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The kilo-Hertz gravitational waves radiated by the neutron star merger remnants carry rich information
about the physics of high-density nuclear matter states, and many important astrophysical phenomena such
as gamma-ray bursts and black hole formation. Current laser interferometer gravitational wave detectors,
such as LIGO, VIRGO, and KAGRA have limited signal response at the kilo-Hertz band, thereby being
unable to capture these important physical phenomena. This work proposes an alternative protocol for
boosting the sensitivity of the gravitational wave detectors at high frequency by implementing an
optomechanical quantum amplifier. With the auxiliary quantum amplifier, this design has the feature of
parity-time (PT) symmetry so that the detection band will be significantly broadened within the kilo-Hertz
range. In this work, we carefully analyze the quantum-noise-limited sensitivity and the dynamical stability
of this design. Based on our protocol, our result shows that the quantum-noise-limited sensitivity will be
improved by one order of magnitude around 3 kHz, which indicates the potential of our design for a future
search of neutron star merger signals.
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I. INTRODUCTION

Gravitational waves (GWs) radiated from binary neutron
star (BNS) inspirals have been detected in many events
(e.g., GW170817) by the advanced ground-based laser
interferometer GW detectors (LIGO and VIRGO) [1–6].
However, the GWs radiated by the BNS postmerger rem-
nants, of which the predicted frequency is around a few
kilo-Hertz (kHz), have not been detected yet, due to the
limitations of sensitivity at high frequencies [7,8]. These
high-frequency GWs carry rich physics. For example, they
may reveal the details of the central engine of a short gamma-
ray burst, the equation of state of ultradense nuclear/quark
matter, etc. Upgrading the sensitivity of ground-based GW
detectors at kilo-Hertz frequency is an important experimen-
tal task for the future GW astrophysics [9–14].
The response of the current LIGO, VIRGO, and KAGRA

configuration to the high-frequency GWs is limited by
the interferometer’s bandwidth [15]. The amplitude of

GW-induced sidebands of the main carrier light decreases
with the increase of the GW frequencyΩ. The quantum shot
noise, which dominates the noise floor at kHz, has a white
spectrum [16–21]. Various schemes have been proposed
for increasing the signal response at high frequency. The
simplest way is to increase the intracavity power (to, e.g.,
10 MW) [7], at the price of sacrificing the low-frequency
sensitivity (e.g., the proposed new Australia-based instru-
ment NEMO project is targeted on using high power
interferometer [22]). However, there are many technical
challenges to building a high-power Fabry-Perot cavity for
GWdetection [23–25].Other schemes include the following:
implementing the “white-light-cavity” concept to broaden
the bandwidth for a detuned interferometer at high fre-
quency; using the resonance created by a long signal
recycling cavity; and the design of signal recycling cavity
with internal squeezing [26–32].
Recently, a novel scheme was proposed to boost the GW

detector sensitivity by reshaping its signal response, in
which the interferometer mode â is coupled to a quantum
parametric amplifier ĉ [33,34]. In the ideal case, the system*myqphy@hust.edu.cn
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Hamiltonian is invariant under the transformation â → ĉ†

or vice versa, that is, the Hamiltonian has parity-time (PT)
symmetry. In this case, the GW-induced sideband signal
fields inside the detector response as ∼Ω−1, which means a
large signal boost at low frequency. Compared to the
previous white light cavity design [27], this scheme is
dynamically stable since the unstable parametric process
will be balanced by the stabilizing sloshing process, and
thereby no further feedback control is required for stabi-
lization [33,35]. However, the Ω−1 signal response means
that most of the advantage is obtained at low frequency,
which is easily contaminated by the backaction noise due to
the fluctuating quantum radiation pressure force as well as
various classical noises.
In this paper, we extend this “PT-symmetry” design

concept for boosting the signal response at kilo-Hertz
frequency, which could be an alternative approach to
increasing the detector sensitivity for detecting GWs
emitted by BNS postmerger remnants. In this scheme,
the main laser is detuned from the resonance of a signal-
recycling laser interferometer, which is coupled to an
oppositely detuned quantum parametric amplifier. We will
thoroughly analyze the conceptual design of this scheme.
Our results show that implementing this PT-symmetry
design can significantly boost the sensitivity in a relatively
large searching band at high frequency.
The outline of this paper is organized as follows.

Section II gives the basic configurations and the result
in the ideal case by a Hamiltonian approach based on the
single-mode approximation. Then in Secs. III and IV, we
perform a detailed analysis on the effect of PT-symmetry
breaking to the sensitivity and system dynamical stability.
In Sec. V, we compute the sensitivity curve using the
transfer matrix approach, which is beyond the single-mode
and resolved sideband approximations, considering various
noise sources. Finally, we give the astrophysical implica-
tions of our protocol in Sec. VI.

II. THEORETICAL PRINCIPLE OF THE SCHEME

The basic concept of the scheme can be illustrated
(schematically shown in Fig. 1) by the following idealized
mode interaction Hamiltonian [33,36]:

Ĥint=ℏ ¼ iωsðâb̂†eiΔt − â†b̂e−iΔtÞ

þ iGðb̂†ĉ†eiδt − b̂ ĉ e−iδtÞ: ð1Þ

Here the â is the annihilation operator of the differential
optical mode of the main signal-recycling interferometer.
TheΔ is the detuning of the main laser beam to the âmode,
which is introduced by the signal recycling cavity [36].
This nonzero detuning Δ creates an optical resonance at
Ω ¼ Δ, which improves the signal response around Δ [36].
At the same time, this detuning also leads to the optical

spring resonance at a low frequency [36]. Since the high-
frequency sensitivity is mainly concerned here, we tem-
porarily ignore the optical spring effect in this section for
simplicity. The GW-induced sideband fields are extracted
from the b̂ mode, which is parametrically coupled to the ĉ
mode. This parametric interaction could have different
realizations, for example, using an optomechanical device,
or a pumped nonlinear crystal [33,37]. Unlike the previous
work, the frequency matching of the parametric coupling
here is generally not perfect, that is, δ ≠ 0.
This Hamiltonian is invariant under the PT transforma-

tion âeiΔt → ĉ†eiδt when the PT-symmetry conditions
(including G ¼ ωs and δ ¼ −Δ) are satisfied. The
Heisenberg equations of motion, considering the coupling
between â and the GWs with strength α are

_̂aðtÞ ¼ −iΔâðtÞ − ωsb̂ðtÞ þ iαhðtÞ;
_̂c†ðtÞ ¼ iδĉ†ðtÞ þ Gb̂ðtÞ;
_̂bðtÞ ¼ −γb̂ðtÞ þ ωsâðtÞ þGĉ†ðtÞ þ

ffiffiffiffiffi
2γ

p
b̂inðtÞ; ð2Þ

where γ is the coupling rate between mode b̂ðtÞ and external
bath b̂inðtÞ. The outgoing field is b̂outðtÞ¼−b̂inðtÞþ

ffiffiffiffiffi
2γ

p
b̂ðtÞ.

Solving these equations of motion under the PT-
symmetry condition leads to the input-output relation as

FIG. 1. Schematic setup: a PT-symmetric GW detector. The
internal signal recycling mirror (ISRM) at the dark port detunes
the main interferometer resonance. An optomechanical device is
coupled to the main interferometer which contributes to the
parametric process. The red and blue dashed lines are the
optical fields at the signal and idler channels. Finally, both of
these two channels should be measured to obtain the optimized
sensitivity curve.
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b̂out1ðΩÞ ¼
Ω − iγ
Ωþ iγ

b̂in1ðΩÞ þ
2α

ffiffiffi
γ

p
ωsΔ

ðΩþ iγÞðΔ2 −Ω2Þ
hðΩÞ;

b̂out2ðΩÞ ¼
Ω − iγ
Ωþ iγ

b̂in2ðΩÞ þ
2α

ffiffiffi
γ

p
ωsΩ

ðΩþ iγÞðΔ2 −Ω2Þ
hðΩÞ;

ð3Þ

where we have the amplitude and phase quadrature of
optical fields defined in the two-photon formalism [38] as

b̂1ðΩÞ ¼
1ffiffiffi
2

p ½b̂ðΩÞ þ b̂†ð−ΩÞ&;

b̂2ðΩÞ ¼
1ffiffiffi
2

p
i
½b̂ðΩÞ − b̂†ð−ΩÞ&: ð4Þ

Since we are interested in high frequency region where
Ω ∼ Δ, the signal response of b̂out1 and b̂out2 are roughly the
same and scales approximately as ∼1=ðΔ −ΩÞ.
The shot-noise-limited sensitivity of the detuned PT-

symmetric scheme, quantified by the signal referred shot
noise spectral density ShhðΩÞ, is given by (suppose the
phase quadrature b̂out2 is measured)

SPThh ðΩÞ ≈
ðΔ2 − Ω2Þ2ðΩ2 þ γ2Þ

4γω2
sα2Ω2

; ð5Þ

while for the conventional detuned interferometer (also the
phase quadrature is measured) given by

Sconhh ðΩÞ ¼
ðΩ2 − γ2 − Δ2Þ2 þ 4γ2Ω2

4α2γðΩ2 þ γ2Þ
: ð6Þ

The comparison between the sensitivities of these two
configurations at Ω ∼ Δ is shown in Fig. 2. At the
resonance point Ω ¼ Δ, the PT-symmetry scheme has a
larger boost due to its response ∼1=ðΩ − ΔÞ in the
ideal case.
In this ideal case, the system is also dynamically stable

which can be understood from the following analysis.
Adiabatic elimination of the b̂ field (usually has a large
bandwidth) leads to the equations of motion for â; ĉ:

"
d
dt

þ iΔþ ω2
s

γ

#
â ¼ −

ωsG
γ

ĉ† −

ffiffiffiffiffiffi
ω2
s

2γ

s

b̂in þ iαh;

"
d
dt

− iδ −
G2

γ

#
ĉ† ¼ ωsG

γ
âþ

ffiffiffiffiffiffi
G2

2γ

s

b̂in: ð7Þ

There is a damping factor ω2
s=γ for the â field while an

antidamping factor −G2=γ for the ĉ† field. Under the
PT-symmetric conditions G ¼ ωs and δ ¼ −Δ, the anti-
damping factor and damping factor cancel each other for
the effective mode âþ ĉ†:

"
d
dt

þ iΔ
#
ðâþ ĉ†Þ ¼ iαh: ð8Þ

Note that, in Fig. 2, there is one peak atΩ ¼ Δ, while we
have three different modes â; b̂; ĉ in our Hamiltonian,
which means there exists degeneracy due to the PT
symmetry [39,40]. This degeneracy can be easily under-
stood since â is equivalent to ĉ†, and the b̂-field couples to
the â; ĉ fields in such a way that there is no effect on the
resonance frequency of the b̂ mode [see Eq. (8)]. Practical
imperfections of our system will cause the breaking of the
PT symmetry, which will affect the detector sensitivity and
the system stability.
This degeneracy can be understood from the algebraic

structure of the Heisenberg equations of motion Eq. (2). If
we take the representation which chooses â; b̂; ĉ† to be the
basis vectors, the Heisenberg equation of motion becomes

d
dt

v̂ ¼ D̂ v̂þsðtÞ; ð9Þ

where v̂≡ ðv1; v2; v3ÞT is a combined mode consisting v1,
v2, v3 of â; b̂; ĉ†, respectively; sðtÞ is the vector that
describes the signal and noise adding to the system:

sðtÞ ¼ ðiαhðtÞ;
ffiffiffiffiffi
2γ

p
b̂inðtÞ; 0ÞT ; ð10Þ

D̂ is the dynamic matrix:

D̂ ¼

2

64
−iΔ −ωs 0

ωs −γ G

0 G iδ

3

75: ð11Þ

FIG. 2. The idealized kilo-Hertz GW noise spectrum of
gravitational wave detectors enhanced by PT-symmetric con-
figurations, in comparison to the conventional detuned LIGO
configuration. The detector dynamics here are described by
Eq. (2). The parameters we used here are based on mapping
the sample parameters in Table I of the interferometer to the
effective mode-mode interaction model.
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The eigenvalues λ1;2;3 and the corresponding eigenvectors
v̂1;2;3 then describe the poles and their corresponding modes
of the whole system, respectively. The response in the
frequency domain can be written as

vðΩÞ ¼ −
sðΩÞ
λþ iΩ

: ð12Þ

Satisfying one of the PT-symmetry conditions δ ¼ −Δ,
the eigenvalues and the corresponding eigenvectors are
given by

λ1∶ v1 ¼
"
−
G
ωs

; 0; 1
#

T
;

λ2∶ v2 ¼
"
−
ωs

G
;−

γ − iΔ
2χ

−
λ3 − λ2
2χ

; 1
#

T
;

λ3∶ v3 ¼
"
−
ωs

G
;−

γ − iΔ
2χ

þ λ3 − λ2
2χ

; 1
#

T
; ð13Þ

where

λ1 ¼ −iΔ;

λ2;3 ¼
1

2

h
−γ − iΔ ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ − iΔÞ2 þ 4ðG2 − ω2

sÞ
q i

: ð14Þ

The other PT-symmetry condition G ¼ ωs would lead to a
degeneracy since v1=3 corresponds to the same eigenvalue
λ1 ¼ λ3 ¼ −iΔ. Breaking this PT-symmetry condition
would lead to the breaking of this degeneracy, as shown
in Fig. 3 where the eigenvalues are plotted in the complex
frequency domain. This figure also shows that there will be
an unstable mode in some parameter regions, of which the
eigenvalue is located on the upper complex plane. This
stability issue will be further explored in Sec. IV.

III. EFFECT OF PT-SYMMETRY BREAKING:
SENSITIVITY

The main practical factors that lead to the PT-symmetry
breaking can be generally summarized as follows (also see
Fig. 4): (1) the off-resonance sidebands in the optome-
chanical filter cavity, which we ignored in the ideal case in
Eq. (1); (2) the pondermotive interaction happens inside the
interferometer arm cavities [36]. In this section, we focus
on their influences on the sensitivity of our protocol.

A. Influence from the off-resonant sidebands

A typical realization of the parametric interaction is to use
an optomechanical device with the interaction Hamiltonian
Ĥom ¼ ℏG̃b̂†b̂x̂m, where G̃ ¼ ω0=Lb is the single-photon
optomechanical coupling strength and Lb is the length of the
filter cavity, the x̂m is the displacement operator of the
mechanical oscillator. Supposing the system is pumped with

FIG. 3. The trajectories of the system’s eigenvalues based on
the ideal Hamiltonian with G varying form 0 to 2ωs and fixed ωs.
Note that these trajectories are symmetric on the left and right
plane since the Hamiltonian is Hermitian. As discussed in the
main text, one of the eigenmodes has a fixed eigenvalue
λ1 ¼ −iΔ, which corresponds to a fixed pole at frequency
Ω1 ¼ −iλ1 ¼ Δ. The other two eigenvalues (poles) change with
the variation of G, they are shown as the blue dashed lines (λ3)
and the solid lines (λ2). Under the PT-symmetry condition
G ¼ ωs, the poles of λ1 and λ3 have a degeneracy. Then if G
varies across ωs, the pole of λ3 gets a positive imaginary part and
becomes unstable. Throughout this variation, v3 is mainly consist
of âðv1 ¼ −ωs=GÞ and ĉ† (v3 ¼ 1). Therefore we denote the
mode “ĉ-like” field after crossing the degeneracy point since
ωs < G, while it’s denoted as “â-like” field before since ωs > G.

FIG. 4. The breaking of the PT symmetry due to practical
system imperfections: the introduction of the off-resonant side-
band fields inside the optomechanical filter cavity (idler channel)
and the pondermotive interactions in the interferometer arm
cavities. The test mass and the idler field do not couple to
the â and ĉ modes in a symmetric way, thereby breaking the
PT-symmetry of the entire system.
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detuning ωm, the optomechanical interaction can be
written as

Ĥom=ℏ ¼ Gðb̂ ĉ eiδt þ b̂†ĉ†e−iδt

þ b̂†ĉe−ið2ωm−δÞt þ b̂ĉ†eið2ωm−δÞtÞ; ð15Þ

where G ¼ G̃xzpf b̄ with xzpf as the zero-point displacement
of the mechanical oscillator and b̄ the mean amplitude of the
pumping beam. In the previous section, we ignored the last
two terms of the above Hamiltonian using the resolved
sideband limit to obtainEq. (1).However, in reality, these far-
off resonant sidebands will have a non-negligible degrada-
tion to the detector sensitivity. In this work, we follow the
standard quantum optics terminology and name the optical
sideband fields around ω0 to be the “signal channel” and
those aroundω0 þ 2ωm to be the “idler channel,” as shown in
Fig. 5. For illustrative purposes, this subsection will study
this effect, while temporarily disregarding the pondermotive
effect in analyzing the idler fields.
Introducing the idler channel around ω0 þ 2Ωm will

break the PT-symmetry as shown in Fig. 6, and bring the
following two effects.
(1) Optical spring effect. The optical spring effect in

the optomechanical filter cavity will modify the
mechanical frequency to be ωopt

m ≈ ωm þ ωopt, where
ωopt ¼ cPbω0=2mω2

mc2Lb. This optical spring effect
must be compensated, otherwise, the PT-symmetry
will be broken and the detector will not be able to
reach its optimal sensitivity. This effect is plotted in
the lower panel of Fig. 6, which demonstrates the
importance of this frequency compensation.

(2) Correction to the GW signal response. The GW
response of the detector will be modified in two
ways by introducing the idler channel. First, the
mode degeneracy introduced by PT symmetry will

be broken. This splits the single-peak at Ω ¼ Δ in
the sensitivity curve as shown in Fig. 6. Second,
the GW signal sidebands will flow into the idler
channels. Therefore GW information can also be
extracted from the detection of the optical quad-
ratures at the idler channels:

b̂i1ðΩÞ ¼
1ffiffiffi
2

p ½b̂ð2ωm þ ΩÞ þ b̂†ð2ωm −ΩÞ&;

b̂i2ðΩÞ ¼
1ffiffiffi
2

p
i
½b̂ð2ωm þ ΩÞ − b̂†ð2ωm −ΩÞ&: ð16Þ

Since the idler channel is separated far from the signal
channel in the frequency domain, this means we can use
two homodyne detectors to measure both the signal channel
and idler channel, and then do data postprocessing to
optimize the detector sensitivity, which we will explain in
detail later. This analysis also shows that a full transfer
matrix analysis is needed for a more accurate sensitivity
curve.

FIG. 5. Left panel: the structure of the mode-coupling Ham-
iltonian, where the â and ĉ are the main interferometer mode and
the mechanical mode, which are PT symmetric to each other. For
detecting the high-frequency GWs, detuning should be intro-
duced to these two modes. Right panel: the on-resonance side-
band fields with ω0 are defined as the signal channel, while the far
off-resonance sidebands resonance at ∼ω0 þ 2ωm is defined as
the idler channel. The red curve sketches the main interferometer
resonance profile.

FIG. 6. The detector sensitivity considers purely the effect of
idler fields (i.e., the pondermotive effect is ignored). Upper panel:
the sensitivity of both the idler and signal channels, taking into
account the frequency compensation ωopt. Lower panel: the
sensitivity of the signal channel with/without the frequency
compensation. The two dips around the detuning frequency
are a manifestation of degeneracy breaking introduced by the
idler channel.
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B. Pondermotive effect

Now we discuss the pondermotive effect which has been
ignored in the previous sections. For a detuned main
interferometer, the pondermotive interaction generates an
additional stiffness for the test masses [41], which is the
optical spring effect [36]. This optical stiffness comes from
the dependence of radiation pressure force on the test mass
displacement. Adding the pondermotive effect term þigX̂
to the right-hand side of Eq. (2) (g ¼ ω0α=L is the
linearized optomechanical coupling constant in the arm
cavity, X is the displacement of the test mass) leads to

_̂X ¼ P̂=M; _̂P ¼ ℏgðâþ â†Þ: ð17Þ

The optical spring rigidity KoptðΩÞ under the PT-symmetry
condition can be solved as (where the PT-symmetry
conditions G ¼ ωs and δ ¼ −Δ have been used):

KoptðΩÞ ¼ 2ℏg2
$

Δ
Δ2 −Ω2

−
2ΩΔG2

ðΩþ iγÞðΔ2 −Ω2Þ2

%
: ð18Þ

In the following, it will be written as KoptðΩÞ ¼
Kopt1ðΩÞ þ Kopt2ðΩÞ, where the Kopt1ðΩÞ ¼ 2ℏg2Δ=
ðΔ2 − Ω2Þ, which only depends on the optomechanical
coupling g in the arm cavity. This Kopt1ðΩÞ resembles the
rigidity of a detuned perfect cavity with zero bandwidth,
which reflects the fact that the loss and gain are balanced
under the PT-symmetry condition.
The optical rigidity will become very large atΩ ¼ Δ due

to the significantly boosted displacement-induced-sideband
fields as ∝ αXðΩÞ=ðΔ2 −Ω2Þ. In other words, at Ω ¼ Δ,

the test masses will become so stiff that the external force
can not drive their motions. Therefore the signal at this
frequency is strongly suppressed and a peak in the
sensitivity curve is expected as shown in Fig. 7.
The input-output relations considering the pondermotive

effect can be written as

b̂outðΩÞ ¼ eiβðΩÞMðΩÞ:b̂inðΩÞ þ DðΩÞhðΩÞ; ð19Þ

in which we have eiβðΩÞ ¼ ðΩ − iγÞ=ðΩþ iγÞ and

MðΩÞ ¼ χMðΩÞ

"
−χ−1M ðΩÞ þ Ki

opt2ðΩÞ −ðΔ=ΩÞKr
opt2ðΩÞ

−ðγ=ΔÞKi
opt2ðΩÞ −χ−1M ðΩÞ þ Ki

opt2ðΩÞ

#

; ð20Þ

where χMðΩÞ is the test mass mechanical response function
modified by the pondermotive effect:

χMðΩÞ ¼ −
1

MΩ2 − KoptðΩÞ
: ð21Þ

The signal response matrix is

DðΩÞ ¼ −
2ig

ffiffiffi
γ

p
G

ðΩþ iγÞðΔ2 −Ω2Þ
χMðΩÞMΩ2L

$Δ
Ω

%
; ð22Þ

where, at Ω ¼ Δ, the signal response vanishes, and the
sensitivity will have a very sharp peak as expected. This
effect will not happen for the tuned PT-symmetric
interferometer [33] since there is no optical spring effect
when Δ ¼ 0. The problem of sensitivity degradation due

to this pondermotive effect can be solved using (1) an
optimal combination of different measurement channels
which is discussed in detail in Sec. V, and (2) negative
inertia.

C. Canceling the pondermotive effect
using negative inertia

The pondermotive effect reflects the fact that the system
is not fully PT symmetric when the test masses dynamics
are considered. For achieving a fully PT-symmetric sys-
tem, a negative mass term [42–47] needs to be introduced
with an additional equation of motion:

_̂x ¼ −
p̂
μ
; _̂p ¼ ℏg̃ðĉþ ĉ†Þ; ð23Þ

FIG. 7. The degradation of detector sensitivity is due to the
pondermotive interaction between the test masses and the optical
fields in the main interferometer. The narrow sensitivity peak at
the optical resonance frequency 3000 Hz with bandwidth ∼10 Hz
comes from the optical stiffness enhanced by the PT-symmetric
configuration. For highlighting the pondermotive effect, the idler
channel effect is ignored here.
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where μ ¼ −M and g̃ ¼ g should be satisfied to achieve
the PT symmetry. In this case, the input-output relation
becomes very simple:

$
b̂out1ðΩÞ
b̂out2ðΩÞ

%
¼ eiβðΩÞ

$
b̂in1ðΩÞ
b̂in2ðΩÞ

%
þ DsymðΩÞhðΩÞ; ð24Þ

where we define

DsymðΩÞ ¼
2ig

ffiffiffi
γ

p
χ

ðγ − iΩÞðΔ2 −Ω2Þ
MΩ2L

−MΩ2 þKopt1ðΩÞ

$ Δ
−iΩ

%
:

ð25Þ

At Ω ¼ Δ, the signal response is finite. The physical
realization of negative inertia coupled to the mode ĉ could
be realized byoptical systems,we leave the detailed design to
the accompanying paper. In this paper, we merely introduce
this concept without discussing its details. The main
approach to cancel the sensitivity peak at Ω ¼ Δ discussed
in this paper is the optimal combination of the different
measurement channels which will be discussed in Sec. V.

IV. EFFECT OF PT-SYMMETRY
BREAKING: STABILITY

Instability arise when there are external energy sources
pumping the system continuously. As shown in Fig. 1, the
arm cavity and filter cavity are both pumped in the blue-
detuned way. A single optomechanical system pumped by a
blue-detuned coherent field would have instability since the
Stokes sideband would overwhelm the anti-Stokes side-
band so that the pumping light is transferring energy to the
mechanical degree of freedom [20,48]. In our design
protocol, the blue-detuned main interferometer is coupled
to the blue-detuned filter cavity with the sloshing frequency
ωs, therefore this coupling will certainly affect the system
dynamics and stability. In Fig. 3, we have seen that there
could be unstable modes when PT symmetry is broken.

A. Instability induced by pondermotive effect

Introducing the pondermotive effect in the arm cavity
means the coupling between the mechanical motion and the
optical mode of the main interferometer, which will shift
the optical resonance of the main interferometer [36]. If this
frequency shift was left uncompensated, it will create a
suppression of the Stokes sidebands of the pumping field in
the filter cavity when being sloshed to the main interfer-
ometer (see Fig. 8). Therefore, the balance between the
sloshing process and the parametric process is broken and
instability forms. In Fig. 9, we plot the influence of the
pondermotive effect on the trajectories of poles, where the
trajectories detour near the detuning frequency Ω ¼ Δ. To
exclude the degenerate breaking introduced by the unbal-
ance between ωs and G (which has been shown in Fig. 3),

we focus on the degenerate point at Ω ¼ Δ under the
condition ωs ¼ G, which is marked by the red spot in the
lower panel of Fig. 9. Pondermotive interaction splits
the degenerate pole into two different points marked by
the black spot, one of which locates on the upper half
complex Ω plane and means system dynamical instability.
Stronger pondermotive interaction will induce a larger
separation of the two poles in the complex Ω plane. Such
instability can be removed by carefully tuning the frequency
of the pumping field.
Besides, the pondermotive effect in the arm cavity also

generates a dynamical backaction to the test mass mirrors,
which is modified by the coupling to the auxiliary system
as shown in Eq. (18). Using the parameter listed in Table I,
these modified dynamics contribute a finite optical spring
frequency around 7.7 Hz with an antidamping factor
equal to 2π × 0.019 rad=s to the test mass. This 7.7 Hz
optical spring resonance manifests as a dip around 7.7 Hz
in the sensitivity curve Fig. 13. The antidamping rate
2π × 0.019 rad=s is well within the LIGO control band.

B. Instability induced by the off-resonant sidebands

After removing the instability near Ω ¼ Δ induced by
the arm cavity pondermotive effect by tuning the pumping

(a)

(b)

FIG. 8. Instabilities induced by the uncompensated resonant
frequency drift introduced by the PT-symmetry breaking. (a) The
Stokes sideband of the pumping light in the filter cavity is a bit
off-resonant to the main cavity resonance due to the optical spring
effect ωopt, which breaks the balance between the parametric and
the sloshing process. (b) The Stokes sideband of the pumping
light in the filter cavity is also an off-resonant due to the small
shift of the main cavity resonance due to its coupling with the test
mass, which also breaks the parametric-sloshing balance and
creates instability.
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field frequency, the instability introduced by the idler channel
(i.e., the off-resonant sideband fields in the filter cavity) also
needs to be removed. This instability exists because the
introducing of these off-resonant idler fields in the filter
cavity brings an optical spring that modifies the mechanical
resonance frequency. The mechanism is shown in Fig. 8.
The Stokes sidebands of the pumping field inside the filter
cavity are off-resonant with the main interferometer optical

resonance, thereby being suppressed when it is sloshed from
the filter cavity to themain interferometer. However, the large
bandwidth of the filter cavity indicates that such a small
mechanical resonance shift does not affect the parametric
process. This means that the parametric process will over-
whelm the sloshing process and instability forms. Using
the Hamiltonian approach, we can quantitatively compute
the effect of the frequency compensation on the stability, the
result shows that we need to carefully tune the compensation
frequency near the ωopt to stabilize the system.
We plot the poles trajectories of the modes â and ĉ on the

complex frequency domain in Fig. 10, when we tune the
compensation frequency under the PT-symmetry condition
ωs ¼ G. We found that these two modes can both be stable
only when the compensation frequency is within a small
frequency domain around ωopt.
The above discussions demonstrate that the instabilities

which happen around the detuning frequency Ω ¼ Δ can
be compensated by the careful tuning of the pumping
frequency in the optomechanical filter cavity, while the
optical spring instability at low frequency can be controlled
by interferometer feedback servo system. For an overall
verification, we also analyzed the stability using the Nyquist
criteria [50], which is a conventional diagrammatic method
for studying stability using the open-loop transfer function.
In our analysis, the open-loop transfer function GoðΩÞ is
chosen to describe the response of both the main detuned
signal-recycling interferometer and the pondermotive

FIG. 9. The influence of the pondermotive interaction inside the
arm cavities on the resonance pole at high frequencies. Upper
panel: the global pole trajectories plotted in the same way as in
Fig. 3. Lower panel: enlargement of the pole trajectories near the
detuning point Ω ¼ Δ, where the degenerate root (when ωs ¼ G)
splits into two different poles and one of them on the upper half
complex plane introduces instability. The dashed line is the pole
trajectory of the ideal case for comparison, and three different
solid lines correspond to the pondermotive-distorted pole tra-
jectories with different pondermotive interaction strengthes. This
instability can be removed by tuning the pumping field frequency
in the filter cavity.

TABLE I. Sample parameters for the detuned PT-symmetric
gravitational wave detector.

Parameters Symbols Values

Arm cavity length La 4 km
ITM mirror transmissivity TITM 0.028
Arm cavity power Pc 1.5 MW
Arm cavity loss ϵETM 10 ppm
Arm cavity mirror mass M 100 kg
ISRM transmissivity TISRM 573.36 ppm
SR cavity length Lc 56 m
SR cavity loss ϵSRC 150 ppm
Oscillator mass m 10 mg
Mechanical frequency ωm 0.1 MHz
Mechanical quality factor Qm 1010a

SRM transmissivity TSRM 0.02
Filter cavity round trip loss ϵf 10 ppm
Filter cavity power Pf 7481.25 W
Filter cavity length Lf 40 m
Filter cavity environmental temperature Ten 1 K
Input squeezing level rsq 10 dB

aThis ultra-high mechanical quality factor is a challenge for
the experiment. However, recent literature [49] shows that it is
possible to reach such extremal Q factor using the current state-
of-the-art technique for the mechanical oscillator with resonant
frequency 200 MHz, which shed light on the possibility of an
ultrahigh Q oscillator at a lower frequency (e.g., 0.1 MHz).
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interaction in the optomechanical filter cavity, shown in
Fig. 1, while the SRM treated as the feedback kernel. The
close loop transfer function is therefore given by

GcðΩÞ ¼
GoðΩÞ

1 − rSRMGoðΩÞ
; ð26Þ

where those transfer functions are calculated using full-
transfer matrix approach without making the resolved-
sideband and single-mode approximations (see Sec. V).
The system is stable only if the contours generated by the
Nyquist map from the complex Ω plane to the GcðΩÞ plane
do not encircle the origin. In Fig. 11, we plot the winding
numbers of the Nyquist contour around the origin of the
complex GcðΩÞ plane when the above frequency tuning is
performed. It finally tells us that the system is stable since the
winding number to the zero point is zero in the casewhenwe
add an extra damping rate equal to 0.02 Hz to damp the test
mass optical spring instability (using the sampling param-
eters given in Table I), under the condition that the filter
cavity pumping frequency is carefully tuned.

V. FULL ANALYSIS OF AN OPTOMECHANICAL
REALIZATION USING EXACT TRANSFER

MATRIX APPROACH

In the discussion above, we have used the following
approximations: (1) single-mode approximation for each
optical system so that ΩLarm=c ≪ 1 and 2ωmLSRC=c ≪ 1,
(2) the resolved sideband approximation that allows ignor-
ing the idler mode in the parametric process. In this section,
we show the exact case, especially to make use of the
ignored idler mode to compensate for the pondermotive

degradation of sensitivity. Our numerical calculation of the
sensitivity curve follows the standard transfer matrix
approach, which was briefly summarized in [33].
The method of Wiener filtering can be used to combine

the signal and idler channels. The detailed derivation of this
multichannel Wiener filtering method is discussed in the
Appendix of [51]. Denoting the two Wiener filter functions
asK1;2ðΩÞ, and the combined output ŷðΩÞ can be written as

ŷðΩÞ ¼ K1ðΩÞŷsðΩÞ þ K2ðΩÞŷiðΩÞ; ð27Þ

where ŷs=i is the measured signal/idler field quadrature
operator. These operators can be formally represented as

ŷs ¼ ns · as þ dsh; ŷi ¼ ni · ai þ dih; ð28Þ

where ns=i and ds=i are the transfer functions for noise field
as=i ¼ ða1s=i; a2s=iÞT and the GW signal h.

FIG. 11. The winding number: the system is stable with no
poles on the upper side of the complex plane (i.e., the winding
number is zero) when we add a damping rate of 0.02 Hz to
compensate for the optical spring instability. The contour in the
complex Ω plane is chosen to be the upper half-circle with a
radius equal to 2π × 2 × 104 rad=s. We homogeneously choose
the data points in this half-circle contour and map them to the
GcðΩÞ plane. The winding turns are defined as θðΩÞ=2π
explained in the upper panel, where the shape peaks/dips indicate
a close pass of the contour near the origin.

−3200 −3100 −3000 −2900 −2800
−40
−20
0
20
40

FIG. 10. The poles trajectories of the â and ĉ modes with the
change of the compensation frequency, when we introduced the
idler fields (after removing the instability at high frequency induced
by pondermotive effect in the arm cavity). The arrows show the
direction of compensation frequency increasing (under the con-
dition ofωs ¼ G). Using our sampling parameters, these two poles
are both stable only when ωcomp ∈ ωopt þ ½91.39 Hz; 91.76 Hz&.
The system will be unstable around 2900 or 3100 Hz if the
compensation is out of this region (corresponding to the red points
and blue points).
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Optimizing the sensitivity by varying these two filter
functions leads to the minimum noise given as the inverse
of the largest eigenvalue of the following matrix:

M ¼ N−1 · Σ; ð29Þ

where the noise and signal matrix are given by

N ¼

"
nsSasasn

†
s nsSasain

†
i

niSaiasn
†
s niSaiain

†
i

#

; ð30Þ

and

Σ ¼
$ jdsj2 dsd'i
did's jdij2

%
: ð31Þ

The combined sensitivity is shown in Fig. 12, where the
Wiener filtering process favors the idler channel near
3 kHz. This combined sensitivity has a much larger
bandwidth and sensitivity than the conventional configu-
ration at around 3 kHz. Moreover, we also provide the

behaviour of the sensitivity curve in a larger frequency
band, say ½1; 104& Hz, in Fig. 13. Besides, the Wiener
filtering combined sensitivity has almost no difference from
the signal channel since the signal channel is favoured
outside the frequency band around 3 kHz. The low-
frequency peak corresponds to the optical spring effect
due to the main interferometer detuning.
Furthermore, we also considered the effect of various

losses in this protocol, such as the noise introduced by the
optical loss in the signal recycling cavity (formed by ISRM,
beam splitter and the two ITMs in Fig. 1), the optical loss
in the arm-cavity (which is attributed to the ETM loss) and
the optical-loss/thermal noise in the optomechanical filter
cavity. The corresponding sampling parameters are listed in
Table I. The resultant noise budget is shown in Fig. 14,
where the sensitivity is plotted in both the frequency range
of 1–104 Hz and around 3000 Hz. As also discussed in
[52], the thermal noise in the filter cavity behaves similarly
to the optical loss in the filter cavity in the broad frequency

FIG. 12. The quantum-noise-limited sensitivity around 3000 Hz
obtained by the full transfer matrix simulation. Upper panel:
The detector sensitivity obtained from the signal/idler channels
and their Wiener-filtering combination. Lower panel: comparing
the Wiener-filtering combined sensitivity curve with that of the
conventional detector and idealized PT-symmetric configuration.

FIG. 13. The quantum-noise-limited sensitivity obtained by the
full transfer matrix simulation in frequency band ½1; 104& Hz.
Upper panel: the detector sensitivity obtained from the signal/
idler channels (phase quadrature) and their Wiener-filtering
combination. Lower panel: the detector sensitivity obtained
from the signal/idler channels (amplitude quadrature) and
their Wiener-filtering combination. Note that the dashed line is
almost overlapped with the signal channel except at around
3000 Hz, which can be hardly distinguished in the broad
frequency band.
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range, while a bit differently around the detuning frequency
Ω ¼ Δ due to the suppression of the filter’s optical loss
noise near the detuning frequency [27]. The noise compo-
nents of the noise budget in Fig. 14 are plotted using the
Wiener combination coefficient computed based on the
total noise of idler and signal channels, and we also
assumed an injection of 10 dB phase squeezing field.

VI. ASTROPHYSICAL IMPLICATIONS

GW observations of binary neutron star (BNS) inspiral
have already been achieved and various constraints on the
equation of state of neutron stars (NS) have been inter-
preted from the observation of GW170817 [53–58].
Boosting the sensitivity of GW detectors around the
frequency of 3 kHz could open up the possibility of direct
detection of the merger and postmerger GW signals of
BNS merger events, with which the understanding of the
equation of state of dense matter at supranuclear densities
could be pushed to a new level.
Based on BNS merger simulations carried out by various

groups, it is widely accepted that the fate of the postmerger

remnant is determined by the ratio between the maximum
mass of a cold nonrotating NS (i.e., MTOV) and the total
mass of the binary (which could be accurately measured by
inspiral GW signal) [59]. Therefore, simply a non/detection
of the GW signal from the postmerger remnant could tell
that the remnant experiences prompt/delayed collapse to a
black hole (BH). This already allows for an independent
constraint onMTOV. Furthermore, it has been found that the
postmerger GW signals could be used to constrain crucial
properties of the merging NSs such as compactness and
tidal deformability [9,11,60–62]. However, the most rel-
evant frequency range of the postmerger GW signals lies
in the range from 2 to 3 kHz, which is too high for the
current generation GW detectors to resolve even for close
sources such as GW170817. Our design could make it
possible for a measurement of the frequency peaks in the
postmerger phase and hence make complementary con-
straints on NS properties.
Moreover, the density of the BNS merger remnant could

be several times higher than the inspiral stage. Strong
interaction phase transition is suggested to be possible
under such conditions and could leave detectable features
in the postmerger GW signals [63,64]. Compared to the
cases without a phase transition, the peak frequency of the
postmerger GW is found to shift to an even higher value.
Having a detector with a sufficiently broad sensitivity and
frequency resolution at roughly 3 kHz could identify such
a shift and constrains the density range of the strong
interaction phase transition, see Fig. 15.

1000 2000 3000 4000 5000−24.5

−24.0

−23.5

−23.0

−22.5

−22.0

FIG. 15. The sensitivity curves with GW signal emitted by
neutron star merger remnants with two different equations of
states. The black line is the sensitivity of the conventional
detuned interferometer, while the blue line is the sensitivity of
our protocol. These sensitivity curves are plotted using the
parameters in Table I. The orange line is the BNS merger
waveform of the APR4-q10-M1375 model calculated in [65]
and the sky-blue line is the waveform of the 15H model listed in
the data bank [66].

FIG. 14. The noise budget of the detuned PT-symmetric
gravitational wave detector, where the noise due to the signal
recycling cavity loss, filter cavity loss, ETM loss and the thermal
noise of the mechanical oscillator in the filter cavity is consid-
ered. The upper panel is the noise budget from 1 to 104 Hz, while
the lower panel is the noise budget around 3000 Hz.
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VII. DISCUSSION AND CONCLUSION

In this work, we provided an alternative design protocol
based on the PT symmetry to the high-frequency gravita-
tional wave detector, targeted at the physics of binary
neutron star coalescence. We have analyzed in detail the
optomechanical realization of a detuned PT-symmetric
interferometer, targeted at improving the sensitivity to
the kilo-Hertz GWs using single-mode approximation
and full transfer matrix simulation. The effects of the idler
field and pondermotive interactions are analyzed in the
single-mode approximation, which provides physical
insight for understanding the sensitivity curves obtained
using transfer matrix simulation. We showed that using the
same parameter setting as in the tuned case, after (1) com-
pensating the optical spring in the optomechanical quantum
amplifier and (2) the Wiener-filtering combination of the
measurement data obtained from both signal channel and
idler channel, we can in principle achieve a significant
boost of the sensitivity around 3 kHz. This sensitivity is
10 times better than the conventional design. The dynami-
cal instability of the system is induced by the optical spring
effect, which can be controlled in the detector feedback

servo system. Our work focuses on the conceptual designs
of this protocol while leaving more practical and technical
considerations to future studies.
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