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ARTICLE INFO ABSTRACT

Keywords: Experimental results of organic solar cells with low donor concentrations using small molecule donors have
Fill factor displayed significantly lower fill factors (FFs) compared to dilute-donor solar cells (DDSCs) with polymer donors.
Morphology

We perform experiments and kinetic Monte Carlo simulations, to understand the observed FF discrepancy and
how FF can be improved. Our results reveal that small molecule DDSCs collect holes from the region of the active
layer near the anode whereas polymer DDSCs collect holes from a deeper volume inside the active layer. This
enlarged collection region is facilitated by the morphology of polymer chains extending from the anode into the
active layer. The chains permit holes to hop along the donor sites to the anode with no barrier. Small molecule
DDSCs, in contrast, require a large electric field to transfer holes from isolated donor sites back to the acceptor
matrix to reach the anode. Collections in small molecule DDSCs are thus constrained to photogenerated holes on
donors near the anode. We propose strategies to increase DDSC FF to levels comparable to bulk-heterojunction
organic solar cells by decreasing the donor-acceptor highest occupied molecular orbital energy offset, or by
engineering the active layer morphology so that a higher density of donors are in proximity/contact with the
anode.

Organic Solar Cells
Dilute-Donor
Polymers

Small molecules

wt%) also exhibit decent photoresponse [3]. These small donor con-
centration OSCs are the subject of our present study, and we will refer to

1. Introduction

Organic solar cells (OSCs) have been the subject of intensive in-
vestigations over the last decades because of their solution process-
ability, energy level tunability, and materials sustainability. An OSC is
fabricated by combining two organic materials: one acting as an electron
donor and the other acting as the electron acceptor. In OSCs, light
generates an exciton in the material and the exciton is dissociated at the
donor-acceptor interface into an electron, traveling along acceptors to
the cathode contact, and a hole, moving along donors to the anode
contact. Most OSCs have active layers with a bulk heterojunction (BHJ)
morphology [1], consisting of about half donor and half acceptor ma-
terials. In BHJ OSCs, donor and acceptor materials form interpenetrating
percolative pathways, representing a compromise between fast charge
collection and efficient exciton dissociation [2].

Surprisingly, OSCs fabricated using low donor concentrations (a few

* Corresponding authors.

them as dilute-donor solar cells (DDSCs). The physics governing DDSC
photocurrent has been under debate because it is unclear what perco-
lative paths reach the anode for hole transport. Mechanisms like
donor-donor tunneling [4] and hole back-transfer [5] have been pro-
posed. It was recently argued hole back-transfer is more plausible than
tunneling at extremely low donor concentrations (~ 1 wt%) [6]. Here
we focus on the extremely dilute donor concentration (1 — 5 %) because
donor domains have been reported to form percolative pathways occur
around 10 wt% donors [7,8]. Three-dimensional (3D) kinetic Monte
Carlo (kMC) simulations on small molecule and polymer DDSCs have
also shown that holes trapped on localized donor domains can transfer
to the acceptor domain and travel to the anode producing photocurrent
[9,10]. One potential DDSC advantage is to produce open-circuit volt-
ages (Voo) exceeding their BHJ counterpart with comparable short
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circuit current density (Js¢) [3,5,11,12]. While DDSC understanding is
emerging, the high V. and J. have unfortunately been accompanied by
low fill factors (FFs), lower than in BHJ solar cells [3,11,13-15]. If DDSC
FF can be improved, DDSC will be a very attractive solar cell technology.

While little is discussed about FF in DDSCs in literature, one trend is
that FF values of DDSCs with small molecule donors are lower (~0.3)
compared to those for polymer donors (~0.5) [5,6,13,16-19]. In BHJ
solar cells, empirically high FFs were observed in devices with high
charge mobilities [20,21], fast charge extraction [22], reduced bimo-
lecular recombination [23-25], and long charge-separated state life-
times [26]. However, it is not known if DDSCs’ FF is determined by the
same parameters.

In this paper, we investigate factors affecting DDSCs’ FF. Motivated
by experimental observations between solution-processed small mole-
cule and polymer DDSCs, we calculate the current density-voltage (J-V)
characteristics using kMC simulations and analyze how holes are
collected at the anode. We find in small molecule DDSCs, a large electric
field is required to transfer a hole from the donor back to the acceptor
before recombination. The photoactive region where the large electric
field can be sustained is very small and gets even smaller with increasing
bias, giving rise to a low FF in small molecule DDSCs. In polymer DDSCs,
a large electric field is not required as holes can avoid recombination by
moving along polymer chains towards the anode. Finally, we propose
that reducing the donor-acceptor highest occupied molecular orbital
(HOMO) offset or increasing the density of donors near the anode can
improve the FF in small molecule DDSCs, potentially reaching values
close to current BHJ devices.

2. Simulation methodology
2.1. kMC algorithm

To study FF in DDSCs, we compute J-V curves using the kMC
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technique. The algorithm behind kMC and method of computing J-V
curves are explained in Ref. [9,27]. We use the kMC framework as
implemented by Albes et al. [5], which has been used in numerous
studies on BHJ solar cells and DDSCs [28-31].

Our kMC model explicitly accounts for three particle types: excitons,
electrons, and holes. At each kMC timestep, particles can be created,
annihilated, or move. For exciton generation rates, we apply the transfer
matrix method [32] on a 50 nm thick pure [6,6]-Phenyl-C71-butyric
acid methyl ester (PC7;BM) film with reflections from ITO/poly(3,
4-ethylenedioxythiophene):poly(styrenesulfonate)  (ITO/PEDOT:PSS)
anode and Ca/Al cathode contacts. Fig. S1 shows the exciton generation
profile. After an exciton is generated, it can move to an adjacent site by
random walk [33], decay, or dissociate when adjacent to a
donor-acceptor interface. To model exciton dissociation, we assume
Marcus theory [34-36]. Our dissociation rate is given in Eq. (S1).
Exciton dissociation will create a hole on a donor site and an electron on
an acceptor site. If an electron and hole are adjacent, they can recom-
bine. Electron/hole transport occurs by thermally activated hopping
which is modeled by the Miller-Abrahams model [27,37]. The
Miller-Abraham rate is shown in Eq. (S2). The active layer is terminated
by an anode and a cathode that can either inject or collect charges (only
from adjacent sites). We model charge injection from Ref. [38,39].

2.2. kMC input parameterization

Fig. la illustrates our OSC, with an active layer, an anode, and a
cathode. The active layer simulation domain measures 50 x 50 x 50
nm?, a 1 nm lattice constant, periodic x and y coordinate boundaries,
and attached electrodes on two boundaries along the z-direction. Our
active layer contains acceptor molecules (PC7;BM) with 1 vol% of either
small molecule or polymer donors interspersed in the acceptor material,
illustrated in Fig. 1b and c. Fig. 1b illustrates the small molecule donor
morphology as a uniform distribution of 1 x 1 x 1 nm® donors. Fig. 1c
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Fig. 1. (a) kMC simulated DDSC structure consisting of an active layer between an anode (z = 50 nm) and a cathode (z = 0 nm) electrode. The DDSC active layer
consists of either (b) small molecule or (c) polymer donor morphologies. J-V curves from (d) experiments and (e) kMC. In kMC, the circles are results while solid lines
are spline interpolations. In experiment, we use small molecule TTOHex-RH and polymer PBDF-FDPP donors to make devices with PC7;BM acceptors. The donor
concentration in the experiment and kMC simulations are respectively 1 wt% and 1 vol%.
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illustrates the polymer donor morphology model as 1 x 1 x 30 nm®
linear chains perpendicular to the electrodes. We also performed simu-
lations for, twisted polymers, illustrated in Fig. S2, but find detailed
polymer morphologies do not qualitatively affect FF conclusions. To
focus on the explicit differences between small molecule and polymer
donors, we use the same set of physical inputs in the kMC simulation
(Table S1) for both small molecule and polymer donor morphologies at a
donor concentration of 1 vol%. We assume a donor-acceptor HOMO
energy offset of 0.4 eV unless specified otherwise. To model hole/elec-
tron blocking layers at the cathode/anode, respectively, we parame-
terize an extraction rate of 5 x 10° Hz, while hole/electron extraction
layers rates at the anode/cathode have an extraction rate of 1 x 10'° Hz

[5].
3. Results
3.1. Experimental Results

We fabricate and measure DDSCs using four small molecule and five
polymer donors in the PC;1BM acceptor matrix. We provide detailed
methodology in supporting information. The donor concentrations are
1, 2, and 5 wt%. We employ a conventional device structure with ITO/
PEDOT:PSS as the anode/hole-transport-layer and Ca/Al as the electron-
transport-layer/cathode. We measure J-V curves under one-sun AM
1.5 G 100 mW/cm? to determine Jg, Voo, and FF. Table 1 shows the
experimental FF results of all our DDSCs while their J-V curves and J-V
parameters are shown in Fig. S3 and Table S2, respectively. We find
similar Jg. and V,. ranges for small molecule and polymer DDSCs:
{1.05-6.09} mA/cm? and {0.76-0.92} V in small molecule DDSCs and
{0.54-7.63} mA/cm? and {0.65-0.93} V for polymer DDSCs. However,
small molecule and polymer DDSCs display a notable difference in FF: a
lower FF ranging between {0.26-0.35} in all small molecule DDSCs
while a higher FF ranging between {0.38-0.65} in polymer DDSCs. Our
FF values and the difference between small molecule and polymer do-
nors match previous reports in literature [5,6,13,16-19].

3.2. Comparing simulation and experimental results

Fig. 1d shows experimental J-V results for 1 wt% thienothiophene-
hexyloxy-rhodanine (TTOHex-RH) small molecule and poly(4,8-bis(5-
(2-ethylhexyl)furan-2-yl)benzo[1,2-b:4,5-b0]difuran-alt-2,5-didodecyl-
3,6-di(furan-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2 H,5 H)-dione) (PBDF-
FDPP) polymer DDSCs. These donors were chosen because they have
similar Jg. and V. but different FFs, 0.27 for small molecules and 0.41
for polymers (Table 2). The FF values do not strongly depend on the
donor concentration between {1-5} wt%. Fig. 1e shows the kMC J-V
results for a small molecule and a polymer DDSC based on morphologies
shown in Fig. 1b and c, respectively. The simulated Js. and V. are the
same for the small molecule and the polymer DDSCs, and the FF is 0.31
for the small molecule and 0.46 for the polymer donor. As shown, the

Table 1

The experimental FF of four small molecule and five polymer DDSCs with the
same PC,,BM acceptor at donor concentrations of 1, 2, and 5 wt%. The V,. and
Jsc values of the J-V characteristics are in table S2.

Experimental Donor FF
Donor Morphology 1 wt% 2 wt% 5 wt%
Small TTOHex-DC 0.28 0.27 0.26
Molecule Donors TTOHex-RH 0.27 0.26 0.25
NBTT-IDD 0.28 0.27 0.35
NBTT-Rho 0.26 0.27 0.33
Polymer Donors PBDF-FDPP 0.41 0.51 0.63
PThDPP-FVF 0.52 0.57 0.63
P3HT 0.38 0.49 0.45
PM6 0.45 0.48 0.63
PFBT2Se2Th 0.46 0.52 0.65
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Table 2
The J-V parameters extracted from the experimental and kMC simulations
shown in Fig. 1d,e.

Experiment kMC
J-V Parameters Small Polymer Small Polymer
Molecule Molecule
FF 0.27 0.41 0.31 0.46
Jse (mA/cm?) 1.16 1.17 1.99 2.00
Voe (V) 0.83 0.80 0.87 0.89

shape of experimental J-V curves is qualitatively reproduced in the kMC
simulations, with the polymer DDSC showing a higher FF. Since the kMC
simulations use the same input parameters for small molecule and
polymer donors, the only difference between the two DDSCs is the donor
morphology.

4. Why polymer donors yield a higher FF than small molecule
donors

Fig. 2 shows 60-70 % of generated excitons decay before dissociating
at a donor-acceptor interface in the kMC results. The remaining disso-
ciated excitons potentially contribute to photocurrent by transferring
holes onto donors and electrons on acceptors. A hole, from a dissociated
exciton, has five ways to leave the DDSC (Fig. 2a) depending on if the
hole originates on a donor touching an electrode or not: collection at the
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Fig. 2. Illustration of (a) five ways generated holes can leave any DDSC. A hole
can originate on a donor touching the anode or not and be collected by it
(process 1 and 2). A hole can also originate on a donor touching the cathode or
not and be lost through it (process 3 and 4). Finally, a hole can recombine with
an electron (process 5). Statistics of excitons and holes generated from disso-
ciated excitons at 0 V bias for both (b) small molecule and c) polymer DDSCs.
We normalize pie charts to the total number of excitons. Photocurrent contri-
butions are blue while orange and green are losses. We show hole recombina-
tion distributions in d) small molecule and (e) polymer DDSCs. The smaller pie
chart in (e) compared to (d) is reflective of the overall smaller amount of
recombination in the former. A hole can recombine with an electron originating
from the same (geminate) or a different (non-geminate) exciton.
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anode (1 and 2), loss through the cathode (3 and 4), or recombination

(5).
4.1. What happens to generated holes

Fig. 2b and c show the statistics of Fig. 2a along with the percentage
of decayed excitons at 0 V bias. For the small molecule DDSC, most holes
are collected from donors not touching the anode (19 %), which happens
by back-transfer to the acceptor phase and hopping along acceptors
towards the anode [5], and many recombine (18 %). For the polymer
DDSC, about equal fractions of holes are collected from donors touching
and not touching the anode. In the former case, holes may migrate along
the polymer backbone towards the anode, while in the latter case hole
back-transfer towards the anode is required. Finally, many holes are lost
through the cathode (6 %), and a few recombine (3 %). In the small
molecule DDSC, most holes are lost to recombination whereas in the
polymer DDSC hole losses are primarily through the cathode. This ex-
poses a stark difference in hole loss mechanisms between the small
molecule and polymer DDSCs. When allowing polymers to twist
(Fig. S2b), losses through the cathode remain nearly the same (6-5 %)
and recombination increases moderately (3-8%) when compared to
Fig. 2c.

Fig. 2d and e shows the difference between geminate and non-
geminate recombination. The timescale for geminate recombination is
very fast and it is very unlikely that holes exposed to geminate recom-
bination could ever escape by traveling to a contact. Non-geminate
recombination on the other hand is much slower but makes up most
of the recombination events. To understand the conditions facilitating
hole collection at the anode before recombination, we quantify hole
transport timescales. We determine the average non-geminate recom-
bination time 7,y c = 10 s at 0 V bias for both small molecule and
polymer DDSCs.

To quantify the competition between recombination and transport to
the anode, consider that at each timestep holes can (1) hop to adjacent
acceptor-sites (A), (2) hop to adjacent donor-sites (D), or (3) recombine
[27]. In the small molecule DDSC case, acceptor-sites surround the
donor. In this case, each hole leaves its donor by hopping to an acceptor
[5]. The Miller-Abrahams hopping rate equation (Eq. S2) governing hole
transitions from site i to j is

1 1 —AETC
W—TT%[( T : @

i=j i=j

where AEI.F_J:}.C is the electric energy difference from bias, built-in and

hole/electron Coulomb potentials, kT is thermal energy, and T?_,j is the

hop time from sites i to j without electric fields determined from:

HOMO
1 _ avexp( — 27,_;Ari;)exp <_E‘—V> )
0 i=j 2 imj

0, kT

where qq is the maximum hopping rate, y;_; is the inverse localization
length (Eq. S3), Ar.; is the hopping length, and

AEHOMO — pHOMO —EJHOMO is the HOMO offset [27]. We calculate the

i=j
donor-acceptor hop time z9_, = 10 s from Eq. (2), using parameters
from table S1 and AEIO%C = 0.4 eV. In the polymer DDSC, holes can hop
along the polymer chain with AEA%MC = 0 eV, and Eq. (2) yields much
shorter 73 _ = 107s.

Comparing 73_, =107 s, Tog rec= 10%s,and 7% _, =103 s, we find
that in the absence of an electric field, recombination is faster than
donor-acceptor hopping but slower than donor-donor hopping i.e.,
01 < Tagrec < 79 The much shorter 73, compared to either of
Tngrec OF TO_ 5 SUppresses recombination and is a key to understanding
the larger FF in polymer compared to small molecule DDSC.
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4.2. Collected holes originate near the anode in small molecules donor
devices

To understand how the three time scales (z9_ ), Tagrec, 70 ) affect
photocurrent, we examine the spatial origin of collected holes. In
Fig. 3a, we show the accumulated fraction of collected holes (r) at 0 V
bias generated at a distance from the anode (z = 50 nm). Evidently a
larger fraction of collected holes originate near the anode in small
molecule compared to polymer DDSCs. We identify a collection-depth
metric 21,2, defined as the distance from the anode where 50 % of
holes are collected (r=1/2). For the small molecule DDSC, z,,
= 10 nm (50-40 nm), and for polymer DDSC, 21,2 = 18 nm. While more
excitons dissociate in the small molecule DDSC (Fig. 2b), the polymer
DDSC realizes the same J. because the polymer DDSC collects holes
from a larger volume in the active layer compared to the small molecule
DDSC.

In Fig. 3b we show z; 5 as a function of bias. As bias increases, z; /2 of
the small molecule DDSC sharply decreases from 10 nm to 2 nm whereas
21,2 for the polymer DDSC remains essentially unchanged (18-14 nm).
Even with bias near V., polymer DDSC collects holes far from the anode
while the small molecule DDSC only collects holes within 3 nm. These
results suggest the contrasting FFs between small molecule and polymer
DDSCs is governed by a difference in hole collection-depth. In particular,
the relative insensitivity of z; 2 to bias in polymer DDSC indicates hole
collection remains efficient even as bias approaches V,: the signature of
higher FF.

The simulation also reveals recombination is insensitive to bias for
the polymer DDSC, but the small molecule DDSCs exhibit significant bias
dependence, as seen in Fig. S4. This agrees with experiments showing
bias dependent bimolecular recombination with low FF [24,25].

4.3. Why the small molecule donor device can only collect holes near the
anode

To understand why the small molecule DDSC has a small hole-
collection depth and why it is bias-dependent, we estimate the mini-
mum electric field to free holes before recombining, or equivalently, the
electric field needed for donor—acceptor hop time (z¢,) to equal
recombination (7ngre.) time. To this end, we equate r‘,‘)"EA = Tngrec iN Eq.
(1) and solve for AEL*C divided by eAr;_;:

i—j

AEFC 7
S AT () @

~min = eAri; N Ari; ‘r%_}A

where e is electron charge. With Eq. (3), we calculate &= 0.09 V/nm.
This minimum electric field can be translated to a field-limited collec-
tion length (z+) by dividing the anode to cathode work function dif-
ference (A¢yyr = 0.8 V) by the minimum electric field as:

_ A

é{min (4)

2z

For the small molecule DDSC, we find 2 as 9 nm, comparable to z; /5
= 10 nm determined in Fig. 3a.

To confirm that the small molecule DDSC has an electric field strong
enough to reduce recombination, Fig. 4 presents the 0 V bias band di-
agram. We observe an electric field exceeding 0.09 V/nm starting at
2z > 43 nm. Thus, photogenerated holes within 7 nm from the anode
travel fast enough to escape recombination whereas holes in the rest of
the DDSC, are more likely to recombine before reaching the anode. It is
unlikely for holes to recombine while hopping between acceptors since
Eq. (2) yields 79_ ,= 1071 5, which is much faster than recombination
(Tagree= 107 s).

For the polymer DDSC, Eq. (3) does not apply because most collected
holes avoid recombination by relying on donor—donor transport for
collection (process 1 from Fig. 2a) which is insensitive to bias. For
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Fig. 3. (a) The cumulative hole collection ratio (r) at 0 V bias. We define r as the ratio of all collected holes originating between the anode, (z = 50 nm) and co-
ordinate along the z-axis. We define collection-depth (z;,5), the distance from the anode where r = 1/2. For clarity, we identify positions in a) where the collection
ratio is one-half. Solid circles are individual kMC results connected by solid lines. (b) z;,» as a function of bias for the small molecule and polymer DDSCs.
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Fig. 4. The small molecule DDSC band diagram at 0 V bias. Tangent line in-
tercepts the valence band at the location where the associated electric field can
push holes from donor onto acceptors at a faster rate compared to
recombination.

example, 11 % of excitons contributing to photocurrent placed holes on
donors touching the anode at 0 V bias (Fig. 2c). At the built-in voltage
bias of 0.8 V, the percentage is essentially unchanged at 10 % (Fig. S5).
This bias insensitivity of donor—donor transport for collection is still
preserved when twisting our polymers in Fig. S2b (10 % at 0 V to 9 % at
0.8 V).

As seen in Fig. 2b-c, the fraction of excitons contributing to photo-
current at 0 V bias is similar between the two device types: 19 % for
small molecule and 20 % for polymer DDSCs, reflecting their compa-
rable Jg. At 0.8 V bias, the fraction of excitons contributing to photo-
current (Fig. S5) is much smaller in small molecule (3 %) compared to
polymer (10 %) DDSCs, hence the much lower FF in the small molecule
DDSC. This means holes can be collected even when the bias is close to
the V. in polymer DDSCs. Thus, FF is regulated by the fraction of holes
collected by donors touching the anode.

5. Increasing the fill factor

Based on our findings, we identify two ways to improve the FF in
both small molecule and polymer DDSCs: (1) decrease the donor-
acceptor HOMO offset or (2) increase the number of donors touching/
near the anode. Lowering the HOMO offset decreases the
donor—acceptor hop time (¢2_,), resulting in more hole collection

before recombination and thus larger collection-depths. Increasing the
number of donors touching or proximate to the anode, increases the flow
of holes reaching the anode without back-transferring from donors to
acceptors.

5.1. Decreasing the donor-acceptor HOMO offset

In Fig. 5, we show the FF for DDSCs with donor-acceptor HOMO
offset ranging from 0.4 eV to 0.2 eV. The kMC J-V curves at different
HOMO offsets are in Fig. S6. A clear correlation between FF and HOMO
offset is observed for both the small molecule and polymer DDSCs. For
this range of HOMO offsets, the FF from small molecule DDSC increases
from 0.31 to 0.59 whereas polymer DDSC FF increases from 0.46 to 0.66.
Both small molecule and polymer DDSCs FF improve very significantly.

The small molecule DDSC FF improvement is entirely expected based
on our previously outlined argument that photocurrent is governed by
competition between recombination and hole hopping from the donor to
acceptors. Decreasing the HOMO offset reduces hop time 7 _ , and im-
proves FF. Even in polymer DDSCs, the polymer donors not touching the
anode will exhibit faster donor to acceptor hopping.

Two minor deviations are observed in the HOMO offset vs FF trend:
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Fig. 5. FF of the small molecule and polymer DDSCs at different HOMO offsets.
The dashed line is a linear fit to guide the eye.
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(1) FF is lower at 0.35 eV offset in the polymer DDSC compared to
0.40 eV and (2) FF is slightly lower at 0.20 eV offset in the small
molecule DDSC compared to 0.25 eV. These deviations are the result of
changes in the exciton dissociation rate and losses at the cathode. In the
polymer DDSC case, more dissociated excitons facilitate increased
recombination at 0.35 eV offset than at an offset of 0.40 eV. Specifically,
at 0.8 V bias, 9 % experience recombination (0.40 eV offset) compared
to 14 % at 0.35 eV offset (Fig. S7). In the small molecule DDSC case, a
larger fraction of generated holes are lost through the cathode when the
offset is 0.20 eV instead of 0.25 eV. Specifically, at 0.8 V bias, 35 % (9 %
/ (14 % + 9 % + 3 %)) are lost through the cathode compared to 31 %
when the offset is 0.25 eV (Fig. S7).

5.2. Increasing the number of donors touching the anode

In Fig. 6, we show FF from simulations with variable fraction (x) of
donors touching the anode. To control x in small molecule DDSCs, we
uniformly distribute donor sites in a volume between z,;, and the anode
(z =50 nm), as illustrated in the insets of Fig. 6. Of the four small
molecule DDSCs, three have high FF, while the last DDSC is our original
from Fig. 1b and has x = 0.02. We also find that it is the distribution, not
the aggregation, of small molecule donors that determines the FF in
small molecule DDSCs (Fig. S8). For polymer DDSCs, FF increases with
increasing fraction of donor chains touching the anode. Our original
polymer DDSC from Fig. 1c has x = 0.35. The supplement describes our
methodology to create all DDSC morphologies for simulation.

As seen in Fig. 6, for small molecule DDSC, FF ranges over
{0.31-0.52} when x varies between {0.02-0.69} and for polymer DDSC
FF ranges over {0.28-0.64} when x varies between {0.05-1.0}. For both
small molecule and polymer DDSCs, FF increases with x consistent with
a linear relationship (dashed line in Fig. 6). The highest FF from this
linear relationship is ~0.7 (x = 1) which is comparable to the FFs of
high performance BHJ OSCs, with past FF reports between {0.60-0.78}
[22,40-42].

An experimental study of vacuum deposition of small molecule do-
nors showed a higher FF between {0.4-0.6} [3,15,43], which agrees
with our kMC small molecule DDSCs when x > 0.2 (2min > 40 nm in
Fig. S8). A molecular dynamics simulation study suggests that vacuum
deposition facilitates donor accumulation on the anode, i.e., similar to
our simulated morphology with higher x [8].

Fig. 6 shows that the fraction of donors in direct contact or proximity
to the anode is a critical factor determining FF. Even when we twist
polymers in Fig. S2, FF still has a linear relation with x because x con-
trols the fraction of holes collected by donors touching the anode which
we show is bias insensitive. However, the relationship between x and FF
is not as strong due to increased recombination in twisted polymers.

6. Conclusion

Using kMC simulations, we explained why small molecule DDSCs
exhibit a low FF and polymer DDSCs have a higher FF. From kMC hole
trajectories we learned holes trapped on localized donors require a
strong electric field to hop from donor—acceptor; otherwise, they will
recombine and not generate photocurrent. In small molecule DDSCs, the
electric field is only strong enough near the anode. We can decrease the
required electric field strength by reducing the donor-acceptor HOMO
offset which shorten the hole donor—acceptor hop time. Holes in
polymer DDSCs do not require a strong electric field because holes
originating deep in the active layer can quickly travel along polymer
chains to the anode for collection.

While most currently investigated DDSCs have low FFs, our results
indicate that by engineering donor materials with a more favorable
donor-acceptor HOMO offset or more intimate donor contact with the
anode will improve FF and may reach values of up to 0.7, being com-
parable to highly efficient BHJ OSCs [42]. Since kMC does not depend
on the chemical nature of the acceptor, our findings should apply to
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Fig. 6. The FF of 24 DDSCs: four small molecule and 20 polymer DDSCs. x is
the fraction of donors touching the anode. For small molecule DDSCs, we
distribute donor sites in a volume between z.,;, and the anode at 50 nm. The
four insets are 3D illustrations of dilute-donor morphologies. Solid circles are
polymer morphologies, and open squares are small molecule morphologies. For
clarity, we labeled each small molecule data point with their respective zmi,
parameter. The dashed line is a linear fit to the polymer data points. All donor
concentrations are at 1 vol%. All HOMO offsets are at 0.4 eV.

DDSCs based on non-fullerene acceptors. Thus, these results motivate
further research towards developing new materials and processing
techniques that can increase FF in DDSCs with high V. and Jg.
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