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Abstract

Gravitational-wave (GW) radiation from a coalescing compact binary is a standard siren, as the luminosity distance
of each event can be directly measured from the amplitude of the signal. One possibility to constrain cosmology
using the GW siren is to perform statistical inference on a population of binary black hole (BBH) events. In
essence, this statistical method can be viewed as follows. We can modify the shape of the distribution of observed
BBH events by changing the cosmological parameters until it eventually matches the distribution constructed from
an astrophysical population model, thereby allowing us to determine the cosmological parameters. In this work, we
derive the Cramér–Rao bound for both cosmological parameters and those governing the astrophysical population
model from this statistical dark siren method by examining the Fisher information contained in the event
distribution. Our study provides analytical insights and enables fast yet accurate estimations of the statistical
accuracy of dark siren cosmology. Furthermore, we consider the bias in cosmology due to unmodeled
substructures in the merger rate and mass distribution. We find that a 1% deviation in the astrophysical model can
lead to a more than 1% error in the Hubble constant. This could limit the accuracy of dark siren cosmology when
there are more than 104 BBH events detected.

Unified Astronomy Thesaurus concepts: Cosmological parameters (339); Hubble constant (758); Gravitational
wave sources (677); Stellar mass black holes (1611)

1. Introduction

The key to studying modern cosmology is to measure a
relation between distance and redshift. In electromagnetic (EM)
observations, the redshift to the source can be directly
measured (e.g., by comparing the measured spectra to the ones
obtained in terrestrial laboratories), and the challenge is to
constrain the distance. To do so requires utilizing some form of
standard reference. One possibility is to use “standard candles”
with known intrinsic luminosity, and the best-known example
is a Type Ia supernova (Riess et al. 1996, 2021). Another
possibility is to use a “standard ruler” with a known size, and
the imprint of sound waves in the cosmic microwave
background is such an example (Spergel et al. 2003; Planck
Collaboration et al. 2014, 2020). However, a tension on the
value of the Hubble constant, conventionally denoted by H0,
emerges between the latest results of the two sets of
measurements (Verde et al. 2019). It thus calls for a third
method to either reconcile or confirm the tension.

This brings observations using gravitational waves (GWs) to
people’s attention, a new possibility opened up by Advanced
LIGO (aLIGO; Aasi et al. 2015), Advanced Virgo (Virgo
Collaboration et al. 2015), and KAGRA (Kagra Collaboration
et al. 2019; Akutsu et al. 2021). The GW events are “standard
sirens” in cosmology (Schutz 1986; Holz & Hughes 2005), as
the amplitude of an event directly encodes the luminosity
distance to the source. If the redshift information can be further
constrained, we can then determine the values of cosmological
parameters.

One way to obtain the redshift information is through
multimessenger observation of an event. If we can simulta-
neously observe a GW event and its EM counterpart,
corresponding to a “bright siren,” we can then identify the
host galaxy of the event, from which we can further extract the
redshift (Holz & Hughes 2005; Chen et al. 2018). A GW event
involving neutron stars (either a binary neutron star, BNS, or a
neutron star–black hole event) is an ideal candidate here.
Indeed, the first BNS event, GW170817, is a highly successful
example (Abbott et al. 2017a, 2017b). From this event alone,
we were able to constrain the Hubble constant to
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12 1 1 within the 68% credible interval.
With future detectors like LIGO-Voyager (Adhikari et al. 2020)
or third-generation (3G) GW detectors including the Einstein
Telescope (Sathyaprakash et al. 2011) and the Cosmic
Explorer (Abbott et al. 2017c; Reitze et al. 2019; Evans et al.
2021), it is potentially possible to constrain H0 with percent-
level accuracy and the normalized matter density Ωm to an
accuracy of 10%( ) (Chen et al. 2021). However, such bright
sirens are rare, and GW170817 is the only joint observation to
date. Even with 3G detectors, Califano et al. (2022) estimated
that only 0.1% of detectable BNSs will have observable EM
counterparts. Besides a direct EM counterpart, it is also
possible to constrain cosmology from matter effects in
coalescing BNSs (Messenger & Read 2012).
Alternatively, we may further utilize information in binary

black hole (BBH) events, which consist of the majority of event
catalogs (Abbott et al. 2016, 2019; Nitz et al. 2019; Gray et al.
2020; Nitz et al. 2020; Venumadhav et al. 2020; Abbott et al.
2021a, 2021b, 2021e; Olsen et al. 2022). An EM counterpart is
typically not expected for a BBH event; therefore, a BBH
corresponds to a dark siren (though a counterpart might be
possible if the BBH resides in a gaseous environment; see, e.g.,
McKernan et al. 2019). While for a single event, it is
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challenging to obtain the redshift due to the perfect degeneracy
between redshift and mass (unless the source can be accurately
localized to only a few potential host galaxies, a point we will
get back to in Section 6), we can nonetheless infer the redshift
distribution of a collection of BBH events statistically.

Initially, the statistical inference was done by comparing a
BBH event catalog with galaxy catalogs (e.g., Schutz 1986;
Chen et al. 2018; Fishbach et al. 2019; Finke et al. 2021). Later,
people realized that features in the mass distribution of BBH
events could also be used to constrain the cosmological
parameters. This corresponds to "spectral sirens" (e.g., Chern-
off & Finn 1993; Taylor et al. 2012; Farr et al. 2019; Abbott
et al. 2021d; Mastrogiovanni et al. 2021; María Ezquiaga &
Holz 2021, 2022). In both cases, one computes the likelihood
of each event to happen given a set of cosmological parameters,
as well as an assumed astrophysical population model. The
likelihoods for all the events are then multiplied together to get
the likelihood of the observed population given the assumed
cosmological and astrophysical parameters. This is further
converted to a posterior distribution of parameters with an
assumed prior distribution (Mandel et al. 2019; Thrane &
Talbot 2019).

In essence, the statistical approach corresponds to a
comparison between two histograms, or distributions. One
distribution is obtained from the observed BBH events with
respect to either the luminosity distance or detector-frame
masses (or both as a high-dimensional distribution). The other
distribution is constructed from our astrophysical model with
respect to either redshift or source-frame masses (or both). By
varying the values of cosmological parameters, as well as those
governing the astrophysical population, we can eventually
match up the two distributions, thereby constraining the
cosmology and population model simultaneously.

With this view, we propose an especially convenient way to
assess the statistical power of dark siren cosmology. In
particular, we can analytically construct the Fisher information
encoded in the distributions. From that, we can both estimate
the uncertainties on the parameters governing the distributions
and understand the correlations among the parameters. As we
will show later, even with a few simplifying assumptions, this
approach predicts a similar level of uncertainty on the Hubble
constant when applied to the GWTC-3 catalog (Abbott et al.
2021e), as well as many other key features obtained in LIGO
Scientific Collaboration et al. (2021d). It also reproduces the
results of previous studies (e.g., Fishbach et al. 2018; Farr et al.
2019) when forecasting the future constraints on both the
population model and cosmology with hundreds to thousands
of BBH events. Therefore, our approach serves as a simple and
analytical way to study the statistical dark siren method, which
can be especially useful when making quick but decently
accurate predictions for the future when a large number of
events are expected. It thus complements the more accurate
yet also more complicated hierarchical inference
approach (Mandel et al. 2019).

Furthermore, our approach can be used to study the bias on
cosmological and/or astrophysical parameters due to errors in
the assumed population models. We will first provide a general
framework to study the bias due to any form of error; then, as a
case study, we will examine in detail how unmodeled
substructures in the mass and/or redshift model would affect
the inference of the Hubble constant. This is motivated by the

latest population model by LIGO Scientific Collaboration et al.
(2021c), where signs of substructures are suggested.
The rest of the paper is organized as follows. In Section 2,

we provide the mathematical framework to construct the Fisher
information matrix of a distribution, which estimates the
covariance matrix when jointly fitting cosmological parameters
and population properties. We will also consider the bias
induced on the cosmological parameters due to structures not
captured by a parameterized population model with a specific
functional form. We then describe the astrophysical model
adopted in our study in Section 3. The application to the
GWTC-3 catalog is presented in Section 4. To further validate
our method, we also present the reproduction of previous
studies’ results using our method in the Appendix. In Section 5,
we consider the bias on cosmological inference induced by
unmodeled substructures in both the mass distribution and
merger rate function, and we set requirements on the accuracy
of the population in order for the bias to be below the statistical
error. Lastly, we conclude and discuss in Section 6.

2. Basic Framework

We demonstrate in this work that in essence, the statistical
dark siren approach corresponds to a comparison between a
measured distribution of GW events and the one we construct
based on our knowledge (or assumption) of the cosmology and
the astrophysical source population.
Examples are illustrated in Figures 1 and 2. Here the y-axis is

the normalized detection probability density of GW events (the
parameters are consistent with those inferred from GWTC-3;
Section 4). The x-axis can be the redshift z or the mass of the
primary (either the detector-frame one, m1

d( ), or the source-
frame one, m1). While for illustration purposes, we focus on
marginalized 1D distributions, the analysis in this section can
be straightforwardly extended to high-dimensional distributions
as well.
Without loss of generality, we can construct a histogram of

observed BBH events with respect to a general coordinate x
(which can be the redshift z, the mass of the primary black hole
m1, or other quantities). The expected number of observations
in the ith bin at [xi, xi+Δx) can be written as ri(θC, θA)Δx,
where r is the event density. We use θC= (H0, Ωm, ...) to
denote the cosmological parameters, and θA indicates the other
astrophysical parameters. The number of observations in the ith
bin, ni, follows a Poisson distribution:1

q q =
D - D

p n r
r x r x

n
,

exp
. 1i i

C A i
n

i

i

i

[ ∣ ( )] ( ) ( )
!

( )

1 Here, for simplicity, we ignore the inference uncertainty of each individual
event’s parameters (e.g., redshift and mass, etc.). As we will see in later
sections, the results we obtain under this simplification are decently accurate.
The uncertainty on an individual event’s parameters smears out fine details but
keeps the broad, coarse-grained features in the population distribution. Current
analysis focuses on the coarse-grained part (see, e.g., LIGO Scientific
Collaboration et al. 2021d), though for high-precision cosmology, it would
be critical to also capture substructures in the model (see later in Section 5). A
more general treatment incorporating the uncertainty (and potentially
systematic bias) on individual events is deferred to a future study.
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The Fisher information of θ= (θC, θA) at a given bin i is
given by
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where we have used the subscripts a, b to denote the (a, b)th
element in the Fisher information matrix, and the derivatives
are evaluated at the true values of θ (or, in practice, our best
estimation of θ). Summing over all of the bins and converting
the discrete sum into an integral over dx, we thus arrive at the

Fisher information matrix:

òq q q q
q q

=
¶

¶
¶

¶
I r x

r x r x
dx

log log
. 3ab

a b

⎡⎣⎢ ⎤⎦⎥⎡⎣⎢ ⎤⎦⎥( ) ( ∣ ) ( ∣ ) ( ∣ ) ( )

From the distribution, the covariance matrix of θ, Cov(θ), can
be estimated by the Cramér–Rao bound as

q q= -ICov . 41( ) [ ( )] ( )
For future convenience, we also define IC, where the

differentiation in Equation (3) is done only with respect to θC,
or qq Îa b

C
, { }. Effectively, IC corresponds to the case where

we have perfect knowledge of the astrophysical event rate,
while I further considers the covariance between astrophysical
population models and cosmological parameters.
Note that in the analysis above, we have assumed that the

astrophysical model has the correct functional form and only
has unknown parameter values. It might also be possible that
the astrophysical model is formally inaccurate (e.g., due to
substructures in the model and/or evolution in the population).
In this case, the estimation of cosmological parameters can be
systematically biased.
To calculate the bias, we suppose that the true rate (denoted

by a superscript t) in the ith bin can be written as

q q= + Dr r r, . 5i
t

i
C A

i( ) ( )

Figure 1. Top: expected number of detections as a function of the redshift z at
different values of h ≡ H0/(100 km s−1 Mpc−1). From GW events, we can
construct such a distribution as a function of DL first and then convert it to a
function of z based on assumed cosmological parameters. Meanwhile, our
astrophysical knowledge allows us to construct an expected distribution as a
function of z from, e.g., galaxy catalogs. By comparing the two histograms, we
can then constrain the value of the cosmological parameters. The bottom panel
shows that the distribution is also affected by astrophysical models (e.g., the
location of a peak in the BBH’s mass distribution μg; see Section 3), which
could mimic the effect of changing cosmological models. This indicates the
significance of jointly analyzing astrophysical and cosmological parameters.

Figure 2. Similar to Figure 1, but now we plot the distribution as a function of
the detector-frame mass of the primary black hole, m1

d. Combining it with
Figure 1 can thus be used to break the degeneracy between astrophysical and
cosmological parameters.
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We can expand the log-likelihood around the true θC and
Δri= 0 (the expansion around θA can be straightforwardly
included, but the covariance between θA and θC has been
accounted for in the Fisher matrix in Equation (3), and
therefore we ignore it here),

q q
q q
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where the first derivative vanishes because at true values, the
probability is maximized.

The bias in the cosmological parameter induced by Δri is
then given by setting

q
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Computing the expectation with respect to ni at each bin and
then summing over the bins, we arrive at
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We can thus use Equation (11) to study how an error in the
astrophysical rate model,Δr(x), propagates to the cosmological
parameters, θC. Note that while we focus on ΔθC in this study,
our framework can also be straightforwardly extended to study
the bias on astrophysical parameters.

3. Combined Astrophysical and Cosmological Model

In this section, we derive the expected event rate r(m1, m2, z|
θ), which can then be used to construct the Fisher information
(Equation (3)) and/or estimate the bias on θC (Equation (11)).

Suppose the intrinsic distribution of GW events is (Fishbach
et al. 2018; LIGO Scientific Collaboration et al. 2021d)

q q=
dn

dm dm dz
m m z R p m m z, , , , , 12

1 2
1 2 1 2( ∣ ) ( ∣ ) ( )

where R is the total number of BBHs, and we normalize the
probabilities such that

ò q =dm dm dz p m m z, , 1. 131 2 1 2( ∣ ) ( )

The expectation of the observed event density is

q q

q q

=

=

r m m z
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RP m m D z p m m z
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14

L
C

1 2
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1 2
1 2

det 1 2 1 2

( ∣ ) ( ∣ )

[ ( ∣ )] ( ∣ )
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where DL is the luminosity distance, and ÎP 0, 1det [ ] is the
fraction of GW events with (m1, m2, z) that are detectable.
The above expression is generic. To proceed, we further

make simplifying assumptions following Fishbach et al. (2018)
and consistent with LIGO Scientific Collaboration et al.
(2021d). In particular, we assume

q q q q=p m m z p m m p z, , , , , 15A A C
1 2 1 2( ∣ ) ( ∣ ) ( ∣ ) ( )

where p(m1, m2|θ
A) describes the mass distribution, and we

assume that it is independent of the redshift. The redshift
distribution is then captured by p(z|θA, θC). We separately
normalize the two distributions as ∫p(m1, m2|θ

A)dm1dm2= 1
and ∫p(z|θA, θC)dz= 1.
For the rest of our study, we will focus on the case where

p(m1, m2|θ
A) is described by the Power Law + Peak

model (Talbot & Thrane 2018; Abbott et al. 2021c), and we use
the same notation as used in LIGO Scientific Collaboration
et al. (2021d). In this case, the distribution of the mass of the
primary black hole, m1 (with m1�m2), contains two
components: a truncated power-law component defined
between M M,min max( ) with µ a-p m m1 1( ) and a Gaussian peak
centered at μg with a width of σg. The overall height of the
Gaussian peak is governed by a parameter λg. For a given m1,
the secondary mass then follows a truncated power law
between M m,min 1( ) with a slope µ bp m m2 2( ) . Additionally,
we smooth the lower end of both m1 and m2 with a sigmoid
function defined in Equation (B7) in LIGO Scientific
Collaboration et al. (2021c) and with a parameter δm.
For the redshift model, we further write

q q q qy
µ

+
p z

dV
dz

z
z

z
,

1
, 16A C c C

A
( ∣ ) ( ∣ ) ( ∣ ) ( )

where Vc(z|θC) is the comoving volume, and the 1/(1+ z) term
converts from detector- to source-frame time. A general
parameterization of the ψ(z) piece can be written as (Madau
& Dickinson 2014)

y = + +
+

+ + +
g

g

g
- -

+
z z

z
z z

1 1
1

1 1 1
,

17

p
k

p
k

( ) [ ( ) ] ( )
[( ) ( )]

( )
where γ and k respectively describe the low- and high-redshift
power-law slopes, and zp corresponds to a peak in ψ(z). For
GWTC-3, where most events are detected at low redshifts, ψ(z)
simplifies to (see, e.g., Fishbach et al. 2018)

y = + gz z1 . 18( ) ( ) ( )
We will adopt Equation (18) for our analysis and drop (zp, k).
Under the model described above, there are nine astro-

physical parameters,
q d a b l m s g= M M, , , , , , , ,A

m g g gmin max
T( ) . For the cosmolo-

gical part, we assumed a flat universe described by
q = WH ,C

m0
T( ) , with H0 the Hubble constant and Ωm the

mass density normalized by the critical density. For future
convenience, we will define h=H0/(100 km s−1 Mpc−1).
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To estimate Pdet, we follow Fishbach et al. (2018) and
approximate the observed signal-to-noise ratio (S/N) of an
event as

qr r= Qm m D z, , , 19L
C

1 2 0[ ( ∣ )] ( )
where ρ0 is a characteristic S/N of the source, and Θ accounts
for the change in the S/N due to angular projection, with

sQ ~ Qlog 0, , 20log
2( ) ( )

s
s

r r
=

+Q
Q

1
, 21log

2 log ,0
2

0 th

( )

where s Qlog ,0
2 and ρth are further parameters controlling the

shape of Θ.
Suppose sources with ρ> ρth are detectable; we have

ò

s

= Q Q

=
Q

Q

¥

Q

P p dlog log

1
2

Erfc
log
2

, 22

det
log

th

log

th

⎜ ⎟⎛⎝ ⎞⎠
( )

( )

where Θth= ρth/ρ0, and Erfc is the complementary error
function.

4. Applications to GWTC-3

In this section, we apply our method to GWTC-3 (Abbott
et al. 2021e) and estimate the uncertainties on (θA, θC) when
jointly fitting the astrophysical population distribution and
cosmology together. Despite the simplicity of our method, it
successfully captures many qualitative features and gives
accurate predictions of different parameters’ uncertainties as
reported in LIGO Scientific Collaboration et al. (2021d).
Further validation of our method can be found in the Appendix,
where we also apply our method to reproduce results in
Fishbach et al. (2018) and Farr et al. (2019).

Note that to evaluate the Fisher information matrix
(Equation (3)), we need to take derivatives around the “true”
model parameters. These values are mostly approximated by
the ones inferred in LIGO Scientific Collaboration et al.
(2021d), and we summarize them in Table 1. Figures 1 and 2
are also generated with the same set of parameters (except for
the one listed in the legend). Note that we slightly modified the
values of = M M6.5min and δm= 2.5Me to make our
Figure 2 more similar to Figure 1 in LIGO Scientific
Collaboration et al. (2021d).2 The overall scale R is set so
that the total number of BBH detections is nobs= ∫r(m1, m2,
z|θ)dm1dm2dz= 40, consistent with the number of BBH events
used in LIGO Scientific Collaboration et al. (2021d).

To approximate Pdet, we compute the characteristic ρ0 using
a single detector with LIGO Hanford’s sensitivity in the third
observing run (Buikema et al. 2020) for each [m1, m2,

DL(z|θC)]. The waveform is generated with the IMRPhenomD
approximation (Khan et al. 2016; the waveform is computed
using PYCBC; Nitz et al. 2022), and the source is placed at an
effective distance of 2.3DL (Allen et al. 2012). We further use
ρth= 8 and s =Q 0.25log ,0

2 when computing Equation (22).

4.1. Using Redshift Distribution while Holding Population
Model Fixed

First, we consider the case where we constrain the
cosmological parameters using the redshift distribution of
BBH events while treating the underlying astrophysical
population as known and fixed. An astrophysical expectation
can be constructed using the coarse-grained distribution of
galaxies. Indeed, when each BBH event is localized with
limited accuracy and thousands of galaxies or more lie within
the uncertainty volume, a galaxy catalog mainly serves as an
estimation of the overall smoothed shape of ψ(z), which we
model as a simple power law as in Equation (18). In this case,
cosmological parameters are constrained by requesting con-
sistency between the distribution of observed BBH events and
our astrophysical expectation, as demonstrated in the top panel
of Figure 1. (We will return to this in Section 6 to discuss how
improved localization accuracy, together with a complete
galaxy catalog, could help.)
In Figure 3, we present the constraints on (h, Ωm) from the

marginalized redshift distribution r(z|θ)= ∫r(m1, m2,
z|θ)dm1dm2 (cf. Figure 1). The result is obtained by inverting
a 3× 3 Fisher matrix involving (h, Ωm, R) and treating θA as
known (Equation (3) with x replaced by z). Our approach
predicts an uncertainty in h of 0.11, nicely agreeing with the
results shown in Figure 9 in LIGO Scientific Collaboration
et al. (2021d). On the other hand, Ωm is not well constrained (in
fact, its error is greater than its true value, and thus it exceeds
the capability of the Fisher matrix) because of both the
relatively small sample size (nobs= 40) and the fact that most
events are detected at low redshift with z< 0.5.
However, as pointed out in, e.g., LIGO Scientific Collabora-

tion et al. (2021d and Mastrogiovanni et al. (2021)) and
illustrated in Figure 1, the constraints on the cosmological
parameters rely critically on the assumptions of the astro-
physical model. We elaborate on this point further in Figure 4
in the cyan error ellipses. We obtained these ellipses by
inverting a 3× 3 Fisher matrix involving (h, μg, R) in the top
panel and one involving (h, γ, R) in the bottom panel. We
notice strong anticorrelations between h and μg and between h
and γ, consistent with the results shown in LIGO Scientific
Collaboration et al. (2021d). This demonstrates that with the
redshift distribution of BBH events alone, measuring cosmo-
logical parameters can be challenging unless we have highly
precise knowledge of the intrinsic population model.

4.2. Jointly Fitting Astrophysical Population Model and
Cosmology

Fortunately, besides the redshift distribution itself, we also
have information on other properties of BBH events, such as

Table 1
Values of (θA, θC) Used in Our Study to Construct the Fisher Information Matrix (Equation (3)) and Estimate the Bias Due to Δr (Equation (11))

Mmin Mmax δm α β λg μg σg γ h Ωm

6.5 Me 112.5 Me 2.5 Me 3.78 −0.81 0.03 32.27 Me 3.88 Me 4.59 0.7 0.3

2 There are likely two peaks in the mass distribution as suggested in LIGO
Scientific Collaboration et al. (2021c), and the lower one (around m1 = 10Me)
is not captured by the Power Law + Peak model adopted by LIGO Scientific
Collaboration et al. (2021d).
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the mass distribution. As demonstrated in Figure 2, the partial
degeneracy between h and μg shown in redshift distribution
(Figure 1) can be largely broken once we include the
distribution of the detector-frame mass distribution of the
primary, òq = +r m r m m z z dm dz, , 1d

1 1 2 2[ ∣ ] [ ( ) ( )]( ) .
Similar to how we obtain the cyan ellipses in Figure 4, we

also construct Fisher matrices for (h, μg, R) in the top panel (or
(h, γ, R) in the bottom panel) from the m1

d( ) distribution. The
results are shown by the orange ellipses. Since distributions of
both z and m1

d( ) are available in a GW catalog, we can combine
them together, leading to the gray ellipses in Figure 4. This
allows us to individually constrain h and μg to good accuracy
(assuming other parameters in θ are known), and the
covariance between h and γ can also be significantly reduced.

Combining the Fisher information from the redshift and
mass distributions together is largely similar to the hierarchical
inference performed in LIGO Scientific Collaboration et al.
(2021d). To illustrate this point, we now invert the full Fisher
matrix (note that in Figure 4, we considered only submatrices),
and the results are shown in Figure 5. More specifically, we
construct two Fisher matrices using Equation (3) with x
respectively substituted by z and m d

1
( ). The two matrices are

summed together and then inverted to give us the gray error
ellipses.

Overall, our result shows nice agreement with the one
reported in LIGO Scientific Collaboration et al. (2021d). In
particular, the 68% credible interval for h is h= 0.70± 0.29,
and it exhibits a strong anticorrelation with γ and Mmax, whose
uncertainties are also consistent with Figure 5 in LIGO
Scientific Collaboration et al. (2021d). Because we used a
simple approximation of Pdet (Equations (19)–(22)) and ignored
the statistical error on each individual event, we do not expect
an exact reproduction of the results in LIGO Scientific
Collaboration et al. (2021d). Due to our simplifying treatments,
μg is better constrained than in LIGO Scientific Collaboration
et al. (2021d), and its correlation with h, as well as with other
parameters, is lifted (see also Figure 4 and note that the gray

error ellipse in the top panel is much smaller than the one in the
bottom panel).
In fact, we can directly construct a Fisher matrix from a

three-dimensional (3D) distribution r(m1, m2, z|θ). This leads to
the olive ellipses in Figure 5. This contains more information
and thus leads to tighter constraints on parameters compared to
combining two marginalized distributions (gray ellipses). For
GWTC-3 with only slightly more than 40 BBH events,
however, we do not have a high S/N in the 3D histogram
r(m1, m2, z|θ).3 Therefore, summing the marginalized distribu-
tion in z and m d

1
( ) (gray ellipses) provides a better agreement of

GWTC-3 results (LIGO Scientific Collaboration et al. 2021d)
than the 3D distribution (olive ellipses). Nonetheless, as the
sample size increases, we would expect that the 3D distribution

Figure 3. Uncertainties on cosmological parameters (h, Ωm) from the redshift
histogram (cf. Figure 1), assuming we know the astrophysical model exactly.
Throughout this work, we will use red crosses to denote the true values of the
parameters (i.e., the values at which we evaluate the Fisher information matrix).
The error ellipses indicate the 68% credible intervals. We predict an uncertainty
on h of ±0.11, which agrees well with the gray dotted curve in Figure 9 in
LIGO Scientific Collaboration et al. (2021d) obtained under the same
assumptions.

Figure 4. Correlation between astrophysical and cosmological parameters by
inverting a 3 × 3 Fisher matrix including (h, μg, R) (top panel) or (h, γ, R)
(bottom panel). The cyan ellipses correspond to constraints from the redshift
distribution alone (cf. Figure 1). As μg and/or γ decreases, h will increase to a
greater value. It captures the key features shown in Figure 10 in LIGO
Scientific Collaboration et al. (2021d). If one further incorporates the
information from the mass distribution (orange ellipses; cf. Figure 2), the
combined uncertainties can be reduced to the gray ellipses.

3 Consider a discrete example. We would need at least eight different bins to
constrain d a l m sM M, , , , , ,m g g gmin max( ) in the histogram of m1 or m1

d( ). For
the secondary mass m2, we would additionally need two more bins to determine
the power-law slope β. The redshift distribution requires at least three bins to
constrain (γ, h). Thus, a full 3D histogram would require more than 48 bins.
This is greater than the sample size used by LIGO Scientific Collaboration et al.
(2021d). Nonetheless, there will be enough events to populate the 3D
histogram when aLIGO reaches its designed sensitivity and detects  1000( )
events yr–1 (as assumed in, e.g., Farr et al. 2019).

6

The Astrophysical Journal, 941:174 (11pp), 2022 December 20 Yu et al.



becomes a more accurate prediction (which we validate in the
Appendix by reproducing the results in Fishbach et al. 2018
and Farr et al. 2019). Therefore, in addition to the n1 obs
reduction in the uncertainties (as obviously seen in
Equations (3) and (14)), we would expect the results reported
in LIGO Scientific Collaboration et al. (2021d) to improve
further from the gray ellipses to the olive ones as the S/N of
each bin in the 3D distribution increases (with the expectation
of the bin becoming greater than its Poissonian error; see
footnote 3). This can be especially valuable for constraining
Mmax, as changing it can significantly alter Pdet at large redshift,
a point we will illustrate further when discussing the bias on
cosmological parameters.

5. Bias Induced by Substructures in the Population Model

Having discussed in the previous section the parameter
estimation uncertainties when jointly fitting the cosmological
and astrophysical models, we now consider the bias in the
cosmological parameters (especially H0) induced by inaccura-
cies in our astrophysical model, which is naturally expected if
our parameterized model is insufficient to capture all the details
in the true population model. Indeed, we note that the specific
functional form assumed in our study (the Power Law + Peak
model) is not significantly preferred over, e.g., a broken power-
law model (LIGO Scientific Collaboration et al. 2021d). More
possibilities with different parameterizations are also consid-
ered in, e.g., LIGO Scientific Collaboration et al. (2021c) and
Roulet et al. (2021). Furthermore, the mass distribution could
contain more complicated features (Tiwari & Fairhurst 2021)

Figure 5. Error ellipses for a sample of 40 BBH events similar to the GWTC-3 catalog. The gray ellipses are obtained by summing the Fisher information from the
marginalized redshift and primary mass distribution together, and the olive ones are from the 3D r(m1, m2, z) distribution.
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and/or be redshift-dependent (Mukherjee 2022; Karathanasis
et al. 2022; Mapelli et al. 2022; van Son et al. 2022),
introducing more features beyond what is captured by the
model described in Section 3. Similarly, an error in the redshift
model ψ(z) could also bias the inferred cosmology (You et al.
2021).
Suppose the true event density can be written as

q
=

´ - D + D
r m m z RP

r p m m z r p m m z
, ,

1 , , , , , 23

t
1 2 det

0 1 2 0 err 1 2

( )
[( ) ( ∣ ) ( )] ( )

and our parameterized model captures the
q=r RP p m m z, ,det 1 2( ∣ ) part. This leads to an error of

D = D -r m m z r RP p m m z r m m z, , , , , , ,
24

1 2 0 det err 1 2 1 2( ) [ ( ) ( )]
( )

where perr specifies the shape of the deviation and is normalized
to ∫perr(m1, m2, z)dm1dm2dz= 1, and Δr0 is an overall factor
governing the magnitude of the deviation. We note further that
the −r term only affects the overall number of GW events
when plugged into Equation (11) and therefore can be absorbed
by a rescaling of R; when Δr0> 0, it decreases the value of R.
For the rest of the section, we will focus on the effect induced
by perr.

In particular, we focus on bias induced by unmodeled local
substructures. For this, we write

=p m m z p m m p z, , , , 25err 1 2 err 1 2 err( ) ( ) ( ) ( )

with

m

s
µ

-

- -
p m m

m M

m
,

1
exp

2
, 26m

m
err 1 2

1 min

1 ,err
2

,err
2

⎡⎣⎢ ⎤⎦⎥( ) ( ) ( )

m

s
µ

+

- -
p z

z
dV
dz

z1
1

exp
2

, 27c z

z
err

,err
2

,err
2

⎡⎣⎢ ⎤⎦⎥( ) ( ) ( )

where the location of the substructure is governed by μm,err and
μz,err and the width by σm,err and σz,err. In our study, we vary
m m,m z,err ,err( ) and fix σm,err= 1Me and σz,err= 0.025. As a
brief aside, we note that the local error considered here can
serve as a building block for considering more extended errors,
as a generic Δr can be viewed as the superposition of many
such local substructures.

To set the overall factor Δr0, we request

ò
ò

D
=

r P p dm dm dz

P dm dm dz
0.01. 28

0 det err 1 2

det 1 2
( )

In other words, we assume that the unmodeled substructure
contains 1% of the BBH events. Note that we choose Δr0> 0
for the simplicity of our discussion; Δr0 can be either positive
(a local peak) or negative (a local trough).

In this section, we follow Fishbach et al. (2018) and
approximate Pdet according to the aLIGO design sensitivity. In
particular, we approximate the characteristic S/N as

r =
+



 z
M D

8
1

10
1 Gpc

, 29c

L
0

5 6

⎜ ⎟⎡⎣⎢ ⎤⎦⎥ ⎛⎝ ⎞⎠( ) ( )

where = + m m m mc 1
3 5

2
3 5

1 2
1 5( ) is the chirp mass of the

BBH. Following Fishbach et al. (2018), we further set ρth= 8
and s =Q 0.3log ,0

2 in Equation (21).
We are now ready to evaluate the bias due to Δr

(Equation (24)) on cosmological parameters according to
Equation (11). Here we focus on the bias on h, and we
consider q = h R,C T( ) in Equation (11). The result is shown in
Figure 6.
First, we note that the bias is independent of nobs. This is

because in Equation (11), we have µ- -I nC 1
obs

1[ ] , whereas
Δr∝ nobs. This is in contrast to the statistical uncertainty
discussed in Section 4, which reduces as -nobs

1 2. Therefore,
while we expect a significant reduction in the statistical
uncertainty as current detectors become increasingly more
sensitive, and 3G GW detectors like Cosmic Explorer (Reitze
et al. 2019) and the Einstein Telescope (Sathyaprakash et al.
2011) come online in the 2030s, the systematic bias will persist
unless we incorporate more sophisticated models. In particular,
we would expect to detect 15,000 BBH events every month
with a 3G detector (Vitale et al. 2019). This means that we
would reduce the statistical error on h to the subpercent level
within a month of observation according to Figure 5. This is
below the bias shown in Figure 6; therefore, the dark siren
cosmology would be limited by uncertainties in our astro-
physical population model.
We further note that for large μm,err and small μz,err (bottom

right part of Figure 6), the bias is nearly a constant. The bias
then gradually decreases and becomes negative as μm,err
decreases and μz,err increases, or as we go to the top left part of
Figure 6. The transition is characterized by the line of ρ0= 8
(brown dotted line in Figure 6), where we have used
m1=m2= μm,err to evaluate c and μz,err to evaluate DL in
Equation (29).
These features can be understood as follows. Because we

assume that perr is caused by local substructures and model it as
a multivariate Gaussian in m1 and z (and uniform in m2), from
Equation (11), the bias is approximately given by4

qm m m
D µ

¶

¶

~
¶

¶
+

¶
¶

h
r

h
P

h
dV dz
h

log , ,
,

log log
, 30

m m z

c

,err ,err ,err

det

( ∣ )

( ) ( )

where in the second line, we have selected out the terms that
have nonvanishing derivatives with respect to h, and those
values are approximately evaluated at (m1, m2, z)= (μm,err,
μm,err, μz,err).
In the bottom right part of Figure 6, P 1det . Thus, the only

contribution to Δh comes from ¶ ¶ =dV dz h hlog 3c( ) ,
which is a constant. This is why the bias is nearly constant in
this region. Physically, the excess events contained in Δr make
us infer a greater comoving volume than the true value at a
given redshift, which then leads to a positive bias in h.
As we move toward the top left part of Figure 6, Pdet changes

from 1 to zero. Numerically, the slope is the steepest when
Θth= ρth/ρ0 is around 1. Because changing h changes the

4 Here we treat p(z) as an unnormalized function and use R to absorb the
normalization to simplify the discussion. Note that h and R are not completely
degenerate because of Pdet, which can be seen from Figure 1. In the real
calculation, we include both h and R in θC and hence IC when evaluating
Equation (11) to account for the correlation between them arising from this
freedom in the definition of p(z) and R.
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value of ρ0 at a given redshift μz,err, the ¶ ¶P hlog det term in
Equation (30) now starts to contribute. This drives the bias Δh
to a more negative value. Depending on the location, a local
substructure containing 1% of BBH events could bias the
estimation of h by about 1% in either the positive or negative
direction. As we mentioned above, the statistical error on h will
drop below 1% with about 104 events. This is likely beyond
aLIGO’s expected detection number, yet it can be easily
achieved with 3G detectors. Our study thus sets the require-
ments of the accuracy of our astrophysical population model in
the 3G era.

6. Conclusion and Discussion

In this study, we derived the Cramér–Rao bound of both
astrophysical and cosmological parameters from the distribu-
tions (both marginalized and high-dimensional) of BBH events.
Our approach complements the hierarchical inference currently
employed by, e.g., LIGO Scientific Collaboration et al.
(2021d). Its analytical simplicity makes it especially useful in
predicting the performance of future detectors and providing
insights into the statistics.

The basic framework to both perform joint astrophysical and
cosmological parameter estimations and compute bias in the
parameters due to errors in the assumed model was presented in
Section 2. The specific population model in our analysis was
introduced in Section 3, which we then applied to place
constraints on a BBH sample similar to GWTC-3 in Section 4.
In particular, we found that the GWTC-3 results can be well
reproduced if we combine the Fisher information of both the
BBHs’ redshift distribution and the mass distribution together.
In the future, tighter constraints (in addition to the nobs
reduction in the errors) would be expected, as more events
would allow us to construct an accurate 3D distribution of BBH
events in the (m1, m2, z) space. Then, in Section 5, we further
considered the bias induced by unmodeled substructures in the

population model. The bias due to other forms of Δr can be
readily obtained by summing over the relevant pixels in
Figure 6 with proper reweighting. For instance, a substructure
in m1 but constant in z can be obtained by summing along a
vertical line in Figure 6. If the error Δr contains 1% of the
observed population, it could easily bias the estimation in the
Hubble constant by more than 1%. Therefore, to achieve a
high-precision cosmology from a statistical dark siren, it would
require a high level of accuracy in the astrophysical model with
fine details captured.
Note further that our Equation (11) applies not only to

cosmological parameters but also to astrophysical ones, as we
can simply replace θC with θA or any other subset of θ. This
could be of astrophysical significance. For example, the
location of the mass gap due to pair-instability supernovae
could be biased by substructures produced by dynamical
formation channels or the redshift dependence in the mass
function (Mukherjee 2022; Karathanasis et al. 2022; María
Ezquiaga & Holz 2022). Our Equation (11) thus provides a
simple and analytical way to quantify the bias.
As a first step, our current model does not include the

statistical error on each individual event’s component mass and
luminosity distance. This may be a subdominant effect for
events that are well above the detection threshold, which are
typically the ones selected for population studies (see, e.g.,
LIGO Scientific Collaboration et al. 2021d, 2021c; Roulet et al.
2021). Intuitively, the uncertainty on each event’s parameters
slightly blurs the measured distribution and smears out sharp
features. Yet, since both p(m1, m2) and p(z) are smooth
functions in our study (and in LIGO Scientific Collaboration
et al. 2021d), such a blurring should not be significant (but see
the discussion below on galaxy catalogs). However, informa-
tion on the population is also contained in sources that are
marginally detectable (or undetectable; see the discussion in
Roulet et al. 2020). These events could happen at locations
where Pdet has large derivatives with respect to θ and thus may
potentially contribute to the Fisher information. To utilize them
properly, incorporating their parameter estimation errors would
be critical, and we plan to investigate this in a follow-up study.
We also assumed that the galaxy catalog provides only the

smoothed shape of the redshift model p(z). This is the case
because the GW event localization accuracy is currently
limited. In the other limit where a BBH could be localized to
a single host galaxy (which can be achieved with a decihertz
spaceborne detector; Kuns et al. 2020), a dark siren would
effectively behave like a bright BNS event with an EM
counterpart identified because the host galaxy in this case can
be identified from the sky localization (Chen and Holz 2016;
Borhanian et al. 2020; Seymour et al. 2022). This could lead to
a strong constraint in cosmology (Chen et al. 2018) without
needing assumptions in the underlying population model. In
the intermediate case, an accurate localization plus a complete
galaxy catalog could mean sharp spikes in p(z) and therefore r
(z). Whereas h can be nearly degenerate with an overall power-
law slope γ in ψ(z) (which is also the limiting factor on how
well we can measure h; Figure 5), it could hardly be confused
with sharp spikes. Therefore, the constraints on h could thus be
improved. Besides using the location of each individual event,
the spatial clustering of BBH events is yet another possibility to
enhance our constraint on cosmology and reduce its systematic
errors (Scelfo et al. 2020; Mukherjee et al. 2021; Cigarrán Díaz
& Mukherjee 2022; Mukherjee et al. 2022). A more

Figure 6. Bias on h due to an error in the astrophysical rate Δr given by
Equations (25)–(27). An error in m1 but constant in redshift can then be
obtained by summing over all the pixels along a specific μm,err (i.e., a vertical
line) with appropriate normalization. Likewise, other generic Δr can be
obtained by summing over the corresponding pixels. Also shown with the
dotted brown line is an approximation of the detection threshold
with +  z z1 constantc

5 6[ ( )] .
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quantitative study incorporating these effects coherently is to
be carried out in future investigations.
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Appendix
Validation of the Methodology

In this Appendix, we further validate our approach by
reproducing some results from Fishbach et al. (2018) and Farr
et al. (2019).
Following Fishbach et al. (2018), here we consider a

truncated power-law mass model given by

a µ
-

-
a-


p m m M

m
m M

M m, ,
5

, A11 2 max
1

1
max 1( ∣ ) ( ) ( )

Figure 7. Error ellipses from the 3D r(m1, m2, z) distribution assuming 500 BBH events using the model in Fishbach et al. (2018). Our results show good agreement
with those obtained in Fishbach et al. (2018) and Farr et al. (2019). It thus validates our approach when nobs is large.
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where  is the Heaviside function, and the existence of an
upper mass gap Mmax is motivated by the pair-instability
supernovae (Fowler & Hoyle 1964). Since our focus here is to
reproduce the results of Fishbach et al. (2018), we use this mass
model despite the fact that it is currently unfavored by the latest
data (LIGO Scientific Collaboration et al. 2021d; Abbott et al.
2021c; Roulet et al. 2021). The ψ(z) part in the redshift model
(Equation (16)) is given by Equation (18). We particularly
adopt a l = M M, , 1, 40 , 3max( ) ( ) in our calculation. The Pdet

is computed following Section 5 (see Equations (22) and (29)).
In Figure 7, we present the 68% credible interval for the key

parameters based on the Fisher information matrix,
Equation (3), with nobs= 500. In particular, we highlight the
bottom right corner of Figure 7, where we show the error
ellipse for (λ, α). We notice a positive correlation between the
two quantities, and their uncertainties are, respectively,
Δλ= 0.68 and Δα= 0.21. Both results show nice agreement
with the top left panel of Figure 5 in Fishbach et al. (2018).
Moreover, because in the mass model (Equation (A1)), there is
a clear feature set by Mmax, it allows the determination of h as
proposed in, e.g., Farr et al. (2019) and demonstrated in the
leftmost column of Figure 7. Consistent with Farr et al. (2019),
we note that the uncertainty on h from 500 events is
Δh= 0.065. The consistency between our Figure 7 and
previous studies thus validates our approach in constraining
both the astrophysical and cosmological parameters.
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