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We proposed the SlkJalpha model at the beginning of the COVID-19 pandemic (early 2020). Since then, as
the pandemic evolved, more complexities were added to capture crucial factors and variables that can assist
with projecting desired future scenarios. Throughout the pandemic, multi-model collaborative efforts have
been organized to predict short-term outcomes (cases, deaths, and hospitalizations) of COVID-19 and long-

term scenario projections. We have been participating in five such efforts. This paper presents the evolution
of the SlkJalpha model and its many versions that have been used to submit to these collaborative efforts
since the beginning of the pandemic. Specifically, we show that the SlkJalpha model is an approximation
of a class of epidemiological models. We demonstrate how the model can be used to incorporate various
complexities, including under-reporting, multiple variants, waning of immunity, and contact rates, and to

generate probabilistic outputs.

1. Introduction

Since the beginning of the COVID-19 pandemic, many models have
been proposed to predict the trajectory of the outcomes including cases,
deaths, and hospitalizations. To standardize the prediction tasks and
communicate the results to stakeholders, several collaborative efforts
(hubs) were initiated. These include US/CDC (COVID-19 Forecast Hub,
2020), Europe/ECDC (European COVID-19 Forecast Hub, 2020) and
Germany/Poland (Bracher et al., 2023) forecast hubs, and the US and
the European scenario modeling hubs (COVID-19 Scenario Modeling
Hub, 2023; European COVID-19 Scenario Hub, 2023). The forecast
hubs ask for short-term predictions (up to 4 weeks ahead), while
scenario modeling hubs ask for long-term projections (months to years
ahead) under various scenarios. A collection of teams participate in
these efforts, each one independently producing predictions and sub-
mitting regularly — weekly for forecast hubs, and once in 1-2 months
for scenario modeling hubs.

During the early phase of the pandemic, we proposed the SlkJal-
pha model (Srivastava and Prasanna, 2020b; Srivastava et al., 2020)
for cases and deaths forecasts (see Section 2.1). The approach has
evolved with time, depending on dataset availability and new factors
that we believed to have a significant impact. Further, for scenario
modeling hubs, scenarios are defined on a certain decision or a variable
of uncertainty. To account for the given scenario, that variable also
needed to be included in the model. The modeling philosophy has been
attempting to design the simplest model that can account for all such
variables. We also avoid estimations where all parameters are estimated
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simultaneously. In prior work, we have shown that simultaneously
estimating parameters of a simple non-linear version of our model can
still lead to overfitting (Srivastava and Prasanna, 2020a). Instead, we
split the estimation problem into multiple sub-problems, most of which
are solved by linear regressions. Some parameters are borrowed from
the literature and some are provided by the specifying scenario.

A key design feature of our approach is that all regions that a version
of the model is applied to receive the same treatment. There is no
region-specific manual tuning of the code. As an example, reporting
rates differ significantly between the states in the US — cases in Florida
may be reported only once in two weeks, while some other states may
report on all weekdays or certain days of the week. Yet, the same
data pre-processing code applies to both. This is done to improve the
generalizability of the approach, i.e., the same code can be applied
to other regions in the world, as long as the data inputs the version
of the model needs are available for those regions. A second key
feature of the approach used for forecast hub submissions is that the
forecasts are generated without any human interventions. Occasionally,
hyperparameter-tuning is performed, when debugging or when new
variables are to be included creating a new version of the model.
The relevant hyper-parameters are presented in Table 1. The script
is automated that generates all forecasts for submission. As a result,
sometimes, data anomalies can cause unusual forecasts. However, we
take the automated approach for scalability. The philosophy is that the
approach should scale to a large number of regions if compute power
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and memory are available. Reliance on human assessment would limit
the scalability. Further, the method should stand on its own without
relying on the developer, and thus the open-source code can be used
by anyone, including a non-expert. While these are desirable design
features, it is crucial for the model forecasts to be accurate to be
meaningful. Several works have evaluated our model demonstrating
that it has performed well (see Section 5).

1.1. Contributions

Our key contributions are the following. (i) We prove that the
basic SIkJalpha model can approximate a class of epidemiological
models (Theorem 1). (ii) We present various versions of the SIk-
Jalpha model that have been used over time over different forecast
hubs (Section 2).(iii) We present the implementation details including
data sources, parameter estimation methods, runtimes, and uncertainty
quantification (Sections 3 and 4). Note that, over time, many modeling
decisions were changed and new variables were included. The details
of the impact of each modeling decision are beyond the scope of
this paper. Instead, we focus on the breadth of modeling decisions.
Evaluations of our models are publicly available on our dashboard as
well as on others’ dashboards, articles, and reports (see Section 5).

1.2. Related work

During the COVID-19 pandemic, many models have been proposed
for short-term and long-term forecasts. For the models that participated
in the Forecast and Scenario Modeling Hubs, one way to categorize the
model is the following.

Mechanistic models simulate the spread of COVID-19 through pop-
ulations by explicitly representing the transmission dynamics of the
virus. These models typically take into account factors such as the
rate of contact between individuals, the probability of infection given
contact, and the duration of the infectious period (Suchoski et al., 2022;
Linas et al., 2022). These also include “meta-population” models that
incorporate various demographics, spatial resolutions, and interactions
between them (Davis et al., 2021; Lemaitre et al., 2021). Agent-based
models may be considered a special case where each individual is
modeled in the network of contacts (Chen et al., 2021).

Statistical models use historical data to predict future COVID-19
outcomes. These include non-parametric spline-based models (Wang
et al.,, 2022), and weighted regression models that estimate growth
rates (Castro et al., 2021). A statistical model can be more sophisticated
than mechanistic models but they are also more dependent on the
quality and completeness of the data on which they are trained.

Machine Learning models are also data-driven, but they can be
distinguished from statistical models based on the fact they do not
necessarily require an explicit model of the relationship between the
variables. Most such models used some form of deep learning (Zheng
et al., 2021; Rodriguez et al., 2021) to ingest data from multiple sources
to predict future cases and mortality.

Ensemble models have also been used to generate forecasts and pro-
jections based on multiple model outputs. Besides the “Hubs” that
generate ensembles of submitted models, some submitting models also
generate an ensemble of their own models. For instance, one sub-
mission combined auto-regressive models, Long short-term memory
(LSTM) models, ensemble Kalman filter, and an SEIR model (Adiga
et al., 2021).

Scenario projections are more naturally performed by mechanistic
models as the desired real-world variable can be directly incorporated.
However, there have been Machine Learning-based models for scenario
projections as well (Chen et al., 2023). Our approach is a combination
of Mechanistic and Statistical category, as we model susceptibility
as a mechanistic process. Given the susceptibility, the estimation of
transmission parameters is done using a linear regression over new
infections.
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2. Methodology
2.1. The basic SlkJalpha model

The key idea behind the SlkJalpha model (Srivastava et al., 2020)

is to approximate the disease dynamics as a discrete heterogeneous
rate model. For instance, suppose the new infections are created by the
following true dynamics:
AL(t) = %RO Z a(D)AI(t —7) = % Z & ()ALt - 7) @
Here S(¢) is the number of susceptible individuals, N is the population,
and R is the reproduction number (Dietz, 1993) that represents the
expected number of infections created by each infected individual
in a fully susceptible population. The probability distribution of the
serial interval, i.e., the delay between an infected individual infecting
another, is given by a(z). As a result, someone who was infected at time
t — 7 on average will infect o’ (r) = Rya(r) individuals at time ¢.

Note that Eq. (1) represents the new infections rather than active
infections which is common in variations of SIR models (Allen, 1994).
This choice has been made as new infections (daily/weekly) are more
easily observed (adjusting for reporting rates and noise) compared to
active infections. It can be shown that by proper choice of a(r) we can
mimic the SIR model.

Theorem 1. The SIR model is a special case of SlkJalpha model.

Proof. Suppose .7(f) represents the number of active infections and
R (1) represents the number of recovered at time 7 in the SIR model.
Then in the general model, total cumulative infections are the sum of
active and recovered infections, i.e., I(f) = 7 (t) + #(t). Therefore, new
infections are the sum of new active infections and new recoveries.

AI(t) =AF () + AR () = (ﬂ%] - A%’(t)) +AR() = ﬁ%f(t). (2)

Suppose y is the recovery rate in the SIR model such that AZ() =
xJ(1). Also, the number of active infections at time 7 is the sum of
all new infections in the past that have not recovered by the time 7.
Therefore, under the SIR model:

t
J@) = Z AI(t")P(infected at t' not recovered until ¢)

=0
t t
= Y A=) =Y Ala—n)(1 - . 3)
1'=0 =0

Putting this value in Eq. (2)
S@) S0 < .
Al(t) = ﬂTJ’(I) = ﬂT ;41(1— (1 =)

S(0) ¢ .
=T§)(ﬁ(l—1) YAI(t— 7). @

Setting o'(7) = f(1 — y)7, this is equivalent to Eq. (1). [

We approximate the dependence on past infections by k temporal
bins of size J as shown in Fig. 1. Mathematically,

k
S S
AI(t) = % > @Al - 1)~ % PNAUCIESES (BTOR
T i=1

G)

This enables the representation of arbitrary dependence with few learn-
able parameters. Further, in real-world setting, obtaining reliable daily
data can be infeasible and may induce noise due to reporting patterns.
Having J > 1 has a smoothing effect.
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Fig. 1. Demonstration of how the SlkJalpha approximates the distribution of the serial
interval with k =4 and J =5.

We note that only reported cases are observed, that can be repre-
sented by AR(1) = Y, y(v)AI(t — 7), which when combined with Eq. (5)
results in a further approximation:

S, <
AR®D) = = X B (R(t= (i = DJ) = R = i) . ®)
i=1

Deaths (and hospitalizations) are considered to be outcomes of reported
cases:
kp
AD, = 2 0;(R_i—1ys, — Rizisy) @
i=1
The assumption of independence of deaths and hospitalization enables
independent learning of the parameters. Theoretically, the transition
from cases to hospitalizations, and that from hospitalizations to deaths
are conditionally independent, so they can be seen as a single transition
from cases to deaths. However, if the data on cases is of poor quality,
it will affect the prediction of deaths. In that scenario, it is better to
estimate deaths from hospitalizations rather than cases in Eq. (7). The
lag between the reported hospitalizations and reported deaths gives a
portion of a clearer signal that is a better predictor of deaths.

The “alpha” in SlkJalpha represents the learning technique. We
use a weighted linear regression to emphasize recently seen data to
adapt for dynamically changing behavior. Suppose we have observed
the reported cases for T time steps. Then the regression is performed
by minimizing the weighted least square error

T
LSE =Y a’™ (AR, () — AR ;1)) . ®)
=1

Next, we present how various features were included and evolved
over time. For a summary of changes over time across the Hubs, please
see Fig. 2.

2.2. True infections

Since not all infections are reported, we used several strategies over
time to estimate the true number of infections. Our objective is to
determine true new infections at a given time.

Estimated. We assume that there exists a reporting probability y
for each region, such that cumulative reported cases at time ¢ is given
by R(t) = yI(t — t) for some constant f,. In our prior work (Srivastava
and Prasanna, 2020a), we showed that it is often not possible to reliably
estimate under-reporting even in simple models. Whenever it is possible
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(certain periods and certain regions), we use the methods described
in Srivastava and Prasanna (2020a). Then we assume that similar
reporting rates are observed in all other regions. We also assume that
this reporting rate is constant in the past and will remain constant in
the future. For short-term forecasts, in the early phases of the pandemic,
the choice of this parameter did not impact the performance (Srivastava
et al., 2021).

Seroprevalence. Wherever available (for US states), we use sero-
prevalence data (Nationwide Commercial Laboratory Seroprevalence
Survey, 2023) that provides an estimated total number of individuals
who had infection-induced immunity at the frequency of once per
2-3 months. Each of these points provides an estimate of reporting
probability y(¢). We use linear interpolation to fill in the missing days
within each of these 2-3 month periods. Finally, we take a weighted
average to find the average reporting probability:

_ 2 rMAR®)

- RD)
where T is the length of the time series of reported cases. The sero-
prevalence dataset also provides an interval for the percentage popula-
tion with infection-induced immunity using which we get an interval
(Yiow Ynign) Of reporting probability. Note that this assumes a constant
reporting rate in the past, and we use the same rate to project in
the future. While a constant reporting rate in the past may not be an
accurate reflection of the truth, we consider it a reasonable modeling
choice for forecasting and scenario projection as it still provides a good
estimate of total infections. Also, note that the number of individuals
with infection-induced immunity is less than the number of total infec-
tions as one individual may have multiple infections. However, before
the rise of the omicron variant, the number of reinfections was orders
of magnitude smaller (New York State Statewide COVID-19 Reinfection
Data, 2023) than uncertainty in true infections introduced due to the
range (Yjo,» Ynign)- FOr the regions where seroprevalence data was not
available we used similar range for (7;o, 7 Yhign)-

Wastewater. Due to the low frequency of updates in seroprevalence
data and increase in reinfections, we switched to a wastewater dataset
in early 2022 for US states (Biobot Analytics, 2023). Instead of a
constant reporting rate assumption, we use the following model

©)

AI(t) & C(1) = ¢y C(1) (10)
r(®) = 1)/ R() an
Y@ =y(@TWV:>T, 12)

where T is the last observed time and C(7) is the average effective
concentration at time 7. We also apply a cubic spline smoothing (Rein-
sch, 1967) on y(r). To estimate ¢,, we assume that seroprevalence data
between August 2020 (z;) to July 2021 (¢,) provides a good estimate
of incident infections. Then,

2, AL
co = W 13)
1=t
This enables estimation of AI(r) over the entire period. While this
results in variable reporting probability in the past (Eq. (11)), for
forecasting and projections, we still use a fixed reporting rate based
on most recent rate (Eq. (12)).

Transferred. For regions where wastewater and seroprevalence
data were not available, we used a range of ascertainment rates (ratio
of reported to true infections) derived from regions where such data
were available.

2.3. Variants

During the emergence of the Alpha variant, we incorporated it into
the model. Our general approach is to split the cases into multiple time
series representing the cases caused by each variant. While genomic
sampling data is available that can provide proportions over time, a
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Fig. 2. Timeline of variations in modeling introduced

major challenge is that the sampling data is updated with a lag of 1-
2 weeks (CoVariants, 2023). Instead of using the variants proportions
directly, we fit a model to identify the proportions as a function of time.
This enables us to fill in for the days with missing data and removes
the noise due to sampling. Specifically, we use the last 2-3 months of
data to fit a logistic model, so that:

ATO(1)
& 4100 ()

=sit+e, Y A0 =A@, a4

where AT represents the infections created by the variant i. We may
interpret s; as the advantage in the growth rate of variant i over the
base variant 1. The model assumes a constant growth rate advantage
within the short period under consideration. In the long-term, the
variants dynamics can significantly deviate from the logistic model.
However, in the short term, it can be shown that the deviation is small.
A detailed analysis of the errors due to this violation is beyond the
scope of this paper. Various implementations were used over time:

2-strain. In this model, we only focus on two strains — two most
dominant strains, or the current dominant strain, and one strain known
to be rapidly increasing in prevalence. E.g., wild-type vs Alpha, and
non-Omicron vs Omicron. A disadvantage of this model is that if
there are more than two variants with significantly different transmis-
sion rates, then forcing them into two groups may lead to variable
growth advantage deviating from the logistic model, even in the short
term. Another drawback is the human intervention requirement — two
strains need to be manually selected and updated when a new highly
transmissible variant appears.

All Susceptibility States (includes
all vaccine dosages, immune
escape, and waning)

and targets covered across the forecast and scenario Hubs.

All PANGO. In this model, we use all the variants that appear as
different PANGO lineages (Pango lineages, 2023). This approach does
not require manual selection of variants and automatically includes
new variants that appear as the dataset (GenBank, 2023; GISAID, 2023)
is updated. However, this approach also has some drawbacks as the
number of different lineages active in a 3-month window can be of
the order of a few 100s. As a result, the computation time increases.
Also, distributing the samples across so many lineages results in higher
uncertainty due to the small number of samples per lineage.

Selected. In this model, we take the list of all PANGO lineages, and
filter it to select those of interest. For example, during the Omicron
wave, we extracted all lineages with names starting with “BA”. All
other lineages that appeared before omicron are grouped into one
variant called “pre-omicron”.

2.4. Vaccines and waning immunity

Initially, a simple all-or-nothing model model was used, where the
acquired immunity (through vaccines or prior infection) against variant
i provides full protection to (1 —e4(i, j)) fraction of the total population
N; in age group j at time #, and no protection to the rest. As a result,
the susceptible population is given by

S;(0)=N; — L;(t) — e, (i, HV () (1 = L;())/N;) . (15)

This assumes that infection provides full immunity and those who are
vaccinated but not infected are susceptible with probability e4(, j).
The value of the parameter e,(i,j) was borrowed from the vaccine
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trials (Oliver et al., 2020; COVID-19 Scenario Modeling Hub, 2023).
For simplicity, we assumed e,(i,j) = e4(j)Vi. However, since July
2021, a time-waning model was used in accordance with the discussions
with the Scenario Modeling Hub. In this model, immunity is lost
with time based on some function w(.i)('r), where 7 is the time since
vaccination/infection. The expected susceptible population is given by

L
S,(0) ~N; = I,(0) = V(1) (1 - T)

J
+<Z wj(r)(AVj(t—r)+AIj(t—‘r))> : (16)

From Aug 2021 - Oct 2021, the function wi.i) was assumed to be a
function representing the expected susceptibility based on the following
model: (i) An individual transitions to a “partially susceptible state at
a time given by exponential distribution with mean A. (ii) In this state,
the individual has a residual protection p;,, against infection and p,,
and py,,, against death and hospitalization, respectively. This means
that they will only be susceptible with probability 1-p,,,. The parame-
ters were determined by the scenarios in Scenario Modeling Hub. Since
then, we have switched to using a gamma distribution to represent the
transition into the partially susceptible state. The gamma distribution
requires two parameters to be specified. These are obtained from two
equations: (1) The mean/median of transition probability should match
the specification of the scenarios. (2) The expected immunity after two
months should match the vaccine trial results obtained at two months.

Note that both Egs. (15) and (16), are approximations in that
they only support one breakthrough of acquired immunity and that
total infections is roughly equal to the total individuals infected. With
increasing reinfections, this approximation does not hold, and a more
sophisticated model is used later (see Section 2.8).

2.5. Vaccine adoption

During the early phase of vaccinations, from Jan 2021 to July 2021,
a linear approximation was used for short-term forecasts (up to 4-weeks
ahead). We use linear extrapolation determined by the last two weeks
of new vaccinations to get the future new vaccinations. For longer-term
projections, a sigmoid model was used:
a
Vi) = ———— 17
® 1+ exp(=b(t — ¢)) an
where b and ¢ are learnable parameters based on early observed data.
The parameter a is fixed based on vaccine adoption surveys.
When a few month of data was available, we modeled vaccine
adoption as a contagious behavior:
= Vi@

AV (@) = Ev® - Ve®

k
N XAV =G =D =V@=i)) a8)
i=1

where V(¢) is the cumulative number of people vaccinated by time ¢,
Ey (1) is the number of individuals eligible for the vaccine at ¢, and
Vg() < V() is the number of individuals who are eligible at time
t but are already vaccinated. The above model may be applied to
different age groups independently. For the first dose, everyone may be
eligible in a given age group. We first predict the future-first doses. This
determines the eligibility for the second dose, which in turn determines
the eligibility for the booster. In the implementations so far, V() =
V(1) as the eligibility is cumulative - someone who is eligible at ¢ will
remain eligible at ¢ > t.

The hyperparameters are set to k = 2,J = 7. The parameters f; are
estimated using a weighted regression similar to the one described in
Section 2.1 with a weight of 0.9.

To simulate target adoption scenarios, such as targeting a fraction
u of eligible population, a scaling function a(f) is introduced, after
estimating g; in Eq. (18).

k

4By @~ V5® Z a®pf; V(i —@G—-1DI)=VE—-il)). 19
i=1

AV (1) = N
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We pick a(t) = exp(%), where H is the time before which the
target adoption is to be reached. The impact of this function is that
it smoothly and rapidly increases the rate with time, thus making the
term W decisive in the saturation of adoption.

2.6. Age-groups

When age-specific targets (cases, deaths, and hospitalizations) are
available, we incorporate interactions between age-groups in a “contact
matrix”. We assume different age groups may have different suscep-
tibility and there is a transmission rate that is scaled by the contact
matrix C = [¢, ], where ¢, represents a relative measure of contact
rates between age groups g and g’. In other words, c, ,» represents the
impact of age-group g’ on g. For G age groups, this may introduce G(G—
1)/2 parameters if we assume symmetric impacts. To avoid overfitting,
we reduce this to G parameters, assuming that for some parameters
C1sCs e sCGy Cogt = cgc;. One way to interpret this is to assume that

age-group g independently participates in a randomly selected contact
with probability « c,. Therefore, probability of an individual in age
group g being in contact with one in g’ is proportional to c,c,/. This is
similar to the formulation of the contact matrix in Ma et al. (2021).

Since contact is a physical process, it is assumed to be the same for
all variants. We rewrite Eq. (6) to incorporate age-groups as:

0] S(f)(t g) i i (i) ( 0) ’
ARYV(1,g) =—=- B egeg (RV(1—(—-1)J,8")
N@g) S =0 ° ¢

-RO¢t-11.¢")) . (20)

To fit the model to the data, first, we fix the variant i by choosing the
one which has the most cumulative cases in the recent weeks (in our
implementation, we used the last four weeks). Then, we set ¢; = 1,
for the last age group, and learn ﬂ1(i> and cy,...,cg_;. Then, we fix the
learned values of ¢, and learn ﬂ[“> Vi, i. The purpose of setting c¢; = 1
is to avoid multiple equivalent solutions obtained by arbitrarily scaling
up all ¢, and scaling down ﬂ/([).

As an example, the following matrices are obtained from this
method based on data as of June 6, 2021 for California and Washing-
ton, respectively.

[0.88 0.88 1.15 2.13 0.94]
0.88 0.89 1.16 2.15 0094
115 116 151 280 123
213 215 280 519 228
094 094 123 228 1.00]

[1.02 101 132 240 1.01]
1.01 1.01 132 240 1.01
132 132 173 3.13 131
240 240 3.13 566 238

(1.0 1.01 131 238 1.00]

The age groups considered here are 0-4, 5-11, 12-17, 18-65, 65+.
The entry in the ith row and jth column represent the relative contact
rate between age groups i and j. The matrix is normalized so that
the contact rate within the oldest age group is 1. Fig. 3 shows the
fitted time-series by age-group using these matrices. Since the contact
matrix and the infection rates vary over time, these fits are generated
by providing a higher weight to the more recently seen data. Therefore,
the method shows a better fit towards the end of the calibration period.

2.7. Immune escape properties

To incorporate immune escape variants like Omicron, a “cross-
protection” matrix Cp was introduced, such that Cp(i, i") represents the
protection against variant i due to an infection by variant i’. This is
the protection before waning of immunity takes place. As a result, each
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variant has its own view of the population. In the absence of vaccines
and waning immunity, susceptibility to variant i will be given by:

SO@ = (1= Cpi, NIV (1)

i

(21

The matrix Cp is populated based on the scenario requirements. For
instance, if Omicron is required to have an immune escape of 80%, then
C,» =1-0.8 =2, where i is a lineage of Omicron and i’ is a lineage
of past variants. Otherwise, C;, = 1. Additionally, a vector ry g, is
introduced such that the ith element represents the initial protection
against variant i from the vaccine type j. In absence of any waning

immunity and infection,

SO =31 =1y 5, OV (1) (22)
J

where j is a vaccine type (first dose, 2nd dose, booster, ...) and

V;() is the total individuals with vaccine type j. Exact computation of

susceptibility across variants in presence of waning immunity requires

keeping track of various states and is discussed in Section 2.8.

2.8. All-state model

To incorporate multiple reinfections, and various susceptibility
groups that arise due to multiple rounds of vaccine, we define the fol-
lowing types of state: first-time infections (I,), two or more infections
(I,+), first dose (F), infection with a prior first dose (1), first dose
after a prior infection (F;), second dose before boosting (V' nB), infected
with a prior second dose (1), second dose after a prior infection (V' nB,),

booster dose (B), infected with a prior booster dose (I,), and booster
dose after a prior infection (F;). Fig. 4 shows the allowed transitions
between states. Let state 0 denote those who are not in any of the above
states (naive state). This is the initial state of everyone in the population
before they get their first infection or vaccine.

The state of an individual is determined by the 4-tuple (j,i,g,1)
determined by the state-type j, age group g, time ¢ and variant i.
Let N(j,t,i,g) represent the number of individuals in state (j,i,g,?).
The association with the variant index represents the last variant that
affected that individual. For instance, N, (g,i,t) would represent that
the last transition they made on or before time 7 was to a reinfection
state due to variant i. Those in the vaccination-only state, i.e., F,
VnB, and B exist for all variants, i.e., N;(g,i,t) = N;(g,i’,1)Vi,i’ when
j € {F,VnB, B}. There are at most two ways of transitioning from a
state either due to an infection or due to vaccination.

Infection-induced transition. At r = 0, N (g, 0.1) = 0,Yj,g,i.t
Given how immunity wanes over time, we can compute the expected
number of susceptible individuals in each state (j, g,i’,?') as perceived
by each variant i at time z.

S .8 1',1) = NG, 81,1, j € {0} (23)
S Gog. ity = N(j,g,i',t')(l —ry @) (1= w1 — z’))) ,

Jj € {F,VnB, B} (24
S;.G.gi.7)=N(,¢g, 1’,t’)<1 - C,(i, ") (1 = w1 - t'))) ,

j eI, 12+) (25)
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S;,G.81', )= NG, g1, r’)(l —max{C,(i,"),

rVE(j)(i)} (1 —w;(i,t - t,)) > >
j €y, 1,1, F;,VnB;, B;} (26)

In the naive state, everyone is susceptible (Egs. (23)). In a state-type
with vaccination but no infection, probability of immunity is given by
the initial vaccine efficacy and lack of waning immunity (Egs. (24)). In
a state-type with prior infection but no vaccine probability of immunity
is given by cross-protection and lack of waning immunity (Egs. (25)).
In a state-type with prior infection and vaccination the probability of
immunity is given by the maximum of cross-protection and the initial
vaccine efficacy, if the protection has not waned (Egs. (26)).

Let AT (t, g) be the new infections at time ¢ in age group g due to
variant i. Then the new infections due to this variant in this age-group
that will transition from state (j, g,i,¢) can be estimated as

S[V,(j,g,i',t’)
X Sl g i)

where A; represents the change due to infections at time z.

Vaccination-induced transition. In infection induced transitions
we calculated susceptibility in each state to identify where the tran-
sitions are coming from. Similarly, in vaccine induced transitions we
need to compute eligibility to identify where the transitions are coming
from. The eligible population to go through vaccine-induced transi-
tion from the state (j’,g,i,7) due to vaccine type determined by j
(i.e., F,VnB, B), at time 7 is given by:

ANG.g, i 1) =a1%(, g) 27

E; (j'.8.i.!)=N,(j', g.i.1), st j) > j, i <1 =8(" = j),
j € {F,VnB, B) (28)

where, j' — j represents a valid transition, and 6(j' — j) denotes the
minimum delay allowed between the transitions. For instance, 6(j' — j)
may be set to six months for transitioning from 2nd dose only state
(VnB) to the “boosted without prior infections” state B. Let Vi(t.8)
denote the number of vaccinations of type j (first dose, second dose, or
booster) given at time 7 to the age-group g, then the population in state
(j’,g,i,t') transitioning out induced by vaccinating Vi(t,8) individuals
at time ¢ is
Ejyl(j’,g,i,t’)

Zj’,t’ Ej,t(j,v g.i,t)

Finally, the change in number of individuals in each state is given
by

Ay N,(j' 8. i,1") = V;(t,¢) (29)

Initially,
Ny(0,g,i,1") = N(0,g)Vg, i, (30)
No(j,g.i,1')=0Vj>0,g,i,1' 31)

Transitions to state j at time ¢

NG.gin= Y ANG.&il. O+ Y ANGLei) (32

it j=j! it j=j

Transitions coming from state j at time ¢

NG gist) = NyGogoish = Y AN g7 1)

i,,f,,j—’/"
- Y ANGLed) (33)
ihtj=J
NEEIEDWONIN NG 34

il

As before, we assume that all severe outcomes at time 7 in age-group
g (X;')(t, g)), including hospitalizations and deaths are simply linear
functions of the temporal sequence of infections.

Epidemics 45 (2023) 100729

4x1,g) = ; 7 @1-P ) (17 - 1= DI, - 1~ 1y.9))

(35)

By this decoupling of the dependency, instead of sequential dependency
between cases to hospitalizations to deaths, we are able to indepen-
dently produce estimate parameters. Here ;(](i)(g) are rates of severe
outcome for a “naive” individual — one who has no protection. We
assume that the ratio of severity of any two variants is a constant.
Therefore, we set ;([(i)(g) = oDy (g), where p represents relative
severity of variant i. This parameter makes a significant difference only
if there exist variants with significantly different severity in the last
few days used for training (100 days). For example, in the US, this
parameter was used from December 2021 to March 2022, when the last
100 days were expected to have significant proportions of both omicron
and delta variants. We treat p’ as a known parameter when provided
in the scenarios (COVID-19 Scenario Modeling Hub, 2023). Otherwise,
we perform a grid search to identify the o that best fits a held-out
validation data (new deaths/hospitalizations) of the last week. When
all the circulating variants are expected to have the same severity, we
set p) = 1Vi.

The parameter P;”(r, g) is the protection against severe outcome of
an individual in state-type j in age group g at time ¢ from variant i.
We treat PJ@(I, g) as known parameters borrowed from the provided
scenarios (COVID-19 Scenario Modeling Hub, 2023) for the scenario
modeling hub. In absence of recommended values of protection (for
forecast hubs), we use the various values suggested by the scenario
modeling hub one at a time as “sampled” hyperparameters to generate
“sub-scenarios” (see Section 3). It should be noted that by 2022,
the naive population (no past vaccinations or infections) had become
a small fraction of the population as suggested by the seropreva-
lence data (Nationwide Commercial Laboratory Seroprevalence Survey,
2023). Therefore, this parameter has a negligible impact on the projec-
tions. Since we do not observe severe outcomes per variant, we perform
regression on:

kx ) .
AX(t,8) =Y 1@ <Z 20 = PP (1= 1= 1)J.8)
i.j

=1
1~ IJX,g))) . (36)

The quantity in the parenthesis is computed before the regression
resulting in a linear regression only in y,(g), thus producing extremely
fast results free from overfitting common in non-linear settings.

2.9. Other capabilities

In addition to the above-described factors that are accounted for,
the model also supports other capabilities as described below.

Anomaly detection and Smoothing. To address the reporting
noise and delayed dumps of backlogged cases and deaths, various
strategies were used. Until July 2020, only moving average smoothing
was used. However, delayed dumps caused large spikes, thus mislead-
ing the model. Therefore, an anomaly detection module was added
which considered a daily value (case or death) to be an outlier if it
exceeded 4 times the median value of the last few (~70) days. The
outlier is then replaced with the linearly interpolated value from the
neighboring non-outliers. Then we apply a moving average smooth-
ing. With changes to reporting schedule (once a week, reporting only
on certain weekdays, etc.) the anomaly detection module had to be
changed. We first accumulate the reported targets into a weekly time
series instead of daily. The anomaly detection is then applied to this
weekly time series. Then we convert this time series back into daily
time series by distributing the reports in a week equally among its days.
Finally, we apply to smooth on this time series.
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Table 1
Categorization of parameters involved in model training.
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Learnable parameters (estimated by regression)

Transmission rates vector per variant i f

(i)

)", contact matrix C, severe

outcome rates y,(g) for deaths and hospitalizations

Selected hyperparameters (selected by grid search)

For cases k =2,J =7,a € {0.9}, for deaths
kp €1{3,4,....7},Jp =7,ap € {0.95,0.98}, for hospitalizations
ky =1{2,30LJy =1{2,3,7} ay € {0.95,0.98}, relative variant severity p”

Provided/Sampled hyperparameters (sampled from
a reasonable set)

Under-reporting/true cases interval, interval estimate of variant
proportions (affecting A7”)(r)), waning immunity parameters
€4(i, j), w; (i, 7), protection against severe disease P,(')(t,g), Relative
vaccine efficacy per variant per group ry p; (i), cross protection
matrix Cp, future vaccine coverage u

Future Contact Behavior. Future changes in Non-Pharmaceutical
Interventions (NPIs) for scenario modeling are implemented as linear
scaling of contact matrix 2.6. In absence of age stratification, this
results in a linear scaling of the transmission rates in the future. In
earlier rounds, when NPIs were asked to be lifted linearly, the scaling
was changed linearly over time. In rounds where future NPI modeling
was left up to the teams, the scaling was based on contact rates of
the previous year obtained from Cuebiq (2023) to account for seasonal
contact changes.

Arbitrary variant. Arbitrary variants in the future can be incorpo-
rated into the model along with the existing ones. The model requires
as input the day of introduction (or distribution over days), the number
of introductions, and properties of the new variant (transmissibility and
immune escape advantages).

More vaccine doses. While we present the model with three doses
(first, second, and booster), the model supports an arbitrary number of
doses. This is done by repeating Egs. (24), and (28) to more vaccine
doses beyond {F,VnB, B}.

3. Model uncertainty

Two methods have been used to model uncertainty: sub-scenarios
and Random Forest. The latter has only been used for the Germany/
Poland Forecast Hub.

3.1. Sub-scenario based

Here, our goal is to generate multiple future trajectories from which
we can sample desired quantiles. We divide the parameters involved
in the model into three categories (Table 1): (i) Learnable parame-
ters include those that are estimated using regression. (ii) Selected
hyperparameters are those that are identified via grid search based on
a held-out validation set (combination of hyperparameters that best
predicts the unseen data), and (iii) Provided/Sampled hyperparameters
are those that are either provided by the scenarios or are considered to
take one of several different values. Among the provided/sampled hy-
perparameters that can take several values, each setting corresponds to
a “sub-scenario”. Once we fix a sub-scenario, learnable parameters can
be estimated and selected hyperparameters can be identified by grid-
search, leading to one trajectory. We form all possible combinations
of sub-scenarios thus typically getting 50-300 trajectories. The desired
quantiles are then sampled from these trajectories.

3.2. Random forest

In this approach, we first generate the “mean” prediction. This is the
time-series outcome of regression which we convert to a vector of four
elements (y;,y,.y3,y4). The ith element represents the i-week ahead
forecast. We assume that the true observation i-week ahead is y; = y; +
e;. For each i, to estimate ¢;, we train a Random Forest (Meinshausen,
2006) with 100 trees. The inputs to the Random Forest are current and
last week’s incident data (cases or deaths), the population of the region,
and the prediction from SIkJalpha, y;. The output is the deviation from
the true observed data j; — y;. The training is performed by considering

recently seen (last 35 days) data, and the difference between prediction
and observed data over all the regions. The desired quantiles are then
sampled from the Random Forest.

4. Real-time prediction
4.1. Participation in real-time prediction efforts

Various versions of SlkJalpha model were submitted to US/CDC
Forecast Hub (US FH), Europe/ECDC Forecast Hub (Euro FH), Ger-
many/Poland Forecast Hub (G-P FH), US/CDC Scenario Modeling Hub
(US SMH), and Europe/ECDC Scenario Modeling Hub (EU SMH). Sub-
missions to the forecast hubs were made every week on Sunday.
Scenario Modeling Hubs had submissions once in 1-2 months. The
details of targets and modeling choices are presented in Fig. 2.

4.2. Real-time publicly available forecasts

We have maintained an online dashboard since April 2020 (Sri-
vastava, 2023a) to visualize the generated forecasts for US states and
countries around the world. These forecasts are generated using the
same modeling choices as mentioned in Fig. 2 for US FH and Euro
FH, respectively. Since December 2020, we have also added forecasts
for all the locations around the world (Srivastava, 2023b) for which
Google provides case and death data (COVID-19 Open-Data, 2023).
This includes 214 Admin-0 locations, around 1000 Admin-1 locations,
and around 16,000 Admin-2 locations. This implementation includes
modeling choices identical to G-P FH with the exception of the inclu-
sion of 2-dose vaccines which are assumed to provide all-or-nothing
protection. When vaccination data is not available from Google for
Admin-1 or Admin-2 locations, we assume that the vaccination uptake
per unit population is the same as that of the higher Admin-level for
which data is available. We do not generate uncertainty bounds for
these forecasts.

4.3. Implementation

All code was written in MATLAB and is publicly available on
Github (Srivastava, 2023a). Daily forecasts have been generated
through an automated script at 5 a.m. Pacific Time every day since
May 2020 on an Intel 2-core desktop. The scenario projections were
developed and generated on the same machine as per the submission
schedule until September, after which we moved to a Dell PowerEdge
R540 server. It has two Intel Xeon Gold 5218 processors each running
@2.3G, 16C/32T, 10.4 GT/s, 22M Cache (total 32 core/64 threads,
44M Cache). It has 64 GB RDIMM, 3200 MT/s, Dual Rank RAM, and
1.92 TB SSD SATA Read Intensive 6 Gbps drive. MATLAB implicitly
converts many matrix operations and functions into multi-threading.
Starting in September, we also introduced parallelism across sub-
scenarios. The runtimes of the latest implementation are presented
in Table 2. The most time-consuming aspect is the estimation of the
susceptible population which requires evaluating all states from the
beginning of the epidemic, which in our model is set to Jan 23,
2020. To accelerate the computation, we update the states at a weekly
granularity rather than daily.
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Fig. 5. Comparison of our submitted 4-week against Hub ensemble in terms of MAE.
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Table 2
Approximate runtimes of various implementations.
Targets “all-state”? Runtime/subscenario
US states/US FH Yes 25 s on server
~190 countries Yes ~200 s on desktop
Euro FH/SMH Yes 15 s on server
GP FH No <10 s on desktop (incl. quantiles)
>17,000 locations (Google) No ~400 s on desktop

5. Evaluations

Our models have been evaluated by us Srivastava and Xu (2020)
as well as several other studies (Bracher et al., 2023; Cramer et al.,
2022; Bracher et al., 2021b; Friedman et al., 2021; Howerton et al.,
2023), reports (US COVID-19 Forecast Hub, 2023; European COVID-19
Forecast Hub, 2023; German and Polish COVID-19 Forecast Hub, 2023)
and dashboards (DELPHI Group, 2023). Despite the lack of human
involvement in generating forecasts (except for debugging and adding
new features), our methods have been in the top 25% during most
of the pandemic based on mean absolute error and weighted interval
score (Bracher et al., 2021a). For case forecasts in the US, among all
models that were submitted consistently in 2020-2021, our submission
ranks highest in terms of Weighted Interval Score (Lopez et al., 2023).
For country-level death forecasts over multiple countries, our forecasts
performed the best in terms of median absolute percentage error (Fried-
man et al., 2021) among 7 models that fit the inclusion criteria among
386 models analyzed. This analysis included long-term forecasts up to
12 weeks ahead generated in 2020 to mid 2021.

However, the US hospitalization forecasts have not been good. This
is particularly because it was assumed that there is at least one one-
week lag between the reported cases and hospitalizations. However,
this was not consistently true and in the majority of the weeks, the re-
ported cases were well-aligned (without a lag) with reported cases due

to delay in reporting. It was fixed in February of 2022, by removing the
enforced one-week lag. This is a drawback of the “automated” approach
and could have been fixed earlier with more human involvement — by
visualizing the results every week. However, due to the involvement of
the lone author in multiple collaborative efforts, this was not feasible
and would have required multiple personnel.

Fig. 5 shows the comparison of our submissions and the Hub en-
semble in terms of mean absolute error for US and ECDC 4-week
ahead case and death forecasts. We observe that until the end of 2021,
the performance was close to the Hub ensembles. The case forecasts
had poor performance just before and during the rise of the Omicron
variant. The errors are higher in the US compared to those in the ECDC.
This could be due to sparser state-level data on variants leading to poor
estimates of variant proportions. Death forecasts are impacted less in
the US, with the exception of one outlier. On the other hand, ECDC
death forecasts are impacted more during this period. This may be due
to the poorer quality of case reporting during this period in Europe
compared to the US states (see Fig. 6). Since, during this time, our death
forecasts were based on a function of reported cases, death forecasts
were of relatively poor quality as well.

Our models often correctly predict the existence of an upcoming
surge, but they tend to over-predict its intensity (Fig. 7). While quali-
tatively, predicting the existence of a surge is useful, with traditional
metrics such as mean absolute error, the models are penalized for
overpredicting. How to improve the forecast based on these metrics
during a time of variant-drive surge is not clear. Better quality of
data on genomic surveillance and case reporting can help with better
estimation of variant proportions, resulting in better forecasts, at least
in the short term.

6. Conclusions

We presented various versions of the SlkJalpha model that have
been used over time over different forecast hubs and scenario modeling
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Fig. 7. The model often over-predicts just before the surge: Here the purple line is the model prediction for California before the Omicron surge. The gray line is the ground
truth. Due to the inclusion of variants-specific data, the model can predict an impending surge, however, it over-predicts the intensity of the surge.

hubs. The models have evolved into one capable of accounting for
various age groups, an arbitrary number of variants, imperfect protec-
tion from natural and vaccine-induced immunity, and immunity states
formed by multiple vaccine doses and infections. We have presented the
implementation details including data sources, parameter estimation
methods, runtimes, and uncertainty quantification. The goal of this
paper was to provide an overview of the modeling choices over time.
The details of the impact of each modeling decision are beyond the
scope of this paper. Instead, we focused on the breadth of modeling
decisions. Our forecasts for the forecast hubs were generated through
automated scripts. The advantage of our approach is scalability due
to automation and fast implementation. That is, we do not perform
any manual tuning or analyze individual forecasts for each region. The
same advantage has the drawback that the models may produce poor
forecasts if there is an anomaly or high noise in data that have not
been already accounted for in the scripts. A particular period where
the models perform poorly is just before a surge due to a new variant.
The model is able to predict the existence of a surge, however, it often
over-predicts the intensity.

In future work, we will perform retrospective analysis to identify
which modeling choices lead to better performance. Particularly, how
to predict the existence of a surge without over-predicting its intensity.

10

This will include identification of the transmissibility advantage, the
immune escape advantage, and better estimates of population immu-
nity. Estimating population immunity will require exact identification
of the dynamics of waning immunity, which so far has been borrowed
from the suggestions of the Scenario Modeling Hub.
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