594 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 11, NO. 3, JULY-SEPTEMBER 2023

Runtime System Support for CPS
Software Rejuvenation

Raffaele Romagnoli

Niz ©, Senior Member, IEEE, Anton D. Hristozov

Abstraci—Software rejuvenation, which was originally
introduced to deal with performance degradation due to
software aging, has recently been proposed as a mecha-
nism to provide protection against run-time cyber attacks in
cyber-physical systems (CPSs). Experiments have demon-
strated that CPSs can be protected from attacks that cor-
rupt run-time code and data by periodically restoring the
run-time system with an uncorrupted image. Control the-
oretic and empirical methods have been developed to de-
termine the timing and mode-switching conditions for CPS
software rejuvenation (CPS SR) that will guarantee system
safety. This article presents the requirements that need to
be met by the run-time system to support CPS SR. It also
presents an implementation and demonstration of the run-
time system for the PX4 autopilot system for autonomous
vehicles.

Index Terms—Cyber physical systems, resilience, safety,
security, software rejuvenation, UAV.

[. INTRODUCTION

YBER-PHYSICAL systems (CPSs) rely on the integra-
C tion of computation, communication, sensing, and control
strategies to operate effectively and safely. Cyber security has
become a major concern because of the increasing role of CPSs
in energy systems, healthcare, transportation, and many other
critical applications [1]. Standard methods are typically em-
ployed to guarantee security against malware and cyber attacks
that can be detected. Run-time cyber attacks that exploit vul-
nerabilities in communication channels may change the system
code or data in ways that make the attack undetectable. Recently,
software rejuvenation has been investigated as a method for
guaranteeing the safety of CPSs in the presence of such attacks.

Manuscript received 17 March 2022; revised 10 January 2023; ac-
cepted 13 April 2023. Date of publication 21 April 2023; date of current
version 6 September 2023. This work was supported in part by the
Department of Defense under Grant FA8702-15-D-0002 with Carnegie
Mellon University for the operation of the Software Engineering Institute,
a federally funded research and development center. (Corresponding
author: Raffaele Romagnoli.)

Raffaele Romagnoli is with the Department of Electrical and Computer
Engineering, Carnegie Mellon University, Pittsburgh, PA 15235 USA
(e-mail: rromagno@andrew.cmu.edu).

Bruce H. Krogh, Dionisio de Niz, and Anton D. Hristozov are with the
Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA 15235 USA (e-mail: krogh@cmu.edu; dionisio@sei.cmu.edu; adhris-
tozov@sei.cmu.edu).

Bruno Sinopoli is with the Department of Electrical & Systems Engi-
neering, Washington University in St. Louis, St. Louis, MO 63130 USA
(e-mail: bsinopoli@wustl.edu).

Digital Object Identifier 10.1109/TETC.2023.3267899

, Member, IEEE, Bruce H. Krogh
, Member, IEEE, and Bruno Sinopoli

, Life Fellow, IEEE, Dionisio de
, Fellow, IEEE

By periodically refreshing the run-time code and data with an
uncorrupted image, malicious changes to the system can be
eliminated before they have a disastrous effect on CPS safety and
performance. We call this application of software rejuvenation
CPS SR.

There two aspects to the dynamic behavior of a CPS: the phys-
ical dynamics, which characterize the response of the physical
system to the control inputs and physical disturbances; and the
cyber dynamics, by which we mean the dynamic timeing charac-
teristics of the computing and communication systems that host
the computer programs implementing the control algorithms.

In this article, we focus on CPSs with controllers that use
sensor data to generate the control inputs to guide the behavior
of the physical system. Our notion of physical dynamics refers
to the physical response of the real system under closed-loop
control, rather than just the dynamic models used for control
system design. Models of the physical system used for control
system analysis and design (often called the plant) typically do
not represent the details of the cyber dynamics, for example,
by assuming ideal synchronous fixed sampling rates for all
of the signals of interest and neglecting the times required
for computations and communication [2], [3]. These simpli-
fied models can usually be justified because of the time-scale
separation between the dynamics of inertial physical elements
and the high execution rates of cyber components. There can be
significant interactions between the cyber dynamics and physical
dynamics of a CPS, however, when switching conditions in the
cyber system influence, and are influenced by, conditions in the
physical system. This is the case with CPS SR, which makes
it necessary to coordinate the design of the control system and
the design of the hosting run-time system to provide security,
timing, and memory management. Studying cyber dynamics is
not only fundamental for control but also can be related to those
disciplines that study how to develop software as in software
cybernetics [4], [5].

The main effect of the cyber dynamics generated by the
CPS SR on the control system is management of time in the
control algorithm implementation. The CPS SR cycle restarts
the controller from a point in time in the past while the physical
system keeps moving in the future. This reset of the control
software introduces a discrepancy between the control action
and the current state of the physical system. We have developed
a control theoretic framework for the design of CPS SR [6]-[8].
Further extensions have been proposed for the discrete-time
case, the presence of environmental constraints, and persistent

2168-6750 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on November 24,2023 at 18:21:58 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3067-2118
https://orcid.org/0000-0003-1300-3553
https://orcid.org/0000-0002-5560-590X
https://orcid.org/0000-0002-3719-0966
https://orcid.org/0000-0001-5778-4879
mailto:rromagno@andrew.cmu.edu
mailto:krogh@cmu.edu
mailto:dionisio@sei.cmu.edu
mailto:adhristozov@sei.cmu.edu
mailto:adhristozov@sei.cmu.edu
mailto:bsinopoli@wustl.edu

ROMAGNOLI et al.: RUNTIME SYSTEM SUPPORT FOR CPS SOFTWARE REJUVENATION 595

attacks [9], [10]. These articles focus on the theoretical aspect of
determining the software rejuvenation timing that ensures safety
and control performance for the physical system.

We recently submitted a article that proposes empirical meth-
ods to determine CPS SR parameters [11] and illustrates their
application to design the CPS SR scheme for a quadrotor using
the PX4 flight control software [12]. This article concerns the
requirements that must be satisfied by the run-time system
to support CPS SR. Specifically, the software rejuvenation is
implemented through micro-reboots, which consist of two basic
operations: checkpoint and rollback. During the checkpoint the
contents of the run-time system memory is saved into a secure
memory location, and during a rollback the saved system image
is reloaded into the run-time system memory. In previous CPS
SR implementations, one checkpoint is taken at the beginning of
the mission when it is guaranteed that the software stack is not
corrupted by a possible attacker. This is not a viable approach
for a controller that makes use of state estimation to compute the
control law because, after each software refresh, the gap between
the true state of the physical system and the state estimation
saved in the initial checkpoint can diverge. To keep this gap
bounded, we make use of multiple checkpoints where a clean
copy of the software stack is saved after each software refresh.
In[11], the multi-checkpoint approach has been studied from the
control theory side. This article focuses on the run-time system
aspects that need to be considered to support multi-checkpoint
CPS SR. Specifically, the contributions of this article are:

® run-time system management of multiple checkpoints;

® run-time system requirements for data and software mod-
ule protection against attack and against software refresh;
and

® interactions between the secure kernel and the application-
level software.

The following section reviews previous work on CPS SR.
Section III describes the requirements that need to be addressed
by the run-time system to support CPS SR. As a context for the
run-time system implementation, Sect. IV provides an overview
of the PX4 autopilot system for autonomous vehicles. Section V
presents the implementation of the run-time system features that
support the implementation of CPS SR for the PX4 autopilot
system, and Sect. VI presents experimental results for a 6-DOF
quadrotor controlled by PX4 autopilot system that implements
CPS SR. For completeness, subsection VI-D presents the param-
eter design and performance results from [11]. The concluding
section summarizes the contributions of this article and identifies
directions for further work.

[I. PREVIOUS WORK

The concept of software rejuvenation was introduced in
1995 to address the problem of so-called software aging, that
is, failures that occur when a running program encounters a
system state that was not anticipated when the software was
designed [13]. The basic idea is to restart the software intermit-
tently at a “clean” state, either through a complete system reboot
or by returning to a recent checkpoint. Since the introduction
of the concept, there has been considerable research into the

development of software rejuvenation strategies [14], and it
has become a practical tool for enhancing the robustness of
computing systems in a number of applications [15], [16].

Software rejuvenation has been used to mitigate the effects
of cyber attacks such as in [17] where mechanisms of attack
detection have been studied to activate software rejuvenation for
nodes in tactical mobile ad hoc networks (MANETS) in order to
eliminate and mitigate the spread of software worms throughout
the network. In [18], a dynamical model of the spread of the
attack through the network is proposed to better use software
rejuvenation to mitigate the attack’s effects. In [19], software
rejuvenation and aging models have been extended to include
load-changing attacks in microgrids. In those techniques, detec-
tion and/or models are used to obtain some information about
possible ongoing attacks. Predicting or detecting attacks requires
reliable software and run-time information to determine if an
attack is occurring. These methods are not viable in the presence
of run-time cyber attacks that can compromise the code and data.
This is the motivation for implementing CPS SR using timing
rather than detection to trigger the refresh mechanism.

Run-time cyber-attacks can change the controller code, data,
and control flow. Such attacks can change control inputs to the
physical system directly or can indirectly change the controls
by compromising other modules that support the controls, such
as the sensor readings and the state estimation. For these kinds
of attacks, software rejuvenation is a very appealing solution
since it completely removes the corrupted software and data. In
contrast to software aging where mean-time to failure can be
the basis for timing software refresh, the frequency of software
refresh for CPS must be determined by the length of time a re-
freshed system can remain viable once it has become vulnerable
to attacks.

Arroyo et al. proposed CPS SR based on the idea that a
cyber attack requires a minimum time to be effective [20]-
[22]. They present experimental results for a simple quadro-
tor controller and an automotive engine controller to illustrate
how control performance and stability are influenced by the
frequency of periodic rebooting. Full state measurements are
assumed in both examples and only constant setpoint control is
considered.

Abidi et al. extended the development of CPS SR by introduc-
ing three concepts [23]-[25]. First, the hardware root of trust is a
secure onboard module that must be available without compro-
mise to implement software rejuvenation. Second, the secure
execution interval (SEI) is a period during which all external
communication is disabled so that no cyber attacks can occur
as the software is refreshed. Third, the safety controller, which
executes immediately following a software refresh and during
the SEI, drives the CPS to a safe operating state before restoring
communication and returning the system to mission control with
vulnerability to cyber attacks. They use a simple, conservative
real-time reachability algorithm from [26] to determine the time
that can be allowed before the next software refresh and illustrate
their approach for a simulated warehouse temperature controller
and a bench-top 3-DOF helicopter. Again, only constant setpoint
control with full state measurements is considered in these
examples.

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on November 24,2023 at 18:21:58 UTC from IEEE Xplore. Restrictions apply.

596 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 11, NO. 3, JULY-SEPTEMBER 2023

[[%(t) = xspllp < ps

Xsp 1= Wo

iy =0 @

0

TrB Test

Tve

Figure 1. CPS SR mode-transition graph. Unlabeled transitions occur
immediately after the operations for the preceding mode are completed,
or when the time indicated for the mode has elapsed.

| -
| |
(]
S
k= recovery
SC MC RB SC MC RB
Cp Tyuc Trp Cp Tyc Trp |
’t
Tyc Tyc
Figure 2. CPS SR timeline.

In [6], the overall approach to software rejuvenation from [24]
is adopted, but the timing strategy for software rejuvenation
for constant setpoint control is based on analysis of the control
problem using Lyapunov functions, invariant sets, and off-line
reachability analysis. The control-theoretic approach of [6] is
extended to systems that track reference signals in [7]. In [8],
the theory is extended to more realistic control problems with
bounded disturbances, bounded model uncertainties and general
output measurements with bounded noised requiring state esti-
mation. The theoretical results are illustrated with simulation
experiments for control of the nonlinear dynamics of a 6-DOF
quadrotor.

The CPS SR scheme developed in the above articles is illus-
trated in Figure 1 and 2, where the modes are defined as follows:
MC' mission control is the mode where the CPS is executing
the code designed to carry out its intended mission under
normal operating conditions. During this mode the CPS
can exchange information over the network, making it
vulnerable to cyber-attacks. Hence, it is allowed to stay
in this mode for only a finite period of time, T, which
is the amount of time the system can remain safe even if
there is an (undetectable) attack on the run-time code and
data.
rollback is the mode where the control software is rolled
back to the last checkpoint. During this mode, the control
inputs are kept constant and equal to the last value set
before the rollback, which may be the result of an attack.
Trp is the maximum time needed to rollback the control
software. Network communication is shut off before the
rollback is executed to avoid corruption of the restored
run-time image.
safety control is the mode where the CPS is controlled
back to the region where the mission controller can
execute safely. It is executed in protected mode, i.e., no
external communication is allowed, to guarantee that the

RB

SC

information used for safety control is not compromised.
The duration of the SC' mode is for a duration of at
Test, the time required to obtain a sufficiently accurate
state estimate, plus any additional time required for the
state estimate to be within a range of its current setpoint
that is sufficiently close for M/ C to be implemented (this
is the condition indicated on the transition from SC' in
Figure 1).

checkpoint represents the mode where a new non-
compromised image of the run-time code and data is
saved. The system remains in secure execution (no com-
munication) during the C'P mode and the control output
during C'P is the most recent control from the safety
controller.

CP

As shown in Figure 1, the CPS-SR cycle is in mode M C' for
a finite time interval 1Ty;-. Then, the control software is rolled
back to the previous checkpoint in mode RB. After that, mode
SC' is active for a duration of at least 7,4, to guarantee the
state estimate is sufficiently good for control, and the transition
from mode SC' also does not occur until the estimated state
is sufficiently close to the current setpoint. (This condition is
discussed in Sec. IV.) Before transitioning to mode C'P for
another checkpoint, the setpoint for tracking control is updated
by the update function shown as an additional mode in Figure 1
between modes SC and C'P.

Figure 2 illustrates the timing of the mode transitions. During
Tyc and Trp the control input may be compromised by an
attack, hence the total time that the CPS can be under the effect
of an attack is Ty =2 The + Trp. This time represents the
time when the CPS is under uncertain control and it has to be
computed. In the case where Ty < Trp the problem is not
feasible. During RB and SC, the CPS has to be protected, and
this time is called secure execution interval SEI. The system is
vulnerable to attack only during the period T, when it is in
MC mode.

The implementation and demonstration of CPS SR with run-
time system support using software-in-the-loop (SITL) simula-
tion for the 6DOF quadrotor is presented in [11], with a focus on
the empirical determination of the timing and mode-switching
parameters. The results presented in that article are possible
thanks to a novel implementation of the software rejuvenation
task which considers multiple checkpoints. This new implemen-
tation introduces new challenges for the run-time system which
are not (or just marginally) dealt with in [11]. In this new article,
the focus is to present these new challenges and the associated
solutions that make software rejuvenation viable to make CPS
resilient to run-time cyber attacks.

Ill. PROBLEM STATEMENT: RUN-TIME SYSTEM
REQUIREMENTS

To successfully implement the proposed CPS SR scheme
there are several requirements that must be satisfied by the
run-time system.

Protection of the timing mechanism: To guarantee safety,
R B must be executed after M C' has been executed for the period

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on November 24,2023 at 18:21:58 UTC from IEEE Xplore. Restrictions apply.

ROMAGNOLI et al.: RUNTIME SYSTEM SUPPORT FOR CPS SOFTWARE REJUVENATION 597

Tarc. The mechanisms that activate the timer and trigger the
rejuvenation which runs during M C' cannot be compromised
by any attack and needs to be protected.

Secure Execution Interval: When the system is in a safety
control interval (SEI) there must be no possibility for an attack to
change the software. This means that there is no communication
through the network while the system is inthe RB, SC, and C P
modes.

Limits on Control Uncertainty: To guarantee CPS SR fea-
sibility (Tyyc > T'sr) the control inputs that can be generated
during M C have to be limited. This means that an attacker can
use only a limited subset U C U of all possible control inputs.
The control limitations have to be active during M C' and have
to be implemented at the driver level. It is fundamental that the
attacker cannot compromise those limits, so they have to be
protected. It is also important to note that these limitations have
implications on the actual controller running during M C' during
normal operations since this controller has to generate control
inputs within U.

Multiple Checkpoints: We consider the case where only the
state estimation, denoted by X(t), is available to make decisions
in the CPS SR scheme (Figure 1). The run-time system must
take a checkpoint before switching to M C' and all functions
and threads running at that point in time will be running when
that checkpoint is restored in the RB mode. The run-time
system needs to manage the threads at the time of restoration to
assure there are not multiple instances of the threads propagated
forward as the images are restored.

Persistent Data: There are data and information that are
essential for the control and liveness of the mission, such as the
current setpoint Xsp, and current mission waypoint w;. The run-
time system must manage this persistent information. It needs
to be obtained, protected, and provided correctly to the restored
system.

Section V describes how these requirements are met by a
run-time system implemented in the context of the PX4 autopilot
described in the following section.

IV. APPLICATION: PX4 AUTOPILOT SYSTEM

In general, a CPS controller is implemented by several mod-
ules that support the computation of the control action. An ex-
ample is the PX4 open-source autopilot system for autonomous
vehicles, which has a complex modern architecture [12]. We use
this widely-used CPS control system as a context to illustrate
and demonstrate a run-time system to support CPS SR that
meets the requirements described in the previous section. The
PX4 software is composed of several modules that implement
different parts of the system (e.g., State Machine, Autonomous
Flights, Position Control, Sensor Hub, GPS, etc..).!

The PX4 software is divided into modules. Each of these
modules is run either in separate threads or in thread pools called
working queues. The working queues are basically threaded
pools where several modules are sharing a single thread. These

I'See https:/docs.px4.io/master/en/concept/architecture.html for a detailed
description of the PX4 autopilot architecture.

architectural decisions are favorable for developers and main-
tainers but pose challenges when rejuvenation is considered.
One of the challenges is the state of each module and how it
can affect the operation of the autopilot. Another challenge is
the queuing in the publish-subscribe 4 ORB module, described
below. Finally, due to the threading model and implementation
of the modules, there are no timing guarantees.

A. State of Modules Versus State of the System

PX4 has a central message broker module called ORB. Its
function is to store and dispatch messages between modules.
Each module can publish messages and can subscribe to different
messages. This approach is asynchronous and does not depend
on time. This flexibility means that the ©ORB module has
to queue messages and store them until all subscribers have
received them. One issue that exists with this model is that
the software rejuvenation checkpoint and refresh operations can
happen at any time while a message is queued. The queued
messages, therefore, act as some form of a global state. There
is a probability that some messages can be lost while being
queued depending on the timing of the checkpoint. Many of
the messages are periodic, however, and even if one message is
skipped the next messages can compensate by delivering fresh
data to the subscribed modules.

Individual states of modules and their effect on the system is
a real concern, especially in a loosely coupled architecture like
PX4. Each module can have a substantial state in the form of
many variables that get updated constantly. Once the system
is refreshed the modules are recovered to their state at the
moment of the checkpoint. While the state of the software can
be rebooted, the state of the physical system x(t) keeps moving
and after RB, so there is a discrepancy between the state of
the physical system represented in the restored software and the
actual state of the physical system.

The (physical) state of the system can also deviate from its
desired value due to software rejuvenation. PX4 has a module
ek f2 that implements an Extended Kalman Filter that provides
an estimation X(t) of the actual state of the system by fusing
all the sensors measurements [12]. After each RB there is a
step change in the estimation error since the value of the state
estimation is resumed to the one saved during the last CP. This
can affect not only the control performance in terms of stability
but may compromise the safety of the CPS SR scheme since X (¢)
is the only available information used for the CPS SR transitions,
and if it is not accurate it may put the system in a dangerous
situation.

For example, taking only one checkpoint at the beginning
of the mission has negative effects on the estimation error
e(t) £ %(t) — x(t) during trajectory tracking missions because
the actual state x(¢) may move far from the point of the first
checkpoint since the physical system is tracking a trajectory.
This means that the estimation error can grow after each re-
fresh during the mission and reach values where the switching
condition

[%(t) — xsplp < ps (1

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on November 24,2023 at 18:21:58 UTC from IEEE Xplore. Restrictions apply.

https://docs.px4.io/master/en/concept/architecture.html

598 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 11, NO. 3, JULY-SEPTEMBER 2023

cannot be guaranteed any more. (1) states that the state es-
timate is inside an ellipsoid &(ps,Xsp) = {o € R™|(X(t) —
Xsp) T P(X(t) — xsp) < p2} centered in xsp with P > 0 asym-
metric definite positive matrix. This condition ensures safety
against attack during M C' around a new setpoint Xy, [7]. Taking
a checkpoint before switching to M C' and after having updated
the equilibrium point helps to prevent the uncontrolled growth
of e(t).

An additional parameter, pjy, is important for the safety and
setpoint update. It defines an ellipsoid €(pas, Xsp) that contains
E(ps, xsp) which satisfies the following condition: if %(t) €
E(pm,Xsp) then the system can tolerate attacks for Ty;¢. Hence,
if X(t) € E(ps,Xsp) then we can move Xgp to Xgp' such that
X(t) € E(pm,xsp’) [71, [11].

Taking multiple checkpoints is necessary, but not a sufficient,
to eliminate the growth of the state estimation error. The esti-
mation error can still continue to increase through several CPS
SR cycles. As previously mentioned, the state estimator needs
time to provide an acceptable state estimation, this means that
just right after RB the state estimation may satisfy switching
condition (1) to switch to M C while the true state is still far
from the true value. This can cause an additional growth in the
estimation error after each RB even in the case of no attack.
This problem is addressed by introducing a required period T,
to spend in SC to recover the state estimate before checking
condition (1). The adoption of multiple checkpoints and 7%,
provide bounds on e(t) that guarantee the existence of a feasible
Ty that satisfies (1) [8].

B. Flight Control Modules

We keep the structure of the PX4 architecture, but we use a
different position and attitude controller. In version vl .11 .xx
of the PX4 software, the module mc_att control gen-
erates the angular rates as reference signals to module
mc_rate control, which publishes the actuation controls.
We have replaced these modules with 1gr control, which
implements a linear state feedback algorighm based on linear-
quadratic-regulator theory [2], and the setpoint/waypoint update
is performed by the module gen_set point, as shown in
Figure 3.

At the beginning of the operations, we upload the mission
represented by an ordered sequence of waypoints V. This
process can be done through the PX4 commander routine,
which also starts a new thread gen set point start.
At this point, we take the first checkpoint from the command
line checkpoint p save and set the timer for the roll-
back checkpoint p do timer (). Those functions are
in the Checkpoint/Rollback module (described further below),
which implements the scheme of Figure 1. After each rollback,
this module evaluates the state estimation X(t¢) provided by
the module ekf2, which also provides it to the controller
lgr controller. The state estimation is also used to update
the current setpoint and/or waypoint.

Finally, the Output Driver transforms the control inputs u(t)
into four command signals, one for each propeller. This transfor-
mation is inverse of the following mixer matrix, which relates the
signals {Uy, . .., Uy } provided to each propeller (values between

Storage

Message Bus
JIORB

External Connectivity Drivers

Flight Controller

sensor

[Autonomous Flight

State Machine w
gen_set_point

commander

State Estimator

1qr_co
()

Checkpoint/Rollback | |

(Output Driver)
checkpoint_p J

J—

(Mixer

Figure 3. PX4 architecture for the implementation of CPS SR.

0 and 1) to the force/torque control input vector for the model
of the physical dynamics, u(t) = [F 74 75 7y]

F kl k‘l k’l kl Ul
T - 0 —L - k‘[0 L- k‘] U2
| |L-k 0 —L-k 0 Us

Ty —ky k» —k ko Uy

The constants k; and k, are the maximum thrust and torque
for each propeller, and L is the dimension of the quadrotor.
Further details concerning quadrotor design and the controller
implementation can be found in [6], [27] and the references in
these articles.

C. Data Protection

There are some parts of the PX4 software architecture that
should not be compromised by an attack. One of these is the
output driver that converts the actuator controls into the signals
for each propeller. This conversion is made by the inverse of the
mixer matrix shown above. Changing any entry of that matrix is
highly dangerous since the drone can irreversibly lose control.
In order to guarantee resiliency against attacks, we need to limit
the potential impact of an attack by protecting the mixer matrix
and limiting the maximum thrust and torque of each propeller.
When there is the mode transition to M C' and before making
the entire system vulnerable, the module Checkpoint/Rollback
sends a message that can be only read by the Output Driver
module which sets the restrictive limits to the maximum thrust
and torques for each propeller. When the system is running in
MC, the calls to any function defined in Checkpoint/Rollback
module are disabled to assure an attacker cannot exceed the
limits on the actuator commands.

D. Secure Execution Interval

During the SEI (which spans the RB, SC, and C' P modes) we
must guarantee that the controller is working properly. To do so

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on November 24,2023 at 18:21:58 UTC from IEEE Xplore. Restrictions apply.

ROMAGNOLI et al.: RUNTIME SYSTEM SUPPORT FOR CPS SOFTWARE REJUVENATION 599

main
while(){

Code

).,..

intx,y;
struct s {

APPLICATION

Data

int 1)

turn
e Stack

()a1e15 2NES
()o1e35 2401594

leusis
eqjjol

6|04

Pt ||l

>0€q||04
J1ponad

«—

4 y

persistent
storage

-—
odydayd

image
store/restore

app state
restore

Jawin
J2eq|joy

C)

KERNEL

Figure 4. Micro-reboot block diagram.

we need to guarantee that the attacker cannot have the possibility
to corrupt the control software. This condition is guaranteed
by closing all network communications. The network com-
munication is managed by the External Connectivity modules
that can interact with other modules via the publish-subscribe
mechanism.

PX4 manages the data link loss by implementing a
fail-safe mode that forces the quadrotor to move to and land at a
“home” location. For the CPS SR implementation, the fail-safe
mode is modified in order to guarantee that during SC' the system
is disconnected from the network and not forced to land.

We assume that the mission starts when the system reaches
the first waypoint and ends when it reaches the final waypoint.
If we need to protect the takeoff and the return to the home we
need to design two specific operation modes that operate while
we are disconnected from the network.

V. RUN-TIME SYSTEM IMPLEMENTATION

The run-time system we have implemented to support
CPS SR hosts the PX4 autopilot control system, which we
use to control a quadrotor. Figure 4 shows the micro-reboot
scheme used in [11]. From the application level the function
create checkpoint () is called to create the image of the
code, data, stack segments, and processor registers of the running
process. This operation is executed at the kernel level by the
image store/restore module. The snapshot of the running process
is saved in the kernel secure storage and it is restored when the
rollback () function is invoked. Note that at the application
level we can directly invoke this function or set a timer (periodic
rollback) at the kernel level to invoke it to restore the image
saved during the checkpoint. The restore process occurs in two
steps: (i) the image store/restore kernel module performs the
image restore; and (ii) the app state restore kernel module

containing code developed by the application programmer is
called to restore the application state that needs to be restored
before the control is handed over to the application. For the PX4,
this code creates a new timestamp correction value inside PX4
that allows it to calculate time intervals correctly after rollbacks.

Once the application has been restored, the kernel generates
a rollback signal () which activates a function called
rollback _handler () in one of the existing threads. This
function is useful to handle the code that needs to be executed
right after the application has been restored.

A. Periodic and Non-Periodic Rollback

From the application level, it is possible to set a
timer for the rollback and make it periodic by -calling
do_timer (time, periodic). This function sets a timer
where, if periodic==0 the rollback is called only once after
the period time, otherwise if periodic==1 it is called
periodically every t ime.

The periodic solution offers an advantage in terms of security
because the periodic rollback is executed at the kernel level.
Thus, the reboot is always guaranteed no matter what happens
at the application level. The only issue from the security per-
spective is to make sure that create checkpoint () and
do_timer (time, 1) cannot be called by an attacker when
the system is vulnerable. To avoid this problem these calls are
disabled during M C.

The safety of the physical system is guaranteed by the CPS
SR scheme presented in Figure 1. This scheme suggests that
the periodic rollback cannot be implemented since there is an
unknown but finite period of time where the system must stay in
SC' mode. A periodic rollback can be implemented only in a sit-
uation where it is assumed that an attack needs some time before
affecting the physical system [22]. In this way, it is possible to
set a period that ensures that the physical system will never need
to be recovered from the action of an attack. The aperiodic SC
mode also offers robustness against trajectory deviations caused
by unmodelled dynamics and external disturbances.

In the constant setpoint case, where the initial checkpoint
is taken once before the mission, the periodic rollback can
be managed entirely at the kernel level because no run-time
data needs to be saved and restored. In contrast, the proposed
non-periodic CPS SR scheme with updated checkpoints needs
run-time information from the application level to update the
setpoint information. Hence, the CPS SR scheme is implemented
inside the rollback handler, which runs at the application level
while the system is disconnected from network communication.

B. Rollback Handler

The software rejuvenation scheme of Figure 1 is implemented
by the function rollback handler () presented in Fig-
ure 5. The first action is to switch to SC' mode. The function
set SC mode () is defined in the module checkpoint p
and disconnects the system from the network to protect the
system from attacks. The SC' mode also enables the Output
Driver module to read messages that change the control limits.
Once in SC mode, the rollback handler waits for T,¢; before

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on November 24,2023 at 18:21:58 UTC from IEEE Xplore. Restrictions apply.

600 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 11, NO. 3, JULY-SEPTEMBER 2023

void rollback_handler (){
set_SC_mode () ;
sleep (Test) ;
bool flag=true;
while (flag){
X:=get_state();
Xgp :=get_setpoint () ;
if (IR = xspllp < ps){
publish_update_sp();
sleep (tmin) ;
flag=false;
recreate_checkpoint ());
do_timer (Thc,0);
set_MC_mode () ;
}
}

Figure 5. Rollback handler function.

checking condition (1). This allows the ekf2 module to up-
date the state estimation with new measurements in order to
reduce the estimation error. From this point the rollback handler
starts to check (1) at each iteration. Since the while loop is
much faster than the state estimation update, we impose that
the check happens after every 2 ms. If condition (1) is true,
the function publish update sp () sends a message to
the Autonomous Flight module where gen set point ()
is listening to see if the setpoint needs to be updated. The
next step is to take a new checkpoint. Waiting for tmin after
the setpoint update guarantees that the new setpoint is active
before recreate checkpoint (). This way, after each
rollback the current setpoint is always up to date and we do
not need to save the current setpoint and the waypoints in the
persistent memory. Before switching to M C, do_timer ()
sets at the kernel level the timer that triggers the next rollback
when the time interval T, is elapsed. Finally, the function
set MC_mode () sets the new control limits, disables the calls
of functions from checkpoint p module, and restores the
network communication.

C. Multiple Checkpoints

The function recreate checkpoint (), whichis called
inside the rollback handler, introduces a further implemen-
tation issue. After each rollback, a new instance of roll-
back handler () is called while the whole program is re-
sumed. This means that the previous rollback handler resumes
starting from do_timexr. This way, do_timer is called re-
cursively, making the time when the next rollback happens
unpredictable. In this situation safety cannot be guaranteed by
the CPS SR scheme of Figure 1. A modified version of the
rollback handler function is presented in Figure 6 to solve this
problem.

We introduce a new variable Semaphore which is used
to decide whether or not the program is executing the
code in the current or in the previous instance of the
rollback handler (). If we are in the current rollback

void rollback_handler () {
set_SC_mode () ;
sleep (Test) ;
bool flag=true;
bool Semaphore=true;
while (flag){
X:=get_state();
Xsp:=get_setpoint ();
if (& = xspllp < ps){
publish_update_sp () ;
sleep (tmin) ;
flag=false;
write_Semaphore (Semaphore) ;
recreate_checkpoint ());
Semaphore:=read_Semaphore () ;
if (Semaphore==true){
Semaphore:=false;
write_Semaphore (Semaphore) ;
set_MC_mode () ;
do_timer (Thc,0);

}
}

Figure 6. Rollback handler function.

handler call, the saved Semaphore is true and do_timer
can be executed. It is important to note that to implement this
mechanism the variable Semaphore cannot be rejuvenated,
this means that it has to be saved in the persistent memory.

VI. EXPERIMENTAL RESULTS
A. Software in the Loop

Since our lab access was restricted during the COVID pan-
demic, we used the PX4 Software In The Loop (SITL) platform
for our experiments. The experiments were carried out on Intel
Core 17-8550 U CPU @ 1.80 GHz, Linux 5.4.0-72-generic,
x86_64. The SITL approach allows for the instance of PX4 to
be run as one process and the simulator j]MAVSim to simulate
the quadrotor dynamics as another process with communication
between them through sockets. Even when PX4 runs on the
simulation computer it still emulates controlling a quadrotor
with standard characteristics. Through the class SimpleSen-
sors.java, the simulator J]MAVSim also implements simula-
tions of the gyro, accelerometer, magnetometer, pressure sensor,
and GPS. For each type of sensor, it is possible to define the noise,
accuracy, delays, and other parameters that recreate conditions
similar to a physical implementation.

For Px4 in SITL mode, the modules in Output Driver are not
compiled and the normalized forces and torques are sent directly
to JMAVSim. In this situation, we impose the limits directly on
the force and torques computed by the controller.

B. Timing Diagram

PX4 publishes new control inputs with a variable sampling
time that in general is about 2 ms. When the CPS SR approach

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on November 24,2023 at 18:21:58 UTC from IEEE Xplore. Restrictions apply.

ROMAGNOLI et al.: RUNTIME SYSTEM SUPPORT FOR CPS SOFTWARE REJUVENATION 601

.10-2 Sampling Time

2.5 T T
checkpoints

2 \O 8
15} I P 1
rﬁ i n i i
S
%
1r il
rollbacks
0.5 5
U Il Il Il Il Il Il Il Il Il
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Samples 104

Figure 7. Control inputs updating time.

is applied we can observe the duration of the checkpoint and
rollback operations.

Figure 7 shows the effective time between two consecutive
control input updates during a mission that implements CPS
SR. Taking new checkpoints requires more time (=~ 20 ms) than
rolling back the software (= 15 ms). During this time the control
inputs are kept constant, and this may have implications for the
control performance. For example, during tracking control, a
naive implementation of the checkpoint and rollback procedures
can destabilize the physical system. The CPS SR scheme in
Figure 1 prevents this possible situation [7].

The constant control inputs during the C'P mode are com-
puted by the controller in SC' mode, so they are known to be
good control values, in contrast to the constant control inputs
during the R B mode which may be compromised by an attack.
Therefore, the effects of possibly unknown controls during the
period Trp need to be considered in the computation of the
time interval when the CPS can be vulnerable to attacks T,
whereas the effects of the constant controls during mode C'P
will be negligible.

Figure 8 shows the portion of the output of the rollback handler
function of Figure 6. Once the rollback signal is captured,
the output shows that the control software is still in one of
the previous rollback handler calls. Without the introduction
of the variable Semaphore, do_timer () is called several
times within the same software rejuvenation cycle. Instead, the
function of Figure 6 forces the program to exit from all the
previousrollback handlercalls (->: Semaphore: 0 Exit
from rollback handler!) and sets the timer only dur-
ing the current call of the rollback handler (->: Starting
rollback handler...).

C. Experiment Results

Figures 9 and 10 show results from an SITL experiment that
implements the CPS SR scheme. The mission is to track a square
that has a side length of 1 meter in the = — y plane at an altitude
of 3 meters. For this experiment, we use Ty = 0.3 s, and

—>:rollback signal captured rollback

timestamp: 27766 s, 70180234 ns checkpoint
timestamp: 27768 s, 592161986 ns
—>: Semaphore: 0 Exit from rollback
handler!

—>: Semaphore: 0 Exit from rollback
handler!

—->: Semaphore: 0 Exit from rollback
handler!

->: Semaphore: 0 Exit from rollback
handler!

—>: Semaphore: 0 Exit from rollback
handler!

—>:Starting rollback_handler...

—>:WARN [lgr_control] Recovery check
—>:INFO [lg_control] RECOVERY control
ACTIVE

>

->: Do timer

—>:INFO [checkpoint_p] checkpoint: setting
timer
Figure 8. Multiple checkpoint management.

3-D trajectory

Attack

Recovery

— jMAVSim
—— ckf2
o setpoint

0.8 1.4
0.6) .
0.4

¥] x [m]

Figure 9. 3D behavior of the system implementing the proposed CPS
SR scheme. The blue trajectory represents the actual position of the
quadrotor provided by the simulator j]MAVSim, and the green one is
provided by the PX4 ekf2. The red circles are the setpoints computed
by the tracking algorithm.

pm = 0.1, ps = 0.0894, and T,.;; = 3 s. Both figures show that
the quadrotor is able to accomplish the mission and recover from
attacks. Figure 10 shows the trajectory with respect to time. The
performance of the control system is affected by the accuracy
of the state estimation. Rejuvenating the ekf2 contributes to
increasing the estimation error. For this reason, the introduction
of T, s+ is fundamental to guarantee resiliency against attacks and
stability of the physical system. T, increases the total time of
the mission and makes the quadrotor hover around each setpoint
for more time than necessary, generating more oscillations.

In the next subsection, the parameter design and control
performance are briefly presented based on the results obtained

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on November 24,2023 at 18:21:58 UTC from IEEE Xplore. Restrictions apply.

602 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 11, NO. 3, JULY-SEPTEMBER 2023

T
Attack ——actual x
—ekf2

— reference |

\; i i i i i ApAah, S A
0 100 200 300 400 500 600 700

secs

——actual y
——ekf2
— reference

= 051

Attack

e NS ‘ ‘ ‘ ‘
0 100 200 300 400 500 600 700

secs

Figure 10. Quadrotor’s behavior along the = and y components with
respect to time. The blue line represents the actual position provided by
JMAVSim, the red line is the position provided by the PX4 module ekf2,
and the yellow line is the setpoint.

in [11]. The presented values are the same used to design the
experiment discussed in this section.

D. Parameter Design and Control Performances

The CPS SR design procedure developed in [11] allows us to
find Thsc and T, by building a look-up table that contains the
maximum value of max ||x(¢) — Xsp||% for each pair of Ty/c
and T, values, where x(t) is the actual state of the quadrotor.
In each experiment, the quadrotor is subject to 45 consecutive
attacks. The attacks are implemented as minimum time optimal
control actions that push the system outside the safety set as fast
as possible. Perpetrating consecutive attacks explores the region
where an attack can start [11].

By interpolating the recorded values of max ||x(t) — X, /5.
it is possible to plot the contour regions based on the values
of Thsc and T, that represent how close the true state of the
system x(t) is to the boundary of the safety region ||x(t) —
Xsp||» < 1 (Figure 11(a)). Similarly, it is possible to build the
same contour plot with the maximum estimation error ||x(t) —
%(t)||% (Figure 11(b)).

The results in Figure 11 show that safety is guaranteed for
values of T, that go to 3 s, and for values of T, that go
to 0.2 s. These results show how the effects of the attacks in
terms of safety are mitigated by reducing 7}, and increasing
Test- The time needed to refresh the software Trp is already
implicitly considered in the experiments. Figure 11(b) shows
that the contour of the maximum estimation error follows a
similar profile to Figure 11(a), showing that the estimation error
has an impact on the safety of the system. Finally, the designer
can use Figure 11 to choose T, and T to ensure safety and a
bounded estimation error. Two additional parameters need to be
set, ppr and pg, which are kept fixed to pps = 0.1 ps = 0.0894
for the experiments run to create Figure 11.

The experimental results used for the design of T, and T,
show that safety against attacks can be achieved with a certain

2.8

2.6

2.4

22

| P
0.2 021 022 023 024 025 026 027 028 029 03
Ty

(@) Maximum of ||x(t) — sp||» on the domain 0.2s <
Trve <0.3s, 1s < Test < 3s.

3
2.8

2.6

0.2 021 022 023 024 025 026 027 028 029 0.3
Tm

(b) Maximum of ||x(t) — %(t)||3 on the domain 0.25 <
Trve <0.3s, 1s < Test < 3s.

Figure 11. The contour plots show the behavior of (a) the maximum
control error and (b) the corresponding estimation error with respect to
Tre and Tegy.

TABLE |
COMPARISON BETWEEN TRAJECTORY TRACKING WITH AND WITHOUT
REJUVENATION
’ Case ‘ Tre [s] | Test [s] | d[em] ‘ max d [cm] ‘ T [s] ‘

state estimation - - 6.98 17.73 86.63
no rejuvenation

state estimation 0.2 30 10.51 27.88 484.25

with rejuvenation

level of robustness (e.g., an attack is less effective for decreasing
values of T’y and increasing values of T,;). As pointed out in
the previous section, the choice of those parameters affects the
overall tracking performance. Table I shows the tracking per-
formance of the system with and without software rejuvenation
in absence of attack [11]. Based on the results of Figure 11,
the extreme values that provide more robustness against attacks
have been chosen as T.,; = 0.2 sand T.,; = 3 s, and both cases

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on November 24,2023 at 18:21:58 UTC from IEEE Xplore. Restrictions apply.

ROMAGNOLI et al.: RUNTIME SYSTEM SUPPORT FOR CPS SOFTWARE REJUVENATION

of Table I implement the same tracking algorithm. The mission
is the same as described in the previous subsection. The value
d represents the average distance of the actual drone position to
the desired trajectory, max d is the maximum distance, and 7' is
the time to complete the mission. In the presence of attacks, CPS
SR can guarantee safety during the mission in Figure 9. Still, in
the case of no attacks, the tracking performance is lower than
the case with no rejuvenation and the total time to complete the
mission is longer.

CPS SR is a time-triggered mechanism that does not rely on
attack detection because it assumes that any possible information
that might be used to detect attacks could be corrupted, making
an attack undetectable. When it is possible to implement attack
detection, such as the situations considered in [17], [18], the
number of software rollbacks will be reduced and the overall
tracking performance when there are no attacks can be improved.

VIl. CONCLUSION

This article presents a run-time system to support software
rejuvenation to protect CPSs from run-time cyber attacks. The
PX4 autopilot example demonstrates that the run-time system
can be implemented for complex CPS architectures. The fre-
quency of the reboots and the kernel implementation of the
rejuvenation make the solution resistant to a large class of
undetectable attacks [28]. The implementation protects against
memory and code corruption due to malicious activity. The
article presents a specific implementation for the PX4 autopilot,
but it can be applied to a large class of systems such as Ardupilot
and ROS-based robotic architectures [29]. The viability of the
approach has been demonstrated by extensive STIL experiments
with a variety of simulated cyber-attacks.

There are several directions for future research and develop-
ment. Currently, CPS SR relies on a fixed period for mission con-
trol, which is determined by worst-case analysis of the reachable
physical states for any possible attack beginning immediately
when the system becomes vulnerable. Consequently, the system
performance is degraded by the checkpoint and software refresh
operations even when there are no attacks. Methods for detecting
the presence of a possible attack and initiating software rejuve-
nation only when an attack is detected would make CPS SR
much less conservative. This would require secure mechanisms
for monitoring the system’s behavior. Methods for dealing with
the state estimation error due to the time lapse between the
checkpoint and image restoration would also be of value to
reduce the amount of time required for safety control (SC')
before the system can be returned to mission control (MC').
Finally, the experience developing the prototype run-time sys-
tem in this research could guide the development of standard
run-time system features to provide commercial support for CPS
SR.

ACKNOWLEDGMENT

Carnegie Mellon was registered in the U.S. Patent and Trade-
mark Office by Carnegie Mellon University. Copyright 2022
IEEE. DM22-0241

(1]
[2]
[3]
[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

603

REFERENCES

A. Platzer, Logical Foundations of Cyber-Physical Systems. Berlin,
Germany: Springer, 2018.

K. Ogata, Modern Control Engineering, 5th Edition. Englewood Cliffs,
NJ, USA: Prentice-Hall, 2009.

G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of
Dynamic Systems, 8th Edition. London, U.K.: Pearson, 2020.

H. Yang, F. Chen, and S. Aliyu, “Modern software cybernetics: New
trends,” J. Syst. Softw., vol. 124, pp. 169-186, 2017.

K.-Y. Cai, K. S. Trivedi, and B. Yin, “S-ada: Software as an autonomous,
dependable and affordable system,” in Proc. IEEE/IFIP 51st Annu. Int.
Conf. Dependable Syst. Netw.-Supplemental Volume, 2021, pp. 17-18.

R. Romagnoli, B. H. Krogh, and B. Sinopoli, “Design of software rejuve-
nation for CPS security using invariant sets,” in Proc. IEEE Amer. Control
Conf., 2019, pp. 3740-3745.

R. Romagnoli, B. H. Krogh, and B. Sinopoli, “Safety and liveness of
software rejuvenation for secure tracking control,” in Proc. IEEE 18th
Eur. Control Conf., 2019, pp. 2215-2220.

R. Romagnoli, B. H. Krogh, and B. Sinopoli, “Robust software rejuve-
nation for CPS with state estimation and disturbances,” in Proc. Amer.
Control Conf., 2020, pp. 1241-1246.

T. Arauz, J. M. Maestre, R. Romagnoli, B. Sinopoli, and E. F. Camacho,
“A linear programming approach to computing safe sets for software
rejuvenation,” I[EEE Contr. Syst. Lett., vol. 6, pp. 1214-1219, 2022.

R. Romagnoli, P. Griffioen, B. H. Krogh, and B. Sinopoli, “Software
rejuvenation under persistent attacks in constrained environments,” /FAC-
PapersOnlLine, vol. 53, no. 2, pp. 4088-4094, 2020.

R. Romagnoli, B. H. Krogh, D. N. Dionisio, H. AntonD, and B. Sinopoli,
“Software rejuvenation for safe operation of cyber-physical systems in the
presence of run-time cyber attacks,” IEEE Trans. Control Syst. Technol.,
early access, Jan. 24, 2022, doi: 10.1109/TCST.2023.3236470.

L. Meier, D. Honegger, and M. Pollefeys, “Px4: A node-based multi-
threaded open source robotics framework for deeply embedded platforms,”
in Proc. IEEE Int. Conf. Robot. Automat., 2015, pp. 6235-6240.

Y. Huang, C. Kintala, N. Kolettis, and N. Fulton, “Software rejuvenation:
Analysis, module and applications,” in Proc. IEEE 25th Int. Symp. Fault
Tolerant Comput., 1995, pp. 381-390.

D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo, “A survey of
software aging and rejuvenation studies,” J. Emerg. Technol. Comput. Syst.,
vol. 10, pp. 8:1-8:34, Jan. 2014.

J. Alonso, A. Bovenzi, J. Li, Y. Wang, S. Russo, and K. Trivedi, “Software
rejuvenation: Do IT & telco industries use it?,” in Proc. IEEE 23rd Int.
Symp. Softw. Rel. Eng. Workshops, 2012, pp. 299-304.

M. Grottke, A. P. Nikora, and K. S. Trivedi, “An empirical investigation
of fault types in space mission system software,” in Proc. IEEE/IFIP Int.
Conf. Dependable Syst. Netw., 2010, pp. 447-456.

A. Avritzer, R. G. Cole, and E. J. Weyuker, “Using performance signatures
and software rejuvenation for worm mitigation in tactical MANETS,” in
Proc. 6th Int. Workshop Softw. Perform., 2007, pp. 172-180.

E. Altman, A. Avritzer, R. El-Azouzi, D. S. Menasche, and L. P. de Aguiar,
“Rejuvenation and the spread of epidemics in general topologies,” in Proc.
IEEE Int. Symp. Softw. Rel. Eng. Workshops, 2014, pp. 414-419.

R. M. Czekster, A. Avritzer, and D. S. Menasché, “Aging and rejuvenation
models of load changing attacks in micro-grids,” in Proc. IEEE Int. Symp.
Softw. Rel. Eng. Workshops, 2021, pp. 17-24.

M. A. Arroyo, L. Sethumadhavan, and J. Weisz, “Secured cyber-physical
systems,” U. S. Patent US20170357808A1, Sep. 17, 2019.

M. Arroyo, H. Kobayashi, S. Sethumadhavan, and J. Yang, “FIRED:
Frequent inertial resets with diversification for emerging commodity
cyber-physical systems,” 2017, arXiv: 1702.06595.

M. A. Arroyo, M. T. I. Ziad, H. Kobayashi, J. Yang, and S. Sethumadhavan,
“YOLO: Frequently resetting cyber-physical systems for security,” in
Proc. Auton. Syst.: Sensors, Process., Secur. Veh. Infrastructure, 2019,
pp. 197-206.

F. Abdi, R. Tabish, M. Rungger, M. Zamani, and M. Caccamo, “Ap-
plication and system-level software fault tolerance through full system
restarts,” in Proc. IEEE/ACM 8th Int. Conf. Cyber- Phys. Syst., 2017,
pp. 197-206.

F. Abdi, C.-Y. Chen, M. Hasan, S. Liu, S. Mohan, and M. Caccamo,
“Guaranteed physical security with restart-based design for cyber-physical
systems,” in Proc. IEEE/ACM 9th Int. Conf. Cyber- Phys. Syst., 2018,
pp. 10-21.

F. Abdi, C.-Y. Chen, M. Hasan, S. Liu, S. Mohan, and M. Caccamo,
“Preserving physical safety under cyber attacks,” IEEE Internet Things
J., vol. 6, no. 4, pp. 6285-6300, Aug. 2019.

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on November 24,2023 at 18:21:58 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/TCST.2023.3236470

604 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 11, NO. 3, JULY-SEPTEMBER 2023

[26] S. Bak, T. T. Johnson, M. Caccamo, and L. Sha, “Real-time reachability
for verified simplex design,” in Proc. IEEE Real-Time Syst. Symp., 2014,
pp. 138-148.

[27] X. Dai, Q. Quan, and K.-Y. Cai, “Design automation and optimization
methodology for electric multicopter unmanned aerial robots,” IEEE
Trans. Automat. Sci. Eng., vol. 19, no. 3, pp. 2354-2368, Jul. 2022.

[28] P. Dash, M. Karimibiuki, and K. Pattabiraman, “Stealthy attacks against
robotic vehicles protected by control-based intrusion detection tech-
niques,” Digit. Threats: Res. Pract., vol. 2, pp. 1-25, 2021.

[29] M. Lauer, M. Amy, J. Fabre, M. Roy, W. Excoffon, and M. Stoicescu,
“Resilient computing on ROS using adaptive fault tolerance,” J. Softw.:
Evol. Process, vol. 30, 2018, Art. no. e1917.

Raffaele Romagnoli (Member, IEEE) received
the PhD degree in control system and au-
tomation specialized in optimal and robust
control system theory from the Universita
Politecnica delle Marche (UNIVPM), Ancona,
Italy, in 2015. From 2015 to 2017, he was a
postdoctoral researcher with the Department
of Control Engineering and System Analysis
(SAAS), Université Libre de Bruxelles (ULB),
Brussels, Belgium. After being a postdoctoral
researcher with the Department of Electrical
and Computer Engineering, Carnegie Mellon University (CMU), Pitts-
burgh, PA, USA, he is now a research scientist with the same institution
working on safe and secure control of Al robotics applications and edge
computing. He is still currently collaborating with the Software Engi-
neering Institute, (CMU) where he has been working on secure control
for cyber-physical systems. His other research interests are nonlinear
control, control of biological systems, energy storage (Li-ion batteries),
space applications in microgravity conditions, and model inversion.

Bruce H. Krogh (Life Fellow, IEEE) is a pro-
fessor emeritus of electrical and computer en-
gineering with Carnegie Mellon University, Pitts-
burgh, PA, USA, and a member of the technical
staff of Carnegie Mellon’s Software Engineering
Institute. He was founding director of Carnegie
Mellon University-Africa in Kigali, Rwanda. He
is chair of the board of the Kigali Collaborative
Research Centre (KCRC) in Rwanda and co-
lead of the IEEE Continued initiative to develop
IEEE’s continuing education resources for tech-
nical professionals in Africa. professor Krogh's research is on the theory
and application of control systems, with a current focus on methods for
guaranteeing safety and security of cyber-physical systems. He was
founding editor-in-chief of the IEEE Transactions on Control Systems
Technology. He is a distinguished member of the IEEE Control Systems
Society.

Dionisio de Niz (Senior Member, |IEEE) re-
ceived the master's degree of science in in-
formation networking from the Information Net-
working Institute, Carnegie Mellon University,
and the PhD degree in electrical and computer
engineering from Carnegie Mellon University.
He is a principal researcher and the technical
director of the Assuring Cyber-Physical Sys-
tems directorate, Software Engineering Insti-
tute at Carnegie Mellon University. His research
interest includes cyber-physical systems, real-
time systems, model-based engineering, and security of CPS. In the
Real-time arena he has recently focused on multicore processors and
mixed-criticality scheduling and more recently in real-time mixed-trust
computing. He co-edited and co-authored the book “Cyber-Physical
Systems” where the authors discuss different application areas of CPS
and the different foundational domains including real-time scheduling,
logical verification, and CPS security.

Anton D. Hristozov (Member, IEEE) received
the electrical engineering degree from the Tech-
nical University of Sofia, Bulgaria, and the mas-
ter’s degree in telecommunications and informa-
tion science from the University of Pittsburgh.
He is currently working toward the doctoral de-
gree in technology with Purdue University. He
holds a position as a research engineer with the
Software Engineering Institute Carnegie Mellon
University where he deals with scientific exper-
iments for safety assurance of real-time sys-
tems. His research interests involve embedded systems, Internet of
Things, smart sensors and real time systems. He is a Linux enthusiast
and enjoys working with cyber physical systems which use sensors and
convert energy in different forms. He has worked on different types of
UAVs and UGVs whith focus on mission critical and fault-tolerant soft-
ware. Anton is generally inderested in runtime techniques for improving
security, relaibility and adaptataion of cyber physical systems.

Bruno Sinopoli (Fellow, IEEE) received the
PhD degree in electrical engineering from the
University of California, Berkeley, in 2005. After
a postdoctoral position with Stanford University,
he was the faculty with Carnegie Mellon Univer-
sity from 2007 to 2019. In 2019, he joined Wash-
ington University in Saint Louis, where he is the
chair of the Electrical and Systems Engineering
department. He was awarded the 2006 Eli Jury
Award for outstanding research achievement in
the areas of systems, communications, control
and signal processing , U.C. Berkeley, the 2010 George Tallman Ladd
Research Award from Carnegie Mellon University and the NSF Career
award in 2010. His research interests include the modeling, analysis and
design of secure by design cyber—physical systems with applications to
energy systems, interdependent infrastructures and Internet of Things.

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on November 24,2023 at 18:21:58 UTC from IEEE Xplore. Restrictions apply.

