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ABSTRACT

In this work, we study the interplay between chaos and noise in neuronal state transitions involving period doubling cascades. Our approach
involves the implementation of a neuronal mathematical model under the action of neuromodulatory input, with and without noise, as well
as equivalent experimental work on a biological neuron in the stomatogastric ganglion of the crab Cancer borealis. Our simulations show
typical transitions between tonic and bursting regimes that are mediated by chaos and period doubling cascades. While this transition is less
evident when intrinsic noise is present in the model, the noisy computational output displays features akin to our experimental results. The
differences and similarities observed in the computational and experimental approaches are discussed.
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Chaotic and stochastic processes, both yielding similar erratic
behaviors are, in essence, the result of fundamentally different
dynamics: chaotic systems are deterministic and stochastic sys-
tems are probabilistic. Despite their absolutely distinct roots,
separating intermingled chaotic from stochastic processes poses
a rather difficult challenge. In this work, we analyze the behavior
of a modulated neuronal nonlinear dynamical system responsible
for the gastric function of crustaceans where chaos and stochas-
ticity are intrinsically blended, producing outputs where mixed
deterministic and probabilistic dynamics happen to be basically
indistinguishable. We focus on the neuronal system responsible
for the gastric function in crustaceans, with particular attention
on the pyloric dilator neuron of the stomatogastric ganglion of
the crab Cancer borealis under the action of neuromodulation.
Our approach uses both a computational model without and with
noise, and a biological experimental setting. The results we obtain
show striking similarities between some of the outputs from the
computational and from the experimental studies, despite the
inherent difficulty of separating chaos from noise.

I. INTRODUCTION

Chaos is known to be widely present in nature as well
as in man-made devices. From Poincaré’s landmark work on

the three-body problem in the context of planetary motion,1 to
the unpredictability of the weather2 to the complexity of living
organisms3 and more, chaos is everywhere.4–6 In the case of neu-
ronal systems, chaotic behavior has been observed in a multitude
of situations,7,8 particularly when neurological processes undergo
transitions between states of tonic and bursting regimes. Neuronal
transitions have been investigated in computational studies9–12 as
well as in experimental settings where transitions have been found
in thalamocortical neurons during sleep cycles,13 in Parkinson’s dis-
ease tremors typically generated in sensory-motor nuclei,14 in silent
or tonic to bursting transitions in motor neurons when animals start
to move as well as during gait-speed changes,15–17 and also in central
pattern generators (CPGs) controlling the stomatogastric system in
crustaceans where robust and continuous activity is of essence for
the survival of the animal.18,19 In this system, various motor patterns
have been described that are under modulatory control by hor-
mones and neuromodulatory transmitters via paracrine release.19–22

Individual neurons of the stomatogastric ganglion (STG) transition
between silent, tonic, and various rhythmic activities that are heav-
ily dependent on the modulatory substances that reach the STG.
The individual neuronal activity modes and their respective brain
states have been studied extensively. Most of these different activity
modes exist along a continuum, and it appears that while present,
chaos is suppressed by strong synaptic circuit feedback in stomato-
gastric neurons.23 Much less is known about the transitions between
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activity states, and it is unclear which dynamics drive them. Transi-
tions are typically characterized by seemingly erratic firing activity
that is distinct from the activities before and after the transition.
Computational models have demonstrated that many transitions are
mediated by chaos,10,12,24,25 while experimental evidence from biolog-
ical neuronal systems is rare and often hampered by the presence of
noise. Here, we use computational and experimental approaches to
characterize different activities displayed by neurons when subjected
to neuromodulation, and the transitions between these activities.
The combination of the computational and experimental methods
employed in this work allows us to perform a direct compari-
son between the model and biological system and characterize the
dynamics displayed by both.

Computationally, we employ a Hodgkin–Huxley-type neu-
ronal model with an added modulation-induced current, the equiv-
alent of a current that is known to produce rhythmic activity in
STG neurons.26 We find transitions between silent, bursting, and
tonic regimes that happen through period-doubling bifurcation
cascades into chaos. These transitions, however, are less evident
when intrinsic noise is introduced in the model equations, with the
period-doubling bifurcation cascade no longer visible. The noisy
computational output, however, displays striking similarities with
experimental data obtained from the crustacean CPG neuron, sug-
gesting that chaos potentially present in the experimental setting
may be hidden in the midst of noise. Our computational model dis-
plays results consistent with intracellular recordings obtained from
experiments in which the modulatory current was injected into
STG CPG neurons using dynamic clamp in the synaptically isolated
pyloric dilator (PD) neuron of the stomatogastric nervous system of
the crab Cancer borealis.

This manuscript is organized as follows. In Sec. II, we intro-
duce the Huber–Braun model equations for the single neuron and
in Sec. III we introduce the modulatory induced current term that
is known to affect the rhythmic activity of CPG neurons. In Sec. IV,
we add intrinsic noise to the neuron model and in Sec. V, we show
an experimental neuronal transition induced by a neuromodula-
tory input, along with the experimental and computational Poincaré
maps in Sec. VI. Final comments are presented in Sec. VII.

II. NEURONAL MODEL EQUATIONS

The mathematical model used in this study is based on
the Hodgkin–Huxley equations and was first introduced to study
temperature-sensitive neurons.27 The so-called Huber–Braun model
consists of four ordinary differential equations with time-dependent
state variables describing the cell’s membrane potential V, potas-
sium fast activation aK, and two slow activation variables, aSR for
potassium and aSD for sodium,

CV̇ = −IL − INa − IK − ISD − ISR − Iinj, (1)

ȧK =
φ

τK

(aK∞ − aK) , (2)

ȧSR = −
φ

τSR

(
νaccISD + νdepaSR

)
, (3)

ȧSD =
φ

τSD

(aSD∞ − aSD) . (4)

In these equations, C and Iinj represent, respectively, the mem-
brane capacitance and injected current stimulus. Leak channels have
been demonstrated to be voltage-dependent, but for the purpose of
this work we approximate the leak current as ohmic, writing it as
IL = gL(V − VL) where gL is the leak conductance, and VL is the
corresponding equilibrium potential. The fast and slow currents for
sodium and potassium mentioned above and labeled Na, K, SD, and
SR, respectively, are written as Ij = ρgjaj(V − Vj), where j denotes
Na+, K+, SD, or SR. Vj represents the equilibrium potential for
each corresponding current, and the temperature dependent scal-
ing parameters are fixed (check the Appendix for parameter values).
The maximum conductances and half-activation potentials are rep-
resented by gj and V0 j, respectively. Characteristic time constants τj

control the opening and closing of the various ion channels, with
the sodium channels in particular considered to be activated rather
quickly, with an activation function given by aNa = 1

1+e
−sNa

(
V−V0Na

) ,

where sNa sets the slope of the sigmoidal curve, and V0Na cor-
responds to the half-activation potential. The activation func-
tions aj∞ are mimicked by sigmoidal steady state curves given by
aj∞ = 1

1+e
−sj(V−V0 j)

, j = K, SD, SR. In this model aNa ≡ aNa∞, as

a result of the very fast Na+ channel activation, and Ca++ accu-
mulation and depletion are, respectively, included in νacc and νdep.
Inactivation is included in the functional timing of the activation
functions of the corresponding conductances.

This is the Huber–Braun neuronal model and has been applied
to investigate a variety of topics, including temperature effects
in neuronal dynamics,11,28 synaptic transmission in psychiatric
disorders,29 reciprocal inhibition and electrical coupling in CPG
neurons,9 and tonic-bursting transitions (in networked neurons)
mediated by gap junction strength.10,12 The Huber–Braun single
neuron model is able to mimic a wide range of neuronal behaviors
including tonic, bursting, and chaotic spiking modes. Figure 1(a)
shows these rich changes in dynamics for a range of the slow repo-
larizing conductance gSR and the slow depolarizing conductance
gSD, with no injected current (Iinj = 0 μA/cm2). The different col-
ors represent regions with membrane potentials displaying dynamic
behaviors of tonic (teal), chaotic bursting (red), periodic burst-
ing (yellow, green, blue, black), subthreshold oscillations (purple)
and silent resting potential (gray). The model neuron’s average fir-
ing rate for the same parameter space of Fig. 1(a) is illustrated
in the color map of Fig. 1(b), showing generally that for a fixed
gSD with increasing gSR, the neuron’s firing rate goes down. Con-
versely, for a fixed gSR with increasing gSD, the neuron’s firing rate
goes up. For a sample close-in view, we select a cross section in
Fig. 1(a) at gSD = 0.2 mS/cm2 with 0.1 mS/cm2 ≤ gSR ≤ 0.3 mS/cm2

[dashed white line in Fig. 1(a)], which shows the neuron’s dynam-
ics starting tonic, traversing regions of various firing patterns and
subthreshold oscillations, and ending with the resting potential. The
corresponding bifurcation diagram is displayed in Fig. 1(c) with the
interspike intervals on the left-hand side scale and graph in black,
and the firing rate on right-hand side scale with the line shown
in red.
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FIG. 1. Color maps for the pattern outputs (a) and firing rate (b) of the
Huber–Braun neuron model with a range of values of the conductances gSR and
gSD. (c) Bifurcation diagram for increasing values of gSR and gSD = 0.2 mS/cm2.
The injected current Iinj = 0μS/cm2. The marker “x” in plot (a) indicates the gSR
and gSD values used to represent the neuron in Figs. 2 and 3. The pattern outputs
of the model are silent (gray), tonic (teal), chaos (red), and bursting (yellow, light
green, blue, black, pink) following the color scheme presented in Ref. 9. Yellow:
periodic bursting, light green: periodic bursting with alternating one and two spikes
per subthreshold oscillation, blue: one spike per subthreshold oscillation, black:
one spike every other subthreshold oscillation, pink: subthreshold oscillation with
no spikes. This same color scheme is used in Figs. 2(a) and 3 pattern color maps.

In what follows, the characteristics encountered in the graphs
of Fig. 1 will be further explored with the model equations displaying
an additional current IMI for induced modulation.

III. MODULATORY INDUCED CURRENT

The crustacean STG controls different aspects of feeding
behavior, and its neurons exhibit distinct activity modes under
diverse modulatory conditions.30,31 Proctolin, for example, is a well-
characterized neuropeptide that restores a stable rhythmic activity
in decentralized or weakly active STG neurons.32 Proctolin pro-
duces state-dependent actions via a depolarizing, nonspecific cation
current called modulator-induced current, or IMI, that facilitates
oscillations in the membrane potential of bursting neurons.33,34 To
investigate the effects of IMI in the model, we include IMI in Eq. (1),

CV̇ = −IL − INa − IK − ISD − ISR + Iinj − IMI, (5)

expressed as IMI = gMIaMI(V − VMI), where gMI is the maximal
conductance of the current, with the reversal potential set to
VMI = 0 mV. The modulatory activation function is given by
aMI = 1

1+exp
(

V−V0MI
s

) , where V0MI = −40 mV and s = −10 mV.34

To obtain a better understanding of the effects of IMI using our
model, we first look at the combined actions of the modulatory-
induced current IMI and the neuronal model’s excitability Iinj for
enabling neuronal transitions. Excitability is an intrinsic feature of
neurons, allowing them to generate action potentials which is crucial
for signal propagation and proper functioning of neuronal circuits.35

Levels of excitability of a cell also determine the state-dependent
effects of proctolin. That is, proctolin’s effects diminish with higher
baseline neuronal excitability.32

Figure 2 shows the outcomes of varying gMI at different values
of Iinj. Each point in Fig. 2(a) corresponds to the state result-
ing from a particular pair of values for gMI and Iinj, with the
whole color map summarizing the activity states of the model

FIG. 2. (a) Firing pattern color map showing the computational model results with
varying gMI and the injected current Iinj . IMI-induced transitions and the amount
of chaos in these transitions depend on the excitability level of the cell. Yellow
indicates bursting activities, teal indicates tonic, and red indicates chaos. The
dashed line at Iinj = 0μS/cm2 indicates the cross section used for the bifurcation
diagram shown in Fig. 4. (b) Corresponding frequency color map for the differ-
ent firing patterns displaying in (a). The baseline neuron dynamics is silent with
gSR = 0.6 mS/cm2 and gSD = 0.2 mS/cm2. (c) Neuronal model voltage traces
for different gMI values. With gMI = 0.1, 0.3, 0.3545, and 0.36 mS/cm2, the model
produces silent, bursting, chaotic, and tonic activities, respectively.
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neuron over the specified range of parameter values. Following
the same color convention of Fig. 1(a), yellow, green, and blue,
for example, indicate bursting activities, while teal indicates tonic
activity. Red indicates chaotic regimes, which are typically located
between the bursting and tonic regions in Fig. 2(a) [see also
Fig. 1(a)], where the tonic-bursting transition takes place. Lower
firing rates characterize this region, noticeable in Fig. 2(b) by
the darker curved valley area in the violet region starting at
Iinj = 2 mS/cm2 and gMI = 2.5 mS/cm2, bending to the right as
Iinj decreases and gMI increases. In this transition, the firing
rate trend downward reverses temporarily to upward.12 More
excited neurons (Iinj > 0 μS/cm2) reach the bursting-tonic tran-
sition at lower gMI values than neurons with lower excitation
(Iinj < 0 μS/cm2). Concurrently, the bursting regime diminished
with more excitation. Figure 2(a) also shows that the range of gMI

for busting (yellow) decreased and the range of gMI for tonic activ-
ity (teal) increased with more excitation. More excited neurons went
through larger regions of chaos during the bursting-to-tonic transi-
tion than less excited ones, as indicated by larger areas of red on the
upper part of Fig. 2(a). Overall, these results show that, consistently
with the known state-dependence of proctolin modulation in the
STG,32 the effect that gMI has on the model neuron activity depends
on the excitability state of that neuron.

The map of spiking rate [Fig. 2(b)] shows lower frequen-
cies throughout the bursting region (shades of purple) increas-
ing in chunks (more noticeably along the gMI axis for a
fixed Iinj = 0.5 μA/cm2, for example), while the tonic region
shows that frequencies increases smoothly and faster for increas-
ing gMI (red–orange–yellow). For higher levels of excitability
(Iinj > 0 μS/cm2), the magnitude of gMI that is needed to induce
a transition from bursting to tonic is less than what is needed
for lower levels of excitability (Iinj < 0 μS/cm2). Also, more excited
neurons went through larger regions of chaos during this transi-
tion than less excited ones (red areas). Overall, these results show
that the effect that gMI has on the neuron model activity depends
on the state of the neuron, with higher cell excitability facilitat-
ing the occurrence of chaos. Four samples of voltage outputs with
different dynamics are displayed at the bottom of Fig. 2, for the
respective gMI values, all in units of mS/cm2: 0.1 (silent, graph C),
0.3 (bursting, graph D), 0.3545 (chaos, graph E), and 0.36 (tonic,
graph F).

In addition to the injected current, the interplay between gSR

and gSD also determines the neuron’s activity state, as they represent
the wide range of ionic conductance levels that biological neurons
may exhibit.36 To assess the combined effects of changing these con-
ductances on IMI-induced transitions, we analyzed the parameter
space varying gMI, Iinj, gSR, and gSD independently (Fig. 3). In this
figure, each individual color map shows the neuronal activity pat-
terns for different combinations of gSR and gSD values. Horizontally
across, the five color maps differ by values of Iinj (values indicated
on the top of the color maps). Vertically across, they differ by values
of gMI (values indicated on the right-hand side of the color maps).
The white crosshairs on each map indicate gSR = 0.6 mS/cm2 and
gSD = 0.2 mS/cm2, the values used to create the color maps in Fig. 2
and the bifurcation diagram in Fig. 4. Following the crosshairs across
maps, we observed that increasing gMI was sufficient to induce tran-
sitions from silent to bursting and tonic activities. This is consistent

with the results from Figs. 2 and 4, but also with the ability of IMI to
generate bursts in STG neurons.37

We also observe that with more excitation (larger Iinj), less
gSD was required to elicit bursting and tonic activities, a conse-
quence of Iinj and gSD both being excitatory. However, our results
also demonstrate that cell excitability facilitated the appearance of
chaos. With larger Iinj, chaos occurred at almost all borders between
the bursting and tonic regimes. This was noticeable from the elon-
gated red area along the transition line between bursting (yellow)
and tonic (teal) activity. Two main areas of chaos were visible: one
between gSD = 0.3 mS/cm2 and 0.5 mS/cm2 and the other between
gSD = 0.8 mS/cm2 and 1.6 mS/cm2. With less excitation (smaller/
negative Iinj), chaos became restricted to high gSD values and was
absent below gSD = 1 mS/cm2. Nevertheless, the total occurrence of
chaos in this parameter range increased, as measured by the area
occupied by the red color. Thus, more excitation made chaos more
likely to occur at the boundary between the bursting and tonic
activity states, albeit in an overall smaller parameter space.

Increasing gMI made bursting more likely, as indicated by the
enlarged yellow regions in the color maps of Fig. 3. Simultane-
ously, the size of the chaotic regions (in red) changed. For example,
without injected Iinj and modulatory IMI currents, two clearly sepa-
rated areas of chaos were present, one around gSD = 0.2 mS/cm2 and
another between gSD = 1.0 and 1.5 mS/cm2. Increasing IMI resulted
in increased upper and a decreased lower chaotic regions spanning
from gSD = 0.7 to 1.5 mS/cm2, however the chaotic region doubled
in size as gMI becomes nonzero. This can be seen by measuring the
the relative size of the respective areas with respect to the total area of
the map. With 3.92% at Iinj = 0μA/cm2 and gMI = 0 mS/cm2; 8.72%
at Iinj = 0 μA/cm2 and gMI = 0.4 mS/cm2. Overall, the larger regions
of chaos are associated with larger gMI and gSD values, and tonic-
bursting transitions were more likely when increasing gMI. However,
decreasing excitation through negative Iinj, chaos became restricted
to fewer bursting-to-tonic transitions, i.e., those at high gSD levels.
Thus, with this restricted region of chaos, there are fewer options
within the parameter space that result in a chaotic transition.

To further explore and better understand the underlying mech-
anisms mediating these transitions, we generated a bifurcation dia-
gram for neuronal interspike intervals and firing rates, using the
conductance gMI as the control parameter. The diagram is displayed
in Fig. 4(a), allowing the visualization of the neuronal changes in
activity patterns (left vertical scale, green graph) along with the cor-
responding changes in firing rate (right vertical scale, red graph)
for a range of gMI values. For low levels of gMI, between 0 and
0.15 mS/cm2, the neuron does not spike. At gMI ≈ 0.15 mS/cm2, the
neuron begins to burst, initially at a very low firing rate that increases
as the spikes per burst increase by one spike at a time, this pat-
tern is more clearly visible in the interspike interval graph. This
trend continues up to gMI ≈ 0.3534 mS/cm2 where the firing rate
reaches 5 Hz, drops suddenly, and continues to increase in an overall
approximately linear fashion.

The bursting-to-tonic transition for 0.353 mS/cm2 ≤ gMI

≤ 0.360 mS/cm2 denoted by the dashed rectangle in the bifurcation
diagram in Fig. 4(a) is shown zoomed in in Fig. 4(b). In this range,
there is a region of chaotic behavior, which includes the typical
windows of periodicity and the frequency dropping down sharply
from 5 to 3 Hz, followed by an inverted period doubling cascade for
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FIG. 3. Color maps showing activity types of models with discrete values of gMI and Iinj , gSR, and gSD. Each color map shows discrete models with varying gSD and gSR
values. Horizontally across, there are 5 Iinj conditions. Vertically across, there are 5 gMI conditions. White-cross hairs: gSR = 0.6 mS/cm2 and gSD = 0.2 mS/cm2, the values
used in Figs. 2 and 4.

0.356 mS/cm2 ≤ gMI ≤ 0.3592 mS/cm2. A tonic spiking regime fol-
lows for gMI larger than 0.3562 mS/cm2, with the firing rate back into
its upward trend, up to 10 Hz at gMI = 0.5 mS/cm2. These results
further illustrate the modulation elicited bursting-tonic transition

mediated by chaos. This shows that the tonic-to-bursting transi-
tion induces a decrease in the tonic firing rate to its lowest value,
followed by a short-lived firing rate increase in the chaotic regime,
and afterwards resuming its trend toward lower firing rates in the
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FIG. 4. Bifurcation diagram (green) and firing rate (red) with gMI as the bifur-
cation parameter for Iinj = 0. Increasing gMI , elicited activity transitioning from

silent to bursting to tonic. (b) Zooming in of graph in Fig. 3(a) for 0.353mS/cm2

≤ gMI ≤ 0.36mS/cm2. The magnification reveals in more details the bursting-
to-tonic transition with chaos and an inverted period doubling cascade, indicating
a chaos mediated transition.

bursting regime.11 Additionally, the period doubling and period
adding (in the bursting regime) features observed here with gMI as
the control parameter, have also been previously obtained with gSR

38

and temperature39 as the control parameter.
Taken together, the above model results show that IMI induces

transitions between silent, bursting, and tonic activity states. Addi-
tionally, the transition between bursting to tonic occurs through
a period-doubling cascade and chaos. How IMI induces bursting-
to-tonic transitions is dependent on the excitability level and the
balance of conductances of the model neuron. Not only do these
properties alter how much IMI is needed to induce a transition, they
also determine the size and location of the chaotic region within the
transition.

IV. NOISE

Biological systems are intrinsically noisy with neuronal systems
not being an exception. Stochastic fluctuations in neurons result
in part from the cell membrane’s peculiar properties, including the
opening and closing mechanisms of ion channels.40,41 We embedded
stochasticity in our modulated neuronal equations by introducing

one more term, ζ(t), in the currents equation [Eq. (5)] to obtain

CV̇ = −Ileak − INa − IK − Isd − Isr − Iinj − IMI − ζ , (6)

where the Box–Muller algorithm28 was used to numerically imple-
ment the Gaussian white noise term

ζ(t) =

[
−4D

�t
ln(a)

]1/2

cos(2πb), (7)

where D is the noise intensity, �t is the time step of integration, with
uniformly distributed random numbers a and b ∈ [0,1], and statis-
tics 〈ζ(t)〉 = 0 and 〈ζ(t)〉〈ζ(t′)〉 = 2Dδ(t − t′). The effect of noise
on the neuron model bifurcation diagram for three different noise
intensity levels is shown in Fig. 5. In each of the three cases, the neu-
ron remains silent for a range of gMI between 0 and ≈0.15 mS/cm2,
at which point the neuron exhibits two distinct bands of interspike
intervals. These eventually merge into a single band at different gMI

values for each noise level.
The noisy bifurcation diagrams shown in Fig. 5 retain the over-

all features of the noise-free neuron, except that the typical chaotic
transition clearly displayed in Fig. 4 is no longer visible in the bifur-
cation diagrams of Fig. 5. In particular, the characteristic kink found
in the firing rate graph during the tonic-bursting transition10,42 is not
present for large values of the noise intensity D. We also observe
that larger values of gMI are needed for the noisy system to transition
from bursting to tonic. Nonetheless, there are notable similarities
between the noisy and the noise-free systems, in the frequency
plots (red) scaled on the right-hand sides of Figs. 4 and 5, both
plots exhibit overall increasing firing rates for increasing values of
gMI with the drop in frequency present in the noiseless case not
visible in the noisy system except for the small D = 0.01 case. How-
ever, we can see a change in the slope of the noisy diagram at the
point where the chaotic transition would be expected to happen,
at gMI ≈ 0.42 mS/cm2. From that point on, the slope of the noisy
frequency graph increases and then curves back showing a trend
toward a less steep upward slope. This behavior is the same observed
for the noiseless frequency graph right after the transition in Fig. 4.
Additionally, ISI histogram graphs (Fig. 5 insets) illustrate how the
various peaks diminishes as the noise is increased. These results sug-
gest that the typical chaos found in the tonic-bursting transition
region was absorbed in the stochasticity of the noisy system.

V. EXPERIMENTAL DYNAMIC CLAMP

We test our computational model results described above
on a biological experimental setting using dynamic clamp current
injected in a synaptically isolated biological neuron of the STG of
the crab C. borealis [Fig. 6(a)]. The STG controls different aspects
of the animal’s feeding behavior, and its neurons display distinct
activity states under different modulatory conditions.30,31 The gan-
glion is innervated by descending modulatory projection neurons
that originate in the commissural ganglia (CoGs) [Fig. 6(a)]. Release
of neuromodulators by these projection neurons contributes to the
generation and maintenance of rhythmic activities of the neurons in
the STG network. The pyloric circuit produces a tri-phasic rhythm19

[Fig. 6(b)] that includes the activities of the pyloric dilator (PD),
lateral pyloric (LP), and pyloric constrictor (PY) neurons. The PD
neurons are part of the pacemaker group that drives the pyloric
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FIG. 5. Computational bifurcation diagrams (green) for the noisy model neu-
ron with gMI as control parameter with noise amplitude values D = 0.01 in (a),
D = 0.05 in (b), D = 0.5 in (c). The red line refers to the corresponding firing
rate in the three cases, showing the decline and erasure of the typical downward
kink in the transition region for increasing values of the amplitude D. The insets
show the corresponding ISI histograms for each of the three graphs.

rhythm and determines the pyloric cycle period. LP and PY are fol-
lower neurons with LP providing the sole feedback synapse to the
pyloric pacemakers. Removal of modulatory input via pharmacol-
ogy or transection of projection neuron axons causes the pyloric
neurons to become arrhythmic or silent.31 Both applying a neuro-
modulator such as proctolin for example,43 or introducing the ionic

FIG. 6. (a) Schematic of the isolated stomatogastric nervous system (right) of
the crab C. borealis (left). The STG contains 26 easily identifiable neurons that
are innervated through the stn (stomatogastric nerve) by descending projection
neurons originating in the OG (esophageal ganglion) and CoGs (commissural
ganglion). In this experiment the stn was transected. The axons of the STG motor
neurons project through the posterior nerves, including the lvn (lateral ventricu-
lar nerve), the pdn (pyloric dilator nerve), and the pyn (pyloric constrictor nerve);
(stomatogastric ganglion). Bottom left: The core circuit driving the pyloric rhythm
in the STG containing the AB (anterior burster neuron), the PD (pyloric dilator
neuron), the LP (lateral pyloric neuron), and the PY (pyloric constrictor neuron).
(b) Extracellular recording of PD, LP, and PY neurons on the lvn. Our focus here
is on the PD neurons.

conductance elicited by proctolin via dynamic clamp, can restore
neuronal activity. Used extensively in electrophysiology, dynamic
clamp consists of implementing a real-time interface between the
living cell and a computer to simulate dynamical processes.44

For the purpose of this work and given its prominent role in
the STG circuit, we selected the PD neuron for our experimen-
tal study of the tonic-bursting transition. Intracellular recordings
performed using a dynamic clamp injected current on the synap-
tically isolated PD neuron34 yield experimental outputs equivalent
to those obtained from the numerical simulations performed with
the computational model using the neuromodulatory current IMI.
Therefore, after synaptically isolating the PD neuron in our experi-
ment, a dynamic clamp current mimicking IMI was injected into the
biological neuron using a two-electrode setup.34,45 The mathemati-
cal model for the dynamic clamp current IMI is based on the ohmic
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current equation

IMI = gMI · aMI · (V − VMI), (8)

where gMI is the maximum conductance, aMI is the activation func-
tion, VMI) is the equilibrium potential, and V is the membrane
potential of the cell. The implemented current–voltage relationship
is given by

IMI =

⎧⎪⎪⎨
⎪⎪⎩

0 for V < −70,

−0.7 · gMI · (V + 70) for −70 ≤ V < −40,

−21 · gMI for −40 ≤ V ≤ −20,

gMI · (V − 0) for V > −20.

The calculations were run in real-time in a Micro-1401 (CED, UK)
sequencer with the conductance gMI increased by a fixed amount
every 100 s, with voltage traces across the membrane being collected
for a range of gMI values. Four samples are depicted in Fig. 7, with
gMI = 0 nS (silence), gMI = 54 nS (bursting), gMI = 85 nS (chaotic),
and gMI = 114 nS (tonic). These voltage traces display clear resem-
blance with the voltage traces of the computational model [Fig. 2(c)].

The data collected were processed to extract the interspike
intervals for each run of the different values of gMI, from which we

FIG. 7. Experimental voltage traces for g = 0 (silence), g = 54 nS (bursting),
g = 85 nS (chaotic), and g = 114 nS (tonic).

constructed the bifurcation diagram shown in Fig. 8. This diagram
displays remarkable similarities with the corresponding computa-
tional bifurcation diagram of Fig. 5. In Fig. 8, no spikes are present
for small values of the conductance up to gMI = 38 nS, at which point
a double band of interspike intervals emerges as was the case in
Fig. 5. Further increase in gMI values results in a decrease in inter-
spike intervals. At gMI = 78 nS, the two bifurcation bands merge into
one wide single band which then thins down at gMI = 105 nS and
continues so for increasing gMI. These four distinct regions in the
bifurcation diagram (silence, double band, wide single band, thin
single band) are the same regions encountered in the model bifurca-
tion diagram of Fig. 5 as well as in the noiseless bifurcation diagram
of Fig. 4. The graph in Fig. 8 showing the firing rate of the bio-
logical neuron displays the same trends exhibited in the graphs of
Fig. 5, as well as in Fig. 4, except that the noiseless diagram firing
rate displays the typical kink downward in the chaotic transition
between bursting and tonic behaviors. The ISI histogram for the
experimental data (Fig. 8 inset) shows two peaks similar to the ISI
histograms for larger noise intensities [Figs. 5(b) and 5(c)] instead
of showing more peaks referring to other periods. A magnification

FIG. 8. Top: experimental bifurcation diagram and firing rate for the biological
neuron with gMI as control parameter and corresponding histogram (inset). This
graph shows the output of 1 out of 9 experiments, all displaying the same over-
all features. Bottom: A magnification of the above bifurcation diagram with the
corresponding histogram (inset).
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of the experimental bifurcation diagram with the corresponding
ISI histogram is shown in Fig. 8 bottom graph. There seems to be
two very close peaks in the histogram suggesting a period-2 around
that range, however we were not able to find such evidence in the
experimental traces.

The bursting-tonic transition is observed in all three settings
shown in Figs. 4, 5, and 8. However, the chaos/period-doubling fea-
ture of the transition is lost in both Figs. 5 and 8, suggesting that
noise absorbs the intrinsic chaotic behavior of the neuron. Given the
typical erratic characteristics of chaos and noise, albeit each result-
ing from very distinct mechanisms, it constitutes a difficult task
separating them once they are mixed.

VI. POINCARÉ MAPPING

A Poincaré map can be constructed from the trajectory of a
dynamical system in its phase space, as it intersects a lower dimen-
sional subspace, with each crossing point being sent to the next. The
lower dimensional dynamical system thus obtained is discrete and
preserves the major properties of the original higher dimensional
system. This technique for constructing return maps is proven to

be useful when analyzing data outputs from complex systems and
processes.

Return maps of the noiseless computational, noisy compu-
tational, and experimental data in a lower dimensional space are
depicted in the graphs of Fig. 9, using their respective interspike
intervals. The four return maps for each system are lined up hori-
zontally with increasing values of gMI as indicated. For the noiseless
computational model (first row) the maps are clean, yielding typ-
ical maps for neuronal bursting for gMI = 0.34 mS/cm2, chaotic
for gMI = 0.3542 mS/cm2 (check Fig. 4 in Ref. 46), periodic for
gMI = 0.358 mS/cm2, and tonic for gMI = 0.36 mS/cm2. The corre-
sponding noisy computational and experimental Poincaré maps are
plotted in the two lower rows in the same figure, in the same order
of increasing gMI values, exhibiting the same overall features as the
maps on the first row. These results further support the hypothesis
that the experimental PD neuron undergoes the same bursting-tonic
transition that both the noiseless and the noisy computational neu-
rons go through. The computational noiseless and noisy neurons are
more amenable to be scrutinized than the experimental biological
neuron, where the chaos mediated bursting-tonic transition is not
apparent. However, the noisy and noiseless computational outcomes

FIG. 9. Return maps of the noiseless model (first row), the noisy model (second row) and the experimental neuron (third row), with their corresponding gMI values as indicated.
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strongly suggest that the chaos mediated transition is also likely
present in the noisy model, but hidden in the midst of the intrinsic
stochasticity of the biological neuron.

VII. CONCLUDING REMARKS

Transitions between different activity states are ubiquitously
present in neuronal systems, being of crucial relevance in cognition,
sleeping cycles, and motor processes. While the individual neuronal
states are well known and understood, that is not the case for the
transitions taking place between them. In this work, we study the
transitions between regimes of bursting and tonic activity found in
the stomatogastric nervous system of crustaceans.

We implemented computer simulations using neuronal model
equations with physiologically relevant variables and parameters.
The model contains a modulatory current, equivalent to a dynamic
voltage clamp, which induces neuronal transitions between states
of tonic and bursting, mediated by period-doubling cascades and
chaos. This type of transition has been observed in computer sim-
ulations of neuronal activity in networked neurons in synchronous
processes,9,12 as well as in connection with temperature effects on
neuronal behaviors.11 Also, period doubling bifurcations and transi-
tions mediated by chaos have been found in biological systems, as for
example, displaying inherent difficulties with abrupt changes in the
response period in flicker vision,47 in chaos with noise in epidemic
outbreaks models,48 in chaos and stochasticity in heart arrhythmia,49

and in nonlinearity and chaos in ecology.50

We introduced noise into the voltage of our model, taking into
account that stochasticity is commonly found in natural and bio-
logical systems. The inclusion of the noisy term did not change
the overall basic features of the tonic and bursting regimes, still
showing a transition between the two regimes. However, the period-
doubling cascade and chaos transition seen in the noise free model
was lost. While the smearing of bifurcations by noise is a known
effect,27 our computer simulations provide unique insights about
the underlying dynamics hidden in the real neuronal experiments.
Nevertheless, extricating chaos from noise has proven to be a very
difficult task.51–53

Next, we implemented an in vitro experimental dynamic clamp
on the pyloric dilator neuron of the crab stomatogastric neuronal
system, as a means for inducing bursting-tonic transitions. The
results showed striking similarities with the output of our noisy
computational model, suggesting that the tonic-bursting transition
in the biological neuron might be mediated by chaos, however
hidden by noise. While new techniques have been developed to dis-
tinguish a chaotic from a noisy signal in computational models,54

separating one from the other when they are intrinsically mixed
remains a challenge, particularly in experimental settings. Chaos
may indeed be absorbed by noise.
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APPENDIX: MODEL PARAMETERS

Model parameters are set as follows if not otherwise stated in
the text.
V0Na = −25.0 mV, V0K = −25.0 mV, V0SD = −40.0 mV,
Vleak = −60.0 mV, VNa = 50.0 mV, VK = −90.0 mV,
VSR = −90.0 mV, VSD = 50.0 mV,
gleak = 0.1 mS/cm2, gNa = 1.5 mS/cm2,
gK = 2.0 mS/cm2, gSR = 0.6 mS/cm2,
gSD = 0.2 mS/cm2,
τK = 2.0 ms, τSD = 10.0 ms, τSR = 20.0 ms,
sNa = 0.25 mV−1, sK = 0.25 mV−1, sSD = 0.09 mV−1,
νacc = 0.012, νdep = 0.08, ρ = 0.607, φ = 0.124,
Iinj = 0.05 A.
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