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Interferometer response to geontropic fluctuations
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We model vacuum fluctuations in quantum gravity with a scalar field, characterized by a high occupation
number, coupled to the metric. The occupation number of the scalar is given by a thermal density matrix,
whose form is motivated by fluctuations in the vacuum energy, which have been shown to be conformal
near a light-sheet horizon. For the experimental measurement of interest in an interferometer, the size of the
energy fluctuations is fixed by the area of a surface bounding the volume of spacetime being interrogated
by an interferometer. We compute the interferometer response to these “geontropic” scalar-metric
fluctuations, and apply our results to current and future interferometer measurements, such as LIGO

and the proposed GQUEST experiment.
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I. INTRODUCTION

Traditional wisdom in effective field theory (EFT) sug-
gests that quantum fluctuations in the fabric of spacetime
should be of the order of ~I, = \/8zG#h/c* ~1073* m,
where G, f, ¢, and [ p are the gravitational constant, reduced
Planck constant, speed of light, and Planck length, respec-
tively. Fluctuations on such small time and length scales are
experimentally undetectable.

It has, however, been recently argued in multiple differ-
ent contexts that the length scale L of the physical system
itself may enter into the observable [1-6] (see Ref. [7] for a

summary)
()~ 2

where AL is the quantum fluctuation of L. For example, in
Refs. [1,4], L is the length of interferometer arm in flat
spacetime. More generally, L can be the size of a causal
diamond in dS, AdS, and flat spacetime [2,3], where the
causal diamond associated with a volume V consists of points
which have the property that all causal curves going through
the point must intersect V [8,9]. These works argued that the
naive EFT reasoning is corrected by long-range correlations
in the metric fluctuations—such as are known to occur in
holography—which allow the UV fluctuations to accumulate
into the infrared. A physical analog is Brownian motion
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(discussed in Ref. [7]) where the interactions occur at very
short distances but become observable on long timescales as
the UV effects accumulate.

While the calculations presented in Refs. [1-5] are firmly
grounded in standard theoretical techniques, such as
AdS/CFT, they have not yet provided important, detailed
experimental information, such as the power spectral
density. This was the motivation behind the model of
Ref. [4], to provide a framework that reproduces important
behaviors of the UV-complete theory while also allowing to
calculate detailed signatures in the infrared. In the language
of the Brownian motion model, while the fluctuations arise
from local interactions, the observable is only defined
globally. In the language of an interferometer experiment,
one cannot measure spacetime fluctuation within a portion
of an interferometer arm length, but must wait for a photon
to complete a round trip before making a measurement of
the global length fluctuation across the entire arm.

In this work, we continue to develop the model proposed
in Ref. [4], utilizing a scalar field coupled to the metric to
model the behavior of the spacetime fluctuations proposed
in Refs. [1-5]. We call spacetime fluctuations modeled by
the scalar field “geontropic fluctuations” since they are
geometric fluctuations induced by entropic fluctuations
within a finite spatial volume, as we discuss in the next
section. In particular, we propose a model in four dimen-
sions, where the metric appears as a breathing mode of a
sphere controlled by a scalar field ¢:

ds* = —di* + (1 — ¢)(dr* + r*dQ?). (2)

Since ¢ effectively controls the area of a spherical surface,
it is thus proportional to the entropy of a causal diamond,

© 2023 American Physical Society
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Mirror 1

FIG. 1. Setup of the interferometer.

and may be identified with the dilaton mode studied in
Refs. [3,5], which induces fluctuations in the spherical
entangling surface shown in Fig. 1 and is modeled by the
metric in Eq. (2). In the model we consider, ¢ is a scalar
field whose quantum fluctuations will be characterized by
its occupation number, which we label as ;. The sub-
script denotes “pixellon” following the proposal of Ref. [4],
referring to the pixels of spacetime whose fluctuations the
scalar field is modeling. While we do not derive the form of
the metric in Eq. (2), we reproduce the angular correlation
proposed in Ref. [1], a nontrivial result (not typical of most
metrics) which we take as further evidence that this Ansatz
is a good starting point. In addition, the power spectral
density has no pathologies in the ultraviolet or infrared,
another nontrivial result.

In particular, the quantum fluctuations of the scalar, since
they couple to the metric, will give rise to fluctuations in the
round-trip time for a photon to traverse from mirror to
mirror in an interferometer, as depicted in Fig. 1. Similar to
Ref. [4], our main goal is to compute the gauge invariant
interferometer observable arising from the metric Eq. (2),
with ¢ being a scalar field having a high occupation
number. In contrast to Ref. [4], which calculated length
fluctuations utilizing the Feynman-Vernon influence func-
tional in a single interferometer arm, we will use only
linearized gravity and the QFT of a scalar field with a given
occupation number. We will thus be able to extend the
previous work in Ref. [4], calculating both the power
spectral density and angular correlations in the interferom-
eter arms in a manifestly gauge invariant way, checking
previous claims made in Ref. [1], as well as making new
predictions. Note that while the model is not yet uniquely
derived from first principles in the ultraviolet (utilizing for

example shockwave geometry [6], i.e., the gravitational
field of fast-moving particles with negligible rest mass
[10]), we will argue below that it is nevertheless well
motivated from first principles.

More specifically, we consider an interferometer with
two arms of equal length L, i.e., with spherical symmetry,
and separated by angle 6, as depicted in Fig. 1. We assume
that the first arm as the reference beam points in the
direction ny, and the second arm as the signal beam points
in the direction n,. We will find that the observable takes
the form:

<5T(t1,n1)5T(t2,n2)>

412
Lot [ d’p 0yix(P)
=2 dr/dr/ P F(ry,ry, p, Ax),
4LZA 1 A 2 (2”)3 2a)(p) ( 1.2, P )
(3)

where 67'(z, n) denotes the fluctuation of time delay of light
beam sent at time ¢ — L along the direction n, and p =
(w,p), Ax = (At, Ax) are four-vectors. The main object of
interest in this paper is F(ry, rp, p, Ax), which encapsu-
lates the response of the interferometer gravitationally
coupled to the scalar field ¢.

The rest of the paper is organized around deriving
Eq. (3). In Sec. II, we review the pixellon scalar field
model, with an occupation number o, motivated in
particular by [4], but also by work demonstrating that
the effect of interest is a breathing mode of the horizon
[3,5]. We then couple this scalar field to the Einstein-
Hilbert action and derive its equation of motion. In Sec. III,
we perform a linearized gravity calculation and derive the
observable. In particular, we compute the interferometer
response function F(ry,r,, p,Ax) from our specific
model. In Sec. IV, we compute the relevant power spectral
density and angular correlation from Eq. (3). We then
discuss various existing experimental constraints. Finally,
in Sec. V, we conclude. Throughout the paper we will work
in units # = ¢ = kg = 1 while keeping the gravitational
constant G = 13/(8x) explicit.

II. SCALAR FIELD QUANTUM FLUCTUATIONS
IN A CAUSAL DIAMOND

The main goal of this section is to motivate the form of
the scalar occupation number, Opixs that will be coupled to
the metric. Our discussion here is mostly based on Ref. [4],
though, as mentioned previously, it is also broadly con-
sistent with the dilaton model presented in Refs. [3,5]. We
first review the pixellon model developed in Refs. [1-6] but
use the notation in this work, and the rest of this section
directly applies the pixellon model to the specific metric
in Eq. (2).

The effect of interest, as presented in Refs. [1,2] is based
on fluctuations in the modular Hamiltonian K
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K — /B T, ChdB, (4)

where B is some spatial region with a stress tensor 7, dB*
is the volume element of B (with dB* pointing in the time
direction), and (% is the conformal Killing vector of the
boost symmetry of X, the entangling surface between B and
its complement B [2,8]. One can map B to Rindler space, so
Y is also a Rindler horizon. In the context of AdS/CFT,
where T, is the stress tensor of the boundary CFT, both the
vacuum expectation value and the fluctuations of the
modular Hamiltonian are known to obey an area law in
vacuum [2,11,12]

_ax2 - AG)

(K) = (k%) =52, (5)
where A(X) is the area of X. One tempting interpretation of
this relation is that (K) =N counts the number of
gravitational bits, or pixels, in the system, which is further
motivated by the fact that the entanglement entropy
Sent = (K) is known to hold in a CFT. The fluctuations
of those N bits then satisfy “root-N" statistics:

AK
lak| 1 "
(K) VN

where |AK| = /(AK?) represents the amplitude of the
modular fluctuation.

While the precise relation (K) = (AK?) is demonstrated
only in the context of AdS/CFT, one can place a Randall-
Sundrum brane in the (5-d) bulk of AdS, inducing gravity
on the (flat 4-d) RS brane, and show that Eq. (5) holds on
the 4-d brane [3]. The measuring apparatus can then be
placed on the flat 4-d brane. Further, as shown in [3,13,14],
gravity is approximately conformal near the horizon. For an
interferometer, the light beams are probing the near-horizon
geometry of the spherical entangling surface X bounding it
(shown in Fig. 1), so Ref. [3] argued that the correlator of
stress tensor takes the same form as any CFT. Thus, (AK?)
follows Eq. (5), i.e.,

drdr rv
AK? ~/d2yd2y’
< > ((r_r/)2+(y_y/)2)4
drdrrr¥ A A
(r—r)° & lf,

where y denotes the transverse directions (corresponding to
the coordinates on ¥) and G ~ &% corresponds to a UV
cutoff in the theory at a distance scale 6 ~ [,,. In our case,
r— 1 ~ & corresponds to the distance to the (unperturbed)
spherical entangling surface X in our setup shown in Fig. 1.
A similar relation holds for (K). More generally, as found
in [15], an area law for entanglement entropy does not hold

only for a CFT but also any massless scalar QFT, which
also motivates the scalar model of geontropic fluctuations
in [4] and this work.

The idea of Ref. [4] was thus to model the gravitational
effects of modular fluctuations with a massless scalar field,
dubbed a “pixellon.” Since pixellons are bosonic scalars,
their creation and annihilation operators (a, a") satisfy the
usual commutation relation

[ap, ap,] = (22)°85) () — pa). (8)

We are interested in modeling the impact of the (fluctuat-
ing) effective stress tensor in Eq. (13). We will do this by
allowing for a nonzero occupation number o, (p),

Tr(ppixazhapz) = (2”)30pix<p1)5<3) (pl - p2) (9)

such that

Tr(/’pix{apwa;r)z}) = (2”)3[1 + 2Gpix(p1)]5(3>(pl - P2).
(10)

The occupation number should be consistent with the
modular energy fluctuation, Eq. (6), as we will check
explicitly at the end of this section.

The pixellon couples to the metric and sources the stress
tensor at second order in perturbations. In general, we can
consider a metric of the form

gyy:nyu+€hyu+€2Hyu+'”v (11)
where € is a dimensionless parameter that denotes the order
in perturbation theory. The vacuum Einstein Equation (EE)
is, parametrically [16],

Gﬂv = €[v2h]ﬂv + 62([v2H]/w - I%Tﬂv) +---=0, (12)
where the precise form of the equations of motion (e.g.,
numerical prefactors in the time and spatial derivatives) will

depend on the precise form of the metric that we consider
below, and where the effective stress tensor is given by

Ty~ (VAP

w2 (13)

P

At leading order in perturbation theory, the metric
perturbation £, satisfies the vacuum EE having a form
2 _

[VZh],, = 0. (14)

However, at second order, the effective stress tensor of 4,

will source a nonzero metric perturbation H,,, i.e.,

[V2H],, = 5T,

(15)
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One can compute (K) from (T, ), but as shown in [2], (K)
does not gravitate and should be subtracted in the metric
equation of motion (similar to a tadpole diagram in QFT).
Thus, the vacuum expectation value of this stress tensor
vanishes, (7,,) = 0, consistent with Egs. (13) and (14). In
contrast, it is expected to have nonzero fluctuations
(AK?) ~ (T ,4T,,) # 0, which gravitate and lead to physi-
cal observables.

Although (AK?) is directly related to the vacuum two-
point function of H,, or four-point function of #,,, the
physical observable can be directly computed from the two-
point function of 4, with a nontrivial density-of-states oy,
That is, we are using the language of linearized gravity in
this work, while our result captures the nonlinearity in
Eq. (15) and higher orders via op,. To compute the
fluctuations, we quantize the metric perturbatlons via the
scalar field ¢, which, to second order in perturbation theory,
leads to a nonzero (AK?), as shown at the end of this
section. The major goal of this work is to compute the
effects of such quantized metric perturbations on the
interferometer depicted in Fig. 1.

More specifically, following Ref. [4], we model these
energy fluctuations, in the volume of spacetime interro-
gated with an interferometer, with a thermal density matrix
Ppix» s shown in Egs. (9) and (10). The motivation for this
choice is based on formal work [8] showing that the
reduced density matrix py of the system V bounded by
a sphere S%! or its causal diamond D can be mapped to the
thermal density matrix pz of the hyperbolic spacetime
R x H%!, which foliates AdS,., in the asymptotic limit.
A similar argument relating the vacuum state of any QFT in
a causal diamond to a thermal density matrix can be found
in [17].

Thus, following [4], we are motivated to define a thermal
density matrix pp of pixellons using the definition in [18],

1 > .
Ppix = gexp |:_ﬁ/ (27:))3 (ep _/’t)a}')ap ’ (16)

Z= Hl—e o (17)

where €, is the energy of pixellons with momentum p, and
u is the chemical potential counting background degrees of
freedom associated with (K) [4].

Furthermore, as in Ref. [4], we identify the energy per
degree-of-freedom as

[AK]

w0 (18)

Plep —n) = por(p) ~

In four dimensions, according to Eq. (5),

AK_ 1 L (19)
K VWL

suggesting that the energy fluctuation per degree-of-
freedor? is set by a ratio of UV and IR length scales.
Since /<1, we approximate the occupation number

o(p) by

11
5 17 palp)

Opix (p) = (20)

More specifically, we identify the IR length scale
1/L ~w(p), so we take

(21)

where a is the dimensionless number to be measured in an
experiment, or fixed in a UV-complete theory. Here a =
1/(2z) corresponds to an inverse temperature f = 27l,,
giving a result most closely mirroring Refs. [1,2,4] in
amplitude.

Note that 6, (p) is not Lorentz invariant, but this is to be
expected because the measurement of interest via a causal
diamond picks out a frame. This is also not contradictory to
our statement that we have computed a gauge invariant
observable. It is because Lorentz transformations of 6, (p)
are global transformations of background Minkowski
spacetime. After the interferometer picks a frame, the
interferometer response is independent of how we describe
metric perturbations, i.e., independent of local coordinate
transformations at scale of metric perturbations, which is
what gauge invariance usually means in linearized gravity.

We now apply this pixellon model to the metric in Eq. (2)
and derive the dispersion relation of ¢. We start from the
linearized Einstein Hilbert action or Fierz-Pauli action [19]

1
Sep = 2/ d4x\/ _ghyu(GﬂD [h/w] —kT")
K

1
= 4—/ d*x\/=gh,, (n**Oh — O
K
—2VEVR 4 2V, VER = 2kTH) + O(h3),  (22)

where k = 87G. The Fierz-Pauli action can be derived by
expanding the full metric g, about the Minkowski metric
N> Y = My + hy,» and keeping the terms quadratic in 4,
in the Einstein Hilbert action [19,20]. Here, h,, is the
metric perturbation associated with the pixellon ¢. The
terms linear in h,, are discarded because they can be
written as a total derivative [20].

Instead of a functional of a general h,,,, Sgp in our model
is a functional of the metric in Eq. (2) and thus a functional
of ¢, so the pixellon’s action Sy [¢] is

024002-4



INTERFEROMETER RESPONSE TO GEONTROPIC ...

PHYS. REV. D 107, 024002 (2023)

Sonld] = SeplHi (@), hfSdwrdxt = dsk,,  (23)
which after plugging in Eq. (2) becomes
1
Sunld] = oz [ @3yTHIT =380 + kL)
Linl] = —H )T (24)

Then the equation of motion (EOM) of ¢ is derived by

varying L, with respect to ¢.
2 2\ 2 _Eéﬁim[qﬂ — 1
F-av)p= 5708 =y (29

Following the logic of Egs. (12) and (13), to leading
order in ¢, the right-hand side of Eq. (25) vanishes.
Although Eq. (25) is source-free, one may find that the
effective stress tensor contains linear term in ¢, which is a
tadpole due to imposing the form of metric in Eq. (2) and
can be subtracted off. Equation (25) also implies that for the
metric in Eq. (2), ¢ needs to have the dispersion relation

1
w=clpl e =13 (26)
using the expansion ¢ = [ 2 (p)e= X, I is clear

that ¢ is a sound mode with the sound speed ¢, = \/g This

sound mode can be related to the hydrodynamical sound
mode in fluid gravity and the butterfly velocity of out-of-
time-correlators, (e.g., see Refs. [21,22]), which we will
explore in our future work. From Eq. (24), we also notice
that to canonically normalize ¢, we can define ¢ such that
¢ =Vrd=1,¢. (27)

As a consistency check, one can use the metric in Eq. (2)
and the occupation number in Eq. (21) to confirm that
(AK?) has the same scaling in Eq. (5). Although the
physical observable is driven by the two-point function of ¢
as we will discuss in Sec. III, (AK?) is driven by the four-
point function of ¢. One can see this by noting that K ~
(T,)* according to Eq. (4), while T,, ~ é (V).
according to Eq. (13). In Sec. III, we find, utilizing the

Ansatz Bq. (21) for the density of states, (¢?) N% [see
Eq. (39)]. Thus, if we identify spatial gradients with the IR
length scale 1/L, we obtain (AK?) ~ % ~ 4 as expected.

III. TIME DELAY IN PIXELLON MODEL

The major goal of this work is to compute an interfer-
ometer response to fluctuations in the pixellon model.
Instead of using the Feynman-Vernon influence functional

approach to compute the mirror’s motion, e.g., in [4,20,23],
we compute the time delay of a light beam traveling a round
trip directly.

In general, for a metric in the form

ds* = —(1 = Hy)d* + (1 + H,)dr* + 2H,dtdr + - - -,
(28)

we need to consider three effects: the shift in the clock rate,
mirror motion, and light propagation. As discussed in detail
in Appendix A, the shift in the clock’s rate only depends on
'Hy, the mirror motion in the radial direction is affected by
Hy.1, and the light propagation is determined by all three
components H .

In Appendix B, we further show that if we take all of
these three effects into consideration and sum up the
resulting time delay for both outbound and inbound light,
the total time delay 7 of a round trip is gauge invariant, so T
is a physical quantity to measure. In this section, we
compute the shift of 7 due to geontropic fluctuations
and its correlation function using the metric of the pixellon
model in Eq. (2). To calculate time delay in a generic metric
like Eq. (28), one can refer to Appendix A.

For the metric in Eq. (2), the only nonzero component in
the ¢ — r sector of the metric is H,, so we only need to
consider light propagation. Then for a light beam sent at
time 7 — L along the direction n, its total time delay 7'(z,n)
of a round trip is completely determined by the pixellon
field ¢, e.g.,

() =20+ 3 [ gl + 9]

x=(t—L+r,m), xX'=(t+L-r,m). (29)
We have chosen the start time to be at t — L such that the
time coordinate of x and x’ are symmetric about z.

Since ¢ satisfies the massless free scalar wave equation
with the sound speed ¢, = % [i.e., Egs. (25) and (26)], the

quantization for ¢(x) should be

— d3_p 1 a eip-x aTe—ipvc
509 =1y [ (35 s @™ e ™). (G0

where [, is to make ¢(x) canonically normalized, as
discussed in Eq. (27). Creation and annihilation operators
dp, af, satisfy the commutation relation in Eq. (8) with a
thermal density matrix py;, defined in Eqgs. (16) and (21).
Let us define 57 (¢, n) to be the correction to the total time
delay 7'(z,n). We write the autocorrelation of 67(¢,n) as

8T (1;,m,)8T (15, my)
412 ’

0 =cos™!(n; - m,),

C(AL,0) = <

AtEtl —tz,

(31)
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and using Eq. (29), we obtain

1 L L
C(At,@) _@A drl/(; drz

X ((p(x1) + d(x1))(d(x2) + 0(x3))),  (32)

where (O) is a shorthand notation for
(0) = Tr(py,0). (33)

We have assumed that C(At, 8) only depends on Az, the
difference of the time when the two beams are sent, and 0, the
angular separation of two arms. We will see that this
assumption is true.

Besides the correlation function in Eq. (31), a more
physical correlation function is to first subtract the time
delay of the first arm 7'(z,n;) from the time delay of the
second arm 7'(z,1n,), where two beams are sent at the same
time ¢, and then correlate this difference of time delay at
different beam-sent time:

oty = (70000
T7(t,0)=T(t,n,) = T(t,m;) = 6T(t,n,) — 6T (t,ny),
(34)
such that
Cr(At,0) = 2[C(At,0) — C(At,0)]. (35)

Here, we treat the first arm as the reference beam and the
second arm as the signal beam. Since the relation between
C(At,0) and C7(At,0) is directly given by Eq. (35), we
will focus on C(At,6) in our calculations below. To
compute C(At,60) in Eq. (32), we need to first compute
the correlation function of ¢. Using Eq. (30), we obtain

d3
P(x) + p() =1, / (2ﬂ‘;3m2cos (L - 7)]
% (ape—ia)t+ip~x + a;;eiwt—ip»x)' (36)

Then we have

((@(x1) + ¢(x1))(@(x2) + h(x2)))

A2 d3pl d3P2 1
4 [ oo | s 4o, (P oxpy)

x cos @ (L — ry)] cos [y (L = r3)]

X [(apla;Z>e—i(w1f1—w2fz—l’1‘X1+P2'X2) +cc], (37

where we have only kept the term proportional to ayp, ap,

and aplalT,2 since the other terms are zero.

To evaluate Eq. (37), we need to calculate (aj, a, ) and
<ap]aI,2>. The former is given directly by Eq. (9),

<az’1apz> = Tr(ppixa;r)lapg) = (2”)3Upix(P1)5(3)(P1 -p2)-
Using both Eq. (9) and the commutation relation in Eq. (8),
we find the latter to be

(2z)’[1 + Upix(Pl)]5(3)(P1 -p2)
~ (2”)3%1)((1)1)5(3)(1’1 -P2), (38)

where we have used o (p) > 1 at the last line. Then,

< plaP2>

((@(x1) + d(x1)) (@ (x2) + @(x3)))

d3p Gpix(p)c
A

X [eTi@AFiPAX 4 ¢ ¢ ] (39)

os [w(L = ry)]cos [@(L = r,)]

where we have defined Ax = x; — x,. Notice that Eq. (37)
is a complex function in general, so we usually need to
symmetrize it over X;,. Due to our approximation in
Eq. (38), Eq. (39) is a real function, so the one after
symmetrization over X, is the same as Eq. (39). For
simplicity, we will drop the term c.c. and always assume
that a complex conjugate is taken.
Finally, plugging Eq. (39) into Eq. (32), we obtain

d 1X
/ dr, / dr2/ P pix
2a)(p
x cos [w(L — ry)] cos [w(L — ry)]e i @Artip-Ax,

(40)

C(At,0)

This is our main result, and we will work on applying it to
existing interferometer configurations next.

IV. OBSERVATIONAL SIGNATURES AND
CONSTRAINTS

After plugging o, (p) in Eq. (21), Eq. (40) is reduced to

clann) =gs [on [ on [t

o(L —ry)]cos [o(L — ,»2)]6 iwArtip-Ax

(41)

X COS

In the next two subsections, we will study the power
spectral density and angular correlation of Eq. (41) in more
detail.

A. Power spectral density

We first study the power spectral density implied by
Eq. (41). Carrying out the angular part of the momentum
integral in Eq. (41), we have

024002-6
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alp L L o
C(At, 0) = WA drl A d}’2A d|p| COS [a)(L

alp L L o
=T 332 d}"l dr2 dw cos [(l)(L
167 CSL 0 0 0

where we have defined

D(ry,r,p,0) = |AX| = \/r% +713=2rr,cos6.  (43)

The additional factor of 12 in Eq. (42) comes from using the
dispersion relation in Eq. (26) Cr(At, 0) is directly given by
plugging Eq. (42) into Eq. (35). One thing to notice here is
that C(0,0) has a log divergence when integrating  to
infinity. A similar log divergence also shows up in C(0, 0) of
[1] [see Eq. (57)] if we sum all the (£, m) modes without a
cutoffin Z. Nonetheless, the log divergence in both cases can
be regulated by noticing that there is a natural UV cutoff £,
in the number of observable £ modes of C1(0, 0), beyond
which light is diffracted significantly and thus cannot probe
these £ > £\, fluctuations. The UV cutoff £, can also be
translated to a UV cutoff w,,,, of frequency, which is usually
much higher than the experimental cutoff @y, <
10 rad GHz of the photodetector [24]. Thus, when showing
C7(At,0) for At = 0inFig. 2, we have imposed a UV cutoff
®max = 10 rad GHz. Since w,,,,, enters into Eq. (42) via the
combination @, L, we have used an arm length L = 5 mas
demonstration. Notice the signal is maximal when the
interferometer arms are back-to-back.

—— w/o IR cutoff
14 —— with IR cutoff

12

10

C7(0,0)
<)

0 I I 3 2
6

FIG. 2. Equal-time correlation function C7(0, 8) [i.e., Eq. (34)]
of the pixellon model without IR cutoff in Eq. (41) (blue) and
with an IR cutoff in Eq. (60) (red), where both curves are

normalized by %L An UV cutoff @y, = 10 rad GHz and arm
,

length L = 5 m is used as demonstration.

—ry)]cos [@(L —ry)]

— 1) cos [(L — ry)]e-i@At / " 19 sin 8 ¢ilplIax]cos
0

sin [@D(ry, r,,0)/c;]

—za)At 42
@D(ry, r,,0) ’ (42)

Performing a Fourier transform of C(At, 8) with respect
to At, we obtain the two-sided power spectral density
C(w,0) to be

Clw, 0) = / " dt e C(1,0)

Sln
87[C2L2/ d’”l/ d}"z

—ri)]cos [o(L - rz)] (44)

r17"2v9)/0s]
”1,’”2,9)

x cos [w(

To evaluate the power spectral density of C(At, 0), we can
put Eq. (44) into Eq. (35) such that its power spectral
density C7(w, 0) is
Cr(w,0) =2[C(w,0) — C(w, 0)]. (45)
In Fig. 3, we have plotted Eq. (45) over wL for several
different separation angles 6 of the interferometer.
In the limit @ — 0, Egs. (44) and (45) reduce to

Clw,0) = + O(w?L?), (46)

3
8ncy

al

Cr(@.6) = 105

@*L*(1 —cos 0) + O(w*L*).  (47)
A major feature of C(w,6) at low frequencies is that it is
flat in frequency, corresponding to the spectrum of white
noise. This feature is consistent with the “random walk
intuition” of holographic effects in [7], as well as the
random walk models in [25,26]. On the other hand,
although C(w,0) is independent of w at low frequency,
Cr(w, 0) is quadratic in w. It is because, as one can directly
observe from Eq. (46), the leading order term of C(w, #) at
low frequency is angle-independent. Thus, when sub-
tracting the time delay of the first arm from the second
arm, this leading order term cancels out, and the next order
term, which is quadratic in @ and has a nontrivial angular
dependence, contributes to C’T(a), 0).

In Egs. (46) and (47), there are also additional factors of
Cis from the expansion of sin [@D(ry, r,,0)/c,] in Eq. (44).
Since the leading order term in the expansion of
sin [@D(ry, ra, 0)/c,] is linear in its argument, it contributes
an additional factor of Ci to C(w, 6) in Eq. (46). On the other
hand, as we explained above, this leading order term is
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Without IR cutoff

With IR cutoff

0.8r

Il

D D DD
Il
[SERERSERCE]

0.6

Cr(w, 0)

0.2}

0.0+
wL

0.81

Il

S D D D

INERNERSERCER

FIG. 3. Power spectral density C’T(w, 0) [i.e., Eq. (45)] of the pixellon model without IR cutoff in Eq. (44) (left) and with an IR cutoff

8rc?
al,”

in Eq. (61) (right), where all the curves are normalized by

angle-independent, so the next order term, which is cubic in
its argument, contributes an additional factor of é to
Cr(w.6) in Eq. (47).

One last observation from Eqgs. (46) and (47) is that both
C(w,6) and C7(w,6) are regular in low frequency. In [1],
an IR regulator at the scale of NL% was added to the 2D
Laplacian on the sphere to regulate the angular correlation
function as we will discuss in Sec. IV B. To perform an
analogous calculation and take into account other IR
effects, such as information loss due to soft graviton loss,
we will apply the procedures in this section to the pixellon
model with an IR cutoff at the same scale as in [1] in
Sec. IV C.

B. Angular correlation

We now study the angular correlation implied by
Eq. (41). It will be convenient to first decompose
Eq. (41) into spherical harmonics and spherical Bessel
functions. Using

e®r =% i'(20+1)jo(Iplr)Pe(cost), O=p-F.  (48)

=0

and the addition theorem

Pp ) = T STV )Y, (49

m

we obtain

P (xi—x2) —

Z 1672 (—i)2 jz, (Iplr1) je, (IPI72)

CrmyEa,my
X YO () YT (B () Y ().
(50)

Using [ dQYZm*(p)Y?2m(p) = §71925™ ™, we can inte-
grate out all the angular dependence of p, so

al L L o0
C(AI,G)ZW;’LZZA drIA d}’zA dw
s £.m

x cos [w(L — ry)] cos [w(L — ry)]

X je(wr/cg)je(wr/cg)
XY (81, 1) Y (8. o) e, (51)

where we have an additional factor of C—k from replacing p

with @ using Eq. (26). If we define the amplitude of each
(¢, m) mode of the integrand to be

Apn(At, @, 11, 15) = cos[w(L — ry)] cos [w(L — r5)]

X jf(a)rl/Cs)jf(wFZ/C‘v)e_imA[

’

(52)

Eq. (51) can be more compactly written as
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al L L o
C(At,9> :477:073[},224 drl/) dVQA dw
s £.m

X App (AL, @, 11, 1) Y™ (81, 901) Y™ (95, ).
(53)

Let us first look at the equal-time correlator by setting
At = 0. The amplitude ¢, of each (£, m) mode of C(0, 6)
is then given by integrating A,,,(0, w, r, ;) over @ and
r1, as indicated by Eq. (53), i.e.,

al L L <)
Cfmzigp 2/ d”1/ drz/ dﬂ)Afm<0,w,r1,r2)-
471'C*SL 0 0 0

(54)

Since these integrals are hard to evaluate analytically, we
have plotted the numerical result in Fig. 4. In Fig. 4, we
have only plotted the modes starting from £ = 1 since the
¢ = 0 mode, which is angle-independent, is cancelled out
in C7(At,0) as explained in the previous section.

In Fig. 4, we have also shown the amplitude of each
(Z, m) mode found in Ref. [1]. They argued that the angular
part of C(0, 0) should be described by the Green’s function

G(F;,F,) of the 2D Laplacian on the sphere with an
1

additional IR regulator at the scale of % i.e.,
1.0 * f(l1+ T)
3G +11) +1
0.8l —— Pixellon w/o IR cutoff |
: —=— Pixellon with IR cutoff
S 0.6
=t
=
=)
Boal
0.21
0.0¢ , , . . ]
2 4 6 8 10
4

FIG. 4. The amplitude of each (¢, m) mode of the equal-time
correlation function C(0, ) decomposed into spherical harmon-
ics. The blue and green lines correspond to the amplitude in [1]
[i.e., Eq. (57)] without and with an IR regulator, respectively. The
red and orange lines correspond to ¢, [i.e., Eq. (54)] of the
pixellon model without IR cutoff in Eq. (52) and with an IR cutoff
in Eq. (64), respectively. We have normalized the amplitude of
each mode by the amplitude of the mode # = 1.

(=VZ +1/LH)G(F).F) = 6 (F1.F,),
. 1
5(2)(1'1,1'2) :F5(cos91 —c086,)8(¢1 — ).

(55)

where F; are coordinates on the sphere of radius L.
G (¥, F,) is scale invariant if we extract the overall factor

of ﬁ by defining #; = rf 0
(=VE + 1)G(f), £5) = 52 (8. £y). (56)

After decomposing G (¥, T, ) into spherical harmonics, one
obtains

Yfm 9 , Yz,”m* 9 ,
C(O,é’)cxz ( 1 4)1) ( 2 (/)2)

F+ D) +1 (57)

‘.m

Excellent agreement between the pixellon model and the
expectation of Ref. [1] is observed.

As mentioned in Sec. IVA, both C(@, §) and C7 (@, 0) in
this work are regular when w — 0, even without an IR
regulator, e.g., Eqgs. (46) and (47). However, it will still be
interesting to study the pixellon model with an IR cutoff due
to IR effects from the physical size of the interferometer. We
will consider the case with an IR cutoff in Sec. IV C, but in
this section, we first consider only the model without an IR
cutoff. Thus, when comparing Eq. (54) to Ref. [1], we drop
the additional 1 in the denominator of Eq. (57), which
appears due to the insertion of an IR regulator. In this case, the
amplitude of each (£, m) mode becomes m. InFig. 4, one
can observe that the angular correlation in this work is very
close to the one in [1] without the IR regulator. Note that one
also observes the same angular dependence in the shockwave
geometry (e.g., see Refs. [6,10,27,28]), a connection we
would like to study further in our future work.

One might also be interested in the amplitude ¢,,,(w) of
each (£, m) mode of the power spectral density C(w, ).
Performing a Fourier transform of C(At, 6) in Eq. (53) and
thus a Fourier transform of A,,,(At, w, ry, r,) in Eq. (52),
we obtain

al L L
Efm(a)) _F;}A drl/) drzA,gm(O,a), rl,rz). (58)

We have plotted ¢,,,(w) starting from # = 1 in Fig. 5. A
normalization factor of #(# + 1) is multiplied to each curve
such that each curve represents the relative power spectra
density with respect to the total amplitude c,,.

To determine an analytical representation of the ampli-
tude of each (¢£,m) mode, one can also look at
Asn(0,0,r1,7,) at the end points r; =r, = L. If we
integrate A, (0, w,L,L) over w, we find the amplitude
of each (7, m) mode at end points to be
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Without IR cutoff

2 +1)Epm(w)

With IR cutoff

2+ 1égm(w)

FIG. 5. The amplitude ¢,,, (@) [i.e., Eq. (58)] of each (¢, m) mode of the power spectral density C(w, ) decomposed into spherical
harmonics. The left and right panels are for the pixellon model without IR cutoff in Eq. (52) and with an IR cutoff in Eq. (64),

respectively. We have dropped the overall factor % in both plots and normalized each curve by #(Z + 1).

L/mdefm(O’va’L) :2 7Cs (59)
0

(2¢+1)°
which is the major contribution to c¢,,, plotted in Fig. 4.
Although Eq. (59) decreases more slowly than Eq. (57)
over £, we have additional suppression due to, for example,
the factors of cos [w(L — r1,)] in Eq. (52) when integrating
Az (0,0, r1,1r,) over @ and ry », so the total amplitude in
Eq. (54) is very close to Eq. (57) without the IR regulator.

C. IR cutoff

In this section, we apply the calculations in the previous
two sections to the pixellon model with an IR cutoff. As
discussed above, although both C(w, @) and C7(w, ) are
regular in the IR, we still expect an explicit IR cutoff to
enter the calculation because of the finite size of the
interferometer. We will also find that adding an IR cutoff
gives a better agreement with the angular correlation of
Eq. (57). For this reason, we place an IR cutoff at a scale
Nﬁ similar to [1], into Eq. (41), e.g.,

I L L &> 1
C(At, 9) = —a ]72 / drl / dr2 / —p3 YA
8L 0 0 (27[) w (p) + 1z

x cos [@(L — ry)]| cos [o(L — r,)]e" @ArHp-Ax,

(60)
Following the same procedure in Sec. IV A, we find that

the power spectral density C(w, 8) in Eq. (44) is modulated
by an additional factor in @ and L, i.e.,

Clw.0) — <$> C(w.0), (61)

L

while C7(w,0) is still given by Eq. (45). C+(0,6) and
C7(w,0) with this IR cutoff are shown in Figs. 2 and 3,
respectively.

One major effect of the IR cutoff is that the amplitude of
C(w, 6) is suppressed at low frequency due to the modu-
lation factor in Eq. (61), as one can directly observe in
Fig. 3. For the same reason, the overall amplitude of
C7(At,6) in the case with an IR cutoff is smaller than the
one without IR cutoff as depicted in Fig. 2. As frequency
increases, the modulation factor goes to 1, so the amplitude
of C(w.0) in these two cases becomes nearly identical. In
addition, as the separation angle € decreases, the difference
between these two cases also becomes smaller since
interferometers with smaller 6 are more sensitive to higher
¢ modes, which have higher characteristic frequency, and
thus are less sensitive to the IR cutoff.

One can also determine the suppression factor due to the
IR cutoff as @ — 0 by expanding Eq. (61), e.g.,

~ al
Clw,0) = Féga)sz + O(w*L*), (62)

s

) !
Cr(w.0) = 4;1”"6 c*L4(1 = cos0) + O(°LF).  (63)
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The IR behaviors of both C(w, ) and C;(w, §) above are
very different from the case without an IR cutoff in Eq. (46)
and (47) due to the additional factor of @”>L? contributed by
the modulation factor in Eq. (61). For this reason, one has
to be cautious when constraining our model using detectors
with peak sensitivity at low frequency, such as LIGO, as
discussed in Sec. IV D.

For the angular correlation, after decomposing Eq. (60)
into spherical harmonics, we find that the amplitudes c,,,
and &,,,(w) of each (£, m) mode of C(0,6) and C(w, ) are
given by Egs. (54) and (58), respectively, but
Agn(At, @, 7, 7,) is modulated by the same factor in
Eq. (61), i.e.,

0)2

Afm(At,C(), rl,rz) d <ﬁ>A5xm(At,a}, rl,rz). (64)
@ +p

We show both c,,, and ¢,,, (w) with the IR cutoff in Figs. 4
and 5, respectively.

Since the overall amplitude of C (w,0) is suppressed at
low frequency, the amplitude ¢, (@) of different (¢, m)
modes is also suppressed as shown in Fig. 5. In Fig. 4, one
can also observe that the amplitude c,,, falls off more
slowly with ¢ in the case with an IR cutoff since low ¢
modes are more sensitive to this IR cutoff and hence are
more suppressed. As noted previously, our model with the
IR cutoff better agrees with the results in [1], though one
should remain cautious until our model has been fully
mapped to a UV-complete theory.

D. Existing constraints and future projections

In an effort to detect high frequency gravitational waves
and quantum gravity signatures, several laboratory-sized
interferometer experiments have been implemented to
accurately detect tiny spacetime perturbations. The con-
straints from these experiments are often reported as upper
limits on the one-sided noise strain /S, (f) of the photon
round-trip time, obtained by analyzing interference pat-
terns. For stationary signals, the strain is defined as [29,30]

V5= 27 (HOBON e

which has units of Hz~!/2, This is related to Eq. (44) by

Eq. (45), ie.,
VSu(f) =1/2Cr (@, 6),

where @ = 2zf and 6 is the angle between the two
interferometer arms, which is taken to be x/2 for
Holometer, GEO-600 and LIGO, and z/3 for LISA to
account for its triangular configuration. Here we only focus
on two of the three arms of LISA as a demonstration.

(66)

Our power spectrum in Eq. (44) can be parametrized more
conventionally by defining

S}
I
S ¥

a, (67)

leading to the peak strain /S, (fpeak) V2al,/(4r) =
Va(2.62 x 10723) Hz"'/2 [31]. Here a ~ 1 gives the ampli-
tude of the effect computed in [1,2], and should be
considered the natural benchmark [32].

We now compare our predicted strain to the experimental
constraints from Holometer [29], GEO-600 [33], LIGO
[34], and the projected sensitivity from LISA [35]. Since
the four interferometers have different arm lengths, the
predicted strain from our models will also differ between
these experiments. The result assuming @ =1 with or
without the IR cutoff using Egs. (44), (45), (61), (66), and
(67) is plotted in Fig. 6. Due to the better peak sensitivity of
our predicted strain (i.e., at wL ~ 1 as shown in Fig. 3), the
tightest experimental limit comes from LIGO and
Holometer measurements, which at 3¢ significance, are
roughly @ <3 and a < 0.7 (with IR cutoff), and o < 0.1
and @ £0.6 (w/o IR cutoff), respectively. On the other
hand, our model is out of reach for GEO-600 and LISA.

Caltech and Fermilab are commissioning a joint theoreti-
cal and experimental initiative called Gravity from Quantum
Entanglement of Space-Time (GQuEST) [36,37], dedicated
to probing the VZ effect proposed in Ref. [1]. This includes
the construction of a tabletop optical Michelson interferom-
eter with arm-length L = 5 m, with a novel read-out scheme
with single photons rather than the usual interference effect.
The advantage of this scheme is that sensitivity beats the
standard quantum limit, with signal-to-noise ratio increasing
linearly with integration time, rather than the usual square-
root dependence. The experiment is projected to be able to
constrain o < 1 after 1000 s of background-free integration
time, corresponding to a dark count rate of 10~ Hz. We
expect the constraint on « to tighten linearly with lower dark
count rate and longer integration time.

Some previous works on quantifying spacetime fluctua-
tions (motivated by theories other than the VZ effect)
argued that the predicted strain should not be directly
compared against experimental constraints such as GEO-
600 and LIGO [38], since transitional interferometer
experiments often utilize Fabry-Perot cavities (e.g.,
LIGO uses Fabry-Perot cavities within each arm, where
the average light storage equals to 35.6 light round trips
[39]) to boost the signal-to-noise ratio from astrophysical
gravitational waves, while it is unclear whether quantum
gravity signals, which are fundamental to spacetime itself,
will benefit from additional light-crossings. In Appendix C,
we show that spacetime fluctuations based on Eq. (2) do
accumulate over a Fabry-Perot cavity, thus justifying our
direct strain comparison with gravitational experiments.
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FIG. 6. Strain comparison between model predictions (blue and green) and experimental/projection constraints (red). The model
curves are computed using Eqgs. (44), (45), (61), (66), and (67) assuming a = 1, while the experimental curves are extracted from
Refs. [29,33-35]. The LIGO data shown here are obtained by the Livingston detector, but we note that the Hanford detector yields

similar constraints.

V. CONCLUSIONS

In this paper we have investigated fluctuations in the
time-of-arrival of a photon in an interferometer, due a
scalar field coupled to the metric as in Eq. (2) with an
occupation number given by Eq. (21). This simple scalar
field is designed to model the behavior of vacuum
fluctuations of the modular energy (e.g., Ref. [2]) from
shockwave geometries [6].

We showed that the interferometer observable had a
power spectral density quadratically suppressed o w® or
 w*, depending on the IR regulator, at low frequency, and
an angular correlation between the interferometer arms
consistent with that proposed in Ref. [1], as expected from
shockwave geometries.

In future work, we plan to more explicitly demonstrate
the connection between shockwave geometries and

interferometer observables, completing the bridge between
the model presented here and the UV-complete theory.
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APPENDIX A: TIME DELAY
IN GENERAL METRIC

In this appendix, we derive the time delay of a generic
metric in Eq. (28). There are three effects, from the clock
rate, the mirror motion, and the light propagation. Only
when summing all three do we obtain the gauge invariant
observable.

We start by computing the clock’s rate. Since
9y = —(1 = H,), to the leading order, the proper time
differs from the coordinate time by

d 1
L

o1 =M. (A1)

Thus, for a clock with radial position r when there is no
metric fluctuation, the difference oz between the proper
time and the coordinate time from t = ¢; to t =1, is

1 t
5t(ty, tr, 1) = —E/zdt’HO(t’,r). (A2)
4

To account for the mirror’s motion, we consider the
geodesic equation of the mirror

B d?x+ g dx® dx? N d?x+

0= dr? o dr dr di? + T+ e

(A3)

Since the velocity of the mirror vt <« 1, to the leading order,
Lr T, Using Ty = 1% (9,hp, + Ophe, — 0,hyp), we

get

1 1
Ity = 0y — = 0.hy = O’H, — EarHOs (A4)

2

so for a mirror at radius r when there is no metric
fluctuation, its radial position ry at coordinate time ¢ is

ru(t,r) = /tdt’ /t dr’ B(),Ho(t”, r)—o0ysHy (1", r)|.
(A5)

For the light propagation, the geodesic equation of
outgoing light is

dtout
dr

1 1
N1+§(H0+H2+2H1>EI+EHOM, (A6)

and for ingoing light,

dlin
dr

1 |
z—l—E(HQ—FHZ—ZHl)E—I—iHm. (A7)

In total, the proper time 7°" the light beam takes to reach
the mirror is

L+rM(L.L) ]
Tou & / dr| 1+ 21o(r, r)| 4 52(0,L,0)
0-474(0,0) 2

~ L+ ry(L,L) = ry(0,0) 4+ 67(0, L, 0)

1 /L
—I——/ drH®™(r,r).
2 Jo

(A8)

Similarly, for the ingoing light beam,

. 0-+ry(2L.0)
T~
L+ry(L,L)

~ L+ ry(L, L) — ry(2L,0) + 62(L,2L,0)

1.
dr {—1 —E'H‘“(2L —r,r)| +6t(L,2L,0)

L .
+1 / drH (2L = 1, 7). (A9)
0

2

Then the total time delay 7 is given by summing up
Egs. (A8) and (A9), T = T° + T'n,

APPENDIX B: GAUGE INVARIANCE
OF TIME DELAY

In this appendix, we show that the total time delay
T = T°' + T, where T°"' and 7™ are defined in Egs. (A8)
and (A9), of the light beam traveling a round trip is a gauge
invariant quantity. Since the ¢ — r sector of any metric, e.g.,
Eq. (28), will only be affected by the gauge transformations
of coordinate ¢ or r, we will show that 7 is invariant under
these two types of gauge transformations.

1. Gauge transformations of coordinate t

First, let us consider gauge transformations x* —
x* + &, where only &, # 0, so the metric becomes
ds* = —(1 = Hy + 20,&,)dt*> + (1 + H,)dr?

+2(H, = 0,&,)dtdr + - - . (B1)

Since h,, is modified, % — 4 +10,&, the difference

between the proper time and the coordinate time becomes
5t(ty, by, r) = ot(ty. 1y, r) + &(ta, r) = &1, ). (B2)

The geodesics equations of light beam are modified into

dtout 1 out

dr ~1 + 5 (H - 20;5[ - Zarét)y (B3)
dl‘in 1 .

dr ~—1-— 5 (Hm - 2at€t + 26r§t)~ (B4)
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For mirror’s motion, let us define

5rott = ry (L, L) = r4(0,0), (B5)

or" = ry(L, L) — ry(2L,0). (B6)

Since I}, - I'},—0,0,&,+0,0,&, =17, remains unchanged,
Srd"t — 51 and 61t — 57, In total,

T — T + &,(L,0) = £,(0,0) - /L dr(0,& +0,8)| =,
0

= TOUt+§t(L,O) —5,(L,L), <B7)

Tin o T 1 £,(2L.0) - &,(L.0) + / Cdr (0,6 —0E) ot
0

=T"=&,(L.0)+¢&(L.L), (B8)

so the total time delay of a round trip 7 — T under the
gauge transformation of coordinate .

2. Gauge transformations of coordinate r

Next, let us consider gauge transformations x* — x* +
& with &, # 0 only. The metric then becomes

ds* = —(1 = Hy)dr* + (1 + H, — 20,&,)dr?

+2(H, — 9, )dtdr + - - - (B9)
The relation between the proper time and the coordinate
time remains unchanged. The ingoing and outgoing light’s
geodesics are modified to be

drot 1
R4S (H=20,6,-204,),  (B10)
‘Zl: T % (H™ —20,&, +20,&,). (B11)
'}, now becomes I'}, — I'l, — 0%&,, so
oryt = oy + &,(L, L) = £,(0,0), (B12)
Srit = 6rit 4+ £, (L, L) — £,(2L,0). (B13)

Then, in total,

T — T +&,(L,L) - £,(0,0) - / Car(0,6,+0,),-.
0

=T, (B14)

. . L
T T4 £ (L.L) =6, 2L.0) - [ dr(06 =08

=T, (B15)

so T also remains invariant under the gauge transformation
of coordinate r. Thus, we have shown that 7" is a gauge
invariant quantity.

APPENDIX C: PHASE ACCUMULATION IN
FABRY-PEROT CAVITY

In this appendix, we show that the spacetime fluctuations
in Eq. (2) accumulate in a Fabry-Perot cavity, so it is
reasonable to compare our predicted strain to the experi-
ments utilizing Fabry-Perot cavities, such as GEO-600 and
LIGO, in Sec. V.

A Fabry-Perot Michelson interferometer can be viewed
as a linear device that measures the differential single-
round-trip phase, A® = @, — ®, between the two arms—
regardless of whether this phase arises from gravitational
waves, displacement of mirrors, or space-time fluctuations.
This A® is linearly transferred to the output field z, with
noise N added:

2(f) = M())AD(F) + (/). (1)
In particular, M (f) contains the build-up (or suppression)
of signal due to the Fabry-Perot cavity.

We now convert the strain-referred noise spectrum S,
published by LIGO to a spectrum for 7. In obtaining S,
(below 5 kHz, as shown in Fig. 6), LIGO used a long-wave-
length approximation, and assumed that the wave has a +
polarization (stretching along the x and squeezing along the
y direction), and propagating along z—perpendicular to the
detector plane (e.g., adopted by Chapter 27.6 of [40]). In
this case, in the local Lorentz frame of the beam splitter, the
first and second mirrors are going to be displaced by
+Lh/2, leading to phase shifts of

(1)172 = :l:a)()Lh/C (CZ)

and
A® = 2wyLh/c. (C3)

In this way, the A®d-referred spectrum is related to S,
published by LIGO via

2wy
Va0 =225,

We note that at higher frequencies, and/or for interferom-
eters with longer arms, the conversion from /4 to @ becomes
less trivial. In our case, we have

(C4)

AD(1) = wo[6T(t.n,) — 6T(t.0,)] = w7 (£.6). (C5)

We therefore have /Sy = @py/S7 and thus
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2L
VS =2,

(Co)

This allows us to straightforwardly relate our observable
defined in Eqs. (34) and (45) to the quantity S, constrained
by LIGO. In LIGO, S, is usually reported as a one-sided
spectrum, so we need another factor of 2 when converting

the two-sided spectrum C7 in Eq. (45) to the one-sided
spectrum S, i.e.,

VS = @/(%L) = ,/267((»,6—%), (C7)

which is consistent with the conversion in Eq. (66).
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