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Abstract— This article introduces the notion of danger
awareness in the context of human–robot interaction, which

decodes whether a human is aware of the existence of the

robot, and illuminates whether the human is willing to engage in

ensuring safety. This article also quantifies the notion as a single

binary variable, called danger awareness coefficient, and provides

a game-theoretic interpretation for that. Employing an online

Bayesian learning method to update the robot’s belief about the

human’s danger awareness by observing their actions, it is shown

how the robot can build a predictive human model to anticipate

the human’s future actions. To enrich robot’s observations, and

thus to improve safety and efficiency of the robot, the robot is

equipped with a danger signaling system to generate awareness

in the human. Finally, a planning scheme is proposed to provide

an efficient and probabilistically safe plan for the robot. The

effectiveness of the proposed scheme is demonstrated through

simulation studies on an interaction between a self-driven car

and a pedestrian.

Index Terms— Behavior-driven planning, danger awareness in

humans, danger signaling, human–robot interaction, robot action

planning.

I. INTRODUCTION

E
NABLING efficient and safe interaction among all par-
ticipating agents (i.e., humans and robots) is a chal-

lenging task in human–robot interaction. Safety enforcement
techniques depend on some presumptions and assumptions
that will not necessarily be true in practice. Thus, robots
will inevitably encounter incomplete and possibly erroneous
knowledge of the environment and other agents, humans in
particular, which may degrade the efficiency of the robot. This
implies that robots must safely and timely reason over the
uncertainties of the environment they operate in to maintain a
safe and efficient interaction.

A. Notion of Danger Awareness
Reasoning in uncertain environments is an area where

humans excel compared to current robots. With that motiva-
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tion, this article uses models of human decision-making from
cognitive science to develop a framework that enables robots to
reason over the uncertainties inherent in predicting the actions
of humans to improve safety and efficiency. More specifically,
this article introduces the notion of danger awareness which
can be used to decode whether a human is aware of the
existence of other agents and possible dangers that they may
present, and to explicate whether human is willing to engage
in ensuring safety.

This article quantifies the notion of danger awareness as a
binary variable which is called danger awareness coefficient.
Supported with a game-theoretic interpretation, it is shown
that a binary variable is appropriate and sufficient to model
the impact of human’s danger awareness on their behavior.
This article also proposes a method to continually learn the
coefficient based upon robot’s real-time observations. A robot
action planning scheme which incorporates human’s danger
awareness is also proposed to provide a probabilistically safe
and efficient plan for the robot.

B. Danger Signaling
Most of the existing methods in robotics literature to learn

humans’ behavior (e.g., [1], [2], [3]) are based upon passive
observations of humans’ states and actions. We argue that it is
implausible to accurately learn the humans’ behavior through
passive observations, as their trajectories may not encode
sufficient information about them. As a result, any robot action
planner developed based upon passive observations might be
tremendously inefficient, leading to conservative solutions.
One possible way to address this issue is to enable the robot
to influence humans to enrich its observations [4], [5], [6];
this would reveal humans intention [7], [8] about cooperating
with robots to ensure safety. For this purpose, we assume that
the robot is equipped with a danger signaling system. This
system creates a communication channel between the robot
and the human, where the robot can convey a message to the
human and receives the human’s replies manifested in their
actions. By means of the danger signal, the robot can actively
aptly perturb the environment so that the bird’s-eye view of
the human’s behavior observed by the robot is rich enough to
reason about their opinion on the cooperative safety.

C. Contribution
Two key contributions of this article are: 1) introduction of

a quantifiable notion of danger awareness and 2) development
of a learning-based robot action planning scheme to obtain
a probabilistically safe and efficient plan by leveraging the
aforementioned notion.
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The main features of the proposed scheme are: 1) it is
general and can be applied to any human–robot interaction
satisfying the posed setting; 2) it is modular, meaning that
any other objective function or belief update rule can be
incorporated into the scheme without changing its structure;
3) danger awareness coefficient is automatically and con-
tinuously updated by the robot as a result of the observed
human’s actions, and therefore takes into account possible
time-varying effects due to danger signaling; and 4) the
developed robot action planning scheme takes safety into
account, thus avoiding the design of often complex, rarely
comprehensive, rule-based, ad hoc safety rules.

D. Organization
Section II discusses selected related work. Section III for-

mulates the problem and introduces the notion of danger
awareness. Section IV discusses how to build a predic-
tive human model, learn from humans’ actions, and predict
humans’ actions and states in the future. In Section V, a safe
and efficient robot action planning is proposed. Section VI
validates the proposed approach through intensive simulation
studies on an interaction between a self-driven can and a
pedestrian. Section VIII concludes the article and discusses
future work.

E. Notation
We denote the set of real numbers, the set of positive

real numbers, and the set of non-negative real numbers by
R, R>0, and R�0, respectively. We use N (µ, 6) to indicate
the Gaussian distribution with mean µ and covariance 6.
We denote proportionality by /, and the transpose of matrix A
by A>. For a given set X , we use |X | to denote its cardinality.

II. RELATED WORK

A. Predictive Human Model
In recent years, there have been several studies on predicting

humans’ actions in the context of human–robot interaction.
In some work (e.g., [9]), it is assumed that the robot has
complete knowledge about the environment. However, this
assumption may not be reasonable in real-world scenarios
due to uncertainties in human’s behavior. As a result, many
researchers have focused on developing a method to enable
robots to use the history of humans’ actions to predict their
future actions and states. In [10], propagation networks have
been utilized to detect partially ordered sequential actions
of the humans. Albanese et al. [11] introduced the concept
of constrained probabilistic Petri nets and showed how this
concept can be used to predict humans’ actions. In [12],
Gaussian mixture distribution techniques have been used to
model humans’ actions and predict their timing. Markov
models have been used in a variety of studies [13], [14] to
predict the timing of humans’ actions. In [15], an interaction
primitive framework for predicting humans’ the most likely
future movements is developed. The anticipatory temporal
conditional random fields have been used in [16] to predict
humans’ future actions. Some ad hoc methods (e.g., [17]) have
also been proposed in the literature.

Extensive work in cognitive science has shown that human
behavior can be well modeled by objective-driven optimiza-
tion [18], [19], [20]. With that, a goal-based algorithm is
proposed in [21] to predict pedestrians’ future trajectories.
A Bayesian framework is provided in [22] and [23] to reason
about humans’ rationality, and thus predict humans’ actions.
Hawkins and Tsiotras [24] assume that humans are rational
and build a predictive model to anticipate the timing of
their actions. In [25] and [26], online Bayesian method has
been exploited to infer human’s latent states and generate a
predictive model.

B. Robot Action Planning
Once a predictive human model is developed, the robot can

use this model to generate a safe and efficient plan. Several
robot action planning schemes have been proposed in the lit-
erature. Wilcox et al. [27] introduce the adaptive preferences
algorithm that computes a flexible optimal policy for robot
scheduling and control in assembly manufacturing. In [28],
a method has been proposed to optimize the task assign-
ment such that the cycle time is shortened, and consequently
the productivity is increased. Probabilistic wait-sensitive task
planning have been proposed in [29] and [30] to optimize
the robot tasks with respect to the posterior human action
distributions, such that the human’s total wait time is reduced.
Tanaka et al. [31] and Kanazawa et al. [32] propose a motion
planning scheme based on human’s trajectory prediction to
improve efficiency. Genetic algorithms have also been utilized
in some robot action planners, e.g., [33]. The notion of the
virtual plane is used in [34] for path planning and naviga-
tion in dynamic environments. Aoude et al. [35] have devel-
oped a path planning framework to safely navigate robots,
while avoiding dynamic obstacles with uncertain motion
patterns.

III. PROBLEM FORMULATION

Consider a human–robot interaction in which one robot and
one human are moving to different goal locations.

A. Robot Model
The robot can be modeled as

xR(t + 1) = fR(xR(t), u R(t)) (1)

where xR(t) 2 RnR and u R(t) 2 UR ⇢ Rm R are respectively
the robot’s state and action at time t . Note that UR is the set of
admissible robot actions, and nR and m R are the dimensions
of robot’s state-space and control action, respectively.

Let gR 2 RnR be the goal state of the robot. Analogous
to [30] and [36], we assume that the robot uses a receding
horizon control strategy [37] to reach the state gR , while
avoiding collisions with the human. Let Q R

g (xR(t), u R(t), gR) :

RnR ⇥ Rm R ⇥ RnR ! R be the robot’s objective function
corresponding to the goal state gR , defined as follows1:

Q R
g (·) = ✓1

��xR(t) � gR
��2

+ ✓2
��u R(t)

��2 (2)

1For the sake of brevity, we denote Q R
g (xR(t), u R(t), gR) by Q R

g (·)
whenever there is no confusion.
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where ✓1, ✓2 2 R>0 are weighting parameters. Given TR 2

R>0 as the prediction horizon, the robot solves the following
optimization problem to compute the optimal control actions
over the prediction horizon:

u⇤

R(t : t + TR � 1) =

8
>>>>>><

>>>>>>:

arg min
t+TR�1X

k=t

Q R
g (·)

s.t. u R(k) 2 UR 8k
Model (1)

PColl(k)  Pth 8k

(3)

where k = t + 1, . . . , t + TR , u⇤

R(t : t + TR � 1) =

[(u⇤

R(t))> · · · (u⇤

R(t + TR � 1))>]>, PColl(k) 2 [0, 1] is the
the probability of a collision between the human and robot at
prediction time instant k (see Section IV-C), and Pth 2 [0, 1]

is a threshold value.
Remark 1: In general, the constraint PColl(t + TR)  Pth

does not guarantee recursive feasibility. To the best of our
knowledge, this is an issue in robot action planning schemes
which are developed based upon probabilistic predictive
human models (e.g., [22], [23], [38]). Indeed, since the robot
actions are limited and due to imperfect human models, the
recursive feasibility is unsurprisingly very difficult to satisfy.
Future research will investigate how to ensure recursive feasi-
bility without rendering the solution conservative.

B. Human Model

The human can be modeled as

xH (t + 1) = fH (xH (t), uH (t)) (4)

where xH (t) 2 RnH and uH (t) 2 UH ⇢ Rm H are respectively
the human’s state and action. Note that UH is the set of
admissible human actions, nH is the dimension of human’s
state-space, and m H is the dimension of human’s action.

As discussed in [18], [20], and [22], human’s actions can be
modeled by objective-driven optimization. We can model the
human’s action as optimizing a combination of two additive
objectives: 1) rewarding the achievement of a goal (will be
referred as the goal objective function) and 2) being safe
by avoiding collisions (will be referred as safety objective
function). Given gH 2 RnH as the human’s goal state, we take
inspiration from [22] and [23] to define the human’s goal
objective function as follows:

Q H
g (xH (t), uH (t), gH ) = ✓3kxH (t)�gHk

2
+✓4kuH (t)k2 (5)

where ✓3, ✓4 2 R>0 are design parameters. Regarding the
safety objective function, we use the following function which
has been experimentally validated in [39] and [40]:

Q H
s
�
xH (t), uH (t), x̂ R(t)

�
= ✓5e�✓6kxH (t)�x̂ R(t)k2

(6)

where ✓5, ✓6 2 R>0 are design parameters, and x̂ R(t) 2 RnR is
an estimation of the robot’s state at time instant t computed
by the human. Analogous to [41], we model the estimation
as x̂ R(t) = xR(t) + ✏(t), where ✏(t) 2 RnR is a zero-mean
Gaussian random variable with covariance 6 2 RnR⇥nR

�0 ,
i.e., ✏(t) ⇠ N (0, 6).

Given Q H
g (·) and Q H

s (·), the human’s action at time instant t
is the solution of the following optimization problem2:

u⇤

H (t) = arg min
u H 2UH

⌘1 Q H
g (·) + �⌘2 Q H

s (·) (7)

where � is a binary variable (i.e., � 2 {0, 1}) that we refer
to as the danger awareness coefficient, and ⌘1, ⌘2 2 R>0 are
weighting parameters.

Remark 2: According to (7), we can interpret ⌘1 and ⌘2 as
the weights we attach to the objective functions Q H

g (·)

and Q H
s (·), respectively. In particular, we can [42] interpret

the ratio ⌘1/⌘2 as the relative weight or relative importance of
the objective function Q H

g (·) compared to the objective func-
tion Q H

s (·). Based on this insight, the weights ⌘1 and ⌘2 can be
determined by using techniques described in, e.g., [43], [44],
and [45].

A common interpretation of � = 0 is a human who does not
see the robot or for some reasons is ignoring the dangers the
robot may present (one possible such reason is that human
presumes that it is the robot’s responsibility to keep a safe
distance). Whereas, � = 1 means that the human is aware of
the danger and acts properly to reduce the risk. In the rest of
the article, we will use the terms concerned and unconcerned
to refer to a human with � = 1 and � = 0, respectively. Note
that since � multiplies Q H

s (·) in (7), either � = 0 (i.e., unaware
humans) or Q H

s (·) = 0 (e.g., children who do not recognize the
danger) will be referred as unconcerned humans. We will also
use the term initially unaware to refer to a human initially with
� = 0 but changed to � = 1 as a result of danger signaling
(see Section III-C). See Appendix A for a game-theoretic
interpretation of the danger awareness coefficient.

Remark 3: We assume that the robot knows the objective
functions Q H

g (·) and Q H
s (·); this assumption is pretty standard3

in robotics literature (see, for instance, [22], [23], [46], [47]).
Indeed, the robot can learn these objective functions (e.g., by
using inverse reinforcement learning [48], [49], [50]) or these
functions can be explicitly provided by the system designers
(e.g., based upon behavioral patterns [51], [52], [53], [54]).

C. Danger Signaling System
The robot employs a pre-collision method which uses

signals/indicators to alert the danger to the human. This
will be referred as the danger signaling system. From a
technical viewpoint, the danger signaling creates a commu-
nication channel between the agents [55], [56], which the
robot utilizes to actively perturb the environment so to improve
the efficiency and safety of the interaction. The planner does
so by: 1) acquainting an unaware human or a human who
underestimates the danger and 2) helping the human to reduce
the estimation error ✏(t).

We denote the on/off status of the danger signaling by the
binary variable dR , where dR = 0 if the signaling is off
and dR = 1 if it is on. The robot switches the signaling

2For the sake of brevity, we denote Q H
g (xH (t), u H (t), gH ) and Q H

s (xH (t),
u H (t), x̂ R(t)) by Q H

g (·) and Q H
s (·), respectively, whenever there is no

confusion.
3We understand that there might be some differences between people.

However, this article does not aim to deal with the differences.
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Fig. 1. General structure of the proposed planning scheme.

on if the last constraint in (3) is active (i.e., it affects the
solution of the optimization problem). Note that the danger
signal dR(t) can change the danger awareness coefficient �

by generating awareness in the human, and consequently
impact human’s behavior so as to reduce the probability of
collision PColl(k), 8k; hence, the danger signal dR(t) impacts
the robot’s decision by impacting the last constraint in (3).

D. Problem Statement
This article considers the following problem.
Problem 1: Suppose one robot and one human are moving

to different goal locations. Suppose that robot’s model is as
in (1), and the robot solves (3) to determine its next action.
Suppose that the human’s model is as in (4), and the human
decides their next action via (7). Suppose that the robot uses
the danger signaling system to alert the danger to the human.
Design a robot action planning scheme to provide a plan that
ensures both agents reach their goal states efficiently, while
guaranteeing the safety of agents.

To solve Problem 1, assuming that the robot can observe
the human’s states and actions, we will develop a robot action
planning scheme to provide safe robot actions to guide the
robot to the goal state, without colliding with the human and
rendering the solution conservative. The general structure of
the proposed scheme is depicted in Fig. 1. The gist of this
scheme is the development of a human predictive model whose
values are computed through posterior calculations performed
by the robot. This robot action planning scheme will be
discussed in detail in Sections IV and V.

IV. PREDICTIVE HUMAN MODEL

According to the optimization problem (3), the robot deter-
mines its actions by taking into account the human’s future
states. This sections discusses how one can build a predictive
human model to anticipate human’s states in the future.

A. Human Action Prediction
The robot uses the following mixture distribution to model

the human’s behavior:

P(uH |xH , xR; �) = (1 � !H ) · Pd(uH |xH , xR; �)

+ !H · Pr (uH ) (8)

where Pd(uH |xH , xR; �) models the human’s deliberate
behavior, Pr (uH ) models the human’s random behavior, and
!H 2 [0, 1] is the mixture weight. Note that (8) should be
computed for every uH 2 UH and � 2 {0, 1}.

1) Human’s Deliberate Behavior: The function Pd(uH |xH ,

xR; �) describes the probability distribution of the human’s
action if the human chooses the action according to the the
goal and safety objective functions as in (7). Assuming that
the robot can observe human’s states, analogous to [23], the
robot can use the Boltzmann distribution to model the human’s
deliberate behavior, as

Pd(uH |xH , xR; �) / e�� (Q H
g (·)+�Q H

s (xH (t),u H (t),xR(t))) (9)

where � � 1 is the temperature of the Boltzmann distribution.
Remark 4: We assume that the robot is equipped with

high-precision sensors and employs a decent state estima-
tor [57], [58] to accurately extract the human’s state from
possibly noisy sensor measurements. Thus, the robot uses the
human’s actual state xH (t) in (9).

Remark 5: The robot uses its actual state xR(t) to pre-
dict the human’s actions as in (9), while the human uses
an estimate of that (i.e., x̂ R(t)) to decide the next action
in (7). We will study the impact of the estimation error
in Section VI-B.

2) Human’s Random Behavior: In reality, a human may
choose a random action by completely ignoring the objec-
tive functions for any reason. The robot makes use of a
uniform distribution to model the human’s random behavior,
as follows:

Pr (uH ) =
1

|UH |
8uH 2 UH (10)

where |UH | is the cardinality of the set UH .

B. Robot’s Belief About the Human’s
Danger Awareness

Let Pt (� = 1) be the robot’s belief at time instant t about
the likelihood that the human is concerned, where P0(� = 1)

indicates the robot’s prior belief. By observing the human’s
state xH (t) and action uH (t), the robot updates its belief via
the following Bayesian update rule:

Pt+1(� =1)=
P(uH (t)|xH (t), xR(t); � =1)Pt (� = 1)P

� P(uH (t)|xH (t), xR(t); �)Pt (�)
(11)

where P(uH (t)|xH (t); � = 1) can be computed via (8).

C. Computation of the Probability of Collision PColl(k)
1) Human’s State in the Future: Analogous to [22],

we divide the human’s state-space into Nc grid cells. Thus,
the probability distribution of the human’s states in the time
interval [t + 1, t + TR] can be predicted via the following
recursive rule:

P(xH (k + 1)) /

X

xH (k),u H (k),�

P(xH (k + 1)|xH (k), uH (k))

· P(uH (k)|xH (k), xR(k); �) · Pt (�) (12)

where k = t, . . . , t + TR � 1, P(uH (k)|xH (k), xR(k); �) is as
in (8), Pt (�) is as in (11), and P(xH (k + 1)|xH (k), uH (k)) is
equal to 1 if xH (k + 1), xH (k), and uH (k) satisfy (4), and is
equal to zero otherwise.
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2) Probability of Collision: Let l (xH (k)) be a neighbor-
hood around the predicted human’s state xH (k). This neigh-
borhood should be determined according to the predefined safe
distancing measures, the effect of possible modeling and track-
ing errors on predictions, and quantization error in gridding the
human’s state-space. Then, the probability of a collision event
at prediction time instant k can be computed as the probability
that xR(k) is inside the neighborhood l (xH (k)), without any
collisions prior to k. This probability is given in (13), as
shown at the bottom of the page, which should be computed
recursively, where P(xR(k) 2 l (↵)) = P(xH (k) = ↵) with ↵

as a cell in the human’s state-space, which can be computed
via (12). It should be remarked that the upper-bound in (13)
indicates that collision probabilities over time can be treated
independently. Note that using the upper-bound given in (13)
can significantly reduce the computational complexity of opti-
mization problem (3), although it may lead to a conservative
solution; this upper-bound has been used in simulation studies
presented in Section VI.

V. ROBOT ACTION PLANNING SCHEME

The robot action planning algorithm is presented in
Algorithm 1. Note that since any theoretical guarantee is
tied to the model it is based on, Algorithm 1 inherits the
probabilistic nature of human model, and thus can only provide
probabilistic safety guarantees; see Appendix B for more
details. To the best of our knowledge, this is an issue in robot
action planning schemes which are developed based upon
probabilistic predictive human models (e.g., [22], [38], [47]).

Algorithm 1 Robot Action Planning Scheme

Remark 6: Note that Algorithm 1 might be computationally
expensive if applied to high-order systems. In general, there
are two mutually non exclusive approaches to decrease the
computational complexity of Algorithm 1: 1) using a small
set UH to categorize the human’s actions and 2) considering
relatively large grid cells in human’s state-space.

Fig. 2. Considered interaction between a self-driven car and a pedestrian.

VI. SIMULATION STUDY—SELF-DRIVEN
CAR–PEDESTRIAN INTERACTION

In this section, we investigate the effectiveness of the robot
action planning scheme given in Algorithm 1 by simulating
and testing it on an interaction between a self-driven car
and a pedestrian, which is shown in Fig. 2. Our focus in
this section is on the algorithmic and analytical aspects of
the proposed framework on a simplistic, but yet realistic,
scenario.

We assume that the self-driven car can only move vertically
(i.e., it can only move on y-axis) to a goal position gR 2 R.
Note that this assumption is reasonable in the case of a
narrow one-way street. We use the Ackermann steering kine-
matics [59], [60], [61], [62] to model the self-driven car, as:
xR(t +1) = xR(t)+u R(t)1T , where xR(t) 2 R and u R(t) 2 R
are the robot’s vertical position and its directional velocity at
time instant t , respectively, and 1T is the time step size. Let
UR = {0, vR/2, vR}, where vR is the basic velocity of the self-
driven car, which means that the self-driven car can move at
either zero speed, or half speed, or full speed.

The pedestrian is an adult who can only move horizon-
tally (i.e., they can only move on x-axis) toward the goal
position gH 2 R (which is a point on the left side of
the street). The pedestrian’s model is then xH (t + 1) =

xH (t) + uH (t)1T , where xH (t) 2 R and uH (t) 2 R are the
human’s horizontal position and their directional velocity at
time instant t , respectively, and 1T is the time step size. Let
UH = {�2vH , �vH , 0, vH , 2vH }, where vH is the pedestrian’s
basic walking velocity, which means that the pedestrian can
stop, walk, or run in either directions.

We assume that gR = 80, gH = 5, vR = 2, vH = 0.5,
!H = 0.5, Pth = 0.1, TR = 5, � = 1000, ⌘1 = ⌘2 = 1, ✓1 = 1,
✓2 = 0.5, ✓3 = 2.5, ✓4 = 8 ⇥ 10�3, ✓5 = 300, ✓6 = 6 ⇥ 10�3,
6 = 1, and P0(� = 1) = 0.5. We use the robot action planning
scheme given in Algorithm 1 to manage the above-mentioned
interaction. We define l (xH (k)) as a circle centered on xH (k)

with radius ⇢ = 2, and use the YALMIP toolbox [63] to solve
the corresponding optimization problems. In order to have a
visual demonstration of the considered interaction, a simulator

PColl(k) = P
�
xR(k) 2 l (xH (k)), xR(k � 1) 62 l (xH (k � 1)), . . . , xR(t + 1) 62 l (xH (t + 1))

�

 P
⇣

xR(k) 2 l (xH (k))
���xR(k � 1) 62 l (xH (k � 1)), . . . , xR(t + 1) 62 l (xH (t + 1))

⌘
. (13)
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Fig. 3. Screenshot of the generated simulator shown in the accompanied video (https://youtu.be/_9UjDvZYT2U). Left figure: the interaction between a
self-driven car and a pedestrian in the street; the pedestrian moves from right to left, and the car moves from south to north. Middle-left figures: the top
figure shows the time profile of the robot’s belief about the likelihood that the human is aware of the danger, i.e., Pt (� = 1), and the bottom figure shows
the probability of collision over the prediction horizon. Middle-right figure: probability distribution of the human’s position in the street over the prediction
horizon, computed at each time instant (here at time t = 17); note that the pedestrian moves from right to left. Right figures: the top and bottom figures
indicate the pedestrian and car actions at the current time instant, respectively.

Fig. 4. Impact of the danger signaling on the robot’s belief Pt (� = 1).

has been generated. A video of operation of the simulator is
available at https://youtu.be/_9UjDvZYT2U. Fig. 3 presents a
snapshot of the generated simulator.

A. Impact of the Danger Signaling System
As discussed in Section III-C, the danger signaling system

can improve the efficiency and safety by acquainting an
unaware pedestrian, which is shown in Fig. 4. As seen in
this figure, when the pedestrian is unconcerned (i.e., � = 0
and/or Q H

s (·) = 0), the pedestrian keeps walking toward
the goal position gH . Thus, the self-driven car comes to a
full stop to keep the probability of collision lower than the
threshold value. Whereas, when the robot alerts the danger to
an initially unaware pedestrian, they take a decent action to
keep a safe distance. Thus, the car continues toward gR without
stopping.

TABLE I
COMPARISON STUDY—NUMBERS OF FULL STOPS AND SLOWDOWNS

FOR THE PROPOSED ROBOT ACTION PLANNING SCHEME
WITH AND WITHOUT DANGER SIGNALING

To provide a quantitative study to show the effectiveness of
danger signaling, we consider a population of 1000 pedestri-
ans, with 50% concerned, 25% unconcerned, and 25% initially
unaware pedestrians, where the initial distance between the
pedestrian and the self-driven car for each experiments is
uniformly selected from the interval [70, 90]. Such a pop-
ulation represents a realistic set of pedestrians in a real
street-crossing scenario. The numbers of full stops and slow-
downs for the proposed robot action planning scheme with
and without danger signaling are reported in Table I. As seen
in this table, danger signaling can reduce the number of
slowdowns and the number of full stops by ⇠90% and ⇠70%,
respectively.

Remark 7: Suppose that the danger signal is on
(i.e., dR = 1), but the pedestrian misinterprets it as off.
In this case, the pedestrian will act as an unconcerned
pedestrian, and thus, the robot will identify the pedestrian as
an unconcerned human and will determine a plan accordingly.
Now, suppose that the danger signal is off (i.e., dR = 0),
but the pedestrian misinterprets it as on. In this case, the
pedestrian assumes that there is a danger while there is
none, and consequently will return/stay on the initial position
(sidewalk on the right) or will run toward the goal position
(sidewalk on the left). Hence, although the pedestrian’s
actions do not increases the risk, the robot will identify
the pedestrian as an unconcerned human because their
actions do not follow the objective-driven optimization given
in (7). However, as the self-driven car moves toward the
pedestrian, the pedestrian’s actions will gradually match
the the objective-driven optimization given in (7), and thus
the robot will eventually identify the pedestrian as a concerned
human.
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Fig. 5. Impact of the estimation error on the robot’s belief Pt (� = 1).

B. Impact of the Estimation Error ✏(t)
As discussed in Section III-B, the pedestrian makes use

of an estimation of the self-driven car’s states. However,
as discussed in Section IV-A, the self-driven car predicts the
pedestrian’s states based on its actual position. This means
that in the presence of a large estimation error, even if the
pedestrian is concerned (i.e., � = 1), the pedestrian may take
an action which increases the risk. As a result, the self-driven
car cannot learn accurately the pedestrian’s danger awareness
(see Remark 5), and may have unnecessary stops.

As discussed in Section III-C, the danger signaling system
can impact the interaction by decreasing the estimation error.
This impact has been studied in Fig. 5. We assume that the
pedestrian compensates the estimation error as ✏(t) = ✏0 ·

e�✏1·(t�td ), where ✏0 2 R is the initial error, ✏1 2 R>0 is the
compensation rate, and td is the time instant that dR switches
from 0 to 1. Note that a deterministic error (i.e., 6 = 0) is
considered in this set of simulations, as the main goal here is to
understand the impact of estimation error on the performance
of the proposed robot action planning scheme.

As seen in Fig. 5, even though the pedestrian is concerned,
they react late due to the estimation error. When the estimation
error is small (i.e., ✏(t) = 5), the pedestrian runs backward
toward the sidewalk on the right, as they realize the danger
when they are on the right half of the street (note that
the pedestrian walks from right to left). While, when the
estimation error is large (i.e., ✏(t) = 10), the pedestrian runs
forward toward the sidewalk on the left, as they realize the
danger when they are on the left half of the street.

C. Impact of the Mixture Weight !H

As discussed in Section IV-A, the mixture weight !H
defines the relationship between the deliberate and random
components of the human’s behavior. More precisely, !H = 0

Fig. 6. Impact of the mixture weight !H on the probability distribution over
the human’s future positions, computed at time t . Note that the pedestrian
moves from right to left.

TABLE II
COMPARISON STUDY—NORMALIZED NUMBERS OF FULL STOPS AND

SLOWDOWNS FOR THE PROPOSED ROBOT ACTION PLANNING
SCHEME AND THE SCHEME OF [22]

means that the human is being driven only by the goal and
safety objective functions as in (7), and !H = 1 means that the
human chooses actions randomly by completely ignoring the
objectives functions. This mixture weight affects the prediction
of the pedestrian’s future states.

For a large !H , the pedestrian appears more random. Thus,
the probability distribution over the pedestrian’s state in the
future will be wide; this means that the prediction of the
pedestrian’s future positions is uncertain. A small !H leads
to a tighter distribution, meaning that the prediction of the
pedestrian’s future positions becomes less uncertain. This
impact is shown in Fig. 6 for four different values of !H .

D. Comparison Study
Consider a population of 1000 pedestrians, with 50% con-

cerned, 25% unconcerned, and 25% initially unaware pedes-
trians, who start from uniformly distributed initial positions.

For comparison purposes, we simulate the planning scheme
presented in [22]. Fisac et al. [22], first, introduces the notion
of “model confidence” (which can be viewed as a time-varying
indicator of the performance of the predictive human model)
and designs a framework for reasoning about it, and then
develops a robotic motion planner that incorporates the notion
into planning. We choose Fisac et al. [22] for comparison as it
addresses our problem setting; that is Fisac et al. [22] investi-
gates the issue of uncertainty inherent in predictions of human
movements that are computed by objective-driven optimiza-
tion and develops a probabilistically safe plan for the robot.
Numbers of full stops and slowdowns are reported in Table II.
As seen in this table, compared with the scheme presented
in [22], the robot action planning scheme in Algorithm 1
reduces the number of slowdowns and the number of full stops
by ⇠50% and ⇠70%, respectively.
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VII. EXTENSION TO MULTI-HUMAN–MULTI-ROBOT
INTERACTION

Consider a human–robot interaction, in which multiple
robots and multiple humans are moving to different goal
locations. In this case, robots should employ probabilistic
predictive models to produce a distribution of states the
humans may occupy in the future. However, generating accu-
rate real-time predictions for multiple humans is an open
problem [23]. The main challenge is the complexity of model-
ing interactive effects as the number of agents increases, such
that any simplifying assumptions could result in prediction
inaccuracy and may even threaten safety of agents.

The predictive human model presented in Section IV adapts
prediction uncertainty online to reflect the degree to which
humans’ actions match an internal model. This property
allows us to simplify interactive effects between agents with-
out threatening safety, as uncertain/erroneous predictions will
result in more conservative, but safe, plans. More precisely,
the Bayesian update given in (11) will automatically generate
more conservative predictions when humans’ actions deviates
from the structure given in (7).

Based upon the above-mentioned property, we will extend
Algorithm 1 for the case of multi-human-multi-robot interac-
tion. Two approaches will be pursued. In the first approach,
first, each robot observes states of humans and updates its
belief about their danger awareness. Then, robots use the
predictive human model presented in Section IV to generate
a time-indexed set of occupancy grids, and compute the prob-
ability of collision over the prediction horizon. Finally, under
the reasonable assumption that robots can communicate with
each other [64], [65], [66], robots will employ the sequential
planning method [67], [68] to compute the optimal trajectory.

In the second approach, each robot will consider only
the biggest problem at every time (i.e., the human whose
probability of collision has the largest value); it is foreseen
that the second approach will have a low computational cost.

VIII. CONCLUSION AND FUTURE WORK

This article introduced the notion of danger awareness as
a way of improving safety and efficiency in human–robot
interaction. The danger awareness coefficient encodes whether
the human sees the robot and quantifies the their intention
about participating in ensuring safety. This article developed
an online Bayesian method to learn the human’s danger
awareness by observing their behavior. This enables the robot
to build a predictive human model and to predict the human’s
future actions and states. This article also proposed the danger
signaling system as a way of generating awareness in the
human. The combination of the human’s danger awareness
and the danger signaling contributes to the state-of-the-art
by revoking the fully transfer of safety responsibilities to
robots, while humans are eager to contribute in ensuring safety
(note that this improves safety and efficiency in human–robot
interaction). Finally, a planning scheme was proposed to pro-
vide probabilistically safe, but yet efficient, plans for robots.
The proposed planning scheme was verified through intensive
simulation studies on an interaction between a self-driven
car and a pedestrian, and the impact of different parameters

were assessed. Future work should investigate validation and
assessment of the workflow for multi-human-multi-robot inter-
action presented in Section VII.

APPENDIX A
GAME-THEORETIC INTERPRETATION OF THE DANGER

AWARENESS COEFFICIENT

Extensive work in cognitive science (e.g., [69], [70]) has
shown that humans exploit a hierarchical reasoning to predict
others behavior/actions in decision-making processes. In other
words, humans make decisions based on finite depth of
reasoning. The Level-k game theory [71], [72], [73] pro-
vides a very useful framework to mathematically model the
above-mentioned reasoning hierarchy, where the level of an
agent (also known as player) represents that agent’s depth of
reasoning. In this framework, an agent base its decisions on
predictions about the likely actions of other agents, by assum-
ing that they are less sophisticated (i.e., they consider a lower
depth of reasoning).

The notion of danger awareness introduced in Section III-B
can be interpreted based on the Level-k game theory

1) Level-0 Agent: A level-0 agent that does not consider
probable actions and/or reactions of other agents. This
behavior resembles an unconcerned human discussed in
Section III-B. In this case, the human’s control policy,
denoted by ⇡0, can be defined as a map from a pair
of the human’s state xH (t) and the estimation of the
robot’s state x̂ R(t) to the human’s action uH (t) when
� = 0, i.e.,

⇡0:
�
xH (t), x̂ R(t)

�
7! uH (t)|�=0 (A-1)

where uH (t)|�=0 is determined by solving the optimiza-
tion problem (7) and letting � = 0.

2) Level-1 Agent: A level-1 agent assumes that all other
agents are level-0. Such an agent tries to provide the
best response to the level-0 agents, which resembles a
concerned human discussed in Section III-B. Thus, the
human’s control policy, denoted by ⇡1, can be defined
via the following map:

⇡1:
�
xH (t), x̂ R(t)

�
7! uH (t)|�=1 (A-2)

where uH (t)|�=1 is determined by solving the optimiza-
tion problem (7) and letting � = 1.

3) Level-2 Agent: A level-2 agent assumes that all other
agents are level-1. Such an agent will behave as an
unconcerned human, as it knows that all other agents
are concerned, and thus it will selfishly focus on its
objectives. Thus, the human’s control policy, denoted
by ⇡2, can be defined via the following map:

⇡2:
�
xH (t), x̂ R(t)

�
7! uH (t)|�=0 (A-3)

where uH (t)|�=0 is determined by solving the opti-
mization problem (7) and letting � = 0. From (A-1)
and (A-3), we have ⇡0 = ⇡2.

4) Level-3 and Higher Agent: A level-3 agent assumes that
all other agents are level-2. Thus, a level-3 agent will
behave as a concerned human. Therefore, the human’s
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control policy, denoted by ⇡3, can be defined via the
following map:

⇡3:
�
xH (t), x̂ R(t)

�
7! uH (t)|�=1 (A-4)

where uH (t)|�=1 is determined by solving the opti-
mization problem (7) and letting � = 1. From (A-2)
and (A-4), we have ⇡1 = ⇡3. Note that higher level of
agents can be modeled using the same logic.

According to (A-1)–(A-4), we observe that: 1) the human’s
control policy in different situations can be described by means
of a binary variable and 2) level-3 and higher humans do not
introduce a control policy that is different from lower humans
(this observation has been reported in prior work [70], [74]).

APPENDIX B
CONNECTION TO FORWARD REACHABILITY SET

Although it will not constitute a formal safety guarantee,
this appendix analyzes the safety properties of Algorithm 1 by
examining how predicted state distributions over time relate to
forward reachable sets. First, we define the forward reachable
set in the following.

Definition 1: For the dynamical model 4, the forward reach-
able set F(xH (t0), t + t0) of a state xH (t0) after time t has
elapsed is

F(xH (t0), t + t0)
=

�
x 0

H

��9uH (t0), uH (t0 + 1), . . . ,

uH (t + t0 � 1) such that xH (t + t0) = x 0

H
 
. (A-5)

⇤
According to Definition 1, to formally prove safety, it would

suffice to ensure that the robot never comes too close to the
human’s forward reachable set, i.e., xR(t + t0) \ F(xH (t0),
t + t0) = ; for every xR(t + t0) along a motion plan generated
when the human was at state xH (t0). This condition is very
restrictive as it requires avoiding the full forward reachable set.
This induces a fundamental tradeoff [22] between safety and
liveness. In the submitted manuscript, the threshold probability
Pth 2 [0, 1] is a design parameter that defines the tradeoff
between safety and liveness. To understand this, first, we define
the probabilistic forward reachable set.

Definition 2: For the dynamical model (4) with human’s
behavior given in (8), the forward reachable set with proba-
bility Pth of a state xH (t0) after time t has elapsed is

PF(xH (t0), t + t0, Pth)

=
�

x 0

H

��9uH (t0), . . . ,
uH (t + t0 � 1) s.t. P

�
xH (t + t0) = x 0

H
�

� Pth
 
.

(A-6)

⇤
As shown in [47] and [75], we have PF(xH (t0), t + t0,

Pth = 1) ✓ PF(xH (t0), t + t0, Pth = 0.9) ✓ · · · ✓

PF(xH (t0), t + t0, Pth = 0.1) ✓ PF(xH (t0), t + t0, Pth = 0) =

F(xH (t0), t + t0), which implies that the smaller the threshold
probability Pth is, the more closely our approach satisfies
the sufficient condition for safety. Based on this argument,
Algorithm 1 will determines a robot action plan when it is

predicted to be sufficiently safe with respect to the threshold
probability Pth.
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