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Abstract

The accurate incorporation of nuclear quantum effects in large-scale molecular dy-

namics simulations remains a significant challenge. Recently, we combined constrained

nuclear-electronic orbital (CNEO) theory with classical molecular dynamics (MD) and

obtained a new approach (CNEO-MD) that can accurately and efficiently incorpo-

rate nuclear quantum effects in classical simulations. In this Letter, we provide the

theoretical foundation for CNEO-MD by developing an alternative formulation of the

equations of motion for molecular dynamics. In this new formulation, the expectation

values of quantum nuclear coordinates evolve classically on an effective energy surface

that is obtained from a constrained energy minimization procedure when solving for

the quantum nuclear wave function, thus enabling the incorporation of nuclear quan-

tum effects in classical molecular dynamics simulations. For comparison with other

existing approaches, we examined a series of model systems and found that this new

MD approach is significantly more accurate than the conventional way of performing

classical molecular dynamics, and it also generally outperforms centroid molecular dy-

namics and ring-polymer molecular dynamics in describing vibrations in these model

systems.
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Nuclear quantum effects (NQEs)1 have a great impact on the structural, thermody-

namical, and kinetic properties of a wide range of chemical and biological systems.2 They

usually include zero-point and tunneling effects and are significant when light nuclei, such

as hydrogen, are present. The accurate incorporation of NQEs in molecular simulations is

important for understanding many fundamental properties but remains a significant chal-

lenge for large-scale molecular simulations. For example, the anomalous properties of water

are closely related to the NQEs of the complex hydrogen bond network3,4 and thus cannot

be fully explained with conventional classical molecular dynamics (MD) without an accurate

inclusion of NQEs.5

There have been many theoretical developments on the incorporation of NQEs in molec-

ular simulations. Quantum wave packet dynamics is based on the exact time evolution of a

quantum system according to the time-dependent Schrödinger equation and can give theo-

retical predictions that accurately match to experiments.6–10 Quantum trajectory methods11

are based on the de Broglie-Bohm formulation of quantum mechanics,12–17 which attributes

quantum effects to the quantum potential, and with a reasonable approximation to the

quantum potential, quantum trajectory methods have been applied to many model systems

and give accurate results.18,19 Multicomponent quantum theories20–26 also include NQEs by

simultaneously treating both electrons and key nuclei quantum mechanically, which do not

rely on conventional Born-Oppenheimer potential energy surfaces (PESs). Their real-time

dynamics simulations.27–31 can be performed through the quantum time evolution of mul-

ticomponent wave functions or density matrices, which have been used to study practical

chemical problems, such as proton transfer processes.32

Although the aforementioned methods are highly accurate in describing NQEs, they are

often hindered by their high computational costs in large molecular or bulk systems. This

challenge has been partially addressed using methods based on classical simulations. Some

empirical force fields33 have been used to include NQEs implicitly and have been able to treat

hydrogens and deuteriums differently in water.34 Generalized Langevin Equation thermostat
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with optimized parameters is also able to include NQEs and has been applied to obtain sev-

eral static properties.35,36 The semi-classical initial value representation (SC-IVR)37 and its

approximate variants38,39 are also able to produce accurate correlation functions with classi-

cal simulations. Methods based on the path integral formulation of quantum mechanics40,41

are most popular for the inclusion of NQEs. By simultaneously simulating a set of cou-

pled replicas for a system, path integral molecular dynamics (PIMD)42,43 is able to capture

NQEs and accurately describe static properties of the system.44 Its extensions such as cen-

troid molecular dynamics (CMD)45,46 and ring-polymer molecular dynamics (RPMD)47 can

describe dynamical properties using approximate correlation functions. However, while dy-

namical properties from CMD and RPMD are considerably more accurate than those from

conventional MD, challenges still exist with the curvature problem in CMD and spurious

frequencies in RPMD. Both of these problems can lead to unreliable vibrational spectra,48

although several recent developments can mitigate them to some extent, including ther-

mostatted RPMD,49,50 Matsubara dynamics,51 and quasicentroid molecular dynamics.52,53

Furthermore, in contrast with PIMD, which has many techniques developed to make it as

efficient as conventional MD,54–57 currently there are only a limited number of techniques

available58 to accelerate RPMD/CMD simulations other than massive parallelization, and

thus, the efficient simulation of dynamical properties remains a challenge.

In this Letter, we present an alternative formulation of the equations of motion for clas-

sical molecular simulations, with which NQEs can be described using an effective PES that

is in practice approximated by a constrained minimized energy surface (CMES). This for-

mulation serves as the theoretical foundation for our recently developed MD approach based

on constrained nuclear-electronic orbital theory (CNEO-MD). For comparison with existing

approaches, we examine a series of model systems. We first show that CMES-MD remains

exact for the harmonic oscillator model. Then, with a Morse oscillator model and a quartic

double-well potential model, we show that CMES-MD is generally much more accurate in

describing vibrations and tunneling effects than the conventional way of performing classical
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MD and is comparable to or slightly better than CMD and RPMD.

We start with the polar representation of a time-dependent wave function ψ(x, t) =

A(x, t) exp(iS(x, t)/h̄), where the amplitude part A and the phase part S are both real. For

simplicity, we assume in our derivation that there is only one quantum particle, but this

formulation can be easily generalized to multiple quantum particle cases if the particles can

be assumed to be distinguishable, such as nuclei in regular molecular and bulk systems. Ad-

ditionally, we will assume that no magnetic field is present, although we note that magnetic

fields can be important in some occasions and the corresponding formulation can be explored

in the future. With the polar representation, the kinetic energy can be decomposed into two

terms

⟨T̂ ⟩(t) =
∫

dxA(x, t)
(−ih̄∇)2

2m
A(x, t)

+
1

2m

∫
dxA2(x, t)[∇S(x, t)]2. (1)

The first term is the kinetic energy evaluated with the amplitude function A only. Since

A is associated with the real space probability density distribution with ρ(x, t) = A2(x, t),

this term can be perceived as the kinetic energy due to quantum delocalization, or the

zero-point kinetic energy. In the second term, the key quantity ∇S is associated with the

observable momentum and is related to the momentum field in Bohmian mechanics12–17 with

the definition p(x, t) = ∇S(x, t). Since A2(x, t) is the probability density, this term can be

viewed as the kinetic energy associated with the observable momentum p.

We define the variance of the observable momentum as the variance of the momentum

field:

σ2
p(t) ≡

∫
dxA2(x, t)[∇S(x, t)]2 − ⟨p̂⟩2(t), (2)

then the kinetic energy can be further expressed as

⟨T̂ ⟩(t) = ⟨A(t)|T̂ |A(t)⟩+ ⟨p̂⟩2(t)
2m

+
σ2
p(t)

2m
. (3)
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The terms in Eq. 3 correspond to, respectively, the zero-point kinetic energy, the classical

kinetic energy associated with the expectation value of the observable momentum, and an

energy contribution from the variance of the observable momentum field.

Another way of expressing the kinetic energy is simply ⟨T̂ ⟩(t) = ⟨Ĥ⟩(t) − ⟨V̂ ⟩(t), which

can be plugged into the left side of Eq. 3. Then by taking the time derivative on both sides

of the equation, it can be simplified into

⟨p̂⟩
m

· d⟨p̂⟩
dt

=

〈
∂V

∂t

〉
− d

dt
⟨A(t)|Ĥ(t)|A(t)⟩ − d

dt

σ2
p

2m
. (4)

Note that we have used the relationship d⟨Ĥ⟩(t)/ dt = ⟨∂V/∂t⟩ in the derivation. Eq. 4

relates the time dependence of momentum to the time dependence of energetic terms. While

Eq. 4 is exact, in order to make it into an equation of motion that can be practically used in

MD simulations, we next proceed with an approximation that builds a connection between

quantum states and the classical phase space.

Conventionally, when assuming the potential is slowly varying in space, the Ehrenfest

theorem provides a connection between the classical Newtonian dynamics in the phase space

(X,P ) and the evolution of quantum expectation position and momentum (⟨x̂⟩, ⟨p̂⟩). Here

we build on the same mapping philosophy but instead of assuming the behavior of the

potential, we approximate the quantum state as the energy-minimized state for a given

phase space point. That is, when the system is at a particular phase space point given

by an expectation position and an expectation momentum, i.e., (⟨x̂⟩, ⟨p̂⟩) = (X,P ), the

quantum state |ψ⟩ always adapts to the energy-minimized state for that phase space point.

We note that this approximation is an adiabatic approximation and is not trivially justifiable,

however, to keep the flow of the derivation, we leave discussions of its applicability as well

as limitations for the later part of this Letter.

Under this adiabatic approximation, the quantum state |ψ⟩ becomes an explicit function

of (X,P ) and an implicit function of time t, i.e., |ψ⟩(X(t),P (t)). At a particular phase
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space point (X(t),P (t)) that the system evolves to at time t, the state can be obtained with

a constrained energy minimization procedure. The corresponding Lagrangian is

L = ⟨ψ|Ĥ(t)|ψ⟩+ f · (⟨ψ|x̂|ψ⟩ −X(t))

− v · (⟨ψ|p̂|ψ⟩ − P (t))− Ẽ(⟨ψ|ψ⟩ − 1), (5)

where f is the Lagrange multiplier associated with the expectation position, v is the Lagrange

multiplier associated with the expectation momentum, and Ẽ is the Lagrange multiplier

associated with the wave function normalization. This Lagrangian can be further expressed

in terms of A and S by

L = ⟨A|Ĥ(t)|A⟩+ 1

2m

∫
dxA2(∇S)2

+ f · (⟨A|x̂|A⟩ −X(t))− v ·
(∫

dxA2∇S − P (t)

)
− Ẽ(⟨A|A⟩ − 1). (6)

Making the Lagrangian function stationary with respect to the variation of ∇S and A leads

to A2(∇S/m− v) = 0 and

[
Ĥ(t) +

(∇S)2

2m
+ f · x̂− v · ∇S

]
|A⟩ = Ẽ|A⟩. (7)

Further combining these equations with the expectation position constraint, the expectation

momentum constraint, and the normalization constraint gives v = P (t)/m, ∇S(x) = mv =

P (t), then the eigenvalue equation can be simplified to

[Ĥ(t) + f · x̂]|A⟩ =
(
Ẽ +

P 2

2m

)
|A⟩. (8)

The eigenvalue Ẽ+P 2/2m, eigenstate |A⟩, and the Lagrange multiplier f can be solved under

the expectation position and normalization constraints for |A⟩. Note that interestingly, the

8



solution of the amplitude function A only depends on the expectation position constraint,

and the expectation momentum constraint only affects the phase function S.

The fact that the constrained minimization requires ∇S to agree with the expectation

momentum (∇S(x) = P (t)) naturally leads to σ2
p = 0 according to the definition in Eq. 2,

and with the quantum state |A⟩ obtained as an explicit function of X and thus an implicit

function of t, we can simplify Eq. 4 into

⟨p̂⟩
m

· d⟨p̂⟩
dt

≈ −
〈
dA

dt

∣∣∣∣Ĥ(t)

∣∣∣∣A〉−
〈
A

∣∣∣∣Ĥ(t)

∣∣∣∣dAdt
〉

(9)

= −dX

dt
·
[
⟨∇XA|Ĥ(t)|A⟩

+ ⟨A|Ĥ(t)|∇XA⟩
]

(10)

= −⟨p̂⟩
m

· ∇X⟨A|Ĥ(t)|A⟩. (11)

Note that here we have used dX/ dt = d⟨x̂⟩/ dt = ⟨p̂⟩/m. According to classical mechanics,

it is natural to assume that the change of ⟨p̂⟩ should have an opposite direction to the energy

gradient term (∇X⟨A|Ĥ(t)|A⟩), therefore, the common prefactor |⟨p̂⟩|/m can be dropped,

and we arrive at the final expression

d⟨p̂⟩
dt

≈ −∇X⟨A|Ĥ(t)|A⟩ ≡ −∇XV
CMES(X), (12)

where V CMES is the constrained minimized energy surface associated with the amplitude part

|A⟩. It can also be viewed as an effective potential energy surface that includes not only the

potential energy but also the quantum delocalization kinetic energy. Eq. 12, together with

d⟨x̂⟩/ dt = ⟨p̂⟩/m, forms the equations of motion for CMES-MD. These equations of motion

present an alternative way of performing MD simulations but with NQEs incorporated. They

are highly similar in structure to Newton’s equations used in conventional MD simulations,

with the difference that the time evolution is now on the quantum expectation positions and

momenta rather than the classical ones.

9



We note that there have been prior works59–61 that arrived at the same equations of

motion within the framework of Feynman’s path-integral formulation of quantum mechanics.

Within the path-integral framework, the effective potential guides the motion of the ring-

polymer centroid, and is claimed to be equal to the zero-temperature limit of the centroid

potential for CMD.59,60 Therefore it has been used to gain insight into the behavior of CMD.

In our work presented here, with a formal derivation from the conventional formulation of

quantum mechanics, these equations provide a new way of performing classical molecular

simulations with the effective potential utilized to guide the classical motion of the quantum

expectation values.

Additionally, we note that this formulation serves as the theoretical foundation for our re-

cently published work of CNEO-MD,62 in which constrained nuclear electronic orbital density

functional theory (CNEO-DFT)63–65 is employed to obtain CMESs for practical molecular

systems and used for MD simulations. CNEO-MD is a generalization of CMES-MD when

the electronic part is also explicitly considered in the energy minimization procedure. More

detailed derivation on their connections can be found in Section S3 of the Supporting Infor-

mation. With a series of gas phase molecules, we have demonstrated the excellent agreement

between the CNEO-MD vibrational spectra and the experimental spectra.62 Specifically for

highly anharmonic O–H and C–H stretching modes, CNEO-MD significantly outperforms

conventional DFT-based ab initio molecular dynamics, with errors in peak positions reduced

by one order of magnitude, but at essentially the same computational cost.

For comparison with other existing approaches, herein, we investigate the model systems

of a harmonic oscillator, a Morse oscillator and a quartic double-well potential. These model

systems are chosen because they have easily accessible exact quantum solutions, avoid er-

rors associated with real systems such as electron correlations, and are affordable for CMD

and RPMD simulations. For these model systems, we scan a set of discrete f values in

Eq. 8 to solve for the CMESs. Specifically, for each f , the constrained eigenvalue equation

is solved numerically on a grid and the energy as a function of the corresponding nuclear
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expectation position is obtained. Afterwards, the energies as well as the gradients at arbi-

trary expectation positions are obtained by cubic spline interpolation during the dynamics

simulations. We note that for multi-dimensional models and practical chemical systems, this

way of constructing CMES becomes computationally expensive. Fortunately, in practical

systems, CNEO-DFT63,64 minimizes the total energy of a system with nuclear expectation

position constraints and therefore can be used to calculate the CMES on the fly. This current

work will focus more on building the theoretical foundation and exploring the strengths and

limitations of CMES-MD with the help of the simple models.

In our practical model calculations, classical MD and CMES-MD are performed with an

in-house python script. Note that throughout the Letter, by conventional MD or classical

MD we mean classical molecular simulations based on a Boltzmann sampling of the initial

velocity according to the designated temperature and evolving with classical Newtonian

equations. We are aware that there exist other methods such as quasi-classical MD 66 and

SC-IVR37–39 that are able to include zero-point effects in classical simulations, but they are

not referred to as classical MD or conventional MD in this Letter. The total simulation time

of all conventional MD and CMES-MD simulations is chosen to be 50 ps, and the trajectories

are integrated using the velocity-Verlet algorithm with a time step of 0.5 fs. RPMD and CMD

simulations on these one-dimensional models are performed with a modified i-PI package.67

Specifically, a 30 ps PIMD trajectory with 0.1 fs time step is first calculated and used to

generate initial configurations for RPMD and CMD. Then RPMD and CMD are performed

with a simulation length of 10 ps. For RPMD, the time step is set to 0.1 fs, and for CMD, the

time step is 0.003125 fs, and the data are recorded every 0.1 fs. For the Morse oscillator model,

RPMD and CMD both use 64 beads in simulations with T = 50K, 32 beads in simulations

with T = 300K, and 16 beads in simulations with T = 1500K. For the double-well potential

model, the corresponding bead numbers are 128 for T = 50K, 64 for T = 100K, and 32

for T = 1500K. We perform 1000 NV E simulations whose initial configurations satisfy the

Maxwell-Boltzmann distribution to obtain an NV T ensemble average for classical MD and
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CMES-MD, however, this number is reduced to 50 for RPMD and 30 for CMD to limit the

computational cost. After the simulations, the trajectories are used to generate correlation

functions. In data processing, a correlation depth of 4096 points is used for MD and CMES-

MD. For RPMD and CMD, a larger depth of 16384 points is used because of the shorter time

step used. Power spectra are obtained via Fourier transforms of the corresponding velocity

autocorrelation functions. They are then averaged to get the NV T ensemble-averaged power

spectra for each method. The intensities of the averaged power spectra are finally adjusted

so that they integrate to a number that is proportional to the simulation temperature.

Figure 1: Comparison between the potential energy surface (PES) and constrained minimized
energy surface (CMES) for the harmonic oscillator model (left), the Morse oscillator model
(middle), and the double-well potential model (right).

The harmonic oscillator Ĥ = p̂2/2m+mω2 (x̂− xe)
2 /2 is one particular model for which

classical MD gives the same trajectory as the exact quantum theory. CMD and RPMD are

also exact for this model system. For CMES-MD, since Ĥ + fx̂ represents the harmonic

oscillator with shifted energy and shifted position based on the value of f , the constrained

minimized energy state |A⟩ for any expectation position ⟨x̂⟩ = X is the ground state wave

function of Ĥ shifted to the expectation position ⟨x̂⟩ = X. Therefore, the corresponding
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energy surface as a function of the expectation position X is

V CMES(X) =
h̄ω

2
+

1

2
mω2 (X − xe)

2 . (13)

This effective potential universally shifts the original harmonic potential upwards by h̄ω/2,

which is the zero-point energy for a harmonic oscillator (Fig. 1). This result may seem

counterintuitive since conventionally ZPE is considered to be a property of the whole energy

surface rather than a point-wise property, however, we note that here the ZPE should be

more accurately considered as a quantum delocalization energy, which always exists as the

quantum wave packet travels through space. Since classical MD produces the exact trajectory

on the harmonic potential, the trajectory produced by CMES-MD on V CMES is also exact

without any need for numerical tests.

Compared with the harmonic potential, the Morse potential is a better model for chemi-

cal bonds with anharmonic effects. Here we use a Morse potential that can mimic the stretch

of the O–H radical and perform simulations using classical MD, CMES-MD, RPMD, and

CMD. Fig. 2 shows the velocity autocorrelation functions and the corresponding power spec-

tra of these methods at three different temperatures. The exact quantum results are used

as references, which are obtained from the analytical solution of the Morse potential. Com-

pared with the Kubo-transformed quantum velocity autocorrelation function, 68 classical MD

underestimates the period of the correlation function and therefore severely overestimates

the vibrational frequency. RPMD and CMD can more accurately describe the correlation

function and their overestimations of the vibrational frequencies are significantly smaller.

CMES-MD has the best performance with good agreement with the exact quantum corre-

lation functions and more accurate vibrational frequencies. The good result of CMES-MD

at relatively low temperatures are not surprising since CNEO-MD has been known to give

accurate vibrational spectra at room temperature,62 and vibrational frequencies obtained

from CNEO-DFT Hessian calculations are also in great agreement with experimental val-
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Figure 2: Velocity autocorrelation functions Kvv and power spectra of the Morse oscillator
mimicking the 16O1H radical at 50K (upper), 300K (middle) and 1500K (lower). The
potential form is V (x) = De(e

−2α(x−xe) − 2e−α(x−xe)), where De = hcω2
e/4ωeχe and α =√

2µhcωeχe/h̄
2. All the parameters are the same as those used in Ref. 49, with ωe =

3737.76 cm−1, ωeχe = 84.881 cm−1, and xe = 0.96966 Å. The dashed vertical line represents
the exact quantum frequency 3568 cm−1. Two spikes below the quantum frequency in the
RPMD 1500K spectrum are due to insufficient sampling.
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ues, indicating a good zero-temperature limit.65 As the temperature increases, CMES-MD

and other simulation methods start to have broader and red-shifted peaks. For this Morse

potential, we observe that CMES-MD produces accurate spectra for a temperature range

between 50K and 1500K, suggesting the reliability of CMES-MD in the temperature range

that most chemical and biophysical reactions are performed at.

Next we investigate a more challenging double-well potential model, in which quantum

tunneling is expected to occur. We use a quartic double-well potential with a 0.125 eV barrier

height and a 0.5 Å separation between the potential minima, which can roughly represent

the potential energy landscape for a practical proton transfer reaction. As shown in Fig. 1,

the CMES of this double-well potential is a single well with the minimum located at X = 0

due to the symmetrical shape of the ground state wave function with two peaks, whose

expectation position is at ⟨x̂⟩ = 0. As the constrained expectation position deviates from

the center, the constrained minimized wave function becomes less symmetrical with more

and more excited state characters mixed in, thus increasing the energy and forming a single-

well effective potential. Note that this picture has also been observed in previous literature

when investigating the zero-temperature limit of CMD.59,60

On this single-well effective potential, the quantum expectation position moves smoothly

between left and right as if the barrier does not exist. This is qualitatively in agreement

with the quantum picture, in which the wave function can tunnel back and forth through

the barrier with a smooth oscillation for the quantum expectation position. This physi-

cal picture can be further quantitatively verified by the agreement between the tunneling

frequency by CMES-MD and the exact quantum tunneling frequency (Fig. 3). At low tem-

peratures, classical MD simulations are all trapped in the local minima of the double-well

and give position autocorrelation functions that are not vertically centered at zero and a

highly overestimated vibrational frequency that is close to the second order derivative at the

local minimum, indicating the failure of classical MD in describing tunneling effects. The

two path-integral methods show significant differences in the double-well potential model,
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Figure 3: Position autocorrelation function Kxx and power spectrum of a proton in the
double-well potential at 50K (upper), 100K (middle) and 1500K (lower). The potential

form is V (x) = ax2 + bx4, where a = −4 eV/Å
2
and b = 32 eV/Å

4
. The dashed vertical

line represents the exact quantum frequency 382 cm−1. Multiple spikes in the RPMD 1500K
spectrum are due to insufficient sampling.
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as CMD gives good autocorrelation functions and predicts a relatively sharp peak with an

accurate tunneling frequency, whereas RPMD suffers from a fast decay of the correlation

function69 and a broad peak that smears over a range of nearly 2000 cm−1. CMES-MD is

similar to CMD with a slightly overestimated tunneling frequency. As the temperature in-

creases, classical MD shows redshifts in the peak positions, and CMES-MD and CMD see

blueshifts. At 1500K, all simulation methods behave very similarly with broad peaks that

maximize at around 1300-1500 cm−1. All of these results show that CMES-MD performs

reasonably well in describing the dynamics in the double-well potential.

We note that quasi-classical MD66 can be another way to include zero-point effects in

classical simulations and can well describe the vibrational frequency of a Morse potential

with an appropriate initial energy. However, there are several known issues related to it.

For example, it can lead to zero-point energy leakage, where the excess energy of one high-

frequency mode may flow to a low-frequency one, sometimes leading to unphysical molecular

dissociations.70,71 Moreover, this method requires the calculation of harmonic frequencies to

approximate zero-point energies, which can be problematic if the potential is highly anhar-

monic. One example is that in the double-well potential, the zero-point energy obtained

from the harmonic approximation will be highly inaccurate, and like the classical MD case,

the particle may still become trapped in either side of the well if the classical barrier is higher

than the zero-point energy. In contrast, CMES-MD and path-integral based methods will

not suffer from these problems.

In principle, the effective potential energy surfaces in MD simulations should be temperature-

dependent to fully account for nuclear quantum effects. However, although CMES is a

temperature-independent effective potential, we observe good performance of CMES-MD

over a relatively large temperature range. This suggests that the adiabatic approximation

that in essence assumes that the quantum state adapts its wave function to the lowest-energy

state for a particular phase space point is reasonable. Nevertheless, it is possible that when

the temperature is high and the particle is moving fast, the wave function may not adapt
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fast enough to the constrained minimized wave function, thus breaking the adiabatic approx-

imation. Therefore, we expect CMES-MD to be more accurate at low temperatures relative

to the mode frequency. Fortunately, for most vibrational modes, the room temperature is

still considered low temperature, and therefore CMES-MD can be accurate in a good range

of temperatures typically investigated by chemical physicists and biophysicists.

Similarly to conventional MD, the classical treatment brings not only efficiency but also

some limitations. For example, quantum coherence is missing, which is reflected by a de-

creasing amplitude of the correlation function (Fig. 3). Heat capacities will not approach

zero when T → 0K due to the loss of the energy quantization picture. Furthermore, classical

dynamics with distinguishable particles is incapable of capturing the exchange effect, which

is important in systems with heavily packed particles, such as in a Bose-Einstein conden-

sate.72,73 Although detailed studies of these possible limitations are beyond the scope of the

current work, they are important topics for our future research for better understanding the

applicabilities of CMES-MD. We finally note that due to the similarity between CMES-MD

and conventional classical MD, in practical systems, we can expect analytical force field

models or even machine-learning force fields (ML-FFs)74 to be built based on the CMES,

which will allow for an even more efficient incorporation of NQEs in MD simulations.

In summary, we provide a new framework for incorporating NQEs in classical molec-

ular simulations. This is achieved through the calculation of the CMES, which serves as

the effective potential for classical simulations. In CMES-MD, quantum delocalization and

tunneling effects are inherently included and therefore dynamical vibrational frequencies can

be accurately described. In simulations of practical systems, CNEO-DFT can be used to

obtain the CMES and the resulting CNEO-MD is vastly more computationally efficient than

conventional ways of including NQEs based on ab initio PESs. It may be further acceler-

ated when combined with modern machine-learning techniques in future developments. As

such, CMES/CNEO-MD is a promising new approach to describe NQEs in larger and more

complex systems, which will open the door to broader applications.
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