (δ,z) − |∂f |(z)δ| ≤H(z)δ2 +M(δ− d(z,Df ))+, ∀δ < δ0:

Figure 3. (Color online) Plots of fθ(z) � sgn(z)ln ((1+ exp (z=θ))=2),
z ∈ R
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(II) When p ∈ (2,∞), assume there exists δ0,L,M ≥ 0,
and H ∈ L

p
p−2(Ptrue) such that for all f ∈ F and all z ∈ Z,

Gf (δ,z) − |∂f |(z)δ ≤H(z)δ2 + Lδp +M(δ− d(z,Df ))+, ∀δ ≥ 0,

Gf (δ,z) − |∂f |(z)δ ≥ −H(z)δ2 −M(δ− d(z,Df ))+, ∀δ ≤ δ0:

(III) When p ∈ (1, 2], assume there exists L,M ≥ 0 such
that for all f ∈ F and all z ∈ Z,

−Lδp −M(δ− d(z,Df ))+ ≤ Gf (δ,z) − |∂f |(z)δ
≤ Lδp +M(δ− d(z,Df ))+, ∀δ ≥ 0:

In Lemma EC.8 in Online Appendix EC.2.2, we will
show that a sufficient condition ensuring Assumption
5 is by assuming that Assumptions 1 and 2 hold. The
case ofM � 0 corresponds to smooth losses. By replac-
ing Assumptions 1 and 2 with Assumption 5 and sub-
stituting ‖ · − · ‖ by d(·, ·), Theorems 1 and 2 remain to
hold. In fact, in the Online Appendix, Theorem 1 is
proved by assuming Assumption 5, and the proof of
Theorem 2 applies to the general setting directly.

Next, we illustrate our results for manifold regulari-
zation (Example 9) and intensity estimation of point
processes (Example 10).

Example 9 (Manifold Regularization). SupposeZ ⊂ Rd is a
Riemannian manifold and f : Rd → R is twice differen-
tiable with bounded Hessian. Then |∂f |(z) � Exp($f ),
where Exp denotes the exponential map (Carmo 1992).
For example, when Z is the unit sphere {z ∈ Rd :
‖z‖2 � 1}, then ‖$f ‖∗(z) � Exp($f ) � ‖(Id − zz�) $f (z)‖2,
where Id denotes the d-dimensional identity matrix. By
Theorem 1 for the general metric space, there exists
a,C > 0 such that for all ρ0 < a, n ∈N≥1 and f ∈ F ,

|RPn,2(ρn; f ) − ρnVPn,2( f )| ≤ Cρ2
n,

where VPn,2( f ) � ‖ ‖Exp($f )‖2 ‖Pn,2. This establishes a
connection between Wasserstein DRO and Laplacian
regularization in manifold optimization (Belkin et al.
2006).

As another example, we consider the case where
the distance d(z̃, z) is defined through another Wasser-
stein distance, in which each sample point z is viewed
as a measure on a metric space (Ξ,dΞ). We define the
metric d on Z as a 2-Wasserstein metric

d(z̃,z) �WΞ(z̃,z) :� inf
γ∈Γ(z̃,z)

‖dΞ‖γ,2,

where Γ(z̃,z) represents the set of Borel measures on
Ξ2 with marginal measures z̃ and z. This setup occurs
in various applications. For instance, let Z be the
space of nonhomogeneous Poisson processes on Ξ �
[0,T]. Then each z ∈ Z can be viewed as a distribution
of sample paths on Ξ. Each sample path is identified
with a counting measure on Ξ, and the distance d(z̃,z)
between two sample paths z̃ and z is measured by the

Wasserstein distance between counting measures on
Ξ. This is called nested Wasserstein distance in Gao
and Kleywegt (2022, section 4.2). As another example,
let Z be the space of black-and-white images with
fixed resolution r × r. Then each image z ∈ Z can be
viewed as a two-dimensional histogram on the space
of pixels Ξ � {1,: : : ,r}2, with each pixel representing a
bin. The distance d(z̃, z) between two images z̃ and z is
measured by the Wasserstein distance between two-
dimensional histograms on Ξ. This is called Wasser-
stein of Wasserstein loss in Dukler et al. (2019).

Example 10 (Intensity Estimation for Point Processes). Let
Ξ ⊂ (Rd, ‖ · ‖). Consider the problem of estimating the
intensity function f : Ξ→ R of a point process. Sup-
pose the negative log-likelihood of a sample path zni �∑Mi

m�1 dξi,m has the form∫
Ξ

f (ξ)dξ−∑Mi

m�1
log f (ξi,m) �

∫
Ξ

f (ξ)dξ− Eξ~zni [log f (ξ)],

which holds for, for example, the inhomogeneous
Poisson process. Then the distributionally robust neg-
ative log-likelihood function is

Lrob
n ( f ;ρn) � sup

P:W2(P,Pn)≤ρn

{∫
Ξ

f (ξ)dξ− Ez~P[Eξ~z[log f (ξ)]]
}
:

Assume log f has Lipschitz gradient bounded by h̄ > 0.
Then in Online Appendix EC.4, we show that

|Lrob
n ( f ;ρn) −Lreg

n ( f ;ρn)| ≤
C
n
,

where

Lreg
n ( f ;ρn) :�

∫
Ξ

f (ξ)dξ− 1
n

∑n
i�1

Eξ~zni [log f (ξ)]

+ρn
1
n

∑n
i�1

∑Mi

m�1
‖$ξlog f (ξi,m)‖22

( )1
2

,

where $ξlog f (ξi,m) is also known as the score function
in statistics. Therefore, this example demonstrates that
2-Wasserstein DRO penalizes the norm of the score
function.

7. Generalization Guarantees for
Adversarial Robust Learning

In this section, we study adversarial robust learning, as
an application of our developed theory on variation
regularization.

Recent studies (Szegedy et al. 2013, Goodfellow et al.
2015) have shown that machine learning models are
vulnerable to adversarial attacks. For example, by
adding a small perturbation adversarially to an image,
a well-trained classification model may make a wrong

Gao, Chen, and Kleywegt: Wasserstein DRO and Variation Regularization
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prediction, even when such perturbation is impercep-
tible to human eyes. To improve the robustness and
generalization of machine learning models, one popu-
lar approach is the following adversarial robust learn-
ing framework, which considers the following
empirical adversarial risk minimization problem

min
f∈F

An(ρ; f ) :� 1
n

∑n
i�1

sup
x∈X :‖x−xni ‖≤ρ

ℓ( f (x), yni )
{ }

, (7)

where ℓ : R × {61} → [0, 1] is a classification loss func-
tion such as cross-entropy, F is the hypothesis family
on X , and ρ > 0 is a small real number. Note that (7) is
the dual formulation (D) of∞-Wasserstein DRO when
Q � Pn. The population adversarial risk minimization cor-
responding to (7) is

min
f∈F

{
A(ρ; f ) :� E(x,y)~Ptrue

[
sup

x̃∈X :‖x̃−x‖≤ρ
ℓ( f (x̃),y)

]}
,

which is the dual formulation (D) of ∞-Wasserstein
DRO when Q � Ptrue. One fundamental question that
this minimax formulation raises is to characterize the
generalization capability of the adversarial risk, that
is, the gap between the empirical adversarial risk and
the population adversarial risk (Attias et al. 2019, Yin
et al. 2019, Awasthi et al. 2020).

An immediate consequence of Theorem 1 is the
following.

Example 11 (Adversarial Robust Learning and Total
Variation Regularization). Assume ℓ is smooth and every
f ∈ F is piecewise smooth, which is satisfied by cross-
entropy loss and the ReLU network. Assume Ptrue is a
continuous distribution on a compact set X × {61}.
Then Assumptions 1–3 are satisfied immediately.
Thereby, Theorem 1 shows that with probability at
least 1− e−t, Problem (7) is equivalent to an empirical
total variation regularization problem

min
f∈F

1
n

∑n
i�1

ℓ( f (xni ),yni ) +ρ ·EPn[ℓ′( f (x),y)‖$f (x)‖∗]
{ }

+ εn,

where the remainder εn � ρ2(C+ ‖H‖Pn,1) + 2ρE⊗[�n

(J ρ)] + ρ
���
t
2n

√
with terms defined in Theorem 1 and its

assumptions, and J ρ :� {x 	→ 1{d(x,Df ) < ρ} : f ∈ F ,
Df ≠ ø}.
We develop an upper bound on the generalization

gap A(ρ; f ) −An(ρ; f ), whose proof is given in On-
line Appendix EC.5. Define |∂F | � {|∂f | : f ∈ F} and
|∂(−F )| � {|∂(−f )| : f ∈ F}, recalling |∂f | is the local
slope of f defined in Definition 1.

Theorem 3. Under the setting of Example 11, assume ℓ is
Lℓ-Lipschitz, and each piece of f ∈ F has gradient bounded
by L > 0. Let t > 0. Then there exists ρ̄,C,M > 0 such that

for all ρ < ρ̄, with probability at least 1− 3e−t, for every
f ∈ F ,
A(ρ; f ) −An(ρ; f ) ≤ 2Lℓ(E⊗[�n(F )]

+ρE⊗[�n(|∂F |⋃ |∂(−F )|)]
+CρE⊗[�n(J ρ)])

+C(1+ (L+ 1)Lℓρ)
����
t
2n

√
+C(Lℓ + 1)ρ2:

Theorem 3 unveils that, apart from �n(F ) that ap-
pears in the generalization bound for the empirical
risk minimization, the Rademacher complexity of the
local slope �n(|∂F |⋃ |∂(−F )|) plays a crucial role in
controlling the generalization gap in adversarial ro-
bust learning. When ρ � 0, our bound reduces to the
usual generalization bound for empirical risk minimiza-
tion. When F is a family of smooth losses, the bound in
Theorem 3 can be simplified to

A(ρ; f ) −An(ρ; f ) ≤ 2Lℓ(E⊗[�n(F )] + ρE⊗[�n(‖$F‖∗)])

+ (1+ LLℓρ)
����
t
2n

√
+ LℓCρ2,

where ‖$F‖∗ � {‖$f ‖∗ : f ∈ F}. When F is a family
of linear losses F � {fθ � θ�x : θ ∈Θ}, the bound be-
comes

A(ρ; fθ) −An(ρ; fθ) ≤ 2Lℓ(E⊗[�n(F )]

+ρE⊗[�n( ‖θ‖∗ : θ ∈Θ{ })]) + (1+ LLℓρ)
����
t
2n

√
,

which leads to the bounds developed in Awasthi et al.
(2020, theorem 4 and lemma 2). The �n(‖$F‖∗) factor
appears to be new in the literature but should make
intuitive sense. Indeed, if the complexity of the gra-
dient norm functions is small, the model is more
robust to the adversarial perturbations and thus tends
to generalize better.

8. Concluding Remarks
Regularization is at the core of many learning and
decision-making tasks in the world of big data. In this
paper, we introduce a new family of regularization
schemes, termed as variation regularization, and de-
velop a framework connecting Wasserstein DRO and
variation regularization. The general theory developed
in this paper expands the connection between robust-
ness and regularization from simple or smooth losses on
Euclidean space to general possibly nonsmooth losses
on a metric space, which greatly enlarge its practicality.
Thereby, it fills the gap between the empirical success of
Wasserstein DRO and the theoretical understanding of
its regularization effect and helps to explain why Was-
serstein DRO works from a regularization perspective
or why variation regularization in deep learning works
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from a robust perspective. Moreover, the developed
theory makes a step toward the understanding of the
generalization capability of robust learning. For exam-
ple, as we illustrate in Section 7, our theory helps to
develop new generalization bounds for adversarial ro-
bust learning, which is an interesting phenomenon in
deep learning but does not yet have a full theoretical
understanding. In the follow-upwork (An andGao 2021,
Gao 2022), our theory serves as an important building
block for proving the finite-sample performance guaran-
tees forWasserstein DRO.
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