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Abstract

The modeling and interpretation of vibrational spectra are crucial for studying

reaction dynamics using vibrational spectroscopy. Most prior theoretical developments

focused on describing fundamental vibrational transitions while fewer developments

focused on vibrational excited state absorptions. In this study, we present a new method

that uses excited state constrained minimized energy surfaces (CMES) to describe

vibrational excited state absorptions. The excited state CMESs are obtained similarly

to the previous ground state CMES development in our group but with additional

wave function orthogonality constraints. Using a series of model systems, including the

harmonic oscillator, Morse potential, double-well potential, quartic potential, and two-

dimensional anharmonic potential, we demonstrate that this new procedure provides

good estimations of the transition frequencies for vibrational excited state absorptions.

These results are significantly better than those obtained from harmonic approximations

using conventional potential energy surfaces, demonstrating the promise of excited

state CMES-based methods for calculating vibrational excited state absorptions in real

systems.

Introduction

Vibrational spectroscopy is a powerful tool for obtaining structural information and uncovering

reaction dynamics in both the gas and condensed phases 1–5. Compared to conventional

linear vibrational spectroscopy, nonlinear vibrational spectroscopy can provide additional

information by probing two or more photon processes 6–11. For example, two-dimensional

infrared spectroscopy (2DIR) can go beyond the vibrational ground state and monitor the

vibrational excited state dynamics and thus has been used to investigate reaction dynamics

in a variety of materials and biological systems 12–17.

There have been many theoretical methods to model vibrational spectroscopy. The most

widely used method to estimate vibrational frequencies is to diagonalize the mass-weighted
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Hessian matrices obtained from either density functional theory (DFT) or wave function

theories18. This method invokes the harmonic approximation and can generally provide

qualitatively correct vibrational mode results; however, when describing systems with strong

anharmonicities, it often relies on empirical scaling factors to obtain quantitatively correct

results19. Going beyond the harmonic approximation, vibrational second order perturbation

theory (VPT2)20–24 is often used to obtain anharmonicity-corrected vibrational frequencies,

which utilizes information from local higher-order derivatives. VPT2 has good balance

between accuracy and efficiency, although it may face challenges when local higher-order

derivatives are not sufficient to capture the behavior of the whole potential energy surface

(PES), especially in some shared proton systems with double-well PESs 25–31. Vibrational

self-consistent field theory (VSCF)32 is currently one of the most accurate methods for

obtaining vibrational spectra. It utilizes a high-dimensional PES to compute vibrational

ground and excited states. By using the n-mode representation of the potential 33, the VSCF

and VCI methods have been applied to molecules and clusters with 10 or more atoms 34,35.

In addition to the aforementioned popular methods based on static calculations, another

category of methods is based on dynamic simulations and employs time autocorrelation

functions to obtain vibrational spectra. Among them, a widely-used method is classical

molecular dynamics (MD)36–38, which treats nuclei as classical particles and evolves them

classically on PESs following Newton’s laws of motion. Within the classical MD framework,

ab initio MD (AIMD) is generally more accurate than force-field-based MD because the PESs

used in AIMD are obtained through ab initio electronic structure calculations, such as DFT.

However, classical MD can only take into account a limited amount of anharmonicty through

dynamic simultations on PESs at a finite temperature and often needs empirical scaling

factors for highly anharmonic systems. An improved way to incorporate anharmonicity in

MD simulations is through quasi- or semi- classical methods 39–43. These methods assign

certain initial energies to the nuclei, and thus the resulting classical trajectories can reach

more anharmonic areas of the PES. This treatment is successful in many model and practical
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systems, although it can suffer from zero-point energy (ZPE) leakage problems in some

systems44,45. A more elegant way of incorporating anharmonicity in MD simulations is

through the path-integral formulism. A few major variants are centroid molecular dynamics

(CMD)46,47, ring-polymer molecular dynamics (RPMD)48, thermostated ring-polymer molecular

dynamics (TRPMD)49, and quasi-centroid molecular dynamics (QCMD) 50. The theoretical

foundation of the path-integral methods is the quantum-classical isomorphism, which can

map a quantum system onto a classical system with chains of beads 51. These beads evolve

classically on a PES, and the bead distribution connects with the quantum probability

density, thus describing nuclear quantum effects. As such, these path-integral methods

can describe anharmonicity and provide relatively accurate vibrational spectra through

reasonable approximations to the time autocorrelation functions 51–53. An even more accurate

method to describe vibrational spectra is through quantum nuclear dynamics, and a commonly-

used method is the multiconfigurational time-dependent Hartree (MCTDH) theory 54–57.

Although the underlying computational cost remains a major limiting factor, this theory

has been shown to accurately describe the vibrational spectra of systems as large as water

clusters with four water molecules58.

In the past few years, our group has developed a new method for calculating vibrational

spectra based on constrained minimized energy surfaces (CMESs) 59. The CMES is an

effective PES for nuclei, but compared to the conventional PES, the CMES incorporates

nuclear quantum effects, especially the zero-point effects, in the effective potential energy

surface. It has been shown with a few model systems that MD based on the CMES

(CMES-MD) is able to give significantly more accurate fundamental vibrational frequencies

than conventional MD, and its performance is comparable to or even better than CMD

and RPMD59. In real molecular systems, our group has developed constrained nuclear-

electronic orbital density functional theory (CNEO-DFT) 60–62 to approximate the CMES.

It was found that CNEO-DFT harmonic frequencies are already comparable to or better

than VPT262, and the vibrational spectra obtained from MD simulations on CNEO-DFT
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energy surfaces accurately reproduce the experimental spectra 63. Despite this success, these

past developments were mostly focused on the fundamental 0 → 1 excitations. In order to

simulate nonlinear vibrational spectra, especially the 1 → 2 excitations, a method that can

describe vibrational excited state absorptions is essential. One example of the importance

of describing these excitations is in 2D-IR spectra, where the 0 → 1 fundamental transitions

appear on the diagonal line, whereas the 1 → 2 excited state absorptions can be observed

next to them but slightly off the diagonal line, together forming the butterfly-shaped feature

of the spectra12.

For the excited state absorptions, conventional MD cannot distinguish them from fundamental

transitions since the underlying theoretical foundation for spectra calculations using MD is

a harmonic approximation64, in which the fundamental 0 → 1 excitation and all excited

state n → n + 1 transitions share the same transition energy. Quasi- or semi- classical

methods can possibly describe these excited state absorptions by giving more initial energy

to the nuclei40,41. However, their ZPE leakage problems44,65 could become more severe

because of the even higher initial energy given to the systems. Currently, a commonly used

method for describing the vibrational excited state absorptions in the 2DIR spectrum is to

first obtain the PES for the mode of interest while fixing all other modes 66–70, and then

either fit the PES to a Morse potential and approximate the results with the exact quantum

solutions for the Morse potential66, or utilize the discrete variable representation (DVR)

method to solve the Schrödinger equation with a careful choice of modes to be coupled 69.

These methods have been successfully applied to a series of systems and provided important

physical insights26,66,69–74. One drawback of these methods is that their accuracy is often

sensitive to what modes and how many modes are allowed to couple in the calculation,

which means that empirical knowledge is often needed. As such, these methods may face

great challenges in systems with a complex coupling picture 71. Therefore, it remains highly

desirable to develop a method that can accurately and efficiently simulate vibrational excited

state absorptions in a relatively black-box manner.
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In this paper, we propose a new way of calculating vibrational excited state absorptions

by constructing excited state CMESs and using their second-order derivative information to

approximate the vibrational transition energies. This is essentially equivalent to performing

MD simulations at the zero-temperature limit. We systematically test the new method on a

series of model systems and benchmark the results against the exact quantum references. We

will show that the results are significantly better than the harmonic approximation results

based on the ground state PES. This paper will serve as the theoretical foundation for our

future development and utilization of excited state CNEO theory to calculate vibrational

excited state absorptions in real molecular systems.

Theory

Ground state CMES

Although this paper will focus on developing excited state CMES theory, here we provide a

brief review of the ground state CMES theory so that the development of excited state CMES

theory can follow naturally. The CMES-MD framework was recently developed in our group

as an alternative approach to incorporate nuclear quantum effects in MD simulations 59. In

conventional PES-based MD simulations, nuclei are treated as classical point charges, which

ignores the quantum delocalization of the nuclei. In contrast, in CMES-MD, nuclei are

treated quantum mechanically, but instead of directly evolving the quantum nuclei according

to the time-dependent Schrödinger equation, an adiabatic approximation is invoked where

for every point in phase space with specified nuclear expectation positions and nuclear

expectation momenta (X,P) that the system evolves to, the system immediately relaxes

to the energy-minimized quantum state with the same nuclear expectation postitions and

momenta (X,P)59. Under this assumption, it can be proven that the nuclear expectation

positions and expectation momenta evolve classically according to Newton’s laws of motion

on the effective potential energy surface, i.e., the CMES, instead of the conventional PES 59.
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As such, the CMES method can be viewed as an alternative formulation or approximation

to the Ehrenfest theorem.

A key to performing CMES-MD is to construct the CMES, which is a function of nuclear

expectation positions and can be obtained by searching for the lowest-energy nuclear wave

function that satisfies the nuclear expectation position constraint:

V CMES
0 (X) = min

A0∈H sub
0

⟨A0|Ĥ|A0⟩, H sub
0 = {A ∈ H |⟨A|x̂|A⟩ = X} (1)

Here H is the quantum nuclear Hilbert space and H sub
0 is a subspace that satisfies the

nuclear expectation constraint, ⟨A|x̂|A⟩ = X. This constrained minimization can be performed

using the Lagrangian function:

L = ⟨A0|Ĥ|A0⟩+ f0 · (⟨A0|x̂|A0⟩ −X)− Ẽ0(⟨A0|A0⟩ − 1) (2)

in which f0 is the Lagrange multiplier associated with the expectation position constraint,

and Ẽ0 is the Lagrange multiplier associated with the wave function normalization constraint.

Making the Lagrangian function stationary by varying the state |A0⟩ leads to an eigenvalue

equation

[Ĥ + f0 · x̂]|A0⟩ = Ẽ0|A0⟩. (3)

This eigenvalue equation can be solved iteratively together with the expectation constraint

as well as the normalization constraint, leading to solutions of f0(X), |A0(X)⟩, and Ẽ0(X),

which are all functions of the quantum nuclear expectation position 59. When the constraints

are satisfied, the total energy, which is a function of the nuclear expectation positions, will

serve as the effective PES, or the CMES:

V CMES
0 (X) = ⟨A0(X)|Ĥ|A0(X)⟩ (4)
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The nuclear expectation positions and momenta evolve according to the Newtonian

equations59

d⟨x̂⟩
dt

=
⟨p̂⟩
m

(5)

d⟨p̂⟩
dt

≈ −∇XV
CMES
0 (X) (6)

Note that the evolution of momenta is not exact since we have invoked the adiabatic

approximation and assumed that the system immediately relaxes to the energy-minimized

quantum state for a given nuclear expectation position X59. Based on these working

equations, CMES-MD can be performed, and our group has demonstrated that CMES-

MD trajectories lead to accurate vibrational spectra in both model systems and practical

molecular systems59,63.

The theoretical justification for simulating vibrational spectra based on classical MD

simulations, including both conventional MD and CMES-MD, is based on two factors.

First, according to Fermi’s Golden Rule75, the Fourier spectrum of quantum autocorrelation

functions can be used to calculate transition frequencies and intensities between energy levels.

Second, in the harmonic oscillator model, the classical and quantum autocorrelation functions

yield identical peak positions, differing only by a prefactor in intensities 64. Although this

harmonic approximation enables vibrational spectra to be calculated from classical MD

simulations, it also leads to the assumption that the fundamental excitations (0 → 1) are

the same in energy as those from excited state absorptions (e.g. 1 → 2, 2 → 3). However,

in anharmonic systems, there are slight differences among these absorption energies, which

can be observed, for example, in 2DIR experiments. We note that although it has been

observed that increasing the simulation temperature in MD simulations results in redshifts,

which might be viewed as an incorporation of some excited state absorptions, there is no

solid theoretical foundation for this temperature effect, which is an artifact from classical

treatments76.
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Excited states CMES

Here we propose a new way of separately obtaining excited state and ground state absorption

frequencies by constructing and using excited state CMESs.

Previously in developing the CMES theory, our group has targeted the eigenstate with

the lowest energy. These states are essentially the ground states that satisfy the expectation

constraints. However, there are also “excited states” with higher energies. To search for these

excited states for a given nuclear expectation position, we can perform constrained energy

minimization again. The first excited state CMES can be defined as

V CMES
1 (X) = min

A1∈H sub
1

⟨A1|Ĥ|A1⟩, H sub
1 = {A ∈ H |⟨A|x̂|A⟩ = X, ⟨A|A0(X)⟩ = 0}, (7)

where H sub
1 is another subspace of the Hilbert space H in which the states satisfy not

only the expectation position constraint, but also the orthogonality constraint to the CMES

ground state with the same expectation position, i.e., ⟨A1(X)|A0(X)⟩ = 0. Following the

same logic, a more general definition for the nth excited state CMES can be defined as

V CMES
n (X) = min

An∈H sub
n

⟨An|Ĥ|An⟩, H sub
n = {A ∈ H |⟨A|x̂|A⟩ = X, ⟨A|Ai(X)⟩ = 0, ∀i = 0, 1, · · · , n−1},

(8)

in which we required the nth excited constrained minimized energy state to be orthogonal

to all the lower-energy states with the same expectation position. Under these constraints,

the Lagrangian function for solving the nth excited state CMES can be written as

L = ⟨An|Ĥ|An⟩+ fn · (⟨An|x̂|An⟩ −X) +
n−1∑
i=0

gni ·
∣∣∣∣⟨An|Ai(X)⟩

∣∣∣∣2 − Ẽn(⟨An|An⟩ − 1), (9)

where gni is the Lagrange multiplier associated with the orthogonality constraint to the ith

CMES state Ai(X). Note that to facilitate subsequent derivations and practical implementations,

here we employed the constraint as
∣∣∣∣⟨An|Ai(X)⟩

∣∣∣∣2 = 0 instead of the simple form of ⟨An|Ai(X)⟩ =

0. Making the Lagrangian function stationary by varying An can lead to the eigenvalue
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equation for solving the nth excited CMES state:

(
Ĥ + fn · x̂+

n−1∑
i=0

gni · |Ai(X)⟩⟨Ai(X)|

)
|An(X)⟩ = Ẽn(X)|An(X)⟩. (10)

When all lower states Ai(X) are known, this eigenvalue equation can be solved iteratively

together with the expectation constraint, the normalization constraint, and the orthogonality

constraints, and we will obtain solutions of fn(X), gni(X), |An(X)⟩, and Ẽn(X), which are

all functions of the nuclear expectation positions. When all constraints are satisfied, the

total energy will serve as the effective PES for the nth excited constrained minimized energy

state:

V CMES
n (X) = ⟨An(X)|Ĥ|An(X)⟩ (11)

These excited state CMESs can be used in an ad hoc manner to perform MD simulations.

The underlying assumption for these simulations is that the nuclear wave functions adiabatically

maintain their excited state character during the dynamics and do not relax to the lower

vibrational states. In the next section we will show that we can use them to obtain vibrational

excited state absorption frequencies. For these frequency calculations, a natural question is

that since we need to construct excited state CMESs, why don’t we directly take the energy

difference between CMESs energy minima to obtain the frequencies? We note that because

of the requirement for the orthogonality to the lower states of the same expectation position,

the “excited states” for CMESs do not rigorously correspond to the vibrational excited states

solved from the Schrödinger equation, and therefore, the energy gaps between CMESs do

not necessarily match well with the reference excited state absorption values. Additionally,

the success of vibrational frequency calculations will demonstrate the good quality, at least

near the equilibrium region, of the vibrational excited state CMESs, which we can use in the

future to perform vibrationally excited state dynamics simulations.
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Excited state CMES for harmonic oscillator model

The harmonic oscillator model was used to justify the use of classical MD to calculate

vibrational spectra since its classical autocorrelation functions match exactly with the quantum

autocorrelation functions in peak positions. Our group also showed that in the harmonic

oscillator model, the ground state CMES differs from the underlying PES only by a universal

shift of 1
2
ℏω 59. Therefore, the classical dynamics picture remains the same, and CMES-MD

is also exact for the harmonic oscillator59. Here, to extend out CMES theory to excited

states, we will analytically solve for the excited state CMESs for a harmonic oscillator and

investigate their properties.

For the harmonic oscillator model Ĥ = p̂2/2m+mω2(x̂−xe)2/2, it can be proven that the

CMES ground state |A0(X)⟩ as a function of the expectation position X is the ground state

of another harmonic oscillator Ĥ ′ = p̂2/2m+mω2(x̂−X)2/2, but with the center shifted to

the nuclear expectation position X 59. Then the corresponding ground state CMES can be

evaluated and gives

V CMES
0 (X) = ⟨A0(X)|Ĥ|A0(X)⟩ = 1

2
ℏω +

1

2
mω2(X − xe)

2. (12)

With the ground state |A0(X)⟩ obtained, we can employ Eq. 10 to solve the first excited

state CMES analytically (see Supporting Information for details). The excited state wave

function A1(x;X) is

A1(x;X) = ψHO
1 (x−X), (13)

where ψHO
n (x−X) is the nth eigenfunction of a harmonic oscillator centered at X, and the

corresponding CMES is

V CMES
1 (X) = ⟨A1(X)|Ĥ|A1(X)⟩ = 3

2
ℏω +

1

2
mω2(X − xe)

2. (14)

It can be seen that the wave function is the same as the first excited state wave function for
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quantum harmonic oscillator except it is now centered at x = X. Furthermore, the excited

state CMES is the same as the underlying harmonic PES but shifted up universally by 3
2
ℏω,

which is the quantum energy associated with the first excited state.

In fact, for the harmonic oscillator model, these elegant results can be generalized to even

higher excited state CMESs with

V CMES
n (X) = ⟨An(X)|Ĥ|An(X)⟩ = (n+

1

2
)ℏω +

1

2
mω2(X − xe)

2, (15)

which means that compared to the underlying harmonic PES, CMESs simply shift the energy

universally up by (n+ 1/2)ℏω, the quantum energy for the nth state.

This universal shift does not change the shape of the effective potential and also does

not change the classical dynamics picture. Therefore, the position autocorrelation functions

remain the same for every excited state CMES:64

⟨x(0)x(t)⟩CMES
n =

kT

mω2
cosωt, (16)

where the average ⟨·⟩ is taken under the canonical ensemble. Furthermore, the Fourier

transform of this autocorrelation function gives the same vibrational frequency ω as before.

Despite the same frequency, we argue that because these dynamics simulations are performed

on excited state CMESs and the underlying quantum picture corresponds to excited state

harmonic oscillator wave functions, these vibrational frequencies ω should not be viewed

as the fundamental transition frequency. Instead, they should be viewed as excited state

absorption frequencies, which happen to be the same as the fundamental transition frequency

in the harmonic oscillator model. This is the key hypothesis of this paper, which we

will provide numerical support in “Results for anharmonic systems” section on a series of

anharmonic model systems.

To further connect the classical autocorrelation functions with the quantum autocorrelation

functions for excited state absorptions, here we consider a special ensemble for the harmonic
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oscillator, in which the ground state is not occupied whereas the excited states are occupied

according to the Boltzmann distribution. In this special ensemble, since the ground state

is not occupied, the quantum autocorrelation function contains information of excited state

absorptions (mainly 1 → 2) but no fundamental transition. The position autocorrelation

function can be computed analytically (see detailed derivation in Supporting Information):

1

2
⟨
[
x̂(0), x̂(t)

]
+
⟩ = ℏ

2mω

3− e−βℏω

1− e−βℏω cosωt. (17)

Obviously the Fourier transform of this quantum autocorrelation function still gives the

frequency ω, but it should mainly be considered to correspond to the 1 → 2 transition.

Comparing this quantum autocorrelation function with the classical autocorrelation function

obtained from excited state CMES in Eq. 16, there is only a pre-factor difference, suggesting

that it may be viable to use excited state CMES-MD to obtain excited state absorption

spectra.

This argument can also be generalized to the 2 → 3 or even higher transitions by

constructing other special ensembles, but the key hypothesis remains the same: since the

classical autocorrelation function matches with the quantum autocorrelation function, we

may use excited CMES-MD to obtain excited-state spectra.

Workflow

Based on the theory introduced above, here we present a detailed workflow for the construction

of excited state CMESs.

1. For a given expectation position X, solve the CMES ground state |A0(X)⟩ iteratively

using Eq. 3 under the expectation position constraint 59.

2. Evaluate the energy of |A0(X)⟩ to obtain the ground state CMES V CMES
0 (X) = ⟨A0(X)|Ĥ|A0(X)⟩.

3. At the same expectation position X, iteratively solve the constrained first CMES

13



excited state using Eq. 10:

(
Ĥ + f1(X) · x̂+ g10 · |A0(X)⟩⟨A0(X)|

)
|A1(X)⟩ = ˜E(X)|A1(X)⟩ (18)

Note that ground state |A0(X)⟩ solved in step 1 is used here for the orthogonality

constraint.

4. Evaluate the energy of |A1(X)⟩ to obtain the first excited state CMES V CMES
1 (X) =

⟨A1(X)|Ĥ|A1(X)⟩.

5. If needed, at the same expectation position X, iteratively solve higher CMES excited

states and energies using Eq. 10. Note that lower energy CMES states are needed for

the orthogonality constraints.

6. The step 1-5 can be repeated for any expectation position. Then energies with the

same quantum number n but different expectation positions can be joint together and

form the nth excited state CMES.

7. With numerical procedures, the minimum of each excited state CMES can be located

and the Hessian matrix around the minimum can be constructed, which gives frequency

information after diagonalization.

Results for anharmonic systems

To go beyond the simple harmonic oscillator model, here we test our proposed method on

a series of anharmonic model systems. Note that conventional MD has only one PES and

cannot construct vibrational excited state surface. Therefore, we can only obtain the same

frequency for both 0 → 1 fundamental transition and any other n → n + 1 excited state

transitions. In contrast, in the CMES-MD framework, we can use MD on the ground state

CMES to obtain 0 → 1 transition frequencies, use MD on the first excited CMES to obtain
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1 → 2 transitions, and so forth. We note that although MD results depend on the simulation

temperature, this temperature effect is relatively small in the temperature range that most

chemists care about. Therefore, in this paper, we will simply focus on the zero-temperature

limit and only use their second-order derivative information to approximate the vibrational

transition energies. However, we can always slightly go beyond this harmonic hessian

approximation by running MD trajectories upon CMESs, which will sample anharmonic

region on CMESs through elevated temperature. We will provide results for the Morse

potential, quartic potential, double-well potential, and 2D anharmonic potential, all of which

are important model systems for modeling practical chemical problems. The quantum results

are used as reference, which are obtained either analytically or numerically with a dense grid.

Morse potential

The Morse potential is a typical model for bond vibrations. It has analytic quantum

solutions, and the anharmonicity makes excited state transitions different from the 0 → 1

fundamental transition. Here we will test our method on the 1-D Morse potential with

the form V (x) = De(e
−2α(x−xe) − 2e−α(x−xe)), in which De = hcωeχ

2
e/(4ωeχe) and α =

√
2µhcωeχe/ℏ. Three parameters, xe, χe, and ωe completely determine the Morse potential,

but we will not scan all these parameters due to the large computational expense. Instead,

we select a few parameter sets that mimic real chemical bond vibrations for testing.

The first group of bonds is H-X bonds, where X can be C, N, or O. This group of bonds

is of particular interest because they are known to be highly anharmonic. In the existing

literature77, there are Morse parameter sets fitted for these H-X bonds based on diatomic

results (listed in Table S1). We observed that in these Morse potential parameter sets,

different H-X diatomic molecules tend to have similar χe and xe values, but their ωe values

can vary significantly. Therefore, we fix the value of χe to be 0.023 and the value of xe to be

1.0 Å, and only scan the value of ωe in the range from 2000 cm−1 to 4000 cm−1 to model the H-

X vibrations in different chemical environments. The reduced mass is approximated to be the
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mass of a hydrogen atom. We limit our discussions to 0 → 1, 1 → 2, and 2 → 3 transitions

since the lowest few states are the most important. Therefore, we construct the ground, first

excited, and second excited state CMESs using Eq. 3 and Eq. 10. Since we are focusing

on the zero-temperature limit, we numerically obtain the second-order derivatives around

the minima of each CMES to approximate the vibrational frequencies with the harmonic

approximation. We will use the exact analytic quantum results as references, and we will

also compare our results with the harmonic approximation results from the PES, which are

nothing but ωe for Morse potentials.

Figure 1 shows the ground state, first excited state, and second excited state CMESs for

ωe = 3500 cm−1. In addition to the relative energy difference, we also note that their energy

minima correspond to different nuclear positions, which essentially indicates that the bond

length will grow as the system is excited. Furthermore, these energy curves no longer differ

by a universal shift and thus will give different vibrational frequencies.

Figure 1: PES and ground and excited state CMESs for a 1D Morse potential. The
parameters of the Morse potential are χe = 0.023, xe = 1.0Å, and ωe = 3500 cm−1

Figure 2 shows the CMES results for estimating the 0 → 1, 1 → 2, and 2 → 3

transition frequencies. For the 0 → 1 fundamental frequencies (panel a), the CMES harmonic

approximation results excellently agree with the quantum reference results, with a percentage

error of about 1%, whereas using the PES, the error is about 5%. These results are consistent
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with results from the previous paper by two of us59, where we found that CMES-MD can

significantly outperform conventional MD in predicting fundamental frequencies. For the

1 → 2 transitions (panel b), the excited state CMES gives lower vibrational frequencies than

those obtained from the ground state CMES. This trend is in very good agreement with the

quantum reference results, where the 1 → 2 energy gap is smaller than the 0 → 1 energy gap

due to anharmonicity. The percentage error is about 2%, which is slightly larger than that

for the 0 → 1 fundamental transition. In contrast, the harmonic approximation based on

the PES gives the same vibrational frequencies as the fundamental transitions and deviates

more severely from the quantum reference. The story for the 2 → 3 transitions (panel c)

is very similar: although the harmonic approximation based on the CMES gives a larger

percentage error (around 5%) than in the 0 → 1 and 1 → 2 cases, it captures the decreasing

trend of the energy gap and significantly outperforms the harmonic approximation results

based on the original PES.

To further investigate the performance of our method in more general bond stretch cases,

we next choose the Morse potential parameter sets for the diatomic F−F, O−−O, and N N

molecules77. These three diatomic molecules are good representatives of bond stretches for

single bonds, double bonds, and triple bonds respectively. The parameters used are taken

from reference77 and are listed in Table S1 of the Supporting Information. The results

for these systems are shown in Figure 3. We again see that our CMES-based method

significantly outperforms the conventional PES-based method for all 0 → 1, 1 → 2, and

2 → 3 transitions.

Double-well and quartic potential

Next we apply our method to the more challenging double-well and quartic potential systems,

which both share the potential form of V (x) = ax2+bx4. The parameter b is always positive.

When a is negative, the potential corresponds to a double-well potential; when a is zero, there

is no second order term and the potential is quartic; and when a is positive, it is a symmetric
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Figure 2: Transition frequencies from harmonic approximation using CMESs (colored solid
lines) and PESs (grey solid lines) for (a) the fundamental 0 → 1 transition; (b) the
1 → 2 transition; and (c) the 2 → 3 transition. The red dashed lines are the exact
quantum references. Based on the harmonic approximation, our CMES-based method
greatly outperforms the conventional PES-based method.
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Figure 3: Relative percentage error between the calculated transition frequencies and the
quantum references of F−F, O−−O, N N bonds for (a) the fundamental 0 → 1 transition;
(b) the 1 → 2 transition; and (c) the 2 → 3 transition. Results using CMESs are colored and
results using PESs are in grey. These results show that based on the harmonic approximation,
our CMES-based method greatly outperforms the conventional method, yielding a much
smaller percentage error.
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single well potential with anharmonicity arising from the quartic bx4 term. Figure 4 shows

the ground and the first excited state CMESs for these three scenarios. For quantitative

testing, we fix the value of b to be 32 eV/Å4 and vary a from −8 eV/Å2 to 12 eV/Å2. The

results for the 0 → 1 and 1 → 2 transitions are shown in Figure 5, panel (a) and (b),

respectively.

Figure 4: PES, ground state CMES, and first excited state CMES for model potential
V (x) = ax2 + bx4. The parameter a varies with (a) a = −4 eV/Å2; (b) a = 0 eV/Å2; and
(c) a = 4 eV/Å2. The parameter b is set to be 32 eV/Å4 in all three cases.

In the double well region where a is negative, the barrier decreases as a becomes less

negative, making the 0 → 1 tunnelling splitting increase as seen in the quantum reference.

This trend can be captured by the harmonic results based on the ground state CMES,

although we note that in the deep-tunneling region where a is highly negative, the CMES

could have small absolute errors but large relative errors due to the tiny tunneling frequency.

In contrast, conventional classical treatment based on the PES cannot describe tunneling,

and at the zero-temperature limit, the particle always becomes trapped on either side of the

well, leading to generally overestimated frequencies. Additionally, because of the incorrect

physical picture, the increasing trend of the transition frequency when a is less negative is

completely missed. For the 1 → 2 transition, the energy gap generally decreases as a becomes
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less negative but turns flat and begins to increase when it is about −4 eV/Å4. This qualitative

picture can be captured by our method based on the first excited state CMES, although we

note that the quantitative agreement is not completely satisfactory, especially when a is a

very negative number, where CMES-MD could overestimate the gap by around 100%. For

the conventional classical treatment, although it quantitatively slightly outperforms CMES-

MD in most of the double-well excited state region with the grey curve being closer to the

red curve than the green curve, we note that it does not mean that conventional MD is

better since its underlying trapped-particle picture is completely unphysical.

For the quartic potential with a being zero, CMES results still have an excellent agreement

with the quantum reference for the 0 → 1 transition. For the 1 → 2 transition, its

quantitative error is significantly reduced compared to that in the double-well case. In

contrast, since there is no harmonic term, the classical treatment with the harmonic approximation

gives a zero frequency result, which is unphysical.

For cases with a greater than zero, the potential is an anharmonic single well potential. In

this case, both the 0 → 1 and 1 → 2 energy gaps increase as a increases. This relatively easy

trend can be captured by both our CMES-based method and the conventional PES-based

method. However, our method outperforms the conventional method with a significantly

better agreement with the quantum references. In the large a limit, the quartic terms can

be ignored and the potential essentially becomes a harmonic oscillator. According to the

previous discussions on the harmonic oscillator, both the 0 → 1 and 1 → 2 gaps converge to

the same value and all methods give the same and correct asymptotic result.

Anharmonic 2D model potential

In addition to the 1D model potentials tested above, here we further apply our method on

an anharmonic 2D model potential. The model potential takes the form of

V (x, y) = axx
2 + bxx

4 + ayy
2 + byy

4 + c1xy + c2x
2y, (19)
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Figure 5: Transition frequencies from harmonic approximations using CMESs (colored solid
lines) and PESs (grey solid lines) for model potential V (x) = ax2 + bx4 for (a) the 0 → 1

transition and (b) the 1 → 2 transition. The parameter b is fixed to 32 eV/Å4 and a is allowed
to vary. Based on the harmonic approximation, our CMES-based method outperforms the
conventional PES-based method with much better qualitative agreement with the quantum
reference.

which includes both harmonic and quartic terms in both the x and y directions as well as

the coupling terms xy and x2y that couple the two directions.

We first set the potential to be V (x, y) = 15x2 + 30x4 + 15y2 + 20y4 + 10xy + 30x2y.

The quantum energy levels and the corresponding wavefunctions of this system can be

obtained numerically by solving the Schrödinger equation. In the harmonic analysis, the

two normal modes appear along the diagonal lines instead of along the x and y directions,

due to the xy coupling term (see Supporting Information for contour plot of the potential).

For this potential, the harmonic approximation gives 2332 cm−1 and 3298 cm−1 for the two

modes, respectively, whereas the quantum references for the (0, 0)→(0, 1) and (0, 0)→(1, 0)

fundamentals are 2383 cm−1 and 3360 cm−1, respectively. For higher excitations, (0, 1)→(0, 2)

and (1, 0)→(2, 0), the reference frequencies are 2389 cm−1 and 3370 cm−1, respectively, indicating

a relatively small 6− 10 cm−1 direct anharmonicity. However, the cross anharmonicity is as

large as 100 cm−1 with the reference frequencies for (1, 0)→(1, 1) and (0, 1)→(1, 1) being
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2484 cm−1 and 3461 cm−1, respectively. The results of the CMES method together with the

quantum references are shown in Figure 6(a). Note that we use the (m,n) CMES surface to

obtain (m,n)→(m,n+1) and (m,n)→(m+1, n) excitation frequencies. We can see that all

six transitions investigated here can be accurately predicted with the CMES method with

largest errors being about 30cm−1. It is noteworthy that the large cross anharmonicty can

be captured in this 2D model.

To further prove that the good results from the CMES method are not fortuitous, we

construct another potential with stronger coupling: V (x, y) = 15x2 + 30x4 + 15y2 + 20xy.

Although the potential form appears simpler, its energy level picture is more complicated.

The quantum references for the (0, 0)→(0, 1) and (0, 0)→(1, 0) fundamental frequencies are

1744 cm−1 and 3733 cm−1, respectively. Therefore, the (0, 0) → (1, 0) transition frequency is

more than twice of that of (0, 0) → (0, 1) transition frequency, making the (0,2) state have

lower energy than the (1,0) state. The energy ordering of the states for this potential as well

as the CMES results are shown in Figure 6(b). Note that we have calculated more CMES

states than the previous 2D potential to obtain more transition frequencies. We can see

that even in this much more complicated case, the CMES method is again able to describe

the vibrational frequencies reasonably well, especially for those transitions starting from

relatively low-lying states. Anharmonicities and cross-anharmonicies are again accurately

captured, indicating the validity of using CMES methods to describe both ground-state and

excited-state absorptions.

Conclusions

In summary, we developed a procedure to calculate excited state CMESs and used them

to obtain approximate vibrational excited state absorption frequencies. In the harmonic

oscillator model, we showed that our CMES results are exact via analytical derivations.

In the Morse potential model, our CMES-based method is highly accurate and significantly
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Figure 6: Transition frequencies (unit: cm−1) from harmonic approximations using CMESs
for model potential (a) V (x, y) = 15x2 + 30x4 + 15y2 + 20y4 + 10xy + 30x2y and (b)
V (x, y) = 15x2 + 30x4 + 15y2 + 20xy. Values in red are the quantum references, and values
in blue, green, purple, and pink are the frequencies obtained from the (0, 0), (0, 1), (1, 0),
(0, 2) CMES, respectively.

outperforms conventional PES-based harmonic approximation results. In the more challenging

double-well potential and quartic potential, our method gives the correct physical picture and

outperforms the conventional PES-based method. In the anharmonic 2D model potential,

our CMES results accurately describe the excitations involving the two modes, and even

capture cross anharmonicity. These results suggest the reliability of using excited state

CMESs to describe vibrational excited state absorptions.

Finally, we note that the studies in this paper are all proof-of-principle model system

tests, in which the underlying PES is known, and we can build ground and excited state

CMESs on top of it. Although it seems that this procedure will no longer be practical

for real systems because obtaining PESs is already computationally highly demanding and

constructing CMESs is even more challenging, yet, fortunately, similar to the ground state

CMES59, which can be obtained from CNEO-DFT calculations 60–63, we anticipate that

excited state CMESs can be calculated with excited state CNEO methods, for example,

CNEO time-dependent density functional theory (CNEO-TDDFT). The related method
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development on CNEO-TDDFT is ongoing in our group, and this current paper on model

systems serves as the theoretical motivation for its development. All these developments will

make CNEO-based methods promising approaches for modeling and interpreting a variety

of linear and nonlinear vibrational spectra.

Supporting Information Available

Detailed analytical derivations of excited state CMESs for harmonic oscillator; detailed
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