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Abstract

The accurate incorporation of nuclear quantum effects in large-scale molecular dy-
namics simulations remains a significant challenge. Recently, we combined constrained
nuclear-electronic orbital (CNEO) theory with classical molecular dynamics (MD) and
obtained a new approach (CNEO-MD) that can accurately and efficiently incorpo-
rate nuclear quantum effects in classical simulations. In this Letter, we provide the
theoretical foundation for CNEO-MD by developing an alternative formulation of the
equations of motion for molecular dynamics. In this new formulation, the expectation
values of quantum nuclear coordinates evolve classically on an effective energy surface
that is obtained from a constrained energy minimization procedure when solving for
the quantum nuclear wave function, thus enabling the incorporation of nuclear quan-
tum effects in classical molecular dynamics simulations. For comparison with other
existing approaches, we examined a series of model systems and found that this new
MD approach is significantly more accurate than the conventional way of performing
classical molecular dynamics, and it also generally outperforms centroid molecular dy-
namics and ring-polymer molecular dynamics in describing vibrations in these model

Systems.
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Nuclear quantum effects (NQEs)! have a great impact on the structural, thermody-
namical, and kinetic properties of a wide range of chemical and biological systems.? They
usually include zero-point and tunneling effects and are significant when light nuclei, such
as hydrogen, are present. The accurate incorporation of NQEs in molecular simulations is
important for understanding many fundamental properties but remains a significant chal-
lenge for large-scale molecular simulations. For example, the anomalous properties of water
are closely related to the NQEs of the complex hydrogen bond network?®* and thus cannot
be fully explained with conventional classical molecular dynamics (MD) without an accurate
inclusion of NQEs.?

There have been many theoretical developments on the incorporation of NQEs in molec-
ular simulations. Quantum wave packet dynamics is based on the exact time evolution of a
quantum system according to the time-dependent Schrodinger equation and can give theo-
retical predictions that accurately match to experiments. %1% Quantum trajectory methods!!
are based on the de Broglie-Bohm formulation of quantum mechanics, ' 7 which attributes
quantum effects to the quantum potential, and with a reasonable approximation to the
quantum potential, quantum trajectory methods have been applied to many model systems
and give accurate results. '®!? Multicomponent quantum theories?° 26 also include NQEs by
simultaneously treating both electrons and key nuclei quantum mechanically, which do not
rely on conventional Born-Oppenheimer potential energy surfaces (PESs). Their real-time

2731 can be performed through the quantum time evolution of mul-

dynamics simulations.
ticomponent wave functions or density matrices, which have been used to study practical
chemical problems, such as proton transfer processes. 3

Although the aforementioned methods are highly accurate in describing NQEs, they are
often hindered by their high computational costs in large molecular or bulk systems. This
challenge has been partially addressed using methods based on classical simulations. Some

empirical force fields®? have been used to include NQEs implicitly and have been able to treat

hydrogens and deuteriums differently in water.3* Generalized Langevin Equation thermostat



with optimized parameters is also able to include NQEs and has been applied to obtain sev-
eral static properties. 3536 The semi-classical initial value representation (SC-IVR)3" and its

38,39

approximate variants are also able to produce accurate correlation functions with classi-

cal simulations. Methods based on the path integral formulation of quantum mechanics %4
are most popular for the inclusion of NQEs. By simultaneously simulating a set of cou-

42,43 is able to capture

pled replicas for a system, path integral molecular dynamics (PIMD)
NQEs and accurately describe static properties of the system.** Its extensions such as cen-
troid molecular dynamics (CMD)*¢ and ring-polymer molecular dynamics (RPMD)*" can
describe dynamical properties using approximate correlation functions. However, while dy-
namical properties from CMD and RPMD are considerably more accurate than those from
conventional MD, challenges still exist with the curvature problem in CMD and spurious
frequencies in RPMD. Both of these problems can lead to unreliable vibrational spectra,®®
although several recent developments can mitigate them to some extent, including ther-
mostatted RPMD,*%50 Matsubara dynamics,®" and quasicentroid molecular dynamics. %25
Furthermore, in contrast with PIMD, which has many techniques developed to make it as
efficient as conventional MD,** 7 currently there are only a limited number of techniques
available®® to accelerate RPMD/CMD simulations other than massive parallelization, and
thus, the efficient simulation of dynamical properties remains a challenge.

In this Letter, we present an alternative formulation of the equations of motion for clas-
sical molecular simulations, with which NQEs can be described using an effective PES that
is in practice approximated by a constrained minimized energy surface (CMES). This for-
mulation serves as the theoretical foundation for our recently developed MD approach based
on constrained nuclear-electronic orbital theory (CNEO-MD). For comparison with existing
approaches, we examine a series of model systems. We first show that CMES-MD remains
exact for the harmonic oscillator model. Then, with a Morse oscillator model and a quartic

double-well potential model, we show that CMES-MD is generally much more accurate in

describing vibrations and tunneling effects than the conventional way of performing classical



MD and is comparable to or slightly better than CMD and RPMD.

We start with the polar representation of a time-dependent wave function i (x,t) =
A(z,t) exp(iS(x,t)/h), where the amplitude part A and the phase part S are both real. For
simplicity, we assume in our derivation that there is only one quantum particle, but this
formulation can be easily generalized to multiple quantum particle cases if the particles can
be assumed to be distinguishable, such as nuclei in regular molecular and bulk systems. Ad-
ditionally, we will assume that no magnetic field is present, although we note that magnetic
fields can be important in some occasions and the corresponding formulation can be explored
in the future. With the polar representation, the kinetic energy can be decomposed into two

terms
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The first term is the kinetic energy evaluated with the amplitude function A only. Since
A is associated with the real space probability density distribution with p(x,t) = A%(x, 1),
this term can be perceived as the kinetic energy due to quantum delocalization, or the
zero-point kinetic energy. In the second term, the key quantity V.S is associated with the
observable momentum and is related to the momentum field in Bohmian mechanics 7 with
the definition p(x,t) = V.S(x,t). Since A*(x,t) is the probability density, this term can be
viewed as the kinetic energy associated with the observable momentum p.

We define the variance of the observable momentum as the variance of the momentum

field:
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then the kinetic energy can be further expressed as
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The terms in Eq. 3 correspond to, respectively, the zero-point kinetic energy, the classical
kinetic energy associated with the expectation value of the observable momentum, and an
energy contribution from the variance of the observable momentum field.

Another way of expressing the kinetic energy is simply (T')(t) = (H)(t) — (V)(t), which
can be plugged into the left side of Eq. 3. Then by taking the time derivative on both sides
of the equation, it can be simplified into
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Note that we have used the relationship d(H)(t)/dt = (OV/dt) in the derivation. Eq. 4
relates the time dependence of momentum to the time dependence of energetic terms. While
Eq. 4 is exact, in order to make it into an equation of motion that can be practically used in
MD simulations, we next proceed with an approximation that builds a connection between
quantum states and the classical phase space.

Conventionally, when assuming the potential is slowly varying in space, the Ehrenfest
theorem provides a connection between the classical Newtonian dynamics in the phase space
(X, P) and the evolution of quantum expectation position and momentum ((&), (p)). Here
we build on the same mapping philosophy but instead of assuming the behavior of the
potential, we approximate the quantum state as the energy-minimized state for a given
phase space point. That is, when the system is at a particular phase space point given
by an expectation position and an expectation momentum, i.e., ({€), (p)) = (X, P), the
quantum state |¢) always adapts to the energy-minimized state for that phase space point.
We note that this approximation is an adiabatic approximation and is not trivially justifiable,
however, to keep the flow of the derivation, we leave discussions of its applicability as well
as limitations for the later part of this Letter.

Under this adiabatic approximation, the quantum state |¢)) becomes an explicit function

of (X, P) and an implicit function of time ¢, i.e., |)(X (t), P(t)). At a particular phase



space point (X (t), P(t)) that the system evolves to at time ¢, the state can be obtained with

a constrained energy minimization procedure. The corresponding Lagrangian is

L= WH)W) + f- (Y]2]) — X (1))
—v- ((¥[ply) — P(t)) — E((p) — 1), (5)

where f is the Lagrange multiplier associated with the expectation position, v is the Lagrange
multiplier associated with the expectation momentum, and E is the Lagrange multiplier
associated with the wave function normalization. This Lagrangian can be further expressed

in terms of A and S by
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Making the Lagrangian function stationary with respect to the variation of V.S and A leads

to A?2(VS/m —v) =0 and
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Further combining these equations with the expectation position constraint, the expectation
momentum constraint, and the normalization constraint gives v = P(t)/m, V.S(x) = mv =
P(t), then the eigenvalue equation can be simplified to
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The eigenvalue E+P2/2m, eigenstate |A), and the Lagrange multiplier f can be solved under

the expectation position and normalization constraints for |A). Note that interestingly, the



solution of the amplitude function A only depends on the expectation position constraint,
and the expectation momentum constraint only affects the phase function S.

The fact that the constrained minimization requires V.S to agree with the expectation
momentum (V.S(x) = P(t)) naturally leads to o5 = 0 according to the definition in Eq. 2,
and with the quantum state |A) obtained as an explicit function of X and thus an implicit

function of ¢, we can simplify Eq. 4 into

m dt
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Note that here we have used dX /dt = d(z)/dt = (p)/m. According to classical mechanics,
it is natural to assume that the change of (p) should have an opposite direction to the energy
gradient term (Vx (A|H(t)|A)), therefore, the common prefactor |(p)|/m can be dropped,
and we arrive at the final expression

d(p)
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VEMES ig the constrained minimized energy surface associated with the amplitude part

where
|A). It can also be viewed as an effective potential energy surface that includes not only the
potential energy but also the quantum delocalization kinetic energy. Eq. 12, together with
d(x)/ dt = (p)/m, forms the equations of motion for CMES-MD. These equations of motion
present an alternative way of performing MD simulations but with NQEs incorporated. They
are highly similar in structure to Newton’s equations used in conventional MD simulations,

with the difference that the time evolution is now on the quantum expectation positions and

momenta rather than the classical ones.



We note that there have been prior works® %' that arrived at the same equations of
motion within the framework of Feynman’s path-integral formulation of quantum mechanics.
Within the path-integral framework, the effective potential guides the motion of the ring-
polymer centroid, and is claimed to be equal to the zero-temperature limit of the centroid
potential for CMD.??° Therefore it has been used to gain insight into the behavior of CMD.
In our work presented here, with a formal derivation from the conventional formulation of
quantum mechanics, these equations provide a new way of performing classical molecular
simulations with the effective potential utilized to guide the classical motion of the quantum
expectation values.

Additionally, we note that this formulation serves as the theoretical foundation for our re-
cently published work of CNEO-MD, ? in which constrained nuclear electronic orbital density
functional theory (CNEO-DFT)® % is employed to obtain CMESs for practical molecular
systems and used for MD simulations. CNEO-MD is a generalization of CMES-MD when
the electronic part is also explicitly considered in the energy minimization procedure. More
detailed derivation on their connections can be found in Section S3 of the Supporting Infor-
mation. With a series of gas phase molecules, we have demonstrated the excellent agreement
between the CNEO-MD vibrational spectra and the experimental spectra.5? Specifically for
highly anharmonic O—H and C—H stretching modes, CNEO-MD significantly outperforms
conventional DFT-based ab initio molecular dynamics, with errors in peak positions reduced
by one order of magnitude, but at essentially the same computational cost.

For comparison with other existing approaches, herein, we investigate the model systems
of a harmonic oscillator, a Morse oscillator and a quartic double-well potential. These model
systems are chosen because they have easily accessible exact quantum solutions, avoid er-
rors associated with real systems such as electron correlations, and are affordable for CMD
and RPMD simulations. For these model systems, we scan a set of discrete f values in
Eq. 8 to solve for the CMESs. Specifically, for each f, the constrained eigenvalue equation

is solved numerically on a grid and the energy as a function of the corresponding nuclear
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expectation position is obtained. Afterwards, the energies as well as the gradients at arbi-
trary expectation positions are obtained by cubic spline interpolation during the dynamics
simulations. We note that for multi-dimensional models and practical chemical systems, this
way of constructing CMES becomes computationally expensive. Fortunately, in practical
systems, CNEO-DFT %% minimizes the total energy of a system with nuclear expectation
position constraints and therefore can be used to calculate the CMES on the fly. This current
work will focus more on building the theoretical foundation and exploring the strengths and
limitations of CMES-MD with the help of the simple models.

In our practical model calculations, classical MD and CMES-MD are performed with an
in-house python script. Note that throughout the Letter, by conventional MD or classical
MD we mean classical molecular simulations based on a Boltzmann sampling of the initial
velocity according to the designated temperature and evolving with classical Newtonian
equations. We are aware that there exist other methods such as quasi-classical MD%® and
SC-IVR373 that are able to include zero-point effects in classical simulations, but they are
not referred to as classical MD or conventional MD in this Letter. The total simulation time
of all conventional MD and CMES-MD simulations is chosen to be 50 ps, and the trajectories
are integrated using the velocity-Verlet algorithm with a time step of 0.5 fs. RPMD and CMD
simulations on these one-dimensional models are performed with a modified i-PI package. "
Specifically, a 30ps PIMD trajectory with 0.1fs time step is first calculated and used to
generate initial configurations for RPMD and CMD. Then RPMD and CMD are performed
with a simulation length of 10 ps. For RPMD, the time step is set to 0.1 fs, and for CMD, the
time step is 0.003125 fs, and the data are recorded every 0.1 fs. For the Morse oscillator model,
RPMD and CMD both use 64 beads in simulations with 7" = 50 K, 32 beads in simulations
with T'= 300 K, and 16 beads in simulations with 7" = 1500 K. For the double-well potential
model, the corresponding bead numbers are 128 for 7' = 50K, 64 for T" = 100K, and 32
for T'= 1500 K. We perform 1000 NV E simulations whose initial configurations satisfy the

Maxwell-Boltzmann distribution to obtain an NV'T ensemble average for classical MD and
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CMES-MD, however, this number is reduced to 50 for RPMD and 30 for CMD to limit the
computational cost. After the simulations, the trajectories are used to generate correlation
functions. In data processing, a correlation depth of 4096 points is used for MD and CMES-
MD. For RPMD and CMD, a larger depth of 16384 points is used because of the shorter time
step used. Power spectra are obtained via Fourier transforms of the corresponding velocity
autocorrelation functions. They are then averaged to get the NVT" ensemble-averaged power
spectra for each method. The intensities of the averaged power spectra are finally adjusted

so that they integrate to a number that is proportional to the simulation temperature.
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Figure 1: Comparison between the potential energy surface (PES) and constrained minimized
energy surface (CMES) for the harmonic oscillator model (left), the Morse oscillator model
(middle), and the double-well potential model (right).

The harmonic oscillator H = p?/2m +mw? (& — x.)* /2 is one particular model for which
classical MD gives the same trajectory as the exact quantum theory. CMD and RPMD are
also exact for this model system. For CMES-MD, since H+ fZ represents the harmonic
oscillator with shifted energy and shifted position based on the value of f, the constrained
minimized energy state |A) for any expectation position (Z) = X is the ground state wave

function of H shifted to the expectation position () = X. Therefore, the corresponding
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energy surface as a function of the expectation position X is

1
VOMES (X)) = h7w + §mw2 (X —z)°. (13)

This effective potential universally shifts the original harmonic potential upwards by hw/2,
which is the zero-point energy for a harmonic oscillator (Fig. 1). This result may seem
counterintuitive since conventionally ZPE is considered to be a property of the whole energy
surface rather than a point-wise property, however, we note that here the ZPE should be
more accurately considered as a quantum delocalization energy, which always exists as the
quantum wave packet travels through space. Since classical MD produces the exact trajectory

VOMES g also exact

on the harmonic potential, the trajectory produced by CMES-MD on
without any need for numerical tests.

Compared with the harmonic potential, the Morse potential is a better model for chemi-
cal bonds with anharmonic effects. Here we use a Morse potential that can mimic the stretch
of the O—H radical and perform simulations using classical MD, CMES-MD, RPMD, and
CMD. Fig. 2 shows the velocity autocorrelation functions and the corresponding power spec-
tra of these methods at three different temperatures. The exact quantum results are used
as references, which are obtained from the analytical solution of the Morse potential. Com-
pared with the Kubo-transformed quantum velocity autocorrelation function, % classical MD
underestimates the period of the correlation function and therefore severely overestimates
the vibrational frequency. RPMD and CMD can more accurately describe the correlation
function and their overestimations of the vibrational frequencies are significantly smaller.
CMES-MD has the best performance with good agreement with the exact quantum corre-
lation functions and more accurate vibrational frequencies. The good result of CMES-MD
at relatively low temperatures are not surprising since CNEO-MD has been known to give

accurate vibrational spectra at room temperature,®® and vibrational frequencies obtained

from CNEO-DFT Hessian calculations are also in great agreement with experimental val-

13



w

50 K

D £

" 025\ l\ S

] ! 2 -

:: = Quantum —~ = Quantum
(]

<|3 0.00 [ —e= Classical 'g = (lassical

- - = RPMD £ 1L — RPMD

~ o

- —0.25F == CMD £ — CMD
o —— CMES < | — cMEsS
- 1 ha-d 0
0 10 3400

0 10 20 30 40 03700 3600 3300
15
0
5
o 10 20 30 40 03400 3600 3800
Time / fs Wavenumber / cm~!

Figure 2: Velocity autocorrelation functions K,, and power spectra of the Morse oscillator
mimicking the 'O'H radical at 50K (upper), 300K (middle) and 1500K (lower). The
potential form is V(z) = D,(e 2*(==%) — 2e=*(*=¢)) where D, = hcw?/4w.xe and a =
\/2phcwexe/h?.  All the parameters are the same as those used in Ref. 49, with w, =
3737.76 cm™!, weye = 84.881cm ™!, and z. = 0.96966 A. The dashed vertical line represents
the exact quantum frequency 3568 cm™!. Two spikes below the quantum frequency in the
RPMD 1500 K spectrum are due to insufficient sampling.
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ues, indicating a good zero-temperature limit.% As the temperature increases, CMES-MD
and other simulation methods start to have broader and red-shifted peaks. For this Morse
potential, we observe that CMES-MD produces accurate spectra for a temperature range
between 50 K and 1500 K, suggesting the reliability of CMES-MD in the temperature range
that most chemical and biophysical reactions are performed at.

Next we investigate a more challenging double-well potential model, in which quantum
tunneling is expected to occur. We use a quartic double-well potential with a 0.125 eV barrier
height and a 0.5 A separation between the potential minima, which can roughly represent
the potential energy landscape for a practical proton transfer reaction. As shown in Fig. 1,
the CMES of this double-well potential is a single well with the minimum located at X =0
due to the symmetrical shape of the ground state wave function with two peaks, whose
expectation position is at () = 0. As the constrained expectation position deviates from
the center, the constrained minimized wave function becomes less symmetrical with more
and more excited state characters mixed in, thus increasing the energy and forming a single-
well effective potential. Note that this picture has also been observed in previous literature
when investigating the zero-temperature limit of CMD. 5%-60

On this single-well effective potential, the quantum expectation position moves smoothly
between left and right as if the barrier does not exist. This is qualitatively in agreement
with the quantum picture, in which the wave function can tunnel back and forth through
the barrier with a smooth oscillation for the quantum expectation position. This physi-
cal picture can be further quantitatively verified by the agreement between the tunneling
frequency by CMES-MD and the exact quantum tunneling frequency (Fig. 3). At low tem-
peratures, classical MD simulations are all trapped in the local minima of the double-well
and give position autocorrelation functions that are not vertically centered at zero and a
highly overestimated vibrational frequency that is close to the second order derivative at the
local minimum, indicating the failure of classical MD in describing tunneling effects. The

two path-integral methods show significant differences in the double-well potential model,
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Figure 3: Position autocorrelation function K,, and power spectrum of a proton in the
double-well potential at 50 K (upper), 100 K (middle) and 1500 K (lower). The potential
form is V(z) = az? + bz*, where a = —4 eV/A2 and b = 32 eV/A4. The dashed vertical
line represents the exact quantum frequency 382 cm™=!. Multiple spikes in the RPMD 1500 K
spectrum are due to insufficient sampling.
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as CMD gives good autocorrelation functions and predicts a relatively sharp peak with an
accurate tunneling frequency, whereas RPMD suffers from a fast decay of the correlation
function® and a broad peak that smears over a range of nearly 2000cm—. CMES-MD is
similar to CMD with a slightly overestimated tunneling frequency. As the temperature in-
creases, classical MD shows redshifts in the peak positions, and CMES-MD and CMD see
blueshifts. At 1500 K, all simulation methods behave very similarly with broad peaks that
maximize at around 1300-1500cm~!. All of these results show that CMES-MD performs
reasonably well in describing the dynamics in the double-well potential.

We note that quasi-classical MD% can be another way to include zero-point effects in
classical simulations and can well describe the vibrational frequency of a Morse potential
with an appropriate initial energy. However, there are several known issues related to it.
For example, it can lead to zero-point energy leakage, where the excess energy of one high-
frequency mode may flow to a low-frequency one, sometimes leading to unphysical molecular
dissociations. ™>™' Moreover, this method requires the calculation of harmonic frequencies to
approximate zero-point energies, which can be problematic if the potential is highly anhar-
monic. One example is that in the double-well potential, the zero-point energy obtained
from the harmonic approximation will be highly inaccurate, and like the classical MD case,
the particle may still become trapped in either side of the well if the classical barrier is higher
than the zero-point energy. In contrast, CMES-MD and path-integral based methods will
not suffer from these problems.

In principle, the effective potential energy surfaces in MD simulations should be temperature-
dependent to fully account for nuclear quantum effects. However, although CMES is a
temperature-independent effective potential, we observe good performance of CMES-MD
over a relatively large temperature range. This suggests that the adiabatic approximation
that in essence assumes that the quantum state adapts its wave function to the lowest-energy
state for a particular phase space point is reasonable. Nevertheless, it is possible that when

the temperature is high and the particle is moving fast, the wave function may not adapt
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fast enough to the constrained minimized wave function, thus breaking the adiabatic approx-
imation. Therefore, we expect CMES-MD to be more accurate at low temperatures relative
to the mode frequency. Fortunately, for most vibrational modes, the room temperature is
still considered low temperature, and therefore CMES-MD can be accurate in a good range
of temperatures typically investigated by chemical physicists and biophysicists.

Similarly to conventional MD, the classical treatment brings not only efficiency but also
some limitations. For example, quantum coherence is missing, which is reflected by a de-
creasing amplitude of the correlation function (Fig. 3). Heat capacities will not approach
zero when T' — 0 K due to the loss of the energy quantization picture. Furthermore, classical
dynamics with distinguishable particles is incapable of capturing the exchange effect, which
is important in systems with heavily packed particles, such as in a Bose-Einstein conden-
sate.”™7™ Although detailed studies of these possible limitations are beyond the scope of the
current work, they are important topics for our future research for better understanding the
applicabilities of CMES-MD. We finally note that due to the similarity between CMES-MD
and conventional classical MD, in practical systems, we can expect analytical force field
models or even machine-learning force fields (ML-FFs)™ to be built based on the CMES,
which will allow for an even more efficient incorporation of NQEs in MD simulations.

In summary, we provide a new framework for incorporating NQEs in classical molec-
ular simulations. This is achieved through the calculation of the CMES, which serves as
the effective potential for classical simulations. In CMES-MD, quantum delocalization and
tunneling effects are inherently included and therefore dynamical vibrational frequencies can
be accurately described. In simulations of practical systems, CNEO-DFT can be used to
obtain the CMES and the resulting CNEO-MD is vastly more computationally efficient than
conventional ways of including NQEs based on ab initio PESs. It may be further acceler-
ated when combined with modern machine-learning techniques in future developments. As
such, CMES/CNEO-MD is a promising new approach to describe NQEs in larger and more

complex systems, which will open the door to broader applications.
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