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We model vacuum fluctuations in quantum gravity with a scalar field, characterized by a high occupation
number, coupled to the metric. The occupation number of the scalar is given by a thermal density matrix,
whose form is motivated by fluctuations in the vacuum energy, which have been shown to be conformal
near a light-sheet horizon. For the experimental measurement of interest in an interferometer, the size of the
energy fluctuations is fixed by the area of a surface bounding the volume of spacetime being interrogated
by an interferometer. We compute the interferometer response to these “geontropic” scalar-metric
fluctuations, and apply our results to current and future interferometer measurements, such as LIGO
and the proposed GQuEST experiment.
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I. INTRODUCTION

Traditional wisdom in effective field theory (EFT) sug-
gests that quantum fluctuations in the fabric of spacetime
should be of the order of ∼lp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGℏ=c3

p
∼ 10−34 m,

whereG, ℏ, c, and lp are the gravitational constant, reduced
Planck constant, speed of light, and Planck length, respec-
tively. Fluctuations on such small time and length scales are
experimentally undetectable.
It has, however, been recently argued in multiple differ-

ent contexts that the length scale L of the physical system
itself may enter into the observable [1–6] (see Ref. [7] for a
summary)

"#
ΔL
L

$
2
%
∼
lp
L
; ð1Þ

where ΔL is the quantum fluctuation of L. For example, in
Refs. [1,4], L is the length of interferometer arm in flat
spacetime. More generally, L can be the size of a causal
diamond in dS, AdS, and flat spacetime [2,3], where the
causal diamond associatedwith a volumeV consists of points
which have the property that all causal curves going through
the point must intersect V [8,9]. These works argued that the
naive EFT reasoning is corrected by long-range correlations
in the metric fluctuations—such as are known to occur in
holography—which allow theUVfluctuations to accumulate
into the infrared. A physical analog is Brownian motion

(discussed in Ref. [7]) where the interactions occur at very
short distances but become observable on long timescales as
the UV effects accumulate.
While the calculations presented in Refs. [1–5] are firmly

grounded in standard theoretical techniques, such as
AdS=CFT, they have not yet provided important, detailed
experimental information, such as the power spectral
density. This was the motivation behind the model of
Ref. [4], to provide a framework that reproduces important
behaviors of the UV-complete theory while also allowing to
calculate detailed signatures in the infrared. In the language
of the Brownian motion model, while the fluctuations arise
from local interactions, the observable is only defined
globally. In the language of an interferometer experiment,
one cannot measure spacetime fluctuation within a portion
of an interferometer arm length, but must wait for a photon
to complete a round trip before making a measurement of
the global length fluctuation across the entire arm.
In this work, we continue to develop the model proposed

in Ref. [4], utilizing a scalar field coupled to the metric to
model the behavior of the spacetime fluctuations proposed
in Refs. [1–5]. We call spacetime fluctuations modeled by
the scalar field “geontropic fluctuations” since they are
geometric fluctuations induced by entropic fluctuations
within a finite spatial volume, as we discuss in the next
section. In particular, we propose a model in four dimen-
sions, where the metric appears as a breathing mode of a
sphere controlled by a scalar field ϕ:

ds2 ¼ −dt2 þ ð1 − ϕÞðdr2 þ r2dΩ2Þ: ð2Þ

Since ϕ effectively controls the area of a spherical surface,
it is thus proportional to the entropy of a causal diamond,
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and may be identified with the dilaton mode studied in
Refs. [3,5], which induces fluctuations in the spherical
entangling surface shown in Fig. 1 and is modeled by the
metric in Eq. (2). In the model we consider, ϕ is a scalar
field whose quantum fluctuations will be characterized by
its occupation number, which we label as σpix. The sub-
script denotes “pixellon” following the proposal of Ref. [4],
referring to the pixels of spacetime whose fluctuations the
scalar field is modeling. While we do not derive the form of
the metric in Eq. (2), we reproduce the angular correlation
proposed in Ref. [1], a nontrivial result (not typical of most
metrics) which we take as further evidence that this Ansatz
is a good starting point. In addition, the power spectral
density has no pathologies in the ultraviolet or infrared,
another nontrivial result.
In particular, the quantum fluctuations of the scalar, since

they couple to the metric, will give rise to fluctuations in the
round-trip time for a photon to traverse from mirror to
mirror in an interferometer, as depicted in Fig. 1. Similar to
Ref. [4], our main goal is to compute the gauge invariant
interferometer observable arising from the metric Eq. (2),
with ϕ being a scalar field having a high occupation
number. In contrast to Ref. [4], which calculated length
fluctuations utilizing the Feynman-Vernon influence func-
tional in a single interferometer arm, we will use only
linearized gravity and the QFTof a scalar field with a given
occupation number. We will thus be able to extend the
previous work in Ref. [4], calculating both the power
spectral density and angular correlations in the interferom-
eter arms in a manifestly gauge invariant way, checking
previous claims made in Ref. [1], as well as making new
predictions. Note that while the model is not yet uniquely
derived from first principles in the ultraviolet (utilizing for

example shockwave geometry [6], i.e., the gravitational
field of fast-moving particles with negligible rest mass
[10]), we will argue below that it is nevertheless well
motivated from first principles.
More specifically, we consider an interferometer with

two arms of equal length L, i.e., with spherical symmetry,
and separated by angle θ, as depicted in Fig. 1. We assume
that the first arm as the reference beam points in the
direction n1, and the second arm as the signal beam points
in the direction n2. We will find that the observable takes
the form:
"
δTðt1;n1ÞδTðt2;n2Þ

4L2

%

¼
l2p
4L2

Z
L

0
dr1

Z
L

0
dr2

Z
d3p
ð2πÞ3

σpixðpÞ
2ωðpÞ

F ðr1; r2; p;ΔxÞ;

ð3Þ

where δTðt;nÞ denotes the fluctuation of time delay of light
beam sent at time t − L along the direction n, and p ¼
ðω;pÞ;Δx ¼ ðΔt;ΔxÞ are four-vectors. The main object of
interest in this paper is F ðr1; r2; p;ΔxÞ, which encapsu-
lates the response of the interferometer gravitationally
coupled to the scalar field ϕ.
The rest of the paper is organized around deriving

Eq. (3). In Sec. II, we review the pixellon scalar field
model, with an occupation number σpix motivated in
particular by [4], but also by work demonstrating that
the effect of interest is a breathing mode of the horizon
[3,5]. We then couple this scalar field to the Einstein-
Hilbert action and derive its equation of motion. In Sec. III,
we perform a linearized gravity calculation and derive the
observable. In particular, we compute the interferometer
response function F ðr1; r2; p;ΔxÞ from our specific
model. In Sec. IV, we compute the relevant power spectral
density and angular correlation from Eq. (3). We then
discuss various existing experimental constraints. Finally,
in Sec. V, we conclude. Throughout the paper we will work
in units ℏ ¼ c ¼ kB ¼ 1 while keeping the gravitational
constant G ¼ l2p=ð8πÞ explicit.

II. SCALAR FIELD QUANTUM FLUCTUATIONS
IN A CAUSAL DIAMOND

The main goal of this section is to motivate the form of
the scalar occupation number, σpix, that will be coupled to
the metric. Our discussion here is mostly based on Ref. [4],
though, as mentioned previously, it is also broadly con-
sistent with the dilaton model presented in Refs. [3,5]. We
first review the pixellon model developed in Refs. [1–6] but
use the notation in this work, and the rest of this section
directly applies the pixellon model to the specific metric
in Eq. (2).
The effect of interest, as presented in Refs. [1,2] is based

on fluctuations in the modular Hamiltonian K

FIG. 1. Setup of the interferometer.
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K ¼
Z

B
Tμνζ

μ
KdB

ν; ð4Þ

where B is some spatial region with a stress tensor Tμν, dBν

is the volume element of B (with dBν pointing in the time
direction), and ζμK is the conformal Killing vector of the
boost symmetry of Σ, the entangling surface between B and
its complement B̄ [2,8]. One can map B to Rindler space, so
Σ is also a Rindler horizon. In the context of AdS=CFT,
where Tμν is the stress tensor of the boundary CFT, both the
vacuum expectation value and the fluctuations of the
modular Hamiltonian are known to obey an area law in
vacuum [2,11,12]

hKi ¼ hΔK2i ¼ AðΣÞ
4G

; ð5Þ

where AðΣÞ is the area of Σ. One tempting interpretation of
this relation is that hKi≡N counts the number of
gravitational bits, or pixels, in the system, which is further
motivated by the fact that the entanglement entropy
Sent ¼ hKi is known to hold in a CFT. The fluctuations
of those N bits then satisfy “root-N” statistics:

jΔKj
hKi

¼ 1ffiffiffiffiffi
N

p ; ð6Þ

where jΔKj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔK2i

p
represents the amplitude of the

modular fluctuation.
While the precise relation hKi ¼ hΔK2i is demonstrated

only in the context of AdS=CFT, one can place a Randall-
Sundrum brane in the (5-d) bulk of AdS, inducing gravity
on the (flat 4-d) RS brane, and show that Eq. (5) holds on
the 4-d brane [3]. The measuring apparatus can then be
placed on the flat 4-d brane. Further, as shown in [3,13,14],
gravity is approximately conformal near the horizon. For an
interferometer, the light beams are probing the near-horizon
geometry of the spherical entangling surface Σ bounding it
(shown in Fig. 1), so Ref. [3] argued that the correlator of
stress tensor takes the same form as any CFT. Thus, hΔK2i
follows Eq. (5), i.e.,

hΔK2i ∼
Z

d2yd2y0
dr dr0 r r0

ððr − r0Þ2 þ ðy − y0Þ2Þ4

∼ A
Z

dr dr0 r r0

ðr − r0Þ6
∼

A
δ2

∼
A
l2p
; ð7Þ

where y denotes the transverse directions (corresponding to
the coordinates on Σ) and G ∼ δ2 corresponds to a UV
cutoff in the theory at a distance scale δ ∼ lp. In our case,
r − r0 ∼ δ corresponds to the distance to the (unperturbed)
spherical entangling surface Σ in our setup shown in Fig. 1.
A similar relation holds for hKi. More generally, as found
in [15], an area law for entanglement entropy does not hold

only for a CFT but also any massless scalar QFT, which
also motivates the scalar model of geontropic fluctuations
in [4] and this work.
The idea of Ref. [4] was thus to model the gravitational

effects of modular fluctuations with a massless scalar field,
dubbed a “pixellon.” Since pixellons are bosonic scalars,
their creation and annihilation operators ða; a†Þ satisfy the
usual commutation relation

½ap1
; a†p2

& ¼ ð2πÞ3δð3Þðp1 − p2Þ: ð8Þ

We are interested in modeling the impact of the (fluctuat-
ing) effective stress tensor in Eq. (13). We will do this by
allowing for a nonzero occupation number σpixðpÞ,

Trðρpixa†p1
ap2

Þ ¼ ð2πÞ3σpixðp1Þδð3Þðp1 − p2Þ ð9Þ

such that

Trðρpixfap1
; a†p2

gÞ ¼ ð2πÞ3½1þ 2σpixðp1Þ&δð3Þðp1 − p2Þ:
ð10Þ

The occupation number should be consistent with the
modular energy fluctuation, Eq. (6), as we will check
explicitly at the end of this section.
The pixellon couples to the metric and sources the stress

tensor at second order in perturbations. In general, we can
consider a metric of the form

gμν ¼ ημν þ ϵhμν þ ϵ2Hμν þ ' ' ' ; ð11Þ

where ϵ is a dimensionless parameter that denotes the order
in perturbation theory. The vacuum Einstein Equation (EE)
is, parametrically [16],

Gμν ¼ ϵ½∇2h&μν þ ϵ2ð½∇2H&μν − l2pTμνÞ þ ' ' ' ¼ 0; ð12Þ

where the precise form of the equations of motion (e.g.,
numerical prefactors in the time and spatial derivatives) will
depend on the precise form of the metric that we consider
below, and where the effective stress tensor is given by

Tμν ∼
1

l2p
½ð∇hÞ2&μν: ð13Þ

At leading order in perturbation theory, the metric
perturbation hμν satisfies the vacuum EE having a form

½∇2h&μν ¼ 0: ð14Þ

However, at second order, the effective stress tensor of hμν
will source a nonzero metric perturbation Hμν, i.e.,

½∇2H&μν ¼ l2pTμν: ð15Þ
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One can compute hKi from hTμνi, but as shown in [2], hKi
does not gravitate and should be subtracted in the metric
equation of motion (similar to a tadpole diagram in QFT).
Thus, the vacuum expectation value of this stress tensor
vanishes, hTμνi ¼ 0, consistent with Eqs. (13) and (14). In
contrast, it is expected to have nonzero fluctuations
hΔK2i ∼ hTαβTμνi ≠ 0, which gravitate and lead to physi-
cal observables.
Although hΔK2i is directly related to the vacuum two-

point function of Hμν or four-point function of hμν, the
physical observable can be directly computed from the two-
point function of hμν with a nontrivial density-of-states σpix.
That is, we are using the language of linearized gravity in
this work, while our result captures the nonlinearity in
Eq. (15) and higher orders via σpix. To compute the
fluctuations, we quantize the metric perturbations via the
scalar field ϕ, which, to second order in perturbation theory,
leads to a nonzero hΔK2i, as shown at the end of this
section. The major goal of this work is to compute the
effects of such quantized metric perturbations on the
interferometer depicted in Fig. 1.
More specifically, following Ref. [4], we model these

energy fluctuations, in the volume of spacetime interro-
gated with an interferometer, with a thermal density matrix
ρpix, as shown in Eqs. (9) and (10). The motivation for this
choice is based on formal work [8] showing that the
reduced density matrix ρV of the system V bounded by
a sphere Sd−1 or its causal diamondD can be mapped to the
thermal density matrix ρβ of the hyperbolic spacetime
R ×Hd−1, which foliates AdSdþ1, in the asymptotic limit.
A similar argument relating the vacuum state of any QFT in
a causal diamond to a thermal density matrix can be found
in [17].
Thus, following [4], we are motivated to define a thermal

density matrix ρpix of pixellons using the definition in [18],

ρpix ¼
1

Z
exp

&
−β

Z
d3p
ð2πÞ3

ðϵp − μÞa†pap
'
; ð16Þ

Z ¼
Y

p

1

1 − e−βðϵp−μÞ
; ð17Þ

where ϵp is the energy of pixellons with momentum p, and
μ is the chemical potential counting background degrees of
freedom associated with hKi [4].
Furthermore, as in Ref. [4], we identify the energy per

degree-of-freedom as

βðϵp − μÞ≡ βωðpÞ ∼ jΔKj
hKi

: ð18Þ

In four dimensions, according to Eq. (5),

jΔKj
hKi

¼ 1ffiffiffiffiffi
N

p ∼
lp
L
; ð19Þ

suggesting that the energy fluctuation per degree-of-
freedom is set by a ratio of UV and IR length scales.
Since lp

L ≪ 1, we approximate the occupation number
σðpÞ by

σpixðpÞ ¼
1

eβωðpÞ − 1
≈

1

βωðpÞ
: ð20Þ

More specifically, we identify the IR length scale
1=L ∼ ωðpÞ, so we take

σpixðpÞ ¼
a

lpωðpÞ
; ð21Þ

where a is the dimensionless number to be measured in an
experiment, or fixed in a UV-complete theory. Here a ¼
1=ð2πÞ corresponds to an inverse temperature β ¼ 2πlp,
giving a result most closely mirroring Refs. [1,2,4] in
amplitude.
Note that σpixðpÞ is not Lorentz invariant, but this is to be

expected because the measurement of interest via a causal
diamond picks out a frame. This is also not contradictory to
our statement that we have computed a gauge invariant
observable. It is because Lorentz transformations of σpixðpÞ
are global transformations of background Minkowski
spacetime. After the interferometer picks a frame, the
interferometer response is independent of how we describe
metric perturbations, i.e., independent of local coordinate
transformations at scale of metric perturbations, which is
what gauge invariance usually means in linearized gravity.
We now apply this pixellon model to the metric in Eq. (2)

and derive the dispersion relation of ϕ. We start from the
linearized Einstein Hilbert action or Fierz-Pauli action [19]

SFP ¼
1

2κ

Z
d4x

ffiffiffiffiffiffi−gp
hμνðGμν½hμν& − κTμνÞ

¼ 1

4κ

Z
d4x

ffiffiffiffiffiffi−gp
hμνðημν□h −□hμν

− 2∇μ∇νhþ 2∇ρ∇μhνρ − 2κTμνÞ þOðh3Þ; ð22Þ

where κ ¼ 8πG. The Fierz-Pauli action can be derived by
expanding the full metric gμν about the Minkowski metric
ημν, gμν ¼ ημν þ hμν, and keeping the terms quadratic in hμν
in the Einstein Hilbert action [19,20]. Here, hμν is the
metric perturbation associated with the pixellon ϕ. The
terms linear in hμν are discarded because they can be
written as a total derivative [20].
Instead of a functional of a general hμν, SFP in our model

is a functional of the metric in Eq. (2) and thus a functional
of ϕ, so the pixellon’s action Spix½ϕ& is
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Spix½ϕ&≡ SFP½h
pix
μν ½ϕ&&; hpixμν dxμdxν ¼ ds2pix; ð23Þ

which after plugging in Eq. (2) becomes

Spix½ϕ& ¼
1

2κ

Z
d4x

ffiffiffiffiffiffi−gp
ϕ½∇2 − 3∂2t &ϕþ κLint½ϕ&;

Lint½ϕ&≡ −hpixμν ½ϕ&Tμν: ð24Þ

Then the equation of motion (EOM) of ϕ is derived by
varying Lpix with respect to ϕ.

ð∂2t − c2s∇2Þϕ ¼ κ
c2s

δLint½ϕ&
δϕ

; cs ≡
ffiffiffi
1

3

r
: ð25Þ

Following the logic of Eqs. (12) and (13), to leading
order in ϕ, the right-hand side of Eq. (25) vanishes.
Although Eq. (25) is source-free, one may find that the
effective stress tensor contains linear term in ϕ, which is a
tadpole due to imposing the form of metric in Eq. (2) and
can be subtracted off. Equation (25) also implies that for the
metric in Eq. (2), ϕ needs to have the dispersion relation

ω ¼ csjpj; cs ¼
ffiffiffi
1

3

r
ð26Þ

using the expansion ϕ ¼
R d3p

ð2πÞ3 ϕðpÞe
−iωtþip·x. It is clear

that ϕ is a sound mode with the sound speed cs ¼
ffiffi
1
3

q
. This

sound mode can be related to the hydrodynamical sound
mode in fluid gravity and the butterfly velocity of out-of-
time-correlators, (e.g., see Refs. [21,22]), which we will
explore in our future work. From Eq. (24), we also notice
that to canonically normalize ϕ, we can define ϕ̄ such that

ϕ ¼
ffiffiffi
κ

p
ϕ̄ ¼ lpϕ̄: ð27Þ

As a consistency check, one can use the metric in Eq. (2)
and the occupation number in Eq. (21) to confirm that
hΔK2i has the same scaling in Eq. (5). Although the
physical observable is driven by the two-point function of ϕ
as we will discuss in Sec. III, hΔK2i is driven by the four-
point function of ϕ. One can see this by noting that K2 ∼
ðTμνÞ2 according to Eq. (4), while Tμν ∼ 1

l2p
½ð∇ϕÞ2&μν

according to Eq. (13). In Sec. III, we find, utilizing the
Ansatz Eq. (21) for the density of states, hϕ2i ∼ lp

L [see
Eq. (39)]. Thus, if we identify spatial gradients with the IR
length scale 1=L, we obtain hΔK2i ∼ L2

l2p
∼ A

4G, as expected.

III. TIME DELAY IN PIXELLON MODEL

The major goal of this work is to compute an interfer-
ometer response to fluctuations in the pixellon model.
Instead of using the Feynman-Vernon influence functional

approach to compute the mirror’s motion, e.g., in [4,20,23],
we compute the time delay of a light beam traveling a round
trip directly.
In general, for a metric in the form

ds2 ¼ −ð1 −H0Þdt2 þ ð1þH2Þdr2 þ 2H1dtdrþ ' ' ' ;
ð28Þ

we need to consider three effects: the shift in the clock rate,
mirror motion, and light propagation. As discussed in detail
in Appendix A, the shift in the clock’s rate only depends on
H0, the mirror motion in the radial direction is affected by
H0;1, and the light propagation is determined by all three
components H0;1;2.
In Appendix B, we further show that if we take all of

these three effects into consideration and sum up the
resulting time delay for both outbound and inbound light,
the total time delay T of a round trip is gauge invariant, so T
is a physical quantity to measure. In this section, we
compute the shift of T due to geontropic fluctuations
and its correlation function using the metric of the pixellon
model in Eq. (2). To calculate time delay in a generic metric
like Eq. (28), one can refer to Appendix A.
For the metric in Eq. (2), the only nonzero component in

the t − r sector of the metric is H2, so we only need to
consider light propagation. Then for a light beam sent at
time t − L along the direction n, its total time delay Tðt;nÞ
of a round trip is completely determined by the pixellon
field ϕ, e.g.,

Tðt;nÞ ¼ 2Lþ 1

2

Z
L

0
dr½ϕðxÞ þ ϕðx0Þ&;

x≡ ðt − Lþ r; rnÞ; x0 ≡ ðtþ L − r; rnÞ: ð29Þ

We have chosen the start time to be at t − L such that the
time coordinate of x and x0 are symmetric about t.
Since ϕ satisfies the massless free scalar wave equation

with the sound speed cs ¼ 1ffiffi
3

p [i.e., Eqs. (25) and (26)], the
quantization for ϕðxÞ should be

ϕðxÞ ¼ lp

Z
d3p
ð2πÞ3

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωðpÞ

p ðapeip·x þ a†pe−ip·xÞ; ð30Þ

where lp is to make ϕ̄ðxÞ canonically normalized, as
discussed in Eq. (27). Creation and annihilation operators
ap, a

†
p satisfy the commutation relation in Eq. (8) with a

thermal density matrix ρpix defined in Eqs. (16) and (21).
Let us define δTðt;nÞ to be the correction to the total time

delay Tðt;nÞ. We write the autocorrelation of δTðt;nÞ as

CðΔt; θÞ≡
"
δTðt1;n1ÞδTðt2;n2Þ

4L2

%
;

Δt≡ t1 − t2; θ ¼ cos−1ðn1 · n2Þ; ð31Þ
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and using Eq. (29), we obtain

CðΔt; θÞ ¼ 1

16L2

Z
L

0
dr1

Z
L

0
dr2

× hðϕðx1Þ þ ϕðx01ÞÞðϕðx2Þ þ ϕðx02ÞÞi; ð32Þ

where hOi is a shorthand notation for

hOi ¼ TrðρpixOÞ: ð33Þ

We have assumed that CðΔt; θÞ only depends on Δt, the
difference of the timewhen the two beams are sent, and θ, the
angular separation of two arms. We will see that this
assumption is true.
Besides the correlation function in Eq. (31), a more

physical correlation function is to first subtract the time
delay of the first arm Tðt;n1Þ from the time delay of the
second arm Tðt;n2Þ, where two beams are sent at the same
time t, and then correlate this difference of time delay at
different beam-sent time:

CT ðΔt; θÞ≡
"
T ðt1; θÞT ðt2; θÞ

4L2

%
;

T ðt; θÞ≡ Tðt;n2Þ − Tðt;n1Þ ¼ δTðt;n2Þ − δTðt;n1Þ;
ð34Þ

such that

CT ðΔt; θÞ ¼ 2½CðΔt; 0Þ − CðΔt; θÞ&: ð35Þ

Here, we treat the first arm as the reference beam and the
second arm as the signal beam. Since the relation between
CðΔt; θÞ and CT ðΔt; θÞ is directly given by Eq. (35), we
will focus on CðΔt; θÞ in our calculations below. To
compute CðΔt; θÞ in Eq. (32), we need to first compute
the correlation function of ϕ. Using Eq. (30), we obtain

ϕðxÞ þ ϕðx0Þ ¼ lp

Z
d3p
ð2πÞ3

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωðpÞ

p 2 cos ½ωðL − rÞ&

× ðape−iωtþip·x þ a†peiωt−ip·xÞ: ð36Þ

Then we have

hðϕðx1Þ þ ϕðx01ÞÞðϕðx2Þ þ ϕðx02ÞÞi

¼ 4l2p

Z
d3p1

ð2πÞ3

Z
d3p2

ð2πÞ3
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ω1ðp1Þω2ðp2Þ
p

× cos ½ω1ðL − r1Þ& cos ½ω2ðL − r2Þ&

× ½hap1
a†p2

ie−iðω1t1−ω2t2−p1·x1þp2·x2Þ þ c:c:&; ð37Þ

where we have only kept the term proportional to a†p1
ap2

and ap1
a†p2

since the other terms are zero.

To evaluate Eq. (37), we need to calculate ha†p1
ap2

i and
hap1

a†p2
i. The former is given directly by Eq. (9),

ha†p1
ap2

i ¼ Trðρpixa†p1
ap2

Þ ¼ ð2πÞ3σpixðp1Þδð3Þðp1 − p2Þ.
Using both Eq. (9) and the commutation relation in Eq. (8),
we find the latter to be

hap1
a†p2

i ¼ ð2πÞ3½1þ σpixðp1Þ&δð3Þðp1 − p2Þ

≈ ð2πÞ3σpixðp1Þδð3Þðp1 − p2Þ; ð38Þ

where we have used σpixðpÞ ≫ 1 at the last line. Then,

hðϕðx1Þ þ ϕðx01ÞÞðϕðx2Þ þ ϕðx02ÞÞi

¼ 4l2p

Z
d3p
ð2πÞ3

σpixðpÞ
2ωðpÞ

cos ½ωðL − r1Þ& cos ½ωðL − r2Þ&

× ½e−iωΔtþip·Δx þ c:c:&; ð39Þ

where we have defined Δx≡ x1 − x2. Notice that Eq. (37)
is a complex function in general, so we usually need to
symmetrize it over x1;2. Due to our approximation in
Eq. (38), Eq. (39) is a real function, so the one after
symmetrization over x1;2 is the same as Eq. (39). For
simplicity, we will drop the term c:c: and always assume
that a complex conjugate is taken.
Finally, plugging Eq. (39) into Eq. (32), we obtain

CðΔt; θÞ ¼
l2p
4L2

Z
L

0
dr1

Z
L

0
dr2

Z
d3p
ð2πÞ3

σpixðpÞ
2ωðpÞ

× cos ½ωðL − r1Þ& cos ½ωðL − r2Þ&e−iωΔtþip·Δx:

ð40Þ

This is our main result, and we will work on applying it to
existing interferometer configurations next.

IV. OBSERVATIONAL SIGNATURES AND
CONSTRAINTS

After plugging σpixðpÞ in Eq. (21), Eq. (40) is reduced to

CðΔt; θÞ ¼
alp
8L2

Z
L

0
dr1

Z
L

0
dr2

Z
d3p
ð2πÞ3

1

ω2ðpÞ
× cos ½ωðL − r1Þ& cos ½ωðL − r2Þ&e−iωΔtþip·Δx:

ð41Þ

In the next two subsections, we will study the power
spectral density and angular correlation of Eq. (41) in more
detail.

A. Power spectral density

We first study the power spectral density implied by
Eq. (41). Carrying out the angular part of the momentum
integral in Eq. (41), we have
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CðΔt; θÞ ¼
alp

32π2c2sL2

Z
L

0
dr1

Z
L

0
dr2

Z
∞

0
djpj cos ½ωðL − r1Þ& cos ½ωðL − r2Þ&e−iωΔt

Z
π

0
dϑ sin ϑ eijpjjΔxj cos ϑ

¼
alp

16π2c2sL2

Z
L

0
dr1

Z
L

0
dr2

Z
∞

0
dω cos ½ωðL − r1Þ& cos ½ωðL − r2Þ&

sin ½ωDðr1; r2; θÞ=cs&
ωDðr1; r2; θÞ

e−iωΔt; ð42Þ

where we have defined

Dðr1; r2; θÞ≡ jΔxj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r22 − 2r1r2 cos θ

q
: ð43Þ

The additional factor of 1
c2s
in Eq. (42) comes from using the

dispersion relation in Eq. (26).CT ðΔt; θÞ is directly given by
plugging Eq. (42) into Eq. (35). One thing to notice here is
that Cð0; 0Þ has a log divergence when integrating ω to
infinity. A similar log divergence also shows up inCð0; 0Þ of
[1] [see Eq. (57)] if we sum all the ðl; mÞ modes without a
cutoff inl. Nonetheless, the log divergence in both cases can
be regulated by noticing that there is a natural UV cutofflmax
in the number of observable l modes of CT ð0; θÞ, beyond
which light is diffracted significantly and thus cannot probe
these l > lmax fluctuations. The UV cutoff lmax can also be
translated to a UV cutoffωmax of frequency, which is usually
much higher than the experimental cutoff ωmax ≲
10 radGHz of the photodetector [24]. Thus, when showing
CT ðΔt; θÞ forΔt ¼ 0 in Fig. 2,we have imposed aUVcutoff
ωmax ¼ 10 radGHz. Since ωmax enters into Eq. (42) via the
combinationωmaxL, we have used an arm lengthL ¼ 5 mas
demonstration. Notice the signal is maximal when the
interferometer arms are back-to-back.

Performing a Fourier transform of CðΔt; θÞ with respect
to Δt, we obtain the two-sided power spectral density
C̃ðω; θÞ to be

C̃ðω; θÞ ¼
Z

∞

−∞
dt e−iωtCðt; θÞ

¼
alp

8πc2sL2

Z
L

0
dr1

Z
L

0
dr2

sin ½ωDðr1; r2; θÞ=cs&
ωDðr1; r2; θÞ

× cos ½ωðL − r1Þ& cos ½ωðL − r2Þ&: ð44Þ

To evaluate the power spectral density ofCT ðΔt; θÞ, we can
put Eq. (44) into Eq. (35) such that its power spectral
density C̃T ðω; θÞ is

C̃T ðω; θÞ ¼ 2½C̃ðω; 0Þ − C̃ðω; θÞ&: ð45Þ

In Fig. 3, we have plotted Eq. (45) over ωL for several
different separation angles θ of the interferometer.
In the limit ω → 0, Eqs. (44) and (45) reduce to

C̃ðω; θÞ ¼
alp
8πc3s

þOðω2L2Þ; ð46Þ

C̃T ðω; θÞ ¼
alp

48πc5s
ω2L2ð1 − cos θÞ þOðω4L4Þ: ð47Þ

A major feature of C̃ðω; θÞ at low frequencies is that it is
flat in frequency, corresponding to the spectrum of white
noise. This feature is consistent with the “random walk
intuition” of holographic effects in [7], as well as the
random walk models in [25,26]. On the other hand,
although C̃ðω; θÞ is independent of ω at low frequency,
C̃T ðω; θÞ is quadratic in ω. It is because, as one can directly
observe from Eq. (46), the leading order term of C̃ðω; θÞ at
low frequency is angle-independent. Thus, when sub-
tracting the time delay of the first arm from the second
arm, this leading order term cancels out, and the next order
term, which is quadratic in ω and has a nontrivial angular
dependence, contributes to C̃T ðω; θÞ.
In Eqs. (46) and (47), there are also additional factors of

1
cs
from the expansion of sin ½ωDðr1; r2; θÞ=cs& in Eq. (44).

Since the leading order term in the expansion of
sin ½ωDðr1; r2; θÞ=cs& is linear in its argument, it contributes
an additional factor of 1

cs
to C̃ðω; θÞ in Eq. (46). On the other

hand, as we explained above, this leading order term is

FIG. 2. Equal-time correlation function CT ð0; θÞ [i.e., Eq. (34)]
of the pixellon model without IR cutoff in Eq. (41) (blue) and
with an IR cutoff in Eq. (60) (red), where both curves are
normalized by 8π2c2sL

alp
. An UV cutoff ωmax ¼ 10 radGHz and arm

length L ¼ 5 m is used as demonstration.

INTERFEROMETER RESPONSE TO GEONTROPIC … PHYS. REV. D 107, 024002 (2023)

024002-7



angle-independent, so the next order term, which is cubic in
its argument, contributes an additional factor of 1

c3s
to

C̃T ðω; θÞ in Eq. (47).
One last observation from Eqs. (46) and (47) is that both

C̃ðω; θÞ and C̃T ðω; θÞ are regular in low frequency. In [1],
an IR regulator at the scale of ∼ 1

L2 was added to the 2D
Laplacian on the sphere to regulate the angular correlation
function as we will discuss in Sec. IV B. To perform an
analogous calculation and take into account other IR
effects, such as information loss due to soft graviton loss,
we will apply the procedures in this section to the pixellon
model with an IR cutoff at the same scale as in [1] in
Sec. IV C.

B. Angular correlation

We now study the angular correlation implied by
Eq. (41). It will be convenient to first decompose
Eq. (41) into spherical harmonics and spherical Bessel
functions. Using

eip·r¼
X∞

l¼0

ilð2lþ1ÞjlðjpjrÞPlðcosθÞ; θ¼ p̂ · r̂; ð48Þ

and the addition theorem

Plðp̂ · nÞ ¼ 4π
2lþ 1

X

m

Ylm(ðp̂ÞYlmðnÞ; ð49Þ

we obtain

eip·ðx1−x2Þ ¼
X

l1;m1;l2;m2

16π2il1ð−iÞl2jl1ðjpjr1Þjl2ðjpjr2Þ

× Yl1m1(ðp̂ÞYl2m2ðp̂ÞYl1m1ðn1ÞYl2m2(ðn2Þ:
ð50Þ

Using
R
dΩYl1m1(ðp̂ÞYl2m2ðp̂Þ ¼ δl1l2δm1m2 , we can inte-

grate out all the angular dependence of p, so

CðΔt; θÞ ¼
alp

4πc3sL2

X

l;m

Z
L

0
dr1

Z
L

0
dr2

Z
∞

0
dω

× cos ½ωðL − r1Þ& cos ½ωðL − r2Þ&
× jlðωr1=csÞjlðωr2=csÞ
× Ylmðϑ1;φ1ÞYlm(ðϑ2;φ2Þe−iωΔt; ð51Þ

where we have an additional factor of 1
c3s
from replacing p

with ω using Eq. (26). If we define the amplitude of each
ðl; mÞ mode of the integrand to be

AlmðΔt;ω; r1; r2Þ≡ cos ½ωðL − r1Þ& cos ½ωðL − r2Þ&
× jlðωr1=csÞjlðωr2=csÞe−iωΔt;

ð52Þ

Eq. (51) can be more compactly written as

FIG. 3. Power spectral density C̃T ðω; θÞ [i.e., Eq. (45)] of the pixellon model without IR cutoff in Eq. (44) (left) and with an IR cutoff
in Eq. (61) (right), where all the curves are normalized by 8πc2s

alp
.
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CðΔt; θÞ ¼
alp

4πc3sL2

X

l;m

Z
L

0
dr1

Z
L

0
dr2

Z
∞

0
dω

× AlmðΔt;ω; r1; r2ÞYlmðϑ1;φ1ÞYlm(ðϑ2;φ2Þ:
ð53Þ

Let us first look at the equal-time correlator by setting
Δt ¼ 0. The amplitude clm of each ðl; mÞ mode of Cð0; θÞ
is then given by integrating Almð0;ω; r1; r2Þ over ω and
r1;2 as indicated by Eq. (53), i.e.,

clm ¼
alp

4πc3sL2

Z
L

0
dr1

Z
L

0
dr2

Z
∞

0
dωAlmð0;ω; r1; r2Þ:

ð54Þ

Since these integrals are hard to evaluate analytically, we
have plotted the numerical result in Fig. 4. In Fig. 4, we
have only plotted the modes starting from l ¼ 1 since the
l ¼ 0 mode, which is angle-independent, is cancelled out
in CT ðΔt; θÞ as explained in the previous section.
In Fig. 4, we have also shown the amplitude of each

ðl; mÞmode found in Ref. [1]. They argued that the angular
part of Cð0; θÞ should be described by the Green’s function
Gðr̃1; r̃2Þ of the 2D Laplacian on the sphere with an
additional IR regulator at the scale of 1

L2, i.e.,

ð−∇2
r̃1
þ1=L2ÞGðr̃1; r̃2Þ¼ δð2Þðr̃1; r̃2Þ;

δð2Þðr̃1; r̃2Þ¼
1

L2
δðcosθ1− cosθ2Þδðϕ1−ϕ2Þ;

ð55Þ

where r̃i are coordinates on the sphere of radius L.
Gðr̃1; r̃2Þ is scale invariant if we extract the overall factor
of 1

L2 by defining r̂i ¼ r̃i
L, so

ð−∇2
r̂1
þ 1ÞGðr̂1; r̂2Þ ¼ δð2Þðr̂1; r̂2Þ: ð56Þ

After decomposing Gðr̂1; r̂2Þ into spherical harmonics, one
obtains

Cð0; θÞ ∝
X

l;m

Ylmðϑ1;φ1ÞYlm(ðϑ2;φ2Þ
lðlþ 1Þ þ 1

: ð57Þ

Excellent agreement between the pixellon model and the
expectation of Ref. [1] is observed.
As mentioned in Sec. IVA, both C̃ðω; θÞ and C̃T ðω; θÞ in

this work are regular when ω → 0, even without an IR
regulator, e.g., Eqs. (46) and (47). However, it will still be
interesting to study the pixellon model with an IR cutoff due
to IR effects from the physical size of the interferometer. We
will consider the case with an IR cutoff in Sec. IV C, but in
this section, we first consider only the model without an IR
cutoff. Thus, when comparing Eq. (54) to Ref. [1], we drop
the additional 1 in the denominator of Eq. (57), which
appears due to the insertionof an IR regulator. In this case, the
amplitude of each ðl; mÞmode becomes 1

lðlþ1Þ. In Fig. 4, one
can observe that the angular correlation in this work is very
close to the one in [1] without the IR regulator. Note that one
also observes the same angular dependence in the shockwave
geometry (e.g., see Refs. [6,10,27,28]), a connection we
would like to study further in our future work.
One might also be interested in the amplitude c̃lmðωÞ of

each ðl; mÞ mode of the power spectral density C̃ðω; θÞ.
Performing a Fourier transform of CðΔt; θÞ in Eq. (53) and
thus a Fourier transform of AlmðΔt;ω; r1; r2Þ in Eq. (52),
we obtain

c̃lmðωÞ ¼
alp

2c3sL2

Z
L

0
dr1

Z
L

0
dr2Almð0;ω; r1; r2Þ: ð58Þ

We have plotted c̃lmðωÞ starting from l ¼ 1 in Fig. 5. A
normalization factor of lðlþ 1Þ is multiplied to each curve
such that each curve represents the relative power spectra
density with respect to the total amplitude clm.
To determine an analytical representation of the ampli-

tude of each ðl; mÞ mode, one can also look at
Almð0;ω; r1; r2Þ at the end points r1 ¼ r2 ¼ L. If we
integrate Almð0;ω; L; LÞ over ω, we find the amplitude
of each ðl; mÞ mode at end points to be

FIG. 4. The amplitude of each ðl; mÞ mode of the equal-time
correlation function Cð0; θÞ decomposed into spherical harmon-
ics. The blue and green lines correspond to the amplitude in [1]
[i.e., Eq. (57)] without and with an IR regulator, respectively. The
red and orange lines correspond to clm [i.e., Eq. (54)] of the
pixellon model without IR cutoff in Eq. (52) and with an IR cutoff
in Eq. (64), respectively. We have normalized the amplitude of
each mode by the amplitude of the mode l ¼ 1.
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L
Z

∞

0
dωAlmð0;ω; L; LÞ ¼

πcs
2ð2lþ 1Þ

; ð59Þ

which is the major contribution to clm plotted in Fig. 4.
Although Eq. (59) decreases more slowly than Eq. (57)
over l, we have additional suppression due to, for example,
the factors of cos ½ωðL − r1;2Þ& in Eq. (52) when integrating
Almð0;ω; r1; r2Þ over ω and r1;2, so the total amplitude in
Eq. (54) is very close to Eq. (57) without the IR regulator.

C. IR cutoff

In this section, we apply the calculations in the previous
two sections to the pixellon model with an IR cutoff. As
discussed above, although both C̃ðω; θÞ and C̃T ðω; θÞ are
regular in the IR, we still expect an explicit IR cutoff to
enter the calculation because of the finite size of the
interferometer. We will also find that adding an IR cutoff
gives a better agreement with the angular correlation of
Eq. (57). For this reason, we place an IR cutoff at a scale
∼ 1

L2, similar to [1], into Eq. (41), e.g.,

CðΔt; θÞ ¼
alp
8L2

Z
L

0
dr1

Z
L

0
dr2

Z
d3p
ð2πÞ3

1

ω2ðpÞ þ 1
L2

× cos ½ωðL − r1Þ& cos ½ωðL − r2Þ&e−iωΔtþip·Δx:

ð60Þ

Following the same procedure in Sec. IVA, we find that
the power spectral density C̃ðω; θÞ in Eq. (44) is modulated
by an additional factor in ω and L, i.e.,

C̃ðω; θÞ →
#

ω2

ω2 þ 1
L2

$
C̃ðω; θÞ; ð61Þ

while C̃T ðω; θÞ is still given by Eq. (45). CT ð0; θÞ and
C̃T ðω; θÞ with this IR cutoff are shown in Figs. 2 and 3,
respectively.
One major effect of the IR cutoff is that the amplitude of

C̃ðω; θÞ is suppressed at low frequency due to the modu-
lation factor in Eq. (61), as one can directly observe in
Fig. 3. For the same reason, the overall amplitude of
CT ðΔt; θÞ in the case with an IR cutoff is smaller than the
one without IR cutoff as depicted in Fig. 2. As frequency
increases, the modulation factor goes to 1, so the amplitude
of C̃ðω; θÞ in these two cases becomes nearly identical. In
addition, as the separation angle θ decreases, the difference
between these two cases also becomes smaller since
interferometers with smaller θ are more sensitive to higher
l modes, which have higher characteristic frequency, and
thus are less sensitive to the IR cutoff.
One can also determine the suppression factor due to the

IR cutoff as ω → 0 by expanding Eq. (61), e.g.,

C̃ðω; θÞ ¼
alp
8πc3s

ω2L2 þOðω4L4Þ; ð62Þ

C̃T ðω; θÞ ¼
alp

48πc5s
ω4L4ð1 − cos θÞ þOðω6L6Þ: ð63Þ

FIG. 5. The amplitude c̃lmðωÞ [i.e., Eq. (58)] of each ðl; mÞ mode of the power spectral density C̃ðω; θÞ decomposed into spherical
harmonics. The left and right panels are for the pixellon model without IR cutoff in Eq. (52) and with an IR cutoff in Eq. (64),
respectively. We have dropped the overall factor alp

2c3s
in both plots and normalized each curve by lðlþ 1Þ.
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The IR behaviors of both C̃ðω; θÞ and C̃T ðω; θÞ above are
very different from the case without an IR cutoff in Eq. (46)
and (47) due to the additional factor of ω2L2 contributed by
the modulation factor in Eq. (61). For this reason, one has
to be cautious when constraining our model using detectors
with peak sensitivity at low frequency, such as LIGO, as
discussed in Sec. IV D.
For the angular correlation, after decomposing Eq. (60)

into spherical harmonics, we find that the amplitudes clm
and c̃lmðωÞ of each ðl; mÞmode of Cð0; θÞ and C̃ðω; θÞ are
given by Eqs. (54) and (58), respectively, but
AlmðΔt;ω; r1; r2Þ is modulated by the same factor in
Eq. (61), i.e.,

AlmðΔt;ω; r1; r2Þ →
#

ω2

ω2 þ 1
L2

$
AlmðΔt;ω; r1; r2Þ: ð64Þ

We show both clm and c̃lmðωÞ with the IR cutoff in Figs. 4
and 5, respectively.
Since the overall amplitude of C̃ðω; θÞ is suppressed at

low frequency, the amplitude c̃lmðωÞ of different ðl; mÞ
modes is also suppressed as shown in Fig. 5. In Fig. 4, one
can also observe that the amplitude clm falls off more
slowly with l in the case with an IR cutoff since low l
modes are more sensitive to this IR cutoff and hence are
more suppressed. As noted previously, our model with the
IR cutoff better agrees with the results in [1], though one
should remain cautious until our model has been fully
mapped to a UV-complete theory.

D. Existing constraints and future projections

In an effort to detect high frequency gravitational waves
and quantum gravity signatures, several laboratory-sized
interferometer experiments have been implemented to
accurately detect tiny spacetime perturbations. The con-
straints from these experiments are often reported as upper
limits on the one-sided noise strain

ffiffiffiffiffiffiffiffiffiffiffi
ShðfÞ

p
of the photon

round-trip time, obtained by analyzing interference pat-
terns. For stationary signals, the strain is defined as [29,30]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðnÞh ðfÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

Z
∞

−∞

"
ΔLðτÞ
L

ΔLð0Þ
L

%
e−2πifτdτ

s

; ð65Þ

which has units of Hz−1=2. This is related to Eq. (44) by
Eq. (45), i.e.,

ffiffiffiffiffiffiffiffiffiffiffi
ShðfÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C̃T ðω; θÞ

q
; ð66Þ

where ω ¼ 2πf and θ is the angle between the two
interferometer arms, which is taken to be π=2 for
Holometer, GEO-600 and LIGO, and π=3 for LISA to
account for its triangular configuration. Here we only focus
on two of the three arms of LISA as a demonstration.

Our power spectrum in Eq. (44) can be parametrized more
conventionally by defining

α≡ 2π
c2s

a; ð67Þ

leading to the peak strain
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ShðfpeakÞ

p
≈

ffiffiffiffiffiffiffiffiffi
2αlp

p
=ð4πÞ ¼ffiffiffi

α
p

ð2.62 × 10−23Þ Hz−1=2 [31]. Here α ∼ 1 gives the ampli-
tude of the effect computed in [1,2], and should be
considered the natural benchmark [32].
We now compare our predicted strain to the experimental

constraints from Holometer [29], GEO-600 [33], LIGO
[34], and the projected sensitivity from LISA [35]. Since
the four interferometers have different arm lengths, the
predicted strain from our models will also differ between
these experiments. The result assuming α ¼ 1 with or
without the IR cutoff using Eqs. (44), (45), (61), (66), and
(67) is plotted in Fig. 6. Due to the better peak sensitivity of
our predicted strain (i.e., at ωL ∼ 1 as shown in Fig. 3), the
tightest experimental limit comes from LIGO and
Holometer measurements, which at 3σ significance, are
roughly α≲ 3 and α≲ 0.7 (with IR cutoff), and α≲ 0.1
and α≲ 0.6 (w/o IR cutoff), respectively. On the other
hand, our model is out of reach for GEO-600 and LISA.
Caltech and Fermilab are commissioning a joint theoreti-

cal and experimental initiative called Gravity from Quantum
Entanglement of Space-Time (GQuEST) [36,37], dedicated
to probing the VZ effect proposed in Ref. [1]. This includes
the construction of a tabletop optical Michelson interferom-
eter with arm-lengthL ¼ 5 m, with a novel read-out scheme
with single photons rather than the usual interference effect.
The advantage of this scheme is that sensitivity beats the
standard quantum limit, with signal-to-noise ratio increasing
linearly with integration time, rather than the usual square-
root dependence. The experiment is projected to be able to
constrain α≲ 1 after 1000 s of background-free integration
time, corresponding to a dark count rate of 10−3 Hz. We
expect the constraint on α to tighten linearlywith lower dark
count rate and longer integration time.
Some previous works on quantifying spacetime fluctua-

tions (motivated by theories other than the VZ effect)
argued that the predicted strain should not be directly
compared against experimental constraints such as GEO-
600 and LIGO [38], since transitional interferometer
experiments often utilize Fabry-Perot cavities (e.g.,
LIGO uses Fabry-Perot cavities within each arm, where
the average light storage equals to 35.6 light round trips
[39]) to boost the signal-to-noise ratio from astrophysical
gravitational waves, while it is unclear whether quantum
gravity signals, which are fundamental to spacetime itself,
will benefit from additional light-crossings. In Appendix C,
we show that spacetime fluctuations based on Eq. (2) do
accumulate over a Fabry-Perot cavity, thus justifying our
direct strain comparison with gravitational experiments.
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V. CONCLUSIONS

In this paper we have investigated fluctuations in the
time-of-arrival of a photon in an interferometer, due a
scalar field coupled to the metric as in Eq. (2) with an
occupation number given by Eq. (21). This simple scalar
field is designed to model the behavior of vacuum
fluctuations of the modular energy (e.g., Ref. [2]) from
shockwave geometries [6].
We showed that the interferometer observable had a

power spectral density quadratically suppressed ∝ ω2 or
∝ ω4, depending on the IR regulator, at low frequency, and
an angular correlation between the interferometer arms
consistent with that proposed in Ref. [1], as expected from
shockwave geometries.
In future work, we plan to more explicitly demonstrate

the connection between shockwave geometries and

interferometer observables, completing the bridge between
the model presented here and the UV-complete theory.
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APPENDIX A: TIME DELAY
IN GENERAL METRIC

In this appendix, we derive the time delay of a generic
metric in Eq. (28). There are three effects, from the clock
rate, the mirror motion, and the light propagation. Only
when summing all three do we obtain the gauge invariant
observable.
We start by computing the clock’s rate. Since

gtt ¼ −ð1 −H0Þ, to the leading order, the proper time
differs from the coordinate time by

dτ
dt

≈ 1 −
1

2
H0: ðA1Þ

Thus, for a clock with radial position r when there is no
metric fluctuation, the difference δτ between the proper
time and the coordinate time from t ¼ t1 to t ¼ t2 is

δτðt1; t2; rÞ ¼ −
1

2

Z
t2

t1
dt0H0ðt0; rÞ: ðA2Þ

To account for the mirror’s motion, we consider the
geodesic equation of the mirror

0¼d2xμ

dτ2
þΓμ

αβ
dxα

dτ
dxβ

dτ
≈
d2xμ

dτ2
þΓμ

ttþΓμ
tiv

iþ''' : ðA3Þ

Since the velocity of the mirror vi ≪ 1, to the leading order,
d2r
dt2 ≈ −Γr

tt. Using Γμ
αβ ¼ 1

2 η
μνð∂αhβν þ ∂βhαν − ∂νhαβÞ, we

get

Γr
tt ¼ ∂thtr −

1

2
∂rhtt ¼ ∂tH1 −

1

2
∂rH0; ðA4Þ

so for a mirror at radius r when there is no metric
fluctuation, its radial position rM at coordinate time t is

rMðt; rÞ ≈
Z

t
dt0

Z
t0

dt00
&
1

2
∂rH0ðt00; rÞ − ∂t00H1ðt00; rÞ

'
:

ðA5Þ

For the light propagation, the geodesic equation of
outgoing light is

dtout

dr
≈ 1þ 1

2
ðH0 þH2 þ 2H1Þ≡ 1þ 1

2
Hout; ðA6Þ

and for ingoing light,

dtin

dr
≈ −1 −

1

2
ðH0 þH2 − 2H1Þ≡ −1 −

1

2
Hin: ðA7Þ

In total, the proper time Tout the light beam takes to reach
the mirror is

Tout ≈
Z

LþrMðL;LÞ

0þrMð0;0Þ
dr
&
1þ 1

2
Houtðr; rÞ

'
þ δτð0; L; 0Þ

≈ Lþ rMðL; LÞ − rMð0; 0Þ þ δτð0; L; 0Þ

þ 1

2

Z
L

0
drHoutðr; rÞ: ðA8Þ

Similarly, for the ingoing light beam,

T in ≈
Z

0þrMð2L;0Þ

LþrMðL;LÞ
dr
&
−1 − 1

2
Hinð2L − r; rÞ

'
þ δτðL; 2L; 0Þ

≈ Lþ rMðL;LÞ − rMð2L; 0Þ þ δτðL; 2L; 0Þ

þ 1

2

Z
L

0
drHinð2L − r; rÞ: ðA9Þ

Then the total time delay T is given by summing up
Eqs. (A8) and (A9), T ¼ Tout þ T in.

APPENDIX B: GAUGE INVARIANCE
OF TIME DELAY

In this appendix, we show that the total time delay
T ¼ Tout þ T in, where Tout and T in are defined in Eqs. (A8)
and (A9), of the light beam traveling a round trip is a gauge
invariant quantity. Since the t − r sector of any metric, e.g.,
Eq. (28), will only be affected by the gauge transformations
of coordinate t or r, we will show that T is invariant under
these two types of gauge transformations.

1. Gauge transformations of coordinate t

First, let us consider gauge transformations xμ →
xμ þ ξμ, where only ξt ≠ 0, so the metric becomes

ds2 ¼ −ð1 −H0 þ 2∂tξtÞdt2 þ ð1þH2Þdr2

þ 2ðH1 − ∂rξtÞdtdrþ ' ' ' : ðB1Þ

Since htt is modified, dτ
dt →

dτ
dt þ

1
2 ∂tξt, the difference

between the proper time and the coordinate time becomes

δτðt1; t2; rÞ → δτðt1; t2; rÞ þ ξtðt2; rÞ − ξtðt1; rÞ: ðB2Þ

The geodesics equations of light beam are modified into

dtout

dr
≈ 1þ 1

2
ðHout − 2∂tξt − 2∂rξtÞ; ðB3Þ

dtin

dr
≈ −1 −

1

2
ðHin − 2∂tξt þ 2∂rξtÞ: ðB4Þ
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For mirror’s motion, let us define

δrout ≡ rMðL; LÞ − rMð0; 0Þ; ðB5Þ

δrin ≡ rMðL; LÞ − rMð2L; 0Þ: ðB6Þ

Since Γr
tt →Γr

tt−∂t∂rξtþ∂r∂tξt¼Γr
tt remains unchanged,

δroutM → δroutM and δrinM → δrinM. In total,

Tout → Tout þ ξtðL; 0Þ − ξtð0; 0Þ −
Z

L

0
dr ð∂tξt þ ∂rξtÞjt¼r

¼ Tout þ ξtðL; 0Þ − ξtðL;LÞ; ðB7Þ

T in→T inþξtð2L;0Þ−ξtðL;0Þþ
Z

L

0
drð∂rξt−∂tξtÞjt¼2L−r

¼T in−ξtðL;0ÞþξtðL;LÞ; ðB8Þ

so the total time delay of a round trip T → T under the
gauge transformation of coordinate t.

2. Gauge transformations of coordinate r

Next, let us consider gauge transformations xμ → xμ þ
ξμ with ξr ≠ 0 only. The metric then becomes

ds2 ¼ −ð1 −H0Þdt2 þ ð1þH2 − 2∂rξrÞdr2

þ 2ðH1 − ∂tξrÞdtdrþ ' ' ' : ðB9Þ

The relation between the proper time and the coordinate
time remains unchanged. The ingoing and outgoing light’s
geodesics are modified to be

dtout

dr
≈ 1þ 1

2
ðHout − 2∂rξr − 2∂tξrÞ; ðB10Þ

dtin

dr
≈ −1 −

1

2
ðHin − 2∂rξr þ 2∂tξrÞ: ðB11Þ

Γr
tt now becomes Γr

tt → Γr
tt − ∂2t ξr, so

δroutM → δroutM þ ξrðL;LÞ − ξrð0; 0Þ; ðB12Þ

δrinM → δrinM þ ξrðL;LÞ − ξrð2L; 0Þ: ðB13Þ

Then, in total,

Tout→ToutþξrðL;LÞ−ξrð0;0Þ−
Z

L

0
drð∂rξrþ∂tξrÞjt¼r

¼Tout; ðB14Þ

T in→T inþξrðL;LÞ−ξrð2L;0Þ−
Z

L

0
drð∂rξr−∂tξrÞjt¼2L−r

¼T in; ðB15Þ

so T also remains invariant under the gauge transformation
of coordinate r. Thus, we have shown that T is a gauge
invariant quantity.

APPENDIX C: PHASE ACCUMULATION IN
FABRY-PEROT CAVITY

In this appendix, we show that the spacetime fluctuations
in Eq. (2) accumulate in a Fabry-Perot cavity, so it is
reasonable to compare our predicted strain to the experi-
ments utilizing Fabry-Perot cavities, such as GEO-600 and
LIGO, in Sec. V.
A Fabry-Perot Michelson interferometer can be viewed

as a linear device that measures the differential single-
round-trip phase, ΔΦ ¼ Φ1 −Φ2 between the two arms—
regardless of whether this phase arises from gravitational
waves, displacement of mirrors, or space-time fluctuations.
This ΔΦ is linearly transferred to the output field z, with
noise N added:

zðfÞ ¼ MðfÞΔΦðfÞ þ NðfÞ: ðC1Þ

In particular, MðfÞ contains the build-up (or suppression)
of signal due to the Fabry-Perot cavity.
We now convert the strain-referred noise spectrum Sh

published by LIGO to a spectrum for T . In obtaining Sh
(below 5 kHz, as shown in Fig. 6), LIGO used a long-wave-
length approximation, and assumed that the wave has a þ
polarization (stretching along the x and squeezing along the
y direction), and propagating along z—perpendicular to the
detector plane (e.g., adopted by Chapter 27.6 of [40]). In
this case, in the local Lorentz frame of the beam splitter, the
first and second mirrors are going to be displaced by
)Lh=2, leading to phase shifts of

Φ1;2 ¼ )ω0Lh=c ðC2Þ

and

ΔΦ ¼ 2ω0Lh=c: ðC3Þ

In this way, the ΔΦ-referred spectrum is related to Sh
published by LIGO via

ffiffiffiffiffiffiffiffi
SΔΦ

p
¼ 2ω0L

c

ffiffiffiffiffi
Sh

p
: ðC4Þ

We note that at higher frequencies, and/or for interferom-
eters with longer arms, the conversion from h toΦ becomes
less trivial. In our case, we have

ΔΦðtÞ ¼ ω0½δTðt;n1Þ − δTðt;n2Þ& ¼ ω0T ðt; θÞ: ðC5Þ

We therefore have
ffiffiffiffiffiffiffiffi
SΔΦ

p
¼ ω0

ffiffiffiffiffiffi
ST

p
and thus
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ffiffiffiffiffiffi
ST

p
¼ 2L

c

ffiffiffiffiffi
Sh

p
: ðC6Þ

This allows us to straightforwardly relate our observable
defined in Eqs. (34) and (45) to the quantity Sh constrained
by LIGO. In LIGO, Sh is usually reported as a one-sided
spectrum, so we need another factor of 2 when converting

the two-sided spectrum C̃T in Eq. (45) to the one-sided
spectrum Sh, i.e.,

ffiffiffiffiffi
Sh

p
¼

ffiffiffiffiffiffi
ST

p
=
#
2L
c

$
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2C̃T

#
ω; θ ¼ π

2

$s

; ðC7Þ

which is consistent with the conversion in Eq. (66).
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