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Abstract

Gravitational-wave (GW) radiation from a coalescing compact binary is a standard siren, as the luminosity distance
of each event can be directly measured from the amplitude of the signal. One possibility to constrain cosmology
using the GW siren is to perform statistical inference on a population of binary black hole (BBH) events. In
essence, this statistical method can be viewed as follows. We can modify the shape of the distribution of observed
BBH events by changing the cosmological parameters until it eventually matches the distribution constructed from
an astrophysical population model, thereby allowing us to determine the cosmological parameters. In this work, we
derive the Cramér—Rao bound for both cosmological parameters and those governing the astrophysical population
model from this statistical dark siren method by examining the Fisher information contained in the event
distribution. Our study provides analytical insights and enables fast yet accurate estimations of the statistical
accuracy of dark siren cosmology. Furthermore, we consider the bias in cosmology due to unmodeled
substructures in the merger rate and mass distribution. We find that a 1% deviation in the astrophysical model can
lead to a more than 1% error in the Hubble constant. This could limit the accuracy of dark siren cosmology when
there are more than 10* BBH events detected.
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TAPIR, Walter Burke Institute for Theoretical Physics, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125, USA; hyu45jhu@gmail.com

wave sources (677); Stellar mass black holes (1611)

1. Introduction

The key to studying modern cosmology is to measure a
relation between distance and redshift. In electromagnetic (EM)
observations, the redshift to the source can be directly
measured (e.g., by comparing the measured spectra to the ones
obtained in terrestrial laboratories), and the challenge is to
constrain the distance. To do so requires utilizing some form of
standard reference. One possibility is to use “standard candles”
with known intrinsic luminosity, and the best-known example
is a Type la supernova (Riess et al. 1996, 2021). Another
possibility is to use a “standard ruler” with a known size, and
the imprint of sound waves in the cosmic microwave
background is such an example (Spergel et al. 2003; Planck
Collaboration et al. 2014, 2020). However, a tension on the
value of the Hubble constant, conventionally denoted by H,,
emerges between the latest results of the two sets of
measurements (Verde et al. 2019). It thus calls for a third
method to either reconcile or confirm the tension.

This brings observations using gravitational waves (GWs) to
people’s attention, a new possibility opened up by Advanced
LIGO (aLIGO; Aasi et al. 2015), Advanced Virgo (Virgo
Collaboration et al. 2015), and KAGRA (Kagra Collaboration
et al. 2019; Akutsu et al. 2021). The GW events are “standard
sirens” in cosmology (Schutz 1986; Holz & Hughes 2005), as
the amplitude of an event directly encodes the luminosity
distance to the source. If the redshift information can be further
constrained, we can then determine the values of cosmological
parameters.

Original content from this work may be used under the terms
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One way to obtain the redshift information is through
multimessenger observation of an event. If we can simulta-
neously observe a GW event and its EM counterpart,
corresponding to a “bright siren,” we can then identify the
host galaxy of the event, from which we can further extract the
redshift (Holz & Hughes 2005; Chen et al. 2018). A GW event
involving neutron stars (either a binary neutron star, BNS, or a
neutron star-black hole event) is an ideal candidate here.
Indeed, the first BNS event, GW170817, is a highly successful
example (Abbott et al. 2017a, 2017b). From this event alone,
we were able to constrain the Hubble constant to
Hy = 7078 km s~! Mpc~! within the 68% credible interval.
With future detectors like LIGO-Voyager (Adhikari et al. 2020)
or third-generation (3G) GW detectors including the Einstein
Telescope (Sathyaprakash et al. 2011) and the Cosmic
Explorer (Abbott et al. 2017c¢; Reitze et al. 2019; Evans et al.
2021), it is potentially possible to constrain H, with percent-
level accuracy and the normalized matter density 2, to an
accuracy of O(10%) (Chen et al. 2021). However, such bright
sirens are rare, and GW170817 is the only joint observation to
date. Even with 3G detectors, Califano et al. (2022) estimated
that only 0.1% of detectable BNSs will have observable EM
counterparts. Besides a direct EM counterpart, it is also
possible to constrain cosmology from matter effects in
coalescing BNSs (Messenger & Read 2012).

Alternatively, we may further utilize information in binary
black hole (BBH) events, which consist of the majority of event
catalogs (Abbott et al. 2016, 2019; Nitz et al. 2019; Gray et al.
2020; Nitz et al. 2020; Venumadhav et al. 2020; Abbott et al.
2021a, 2021b, 2021e; Olsen et al. 2022). An EM counterpart is
typically not expected for a BBH event; therefore, a BBH
corresponds to a dark siren (though a counterpart might be
possible if the BBH resides in a gaseous environment; see, e.g.,
McKernan et al. 2019). While for a single event, it is
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challenging to obtain the redshift due to the perfect degeneracy
between redshift and mass (unless the source can be accurately
localized to only a few potential host galaxies, a point we will
get back to in Section 6), we can nonetheless infer the redshift
distribution of a collection of BBH events statistically.

Initially, the statistical inference was done by comparing a
BBH event catalog with galaxy catalogs (e.g., Schutz 1986;
Chen et al. 2018; Fishbach et al. 2019; Finke et al. 2021). Later,
people realized that features in the mass distribution of BBH
events could also be used to constrain the cosmological
parameters. This corresponds to "spectral sirens" (e.g., Chern-
off & Finn 1993; Taylor et al. 2012; Farr et al. 2019; Abbott
et al. 2021d; Mastrogiovanni et al. 2021; Maria Ezquiaga &
Holz 2021, 2022). In both cases, one computes the likelihood
of each event to happen given a set of cosmological parameters,
as well as an assumed astrophysical population model. The
likelihoods for all the events are then multiplied together to get
the likelihood of the observed population given the assumed
cosmological and astrophysical parameters. This is further
converted to a posterior distribution of parameters with an
assumed prior distribution (Mandel et al. 2019; Thrane &
Talbot 2019).

In essence, the statistical approach corresponds to a
comparison between two histograms, or distributions. One
distribution is obtained from the observed BBH events with
respect to either the luminosity distance or detector-frame
masses (or both as a high-dimensional distribution). The other
distribution is constructed from our astrophysical model with
respect to either redshift or source-frame masses (or both). By
varying the values of cosmological parameters, as well as those
governing the astrophysical population, we can eventually
match up the two distributions, thereby constraining the
cosmology and population model simultaneously.

With this view, we propose an especially convenient way to
assess the statistical power of dark siren cosmology. In
particular, we can analytically construct the Fisher information
encoded in the distributions. From that, we can both estimate
the uncertainties on the parameters governing the distributions
and understand the correlations among the parameters. As we
will show later, even with a few simplifying assumptions, this
approach predicts a similar level of uncertainty on the Hubble
constant when applied to the GWTC-3 catalog (Abbott et al.
2021e), as well as many other key features obtained in LIGO
Scientific Collaboration et al. (2021d). It also reproduces the
results of previous studies (e.g., Fishbach et al. 2018; Farr et al.
2019) when forecasting the future constraints on both the
population model and cosmology with hundreds to thousands
of BBH events. Therefore, our approach serves as a simple and
analytical way to study the statistical dark siren method, which
can be especially useful when making quick but decently
accurate predictions for the future when a large number of
events are expected. It thus complements the more accurate
yet also more complicated hierarchical inference
approach (Mandel et al. 2019).

Furthermore, our approach can be used to study the bias on
cosmological and/or astrophysical parameters due to errors in
the assumed population models. We will first provide a general
framework to study the bias due to any form of error; then, as a
case study, we will examine in detail how unmodeled
substructures in the mass and/or redshift model would affect
the inference of the Hubble constant. This is motivated by the
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latest population model by LIGO Scientific Collaboration et al.
(2021c), where signs of substructures are suggested.

The rest of the paper is organized as follows. In Section 2,
we provide the mathematical framework to construct the Fisher
information matrix of a distribution, which estimates the
covariance matrix when jointly fitting cosmological parameters
and population properties. We will also consider the bias
induced on the cosmological parameters due to structures not
captured by a parameterized population model with a specific
functional form. We then describe the astrophysical model
adopted in our study in Section 3. The application to the
GWTC-3 catalog is presented in Section 4. To further validate
our method, we also present the reproduction of previous
studies’ results using our method in the Appendix. In Section 5,
we consider the bias on cosmological inference induced by
unmodeled substructures in both the mass distribution and
merger rate function, and we set requirements on the accuracy
of the population in order for the bias to be below the statistical
error. Lastly, we conclude and discuss in Section 6.

2. Basic Framework

We demonstrate in this work that in essence, the statistical
dark siren approach corresponds to a comparison between a
measured distribution of GW events and the one we construct
based on our knowledge (or assumption) of the cosmology and
the astrophysical source population.

Examples are illustrated in Figures 1 and 2. Here the y-axis is
the normalized detection probability density of GW events (the
parameters are consistent with those inferred from GWTC-3;
Section 4). The x-axis can be the redshift z or the mass of the
primary (either the detector-frame one, ml(d), or the source-
frame one, m;). While for illustration purposes, we focus on
marginalized 1D distributions, the analysis in this section can
be straightforwardly extended to high-dimensional distributions
as well.

Without loss of generality, we can construct a histogram of
observed BBH events with respect to a general coordinate x
(which can be the redshift z, the mass of the primary black hole
my, or other quantities). The expected number of observations
in the ith bin at [x;, x; + Ax) can be written as r,(6°, 8%)Ax,
where r is the event density. We use 0 = (Ho, Q,, ...) to
denote the cosmological parameters, and 8" indicates the other
astrophysical parameters. The number of observations in the ith
bin, n;, follows a Poisson distribution:

(ri Ax)" exp(—ri Ax)
n;! '

i+

plniri(6€, 4] =

ey

Here, for simplicity, we ignore the inference uncertainty of each individual
event’s parameters (e.g., redshift and mass, etc.). As we will see in later
sections, the results we obtain under this simplification are decently accurate.
The uncertainty on an individual event’s parameters smears out fine details but
keeps the broad, coarse-grained features in the population distribution. Current
analysis focuses on the coarse-grained part (see, e.g., LIGO Scientific
Collaboration et al. 2021d), though for high-precision cosmology, it would
be critical to also capture substructures in the model (see later in Section 5). A
more general treatment incorporating the uncertainty (and potentially
systematic bias) on individual events is deferred to a future study.
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Figure 1. Top: expected number of detections as a function of the redshift z at
different values of h = Hy/(100 km st Mpc"). From GW events, we can
construct such a distribution as a function of D, first and then convert it to a
function of z based on assumed cosmological parameters. Meanwhile, our
astrophysical knowledge allows us to construct an expected distribution as a
function of z from, e.g., galaxy catalogs. By comparing the two histograms, we
can then constrain the value of the cosmological parameters. The bottom panel
shows that the distribution is also affected by astrophysical models (e.g., the
location of a peak in the BBH’s mass distribution fi,; see Section 3), which
could mimic the effect of changing cosmological models. This indicates the
significance of jointly analyzing astrophysical and cosmological parameters.

The Fisher information of 8 = (6, ") at a given bin i is
given by

2
Ly = X2 plnilri(6)] [ Qlogp(ulry ] [ 0r;(6) ] [ 0r(6) ]

or; o6, 26,
[0n@® 1[0 T 1 o] Dlogp@ilr) T
(2020 o] gt
_ g[an(e) ][anw)]
| o, 20, |
:ri[alogri(e)][8logri(0)]Ax,
a6, a0,
)

where we have used the subscripts a, b to denote the (a, b)th
element in the Fisher information matrix, and the derivatives
are evaluated at the true values of @ (or, in practice, our best
estimation of #). Summing over all of the bins and converting
the discrete sum into an integral over dx, we thus arrive at the
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Figure 2. Similar to Figure 1, but now we plot the distribution as a function of
the detector-frame mass of the primary black hole, m{. Combining it with

Figure 1 can thus be used to break the degeneracy between astrophysical and
cosmological parameters.

Fisher information matrix:

Ologr(x|0) || Ologr(x|0)
00, 00,

Lp(8) = f r(xw)[ ]dx. 3)

From the distribution, the covariance matrix of 8, Cov(8), can
be estimated by the Cramér—Rao bound as

Cov(0) = [1(O)]. “4)

For future convenience, we also define IC, where the
differentiation in Equation (3) is done only with respect to 6,
or 6, € {6C). Effectively, I corresponds to the case where
we have perfect knowledge of the astrophysical event rate,
while I further considers the covariance between astrophysical
population models and cosmological parameters.

Note that in the analysis above, we have assumed that the
astrophysical model has the correct functional form and only
has unknown parameter values. It might also be possible that
the astrophysical model is formally inaccurate (e.g., due to
substructures in the model and/or evolution in the population).
In this case, the estimation of cosmological parameters can be
systematically biased.

To calculate the bias, we suppose that the true rate (denoted
by a superscript ¢) in the ith bin can be written as

rit = r,-(OC, OA) =+ Ari. 5)
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We can expand the log-likelihood around the true € and
Ar;=0 (the expansion around @* can be straightforwardly
included, but the covariance between &' and 6 has been
accounted for in the Fisher matrix in Equation (3), and
therefore we ignore it here),

d*logp C AgC d*logp CA
Alogp = T —eoc A0, Ay + 900 ~A0, A
8210gp 2
+ Ar; 6
507 (6)

where the first derivative vanishes because at true values, the
probability is maximized.

The bias in the cosmological parameter induced by Ar; is
then given by setting

Alogp

0= —"="-, 7
N (N
or
0%logp 9%logp
CapC Vb = T o C o1 ®)
90 96 20 or.

Computing the expectation with respect to n; at each bin and
then summing over the bins, we arrive at

8*logp
0
zz:p<|>awa¢
A 0 0%logp
~ S AR, pul6) S ©)

If we further notice

ZmAwab”

dlogp dlogp
10 , (10
50,0, Z (ni|0) ——=— (10)

060, 00,

we arrive at

c— _pgeyt [| logr(x0)
AOC = —[IC] f[ o |Artodx (11)

We can thus use Equation (11) to study how an error in the
astrophysical rate model, Ar(x), propagates to the cosmological
parameters, 0. Note that while we focus on A&C in this study,
our framework can also be straightforwardly extended to study
the bias on astrophysical parameters.

3. Combined Astrophysical and Cosmological Model

In this section, we derive the expected event rate r(my, my, Z|
0), which can then be used to construct the Fisher information
(Equation (3)) and/or estimate the bias on 0¢ (Equation (11)).

Suppose the intrinsic distribution of GW events is (Fishbach
et al. 2018; LIGO Scientific Collaboration et al. 2021d)

dn
dm1 dmg dZ

where R is the total number of BBHs, and we normalize the
probabilities such that

(m1, ma, z|0) = R p(my, m3, z|0), (12)

fdmldmzdz p(my, ma, 210) = 1. (13)
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The expectation of the observed event density is

dnobs
dmldm2dz
= RPy [m1, ma, Dp(z|0)]p(my, my, 210),
(14)

where D; is the luminosity distance, and Py € [0, 1] is the
fraction of GW events with (m;, m,, z) that are detectable.

The above expression is generic. To proceed, we further
make simplifying assumptions following Fishbach et al. (2018)
and consistent with LIGO Scientific Collaboration et al.
(2021d). In particular, we assume

p(mi, ma, z|0) = p(mi, my|0*)p(z]04, 6°), 15)

where p(m, m2|9A) describes the mass distribution, and we
assume that it is independent of the redshift. The redshift
distribution is then captured by p(z|0A, 0°). We separately
normalize the two distributions as fp(ml, m2|0A)dm1dm2 =1
and [p(z@", 0%)dz = 1.

For the rest of our study, we will focus on the case where
p(my, my|@") is described by the Power Law + Peak
model (Talbot & Thrane 2018; Abbott et al. 2021c¢), and we use
the same notation as used in LIGO Scientific Collaboration
et al. (2021d). In this case, the distribution of the mass of the
primary black hole, m; (with m; >m;), contains two
components: a truncated power-law component defined
between (Myin, Minax) With p(my) o< m”® and a Gaussian peak
centered at u, with a width of o,. The overall height of the
Gaussian peak is governed by a parameter \,. For a given m,,
the secondary mass then follows a truncated power law
between (M, my) with a slope p(m;) m2 Additionally,
we smooth the lower end of both m; and m, with a sigmoid
function defined in Equation (B7) in LIGO Scientific
Collaboration et al. (2021c) and with a parameter 9,,,.

For the redshift model, we further write

w(zw )

I +z

r(mla may, Zla) = (mls my, Zle)

p(zl64, 0°) o d (209 —— (16)

where V,(z]6°) is the comoving volume, and the 1/(1 + z) term
converts from detector- to source-frame time. A general
parameterization of the v(z) piece can be written as (Madau
& Dickinson 2014)
1+ 2y
L+ [+ 2/ + )
17)

(@) =1+ (1 +z) 774

where v and k respectively describe the low- and high-redshift
power-law slopes, and z, corresponds to a peak in (z). For
GWTC-3, where most events are detected at low redshifts, ¥(z)
simplifies to (see, e.g., Fishbach et al. 2018)

Y@ =1+ 2). (18)

We will adopt Equation (18) for our analysis and drop (z,, k).
Under the model described above, there are nine astro-
physical parameters,
A = (Muin, Maax> Oms 0 By Ags > T, )T . For the cosmolo-
gical part, we assumed a flat universe described by
¢ = (Hy, ©,,)7, with H, the Hubble constant and €, the
mass den51ty normalized by the critical den51ty For future
convenience, we will define h = H,/(100 kms™! Mpc™ )
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Table 1
Values of (6, 6°) Used in Our Study to Construct the Fisher Information Matrix (Equation (3)) and Estimate the Bias Due to Ar (Equation (11))
Mmin M, max 6’" a ﬂ >\g Hg Og Y h Qm
6.5 M 1125 M, 2.5 M 3.78 —0.81 0.03 3227 M, 3.88 M, 4.59 0.7 0.3

To estimate P, we follow Fishbach et al. (2018) and
approximate the observed signal-to-noise ratio (S/N) of an
event as

plmy, ma, Dp(z|0)] = p,©, (19

where pg is a characteristic S/N of the source, and © accounts
for the change in the S/N due to angular projection, with

log© ~ MO, ot 0). (20)
2
2 Olog®,0
Oy = —= @n
PO ¢ Po/ Pen

where alzog 0.0 and pg, are further parameters controlling the
shape of ©.
Suppose sources with p > py, are detectable; we have

Pa= [ plog®)dloge
log O

— Lprge[ 1ogOm | 22)
2 \/Eo'logO

where Oy, = pn/po, and Erfc is the complementary error
function.

4. Applications to GWTC-3

In this section, we apply our method to GWTC-3 (Abbott
et al. 2021e) and estimate the uncertainties on (8", 8) when
jointly fitting the astrophysical population distribution and
cosmology together. Despite the simplicity of our method, it
successfully captures many qualitative features and gives
accurate predictions of different parameters’ uncertainties as
reported in LIGO Scientific Collaboration et al. (2021d).
Further validation of our method can be found in the Appendix,
where we also apply our method to reproduce results in
Fishbach et al. (2018) and Farr et al. (2019).

Note that to evaluate the Fisher information matrix
(Equation (3)), we need to take derivatives around the “true”
model parameters. These values are mostly approximated by
the ones inferred in LIGO Scientific Collaboration et al.
(2021d), and we summarize them in Table 1. Figures 1 and 2
are also generated with the same set of parameters (except for
the one listed in the legend). Note that we slightly modified the
values of My, = 6.5M; and 6,=25M, to make our
Figure 2 more similar to Figure 1 in LIGO Scientific
Collaboration et al. (2021d).2 The overall scale R is set so
that the total number of BBH detections is ng,s = fr(ml, mo,
7|@)dmdm,dz = 40, consistent with the number of BBH events
used in LIGO Scientific Collaboration et al. (2021d).

To approximate Fj;, we compute the characteristic py using
a single detector with LIGO Hanford’s sensitivity in the third
observing run (Buikema et al. 2020) for each [m;, m,,

2 There are likely two peaks in the mass distribution as suggested in LIGO

Scientific Collaboration et al. (2021c), and the lower one (around m; = 10 M)
is not captured by the Power Law + Peak model adopted by LIGO Scientific
Collaboration et al. (2021d).

DL(z|OC)]. The waveform is generated with the IMRPhenomD
approximation (Khan et al. 2016; the waveform is computed
using PYCBC; Nitz et al. 2022), and the source is placed at an
effective distance of 2.3D; (Allen et al. 2012). We further use
pm =8 and afog 0.0 = 0.25 when computing Equation (22).

4.1. Using Redshift Distribution while Holding Population
Model Fixed

First, we consider the case where we constrain the
cosmological parameters using the redshift distribution of
BBH events while treating the underlying astrophysical
population as known and fixed. An astrophysical expectation
can be constructed using the coarse-grained distribution of
galaxies. Indeed, when each BBH event is localized with
limited accuracy and thousands of galaxies or more lie within
the uncertainty volume, a galaxy catalog mainly serves as an
estimation of the overall smoothed shape of (z), which we
model as a simple power law as in Equation (18). In this case,
cosmological parameters are constrained by requesting con-
sistency between the distribution of observed BBH events and
our astrophysical expectation, as demonstrated in the top panel
of Figure 1. (We will return to this in Section 6 to discuss how
improved localization accuracy, together with a complete
galaxy catalog, could help.)

In Figure 3, we present the constraints on (%, €2,,) from the
marginalized redshift distribution r(z|@) = ﬂ”(ml, o,
z|@)dm dm, (cf. Figure 1). The result is obtained by inverting
a 3 x 3 Fisher matrix involving (%, €,,, R) and treating 0" as
known (Equation (3) with x replaced by z). Our approach
predicts an uncertainty in 4 of 0.11, nicely agreeing with the
results shown in Figure 9 in LIGO Scientific Collaboration
et al. (2021d). On the other hand, €2, is not well constrained (in
fact, its error is greater than its true value, and thus it exceeds
the capability of the Fisher matrix) because of both the
relatively small sample size (n.,s =40) and the fact that most
events are detected at low redshift with z <0.5.

However, as pointed out in, e.g., LIGO Scientific Collabora-
tion et al. (2021d and Mastrogiovanni et al. (2021)) and
illustrated in Figure 1, the constraints on the cosmological
parameters rely critically on the assumptions of the astro-
physical model. We elaborate on this point further in Figure 4
in the cyan error ellipses. We obtained these ellipses by
inverting a 3 X 3 Fisher matrix involving (h, p,, R) in the top
panel and one involving (h, 7, R) in the bottom panel. We
notice strong anticorrelations between h and yi, and between £
and ~, consistent with the results shown in LIGO Scientific
Collaboration et al. (2021d). This demonstrates that with the
redshift distribution of BBH events alone, measuring cosmo-
logical parameters can be challenging unless we have highly
precise knowledge of the intrinsic population model.

4.2. Jointly Fitting Astrophysical Population Model and
Cosmology

Fortunately, besides the redshift distribution itself, we also
have information on other properties of BBH events, such as
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Figure 3. Uncertainties on cosmological parameters (4, €2,,) from the redshift
histogram (cf. Figure 1), assuming we know the astrophysical model exactly.
Throughout this work, we will use red crosses to denote the true values of the
parameters (i.e., the values at which we evaluate the Fisher information matrix).
The error ellipses indicate the 68% credible intervals. We predict an uncertainty
on h of £0.11, which agrees well with the gray dotted curve in Figure 9 in
LIGO Scientific Collaboration et al. (2021d) obtained under the same
assumptions.

the mass distribution. As demonstrated in Figure 2, the partial
degeneracy between A and p, shown in redshift distribution
(Figure 1) can be largely broken once we include the
distribution of the detector-frame mass distribution of the
primary, r[m{®0] = [ [r(m, m2, 2)/(1 + 2)ldmydz.

Similar to how we obtain the cyan ellipses in Figure 4, we
also construct Fisher matrices for (h, 1, R) in the top panel (or
(h, v, R) in the bottom panel) from the m@ distribution. The
results are shown by the orange ellipses. Since distributions of
both z and ml(d) are available in a GW catalog, we can combine
them together, leading to the gray ellipses in Figure 4. This
allows us to individually constrain # and p, to good accuracy
(assuming other parameters in 6 are known), and the
covariance between h and < can also be significantly reduced.

Combining the Fisher information from the redshift and
mass distributions together is largely similar to the hierarchical
inference performed in LIGO Scientific Collaboration et al.
(2021d). To illustrate this point, we now invert the full Fisher
matrix (note that in Figure 4, we considered only submatrices),
and the results are shown in Figure 5. More specifically, we
construct two Fisher matrices using Equation (3) with x
respectively substituted by z and m@. The two matrices are
summed together and then inverted to give us the gray error
ellipses.

Overall, our result shows nice agreement with the one
reported in LIGO Scientific Collaboration et al. (2021d). In
particular, the 68% credible interval for i is £ =0.70 4 0.29,
and it exhibits a strong anticorrelation with v and M,.x, Whose
uncertainties are also consistent with Figure 5 in LIGO
Scientific Collaboration et al. (2021d). Because we used a
simple approximation of R (Equations (19)—(22)) and ignored
the statistical error on each individual event, we do not expect
an exact reproduction of the results in LIGO Scientific
Collaboration et al. (2021d). Due to our simplifying treatments,
/1¢ 18 better constrained than in LIGO Scientific Collaboration
et al. (2021d), and its correlation with A, as well as with other
parameters, is lifted (see also Figure 4 and note that the gray
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Figure 4. Correlation between astrophysical and cosmological parameters by
inverting a 3 x 3 Fisher matrix including (h, jg, R) (top panel) or (&, 7, R)
(bottom panel). The cyan ellipses correspond to constraints from the redshift
distribution alone (cf. Figure 1). As /1, and/or ~y decreases, h will increase to a
greater value. It captures the key features shown in Figure 10 in LIGO
Scientific Collaboration et al. (2021d). If one further incorporates the
information from the mass distribution (orange ellipses; cf. Figure 2), the
combined uncertainties can be reduced to the gray ellipses.

error ellipse in the top panel is much smaller than the one in the
bottom panel).

In fact, we can directly construct a Fisher matrix from a
three-dimensional (3D) distribution r(m;, m,, z|6). This leads to
the olive ellipses in Figure 5. This contains more information
and thus leads to tighter constraints on parameters compared to
combining two marginalized distributions (gray ellipses). For
GWTC-3 with only slightly more than 40 BBH events,
however, we do not have a high S/N in the 3D histogram
rimy, mo, z|6’).3 Therefore, summing the marginalized distribu-
tion in z and ml(d) (gray ellipses) provides a better agreement of
GWTC-3 results (LIGO Scientific Collaboration et al. 2021d)
than the 3D distribution (olive ellipses). Nonetheless, as the
sample size increases, we would expect that the 3D distribution

3 Consider a discrete example. We would need at least eight different bins to

constrain (Mpin, Minax> Om» @, Mg, [i,, 0,) in the histogram of m; or ml(d). For
the secondary mass m,, we would aciditionally need two more bins to determine
the power-law slope 3. The redshift distribution requires at least three bins to
constrain (v, k). Thus, a full 3D histogram would require more than 48 bins.
This is greater than the sample size used by LIGO Scientific Collaboration et al.
(2021d). Nonetheless, there will be enough events to populate the 3D
histogram when aLIGO reaches its designed sensitivity and detects O(1000)
events yr‘1 (as assumed in, e.g., Farr et al. 2019).
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Figure 5. Error ellipses for a sample of 40 BBH events similar to the GWTC-3 catalog. The gray ellipses are obtained by summing the Fisher information from the
marginalized redshift and primary mass distribution together, and the olive ones are from the 3D r(m;, m,, z) distribution.

becomes a more accurate prediction (which we validate in the
Appendix by reproducing the results in Fishbach et al. 2018
and Farr et al. 2019). Therefore, in addition to the 1//7 gy
reduction in the uncertainties (as obviously seen in
Equations (3) and (14)), we would expect the results reported
in LIGO Scientific Collaboration et al. (2021d) to improve
further from the gray ellipses to the olive ones as the S/N of
each bin in the 3D distribution increases (with the expectation
of the bin becoming greater than its Poissonian error; see
footnote ). This can be especially valuable for constraining
M., as changing it can significantly alter Py at large redshift,
a point we will illustrate further when discussing the bias on
cosmological parameters.

5. Bias Induced by Substructures in the Population Model

Having discussed in the previous section the parameter
estimation uncertainties when jointly fitting the cosmological
and astrophysical models, we now consider the bias in the
cosmological parameters (especially Hy) induced by inaccura-
cies in our astrophysical model, which is naturally expected if
our parameterized model is insufficient to capture all the details
in the true population model. Indeed, we note that the specific
functional form assumed in our study (the Power Law + Peak
model) is not significantly preferred over, e.g., a broken power-
law model (LIGO Scientific Collaboration et al. 2021d). More
possibilities with different parameterizations are also consid-
ered in, e.g., LIGO Scientific Collaboration et al. (2021c) and
Roulet et al. (2021). Furthermore, the mass distribution could
contain more complicated features (Tiwari & Fairhurst 2021)
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and/or be redshift-dependent (Mukherjee 2022; Karathanasis
et al. 2022; Mapelli et al. 2022; van Son et al. 2022),
introducing more features beyond what is captured by the
model described in Section 3. Similarly, an error in the redshift
model (z) could also bias the inferred cosmology (You et al.
2021).

Suppose the true event density can be written as

rt(m17 mz’ Z) - RPdet
x [(1 = Arg)p(my, my, z|0) + Arop,,(my, ma, 2)],  (23)

and our parameterized model captures the
r = RPyp(my, my, 7|0) part. This leads to an error of

Ar(my, my, 7) = Arg[RPyet Py, (M1, ma, 2) — r(my, my, 2)],
24

where p.,, specifies the shape of the deviation and is normalized
to fpe"(ml, mo, z)dmdm,dz =1, and Arg is an overall factor
governing the magnitude of the deviation. We note further that
the —r term only affects the overall number of GW events
when plugged into Equation (11) and therefore can be absorbed
by a rescaling of R; when Ary > 0, it decreases the value of R.
For the rest of the section, we will focus on the effect induced
by perr-

In particular, we focus on bias induced by unmodeled local
substructures. For this, we write

perr (mh my, Z) = perr (mla mz)perr (Z)’ (25)
with
1 — (M1 = o)’

Doy (M1, M) X exp (m 2” en) . (26)

my — Mmin 2Um,err

1 dVC _(Z - My err)2
(@) o —— L exp | Lzerd | 27

Pe 1+2z dz pl 20—%,el‘r

where the location of the substructure is governed by (i, ¢,y and
Izere and the width by o,, ¢ and o, .. In our study, we vary
(Mo eres Hzorr) and fiX 0o = 1M and oo =0.025. As a
brief aside, we note that the local error considered here can
serve as a building block for considering more extended errors,
as a generic Ar can be viewed as the superposition of many
such local substructures.
To set the overall factor Arg, we request

Ary f Paet Py dmidmy dz
JPiedidm dz

=0.01. (28)

In other words, we assume that the unmodeled substructure
contains 1% of the BBH events. Note that we choose Arg >0
for the simplicity of our discussion; Ary can be either positive
(a local peak) or negative (a local trough).

In this section, we follow Fishbach et al. (2018) and
approximate Py according to the aLIGO design sensitivity. In
particular, we approximate the characteristic S/N as

0y = 8 M (1 + 2) /e 1 Gpce (29)
0 10M® DL ’
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where M. = m/>m3’> /(m; + my)"/ is the chirp mass of the
BBH. Following Fishbach et al. (2018), we further set py, =8
and 0j,,0,0 = 0.3 in Equation (21).

We are now ready to evaluate the bias due to Ar
(Equation (24)) on cosmological parameters according to
Equation (11). Here we focus on the bias on A, and we
consider 8¢ = (h, R)' in Equation (11). The result is shown in
Figure 6.

First, we note that the bias is independent of ng,s. This is
because in Equation (11), we have [I€]"!  ng,., whereas
Ar o ng,s. This is in contrast to the statistical uncertainty
discussed in Section 4, which reduces as ”Jai/ 2, Therefore,
while we expect a significant reduction in the statistical
uncertainty as current detectors become increasingly more
sensitive, and 3G GW detectors like Cosmic Explorer (Reitze
et al. 2019) and the Einstein Telescope (Sathyaprakash et al.
2011) come online in the 2030s, the systematic bias will persist
unless we incorporate more sophisticated models. In particular,
we would expect to detect 15,000 BBH events every month
with a 3G detector (Vitale et al. 2019). This means that we
would reduce the statistical error on 4 to the subpercent level
within a month of observation according to Figure 5. This is
below the bias shown in Figure 6; therefore, the dark siren
cosmology would be limited by uncertainties in our astro-
physical population model.

We further note that for large fi,,, ¢y and small p, ¢, (bottom
right part of Figure 6), the bias is nearly a constant. The bias
then gradually decreases and becomes negative as [i,err
decreases and p, ¢, increases, or as we go to the top left part of
Figure 6. The transition is characterized by the line of py =38
(brown dotted line in Figure 6), where we have used
M| =My = [l e t0 evaluate M, and p_., to evaluate Dy in
Equation (29).

These features can be understood as follows. Because we
assume that p,, is caused by local substructures and model it as
a multivariate Gaussian in m; and z (and uniform in m,), from
Equation (11), the bias is approximately given by*

alogr(um,er‘r’ :um,err’ Mz,err|9)

Ah )
Ooh
_OlogRe | Olog(dV/dz). 0
Oh oh

where in the second line, we have selected out the terms that
have nonvanishing derivatives with respect to s, and those
values are approximately evaluated at (mj, ma, 2) = ({m.emr
Hom.errs /’('Z,err)~

In the bottom right part of Figure 6, Py ~ 1. Thus, the only
contribution to Ak comes from Olog (dV,./dz)/0h = 3/h,
which is a constant. This is why the bias is nearly constant in
this region. Physically, the excess events contained in Ar make
us infer a greater comoving volume than the true value at a
given redshift, which then leads to a positive bias in .

As we move toward the top left part of Figure 6, B, changes
from 1 to zero. Numerically, the slope is the steepest when
Om = pm/po is around 1. Because changing A changes the

* Here we treat p(z) as an unnormalized function and use R to absorb the
normalization to simplify the discussion. Note that 4 and R are not completely
degenerate because of Py, which can be seen from Figure 1. In the real
calculation, we include both 4 and R in 6¢ and hence I€ when evaluating
Equation (11) to account for the correlation between them arising from this
freedom in the definition of p(z) and R.
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Figure 6. Bias on / due to an error in the astrophysical rate Ar given by
Equations (25)-(27). An error in m; but constant in redshift can then be
obtained by summing over all the pixels along a specific ft,, ¢ (i.€., a vertical
line) with appropriate normalization. Likewise, other generic Ar can be
obtained by summing over the corresponding pixels. Also shown with the
dotted brown line is an approximation of the detection threshold
with [M,.(1 + z)]3/®/z ~ constant.

—0.010 0.010

value of py at a given redshift pi, ¢, the 0log P, /Oh term in
Equation (30) now starts to contribute. This drives the bias Ah
to a more negative value. Depending on the location, a local
substructure containing 1% of BBH events could bias the
estimation of & by about 1% in either the positive or negative
direction. As we mentioned above, the statistical error on /& will
drop below 1% with about 10* events. This is likely beyond
aLIGO’s expected detection number, yet it can be easily
achieved with 3G detectors. Our study thus sets the require-
ments of the accuracy of our astrophysical population model in
the 3G era.

6. Conclusion and Discussion

In this study, we derived the Cramér—Rao bound of both
astrophysical and cosmological parameters from the distribu-
tions (both marginalized and high-dimensional) of BBH events.
Our approach complements the hierarchical inference currently
employed by, e.g., LIGO Scientific Collaboration et al.
(2021d). Its analytical simplicity makes it especially useful in
predicting the performance of future detectors and providing
insights into the statistics.

The basic framework to both perform joint astrophysical and
cosmological parameter estimations and compute bias in the
parameters due to errors in the assumed model was presented in
Section 2. The specific population model in our analysis was
introduced in Section 3, which we then applied to place
constraints on a BBH sample similar to GWTC-3 in Section 4.
In particular, we found that the GWTC-3 results can be well
reproduced if we combine the Fisher information of both the
BBHSs’ redshift distribution and the mass distribution together.
In the future, tighter constraints (in addition to the /Tigps
reduction in the errors) would be expected, as more events
would allow us to construct an accurate 3D distribution of BBH
events in the (my, my, z) space. Then, in Section 5, we further
considered the bias induced by unmodeled substructures in the
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population model. The bias due to other forms of Ar can be
readily obtained by summing over the relevant pixels in
Figure 6 with proper reweighting. For instance, a substructure
in m; but constant in z can be obtained by summing along a
vertical line in Figure 6. If the error Ar contains 1% of the
observed population, it could easily bias the estimation in the
Hubble constant by more than 1%. Therefore, to achieve a
high-precision cosmology from a statistical dark siren, it would
require a high level of accuracy in the astrophysical model with
fine details captured.

Note further that our Equation (11) applies not only to
cosmological parameters but also to astrophysical ones, as we
can simply replace 8¢ with @ or any other subset of 6. This
could be of astrophysical significance. For example, the
location of the mass gap due to pair-instability supernovae
could be biased by substructures produced by dynamical
formation channels or the redshift dependence in the mass
function (Mukherjee 2022; Karathanasis et al. 2022; Maria
Ezquiaga & Holz 2022). Our Equation (11) thus provides a
simple and analytical way to quantify the bias.

As a first step, our current model does not include the
statistical error on each individual event’s component mass and
luminosity distance. This may be a subdominant effect for
events that are well above the detection threshold, which are
typically the ones selected for population studies (see, e.g.,
LIGO Scientific Collaboration et al. 2021d, 2021c; Roulet et al.
2021). Intuitively, the uncertainty on each event’s parameters
slightly blurs the measured distribution and smears out sharp
features. Yet, since both p(m;, m,) and p(z) are smooth
functions in our study (and in LIGO Scientific Collaboration
et al. 2021d), such a blurring should not be significant (but see
the discussion below on galaxy catalogs). However, informa-
tion on the population is also contained in sources that are
marginally detectable (or undetectable; see the discussion in
Roulet et al. 2020). These events could happen at locations
where P has large derivatives with respect to 6 and thus may
potentially contribute to the Fisher information. To utilize them
properly, incorporating their parameter estimation errors would
be critical, and we plan to investigate this in a follow-up study.

We also assumed that the galaxy catalog provides only the
smoothed shape of the redshift model p(z). This is the case
because the GW event localization accuracy is currently
limited. In the other limit where a BBH could be localized to
a single host galaxy (which can be achieved with a decihertz
spaceborne detector; Kuns et al. 2020), a dark siren would
effectively behave like a bright BNS event with an EM
counterpart identified because the host galaxy in this case can
be identified from the sky localization (Chen and Holz 2016;
Borhanian et al. 2020; Seymour et al. 2022). This could lead to
a strong constraint in cosmology (Chen et al. 2018) without
needing assumptions in the underlying population model. In
the intermediate case, an accurate localization plus a complete
galaxy catalog could mean sharp spikes in p(z) and therefore r
(z). Whereas h can be nearly degenerate with an overall power-
law slope « in 1(z) (which is also the limiting factor on how
well we can measure h; Figure 5), it could hardly be confused
with sharp spikes. Therefore, the constraints on % could thus be
improved. Besides using the location of each individual event,
the spatial clustering of BBH events is yet another possibility to
enhance our constraint on cosmology and reduce its systematic
errors (Scelfo et al. 2020; Mukherjee et al. 2021; Cigarrdn Diaz
& Mukherjee 2022; Mukherjee et al. 2022). A more
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Figure 7. Error ellipses from the 3D r(m;, m,, z) distribution assuming 500 BBH events using the model in Fishbach et al. (2018). Our results show good agreement
with those obtained in Fishbach et al. (2018) and Farr et al. (2019). It thus validates our approach when ny is large.

quantitative study incorporating these effects coherently is to
be carried out in future investigations.

We thank Katerina Chatzioannou, Hsin-Yu Chen, and the
LVC colleagues for helpful discussions and comments during
the preparation of the manuscript. This material is based upon
work supported by NSF’s LIGO Laboratory, which is a major
facility fully funded by the National Science Foundation. H.Y.
acknowledges the support of the Sherman Fairchild Founda-
tion. Y.C., B.S,, and Y.W. acknowledge support from the
Brinson Foundation, the Simons Foundation (award No.
568762), and NSF grants PHY-2011961, PHY-2011968, and
PHY-1836809.

Software: Python3(Van Rossum & Drake 2009),
NumPy (Harris et al. 2020), SciPy (Virtanen et al. 2020),
Matplotlib (Hunter 2007), PYCBC (Nitz et al. 2022).

Appendix
Validation of the Methodology

In this Appendix, we further validate our approach by
reproducing some results from Fishbach et al. (2018) and Farr
et al. (2019).

Following Fishbach et al. (2018), here we consider a
truncated power-law mass model given by

—Q

my
my, Mala, Mpax) ¢ —————H (Mpax Al
p(my, mo| e STRAL (AD)

— my),
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where H is the Heaviside function, and the existence of an
upper mass gap Mp.,x is motivated by the pair-instability
supernovae (Fowler & Hoyle 1964). Since our focus here is to
reproduce the results of Fishbach et al. (2018), we use this mass
model despite the fact that it is currently unfavored by the latest
data (LIGO Scientific Collaboration et al. 2021d; Abbott et al.
2021c; Roulet et al. 2021). The (z) part in the redshift model
(Equation (16)) is given by Equation (18). We particularly
adopt (o, Mk, A) = (1, 40 M., 3) in our calculation. The Py
is computed following Section 5 (see Equations (22) and (29)).

In Figure 7, we present the 68% credible interval for the key
parameters based on the Fisher information matrix,
Equation (3), with ny,s =500. In particular, we highlight the
bottom right corner of Figure 7, where we show the error
ellipse for (), o). We notice a positive correlation between the
two quantities, and their uncertainties are, respectively,
AX=0.68 and Aa =0.21. Both results show nice agreement
with the top left panel of Figure 5 in Fishbach et al. (2018).
Moreover, because in the mass model (Equation (A1)), there is
a clear feature set by M., it allows the determination of 4 as
proposed in, e.g., Farr et al. (2019) and demonstrated in the
leftmost column of Figure 7. Consistent with Farr et al. (2019),
we note that the uncertainty on A from 500 events is
Ah=0.065. The consistency between our Figure 7 and
previous studies thus validates our approach in constraining
both the astrophysical and cosmological parameters.

ORCID iDs

Hang Yu @ https: //orcid.org/0000-0002-6011-6190
Brian Seymour ® https: //orcid.org,/0000-0002-7865-1052
Yijun Wang @ https: /orcid.org/0000-0002-5581-2001

References

Aasi, J., Abbott, B. P., Abbott, R., et al. 2015, CQGra, 32, 074001

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017a, ApJL, 848, L12

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017b, Natur, 551, 85

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017¢, CQGra, 34, 044001

Akutsu, T., Ando, M., Arai, K., et al. 2021, PTEP, 2021, 05A101

Adhikari, R. X., Arai, K., Brooks, A. F., et al. 2020, CQGra, 37, 165003

Allen, B., Anderson, W. G., Brady, P. R., Brown, D. A., & Creighton, J. D. E.
2012, PhRvD, 85, 122006

Borhanian, S., Dhani, A., Gupta, A., Arun, K. G., & Sathyaprakash, B. S.
2020, arXiv:2007.02883

Buikema, A., Cahillane, C., Mansell, G. L., et al. 2020, PhRvD, 102, 062003

Califano, M., de Martino, L., Vernieri, D., & Capozziello, S. 2022, MNRAS,
518, 3372

Chen, H. -Y., Cowperthwaite, P. S., Metzger, B. D., & Berger, E. 2021, ApJL,
908, L4

Chen, H. -Y., Fishbach, M., & Holz, D. E. 2018, Natur, 562, 545

Chen, H.-Y., & Holz, D. E. 2016, arXiv:1612.01471

Chernoff, D. F., & Finn, L. S. 1993, ApJL, 411, L5

Cigarran Diaz, C., & Mukherjee, S. 2022, MNRAS, 511, 2782

Evans, M., Adhikari, R. X., Afle, C., et al. 2021, arXiv:2109.09882

Farr, W. M., Fishbach, M., Ye, J., & Holz, D. E. 2019, ApJL, 883, L42

Finke, A., Foffa, S., Iacovelli, F., Maggiore, M., & Mancarella, M. 2021,
JCAP, 2021, 026

Fishbach, M., Holz, D. E., & Farr, W. M. 2018, ApJL, 863, L41

11

Yu et al.

Fishbach, M., Gray, R., Hernandez, I. M., et al. 2019, ApJL, 871, L13

Fowler, W. A., & Hoyle, F. 1964, ApJS, 9, 201

Gray, R., Hernandez, I. M., Qi, H., et al. 2020, PhRv, 101, 122001

Harris, C. R., Millman, K. J., van der Walt, S. J., et al. 2020, Natur, 585, 357

Holz, D. E., & Hughes, S. A. 2005, ApJ, 629, 15

Hunter, J. D. 2007, CSE, 9, 90

Kagra Collaboration, Akutsu, T., Ando, M., et al. 2019, NatAs, 3, 35

Karathanasis, C., Mukherjee, S., & Mastrogiovanni, S. 2022, arXiv:2204.
13495

Khan, S., Husa, S., Hannam, M., et al. 2016, PhRvD, 93, 044007

Kuns, K. A., Yu, H., Chen, Y., & Adhikari, R. X. 2020, PhRvD, 102, 043001

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016, PhRvX, 6, 041015

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2019, PhRvX, 9, 031040

Abbott, R., Abbott, T. D., Abraham, S., et al. 2021a, PhRvX, 11, 021053

Abbott, R., Abbott, T. D., Acerneses, F., et al. 2021b, arXiv:2108.01045

Abbott, R., Abbott, T. D., Abraham, S., et al. 2021c, ApJL, 913, L7

Abbott, R., Abe, H., Acemnese, F., et al. 2021d, arXiv:2111.03604

Abbott, R., Abbott, T. D., Acernese, F., et al. 2021e, arXiv:2111.03606

Madau, P., & Dickinson, M. 2014, ARA&A, 52, 415

Mandel, 1., Farr, W. M., & Gair, J. R. 2019, MNRAS, 486, 1086

Mapelli, M., Bouffanais, Y., Santoliquido, F., Arca?Sedda, M., & Artale, M. C.
2022, MNRAS, 511, 5797

Maria Ezquiaga, J., & Holz, D. E. 2021, ApJL, 909, L23

Maria Ezquiaga, J., & Holz, D. E. 2022, PhRvL, 129, 061102

Mastrogiovanni, S., Leyde, K., Karathanasis, C., et al. 2021, PhRvD, 104,
062009

McKernan, B., Ford, K. E. S., Bartos, 1., et al. 2019, ApJL, 884, L50

Messenger, C., & Read, J. 2012, PhRvL, 108, 091101

Mukherjee, S. 2022, MNRAS, 515, 5495

Mukherjee, S., Krolewski, A., Wandelt, B. D., & Silk, J. 2022, arXiv:2203.
03643

Mukherjee, S., Wandelt, B. D., Nissanke, S. M., & Silvestri, A. 2021, PhRvD,
103, 043520

Nitz, A., Harry, L, Brown, D., et al. 2022, gwastro/pycbc: v2.0.4 release of
PyCBC, v2.0.4 Zenedo doi:10.5281/zenodo.6646669

Nitz, A. H., Capano, C., Nielsen, A. B., et al. 2019, ApJ, 872, 195

Nitz, A. H., Dent, T., Davies, G. S., et al. 2020, ApJ, 891, 123

Olsen, S., Venumadhav, T., Mushkin, J., et al. 2022, PhRvD, 106, 043009

Ade, P. A. R, Aghanim, N., Armitage-Caplan, C., et al. 2014, A&A, 571, A16

Aghanim, N., Akrami, Y., Ashdown, M., et al. 2020, A&A, 641, A6

Reitze, D., Adhikari, R. X., Ballmer, S., et al. 2019, BAAS, 51, 35

Riess, A. G., Casertano, S., Yuan, W., et al. 2021, ApJL, 908, L6

Riess, A. G., Press, W. H., & Kirshner, R. P. 1996, AplJ, 473, 88

Roulet, J., Chia, H. S., Olsen, S., et al. 2021, PhRvD, 104, 083010

Roulet, J., Venumadhav, T., Zackay, B., Dai, L., & Zaldarriaga, M. 2020,
PhRvD, 102, 123022

Sathyaprakash, B., Abernathy, M., Acernese, F., et al. 2011, arXiv:1108.1423

Scelfo, G., Boco, L., Lapi, A., & Viel, M. 2020, JCAP, 2020, 045

Schutz, B. F. 1986, Natur, 323, 310

Seymour, B., Yu, H., & Chen, Y. 2022, arXiv:2208.01668

Spergel, D. N., Verde, L., Peiris, H. V., et al. 2003, ApJS, 148, 175

Talbot, C., & Thrane, E. 2018, ApJ, 856, 173

Taylor, S. R., Gair, J. R., & Mandel, 1. 2012, PhRvD, 85, 023535

Thrane, E., & Talbot, C. 2019, PASA, 36, e010

Tiwari, V., & Fairhurst, S. 2021, ApJL, 913, L19

Van Rossum, G., & Drake, F. L. 2009, Python 3 Reference Manual (Scotts
Valley, CA: CreateSpace) https://dl.acm.org/doi/book/10.5555/1593511

van Son, L. A. C.,, de Mink, S. E., Callister, T., et al. 2022, ApJ, 931, 17

Venumadhav, T., Zackay, B., Roulet, J., Dai, L., & Zaldarriaga, M. 2020,
PhRvD, 101, 083030

Verde, L., Treu, T., & Riess, A. G. 2019, NatAs, 3, 891

Virgo Collaboration, et al. 2015, CQGra, 32, 024001

Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, NatMe, 17, 261

Vitale, S., Farr, W. M., Ng, K. K. Y., & Rodriguez, C. L. 2019, ApJL, 886, L1

You, Z.-Q., Zhu, X.-J., Ashton, G., Thrane, E., & Zhu, Z.-H. 2021, ApJ,
908, 215


https://orcid.org/0000-0002-6011-6190
https://orcid.org/0000-0002-6011-6190
https://orcid.org/0000-0002-6011-6190
https://orcid.org/0000-0002-6011-6190
https://orcid.org/0000-0002-6011-6190
https://orcid.org/0000-0002-6011-6190
https://orcid.org/0000-0002-6011-6190
https://orcid.org/0000-0002-6011-6190
https://orcid.org/0000-0002-7865-1052
https://orcid.org/0000-0002-7865-1052
https://orcid.org/0000-0002-7865-1052
https://orcid.org/0000-0002-7865-1052
https://orcid.org/0000-0002-7865-1052
https://orcid.org/0000-0002-7865-1052
https://orcid.org/0000-0002-7865-1052
https://orcid.org/0000-0002-7865-1052
https://orcid.org/0000-0002-5581-2001
https://orcid.org/0000-0002-5581-2001
https://orcid.org/0000-0002-5581-2001
https://orcid.org/0000-0002-5581-2001
https://orcid.org/0000-0002-5581-2001
https://orcid.org/0000-0002-5581-2001
https://orcid.org/0000-0002-5581-2001
https://orcid.org/0000-0002-5581-2001
https://doi.org/10.1088/0264-9381/32/7/074001
https://ui.adsabs.harvard.edu/abs/2015CQGra..32g4001L/abstract
https://doi.org/10.3847/2041-8213/aa91c9
https://ui.adsabs.harvard.edu/abs/2017ApJ...848L..12A/abstract
https://doi.org/10.1038/nature24471
https://ui.adsabs.harvard.edu/abs/2017Natur.551...85A/abstract
https://doi.org/10.1088/1361-6382/aa51f4
https://ui.adsabs.harvard.edu/abs/2017CQGra..34d4001A/abstract
https://doi.org/10.1093/ptep/ptaa125
https://ui.adsabs.harvard.edu/abs/2021PTEP.2021eA101A/abstract
https://doi.org/10.1088/1361-6382/ab9143
https://ui.adsabs.harvard.edu/abs/2020CQGra..37p5003A/abstract
https://doi.org/10.1103/PhysRevD.85.122006
https://ui.adsabs.harvard.edu/abs/2012PhRvD..85l2006A/abstract
http://arxiv.org/abs/2007.02883
https://doi.org/10.1103/PhysRevD.102.062003
https://ui.adsabs.harvard.edu/abs/2020PhRvD.102f2003B/abstract
https://doi.org/10.1093/mnras/stac3230
https://ui.adsabs.harvard.edu/abs/2023MNRAS.518.3372C/abstract
https://ui.adsabs.harvard.edu/abs/2023MNRAS.518.3372C/abstract
https://doi.org/10.3847/2041-8213/abdab0
https://ui.adsabs.harvard.edu/abs/2021ApJ...908L...4C/abstract
https://ui.adsabs.harvard.edu/abs/2021ApJ...908L...4C/abstract
https://doi.org/10.1038/s41586-018-0606-0
https://ui.adsabs.harvard.edu/abs/2018Natur.562..545C/abstract
http://arxiv.org/abs/1612.01471
https://doi.org/10.1086/186898
https://ui.adsabs.harvard.edu/abs/1993ApJ...411L...5C/abstract
https://doi.org/10.1093/mnras/stac208
https://ui.adsabs.harvard.edu/abs/2022MNRAS.511.2782C/abstract
http://arxiv.org/abs/2109.09882
https://doi.org/10.3847/2041-8213/ab4284
https://ui.adsabs.harvard.edu/abs/2019ApJ...883L..42F/abstract
https://doi.org/10.1088/1475-7516/2021/08/026
https://ui.adsabs.harvard.edu/abs/2021JCAP...08..026F/abstract
https://doi.org/10.3847/2041-8213/aad800
https://ui.adsabs.harvard.edu/abs/2018ApJ...863L..41F/abstract
https://doi.org/10.3847/2041-8213/aaf96e
https://ui.adsabs.harvard.edu/abs/2019ApJ...871L..13F/abstract
https://doi.org/10.1086/190103
https://ui.adsabs.harvard.edu/abs/1964ApJS....9..201F/abstract
https://doi.org/10.1103/101.122001
https://ui.adsabs.harvard.edu/abs/2020PhRvD.101L2001G/abstract
https://doi.org/10.1038/s41586-020-2649-2
https://ui.adsabs.harvard.edu/abs/2020Natur.585..357H/abstract
https://doi.org/10.1086/431341
https://ui.adsabs.harvard.edu/abs/2005ApJ...629...15H/abstract
https://doi.org/10.1109/MCSE.2007.55
https://ui.adsabs.harvard.edu/abs/2007CSE.....9...90H/abstract
https://doi.org/10.1038/s41550-018-0658-y
https://ui.adsabs.harvard.edu/abs/2019NatAs...3...35K/abstract
http://arxiv.org/abs/2204.13495
http://arxiv.org/abs/2204.13495
https://doi.org/10.1103/PhysRevD.93.044007
https://ui.adsabs.harvard.edu/abs/2016PhRvD..93d4007K/abstract
https://doi.org/10.1103/PhysRevD.102.043001
https://ui.adsabs.harvard.edu/abs/2020PhRvD.102d3001K/abstract
https://doi.org/10.1103/PhysRevX.6.041015
https://ui.adsabs.harvard.edu/abs/2016PhRvX...6d1015A/abstract
https://doi.org/10.1103/PhysRevX.9.031040
https://ui.adsabs.harvard.edu/abs/2019PhRvX...9c1040A/abstract
https://doi.org/10.1103/PhysRevX.11.021053
https://ui.adsabs.harvard.edu/abs/2021PhRvX..11b1053A/abstract
http://arxiv.org/abs/2108.01045
https://doi.org/10.3847/2041-8213/abe949
https://ui.adsabs.harvard.edu/abs/2021ApJ...913L...7A/abstract
https://arxiv.org/abs/2111.03604
https://arxiv.org/abs/2111.03606
https://doi.org/10.1146/annurev-astro-081811-125615
https://ui.adsabs.harvard.edu/abs/2014ARA&A..52..415M/abstract
https://doi.org/10.1093/mnras/stz896
https://ui.adsabs.harvard.edu/abs/2019MNRAS.486.1086M/abstract
https://doi.org/10.1093/mnras/stac422
https://ui.adsabs.harvard.edu/abs/2022MNRAS.511.5797M/abstract
https://doi.org/10.3847/2041-8213/abe638
https://ui.adsabs.harvard.edu/abs/2021ApJ...909L..23E/abstract
https://doi.org/10.1103/PhysRevLett.129.061102
https://ui.adsabs.harvard.edu/abs/2022PhRvL.129f1102E/abstract
https://doi.org/10.1103/PhysRevD.104.062009
https://ui.adsabs.harvard.edu/abs/2021PhRvD.104f2009M/abstract
https://ui.adsabs.harvard.edu/abs/2021PhRvD.104f2009M/abstract
https://doi.org/10.3847/2041-8213/ab4886
https://ui.adsabs.harvard.edu/abs/2019ApJ...884L..50M/abstract
https://doi.org/10.1103/PhysRevLett.108.091101
https://ui.adsabs.harvard.edu/abs/2012PhRvL.108i1101M/abstract
https://doi.org/10.1093/mnras/stac2152
https://ui.adsabs.harvard.edu/abs/2022MNRAS.515.5495M/abstract
http://arxiv.org/abs/2203.03643
http://arxiv.org/abs/2203.03643
https://doi.org/10.1103/PhysRevD.103.043520
https://ui.adsabs.harvard.edu/abs/2021PhRvD.103d3520M/abstract
https://ui.adsabs.harvard.edu/abs/2021PhRvD.103d3520M/abstract
http://doi.org/10.5281/zenodo.6646669
https://doi.org/10.3847/1538-4357/ab0108
https://ui.adsabs.harvard.edu/abs/2019ApJ...872..195N/abstract
https://doi.org/10.3847/1538-4357/ab733f
https://ui.adsabs.harvard.edu/abs/2020ApJ...891..123N/abstract
https://doi.org/10.1103/PhysRevD.106.043009
https://ui.adsabs.harvard.edu/abs/2022PhRvD.106d3009O/abstract
https://doi.org/10.1051/0004-6361/201321591
https://ui.adsabs.harvard.edu/abs/2014A&A...571A..16P/abstract
https://doi.org/10.1051/0004-6361/201833910
https://ui.adsabs.harvard.edu/abs/2020A&A...641A...6P/abstract
https://ui.adsabs.harvard.edu/abs/2019BAAS...51g..35R/abstract
https://doi.org/10.3847/2041-8213/abdbaf
https://ui.adsabs.harvard.edu/abs/2021ApJ...908L...6R/abstract
https://doi.org/10.1086/178129
https://ui.adsabs.harvard.edu/abs/1996ApJ...473...88R/abstract
https://doi.org/10.1103/PhysRevD.104.083010
https://ui.adsabs.harvard.edu/abs/2021PhRvD.104h3010R/abstract
https://doi.org/10.1103/PhysRevD.102.123022
https://ui.adsabs.harvard.edu/abs/2020PhRvD.102l3022R/abstract
http://arxiv.org/abs/1108.1423
https://doi.org/10.1088/1475-7516/2020/10/045
https://ui.adsabs.harvard.edu/abs/2020JCAP...10..045S/abstract
https://doi.org/10.1038/323310a0
https://ui.adsabs.harvard.edu/abs/1986Natur.323..310S/abstract
https://arxiv.org/abs/2208.01668
https://doi.org/10.1086/377226
https://ui.adsabs.harvard.edu/abs/2003ApJS..148..175S/abstract
https://doi.org/10.3847/1538-4357/aab34c
https://ui.adsabs.harvard.edu/abs/2018ApJ...856..173T/abstract
https://doi.org/10.1103/PhysRevD.85.023535
https://ui.adsabs.harvard.edu/abs/2012PhRvD..85b3535T/abstract
https://doi.org/10.1017/pasa.2019.2
https://ui.adsabs.harvard.edu/abs/2019PASA...36...10T/abstract
https://doi.org/10.3847/2041-8213/abfbe7
https://ui.adsabs.harvard.edu/abs/2021ApJ...913L..19T/abstract
https://dl.acm.org/doi/book/10.5555/1593511
https://doi.org/10.3847/1538-4357/ac64a3
https://ui.adsabs.harvard.edu/abs/2022ApJ...931...17V/abstract
https://doi.org/10.1103/PhysRevD.101.083030
https://ui.adsabs.harvard.edu/abs/2020PhRvD.101h3030V/abstract
https://doi.org/10.1038/s41550-019-0902-0
https://ui.adsabs.harvard.edu/abs/2019NatAs...3..891V/abstract
https://doi.org/10.1088/0264-9381/32/2/024001
https://ui.adsabs.harvard.edu/abs/2015CQGra..32b4001A/abstract
https://doi.org/10.1038/s41592-019-0686-2
https://ui.adsabs.harvard.edu/abs/2020NatMe..17..261V/abstract
https://doi.org/10.3847/2041-8213/ab50c0
https://ui.adsabs.harvard.edu/abs/2019ApJ...886L...1V/abstract
https://doi.org/10.3847/1538-4357/abd4d4
https://ui.adsabs.harvard.edu/abs/2021ApJ...908..215Y/abstract
https://ui.adsabs.harvard.edu/abs/2021ApJ...908..215Y/abstract

	1. Introduction
	2. Basic Framework
	3. Combined Astrophysical and Cosmological Model
	4. Applications to GWTC-3
	4.1. Using Redshift Distribution while Holding Population Model Fixed
	4.2. Jointly Fitting Astrophysical Population Model and Cosmology

	5. Bias Induced by Substructures in the Population Model
	6. Conclusion and Discussion
	AppendixValidation of the Methodology
	References

