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1 Introduction
Automated reasoning refers to a set of tools and techniques
for automatically proving or disproving formulas in math-
ematical logic [35]. It has many applications in computer
science—for example, questions about the existence of bugs
or security vulnerabilities in hardware or software systems
can often be phrased as logical formulas, or veri�cation con-
ditions, whose validity can then be proved or disproved using
automated reasoning techniques, a process known as formal
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veri�cation [15, 26]. When successful, formal veri�cation
can guarantee freedom from certain kinds of design errors,
an outcome that is otherwise extremely di�cult to achieve.
Driven by such potential bene�ts, the past couple of decades
have seen a dramatic improvement in the performance and
capabilities of automated reasoning tools, with a correspond-
ing explosion of use cases, including formal veri�cation,
automated test case generation, program analysis, program
synthesis, and many more [5, 37, 38].

These applications rely crucially on automated reasoning
tools producing correct results. However, ensuring correct-
ness is a signi�cant challenge. To meet the perpetual demand
for better performance, automated reasoning tools have large
and complex code bases, are highly-optimized, and evolve
rapidly, all of which puts their reliability at risk. While con-
ventional software engineering best practices can help, they
are insu�cient, especially when the goal is to provide in-
controvertible mathematical guarantees. Formal veri�cation
of automated reasoning tools themselves requires an enor-
mous e�ort and would have to be revisited every time the
tools change. Fortunately, it is possible to provide strong
correctness guarantees for an automated reasoner without
having to trust the tool at all. The idea is to separate proof
�nding from proof checking. In contrast to the complex tools
for �nding proofs, automated proof checkers can be rela-
tively simple (i.e., a few thousand lines of code as opposed
to a few hundred thousand lines of code) and need only be
revisited when the proof format changes, a relatively rare
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event. Additionally, because of their relative simplicity, proof
checkers can be vetted by the community when made open-
source. Even formal veri�cation of simple proof checkers is
not out of the question. It is also worth noting that proof
checking can often be done o�ine, reducing the impact on
performance.
The main challenge with this approach lies in the need

to instrument automated reasoning tools to produce inde-
pendently checkable proofs. First steps in this direction have
already been taken for one simple class of tools, namely those
that check the satis�ability of propositional (i.e., Boolean)
formulas, or SAT solvers. Thanks to steady progress in this
area, most modern SAT solvers can produce proofs in stan-
dard formats (e.g., [23]), which can then be independently
checked by proof checkers for those formats [22].

Many crucial industrial applications require more reason-
ing power than is provided by SAT solvers (for an example,
see Section 2.1) and often rely instead on solvers for Satis-
�ability Modulo Theories (SMT) [11]. SMT solvers accept a
more expressive language and have specialized procedures
for reasoning about data types that arise when modeling
systems (see Section 2 for more details). Their additional
power makes them suitable for a wider array of applications,
but also makes producing proofs much more challenging.

In this article, we take the next step towards a full suite of
proof-producing automated reasoning tools by demonstrat-
ing that SMT solvers can now produce full, independently-
checkable proofs for real-world problems using a rich set
of constraints. This requires solving a series of challenging
problems, both theoretical and technical. We stress that, al-
though we focus on SMT solvers here, many of the ideas
and techniques are broadly applicable to automated reason-
ing tools more generally. We outline our approach, describe
its implementation in the ���5 SMT solver [6], and discuss
several exciting applications unlocked by this new capability.

2 SMT Solvers
SMT solvers are satis�ability checkers: they take as input a
logical formula and try to determine if the formula has a solu-
tion, i.e., is satis�able. More speci�cally, they are constraint
solvers: they determine if there is a valuation of the formula’s
variables that makes the formula true. Often, however, we
are not interested in showing that a property, expressed as a
formula � , is true in some cases; rather, we want to know if it
is true in all cases. Technically, we are interested in proving
that � is valid (i.e., unfalsi�able). This can be done with SMT
solvers by checking if the negation of the formula, ¬� , is false
in all cases, or unsatis�able. A proof of the unsatis�ability
of ¬� provides evidence that � is valid. Since valid formulas
are often referred to as theorems, SMT solvers can then serve
both as constraint solvers and as theorem provers.
What distinguishes SMT solvers from other automated

reasoning tools is that they are specialized to reason about

{�Statement�: [{

�Effect�: �Allow�,

�Action�: �*�,

�Resource�: �bucket/private/*�

�Condition�: {�StringEquals�: {�ec2:Vpc�: �vpc-123�}}

}]}

(a) Boundary policy
{�Statement�: [{

�Effect�: �Allow�,

�Action�: �s3:GetObject�,

�Resource�: �bucket/private/reports/*�

},{

�Effect�: �Deny�,

�Action�: �*�,

�Resource�: �*�

�Condition�: {�StringNotEqualsIfExists�:

{�ec2:Vpc�: �vpc-123�}}

}]}

(b) S3 bucket policy

Figure 1. Example access policies

logical theories that formalize the main data types used in
computer science, such as �nite and in�nite precision inte-
ger/rational numbers, �oating point numbers, strings, arrays,
sequences, records, �nite sets, and more. In a precise sense,
SMT solvers know about the salient algebraic properties of
the types mentioned above. Their theories are built-in. The
details of how this is done are beyond the scope of this article,
but can be found in the literature (e.g., [10, 11]).

2.1 Motivating example
The security of data in the cloud relies on tightly controlling
who has access to it. At Amazon Web Services (AWS), for
example, the Identity and Access Management (IAM) policy
language encodes access control information as a JSON doc-
ument (a structured text format supporting hierarchy and
key/value pairs). Each data request is evaluated against the
control policy to determine if it is permitted. The power of
conventional testing in this context is quite limited, both the-
oretically and practically, since the policy language allows
the use of unbounded strings, making the number of possi-
ble requests essentially in�nite. In contrast, it is possible to
reason formally and symbolically about both policies and
requests using SMT solvers [3], as we describe next.
For private data, a key property that one may want to

check is that the data cannot be accessed from outside of a
given organization. We can capture this requirement as a
policy that de�nes an upper bound for allowable requests.
Figure 1a shows an example of such a boundary policy.
The policy allows access only to resources with the pre-
�x bucket/private/, and only from within the VPN vpc-123.
Consider now the speci�c policy shown in Figure 1b. To
show that it complies with the boundary policy, we must
prove that every request it accepts is also accepted by the
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boundary policy. We can do this by constructing a formula %
de�ning the requests allowed by the boundary policy and a
formula ⌫ de�ning the requests allowed by the bucket policy
and then asking a solver whether the implication ⌫ ) % al-
ways holds. In this case, % can be encoded using the theory of
strings as prefixof (“bucket/private/”, A ) ^ E?2⇢G8BCB ^ E?2 ⇡
“vpc-123”, where A and vpc are string variables that represent
the resource and VPN values of the request, and vpcExists
is a Boolean variable indicating whether the VPN is de-
�ned in the request or not. The semantics of prefixof is de-
�ned by the theory of strings and is true if A has the string
“bucket/private” as a pre�x. ⌫ can be encoded similarly.

If ⌫ ) % holds, then the policy is compliant, and a proof-
producing SMT solver can generate a proof e�ectively demon-
strating why. The example bucket policy is indeed compliant,
because the �rst part only allows the retrieval of objects
from bucket/private/reports, and the second part denies
requests that do not match the VPN vpc-123.1

3 Producing Proofs in SMT Solvers
We now move to the question of how best to produce proofs
in SMT solvers. We distinguish here a proof, which is gener-
ated internally by the solver using a suitable data structure,
from a proof certi�cate, a representation of the proof emitted
by the solver for external consumption. We discuss proof
certi�cates in Section 3.5, below.
As mentioned above, instrumenting solvers to be proof-

producing in a way that is comprehensive and has minimal
impact on performance is a hard technical problem. It is no
surprise then that even though several SMT solvers with
proof-producing capabilities have been developed [13, 16,
19, 24], each targets a di�erent proof format, uses a unique
and insulated tool-chain, and, more importantly, has one or
more of the following shortcomings:
• does not produce detailed enough proofs, thereby requir-
ing a high-complexity proof checker;

• has non-proof-producing performance-critical components,
meaning that the solver is unusable or unacceptably slow
when producing proofs;

• emits proof certi�cates that are checkable only in a mono-
lithic setup, rendering them unusable outside that setup.
In the following, we describe how to overcome these short-

comings and produce fast, comprehensive, and �exible proofs
which are also simple to check.

3.1 Proof representation
In general, SMT solvers check the joint satis�ability of a set
{�1, . . . , �=} of input formulas. The solver concludes that the
input set is unsatis�able when it is able to prove?, the univer-
sally unsatis�able formula, from the assumptions �1, . . . , �= .

1Note that the semantics of StringNotEqualsIfExists are such that if
the request does not specify any VPN, the policy still denies access.

A proof is a justi�cation, via a series of proof steps, for
deriving a conclusion from a set of assumptions. Each proof
step is the application of a proof rule, which infers a for-
mula, the conclusion of the rule, from zero or more premises.
Premises must either be assumptions or previously inferred
formulas. Rules without premises are typically used to in-
troduce either valid formulas (e.g., C = C for some term C ) or
assumptions in a proof. Proof rules with premises are appli-
cable only when their premises match previously inferred
formulas. Each rule must be sound, a technical notion guar-
anteeing that the rule’s conclusion logically follows from its
premises. A proof-producing solver �xes a set of sound proof
rules and produces proofs based on them. Rule soundness is
argued for externally to the proof-checking mechanism, and
hence the rules are part of the solver’s trusted core (i.e., they
are a part of the system that must be trusted as opposed to a
part of the system that is being checked).
A proof can be represented internally in the solver as

a directed acyclic graph whose nodes represent individual
proof steps. Each proof node stores a reference to the applied
proof rule and the inferred conclusion. Edges in the graph
connect a proof node to nodes representing its premises, if
any. A proof graph is well-formed if it is acyclic and each
node represents a proof step that applies its corresponding
proof rule correctly. A well-formed proof of a formula �
from some assumptions �1, . . . , �= has a single root node,
with � as its conclusion. Its leaves are either valid formulas
or assumptions taken from �1, . . . , �= .

3.2 Producing modular proofs
Most SMT solvers are based on a common architecture (see,
e.g., [10, 30]) with the following main components:

1. a preprocessing module, which simpli�es the input formu-
las as much as possible;

2. a clausi�er, which converts the preprocessed formulas
into a formula � : a conjunction of clauses. Each clause is
a disjunction of literals, where a literal is either a theory
atom or the negation of a theory atom.

3. a SAT engine, which reasons about the Boolean abstraction
of � (i.e., each theory atom is treated as a Boolean variable)
and searches for a solution;

4. a combination of theory solvers, each specialized for a sin-
gle theory; whenever, during its search, the SAT engine
assigns a value to a variable, the corresponding literal
is sent to the theory solvers as an assertion; the theory
solvers cooperatively check the satis�ability of these as-
sertions with respect to their theories and produce either
a solution, when the assertions are jointly satis�able, or
an explanation (an unsatis�able subset of the assertions)
when they are not; theory solvers can also produce lem-
mas, formulas that are valid in the theory and that aid the
SAT engine in its search.
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5. several theory rewriters, each implementing a set of theory-
speci�c rewrite rules used to simplify terms in � .
For an SMT solver to produce proofs, each of the above

components must be instrumented accordingly. Fortunately,
this can be donemodularly: each component produces proofs
for its own reasoning steps, and these are then combined
together to form the full proof. The process starts with a
Boolean proof produced by the SAT engine, which justi-
�es the (propositional) unsatis�ability of its clauses. These
clauses either come from the clausi�er or are lemmas or ex-
planations from the theory solvers, and thus proofs of the
clauses can be obtained from thosemodules. The clausi�er, in
turn, receives its input from the output of the preprocessing
module, and both the preprocessing module and the theory
solvers use proof steps that depend on the theory rewriters.

3.3 Producing well-formed proofs
It is of course possible to make mistakes when instrumenting
a solver to produce proofs. Such mistakes manifest as ill-
formed proofs. Proofs can be complex and very large, making
proof debugging rather challenging. The ability to identify
errors early on and pinpoint their source is crucial. There
are the three kinds of errors that can occur in proof graphs:
1. erroneous proof step: a node’s premises and conclusion

are not a valid instance of its associated proof rule;
2. cyclic proof: the graph has a cycle, i.e., a proof node has

itself as a descendant, making the proof meaningless; and
3. open proof: the proof relies on assumptions other than

the allowed ones provided as input.
Errors of type 1 result when the code that creates a proof

node is faulty. Errors of type 2 are possible as a consequence
of proof transformations that change a proof node’s children.
Errors of type 3 are possible when a proof system contains
rules that introduce local (temporary) assumptions. For in-
stance, a rule may allow proving an implication of the form
% ) & by temporarily assuming % and then proving& based
on the assumption % . Once & is proved, the assumption % is
discharged to obtain the conclusion % ) & , with % no longer
considered an assumption in the resulting proof. If the proof
fails to discharge such an assumption, the proof is left open.

Errors of type 1 can be detected by employing an internal
proof checker which, when enabled, is immediately applied
to each proof node as it is generated. Errors are thus detected
at proof node creation time, making them much easier to
localize. The checker must implement a checking method
for each supported proof rule. Errors of type 2 and 3 can be
caught with more expensive checks which do a full traversal
of the current proof graph. Such checks can bemade available
as debugging aids but should be disabled during normal use.
As mentioned above, proofs are highly modular, which

also makes it possible to debug them modularly. Each time
a component from Section 3.2 produces a proof, it can be
checked for the three kinds of errors mentioned above. And

each time two proofs are combined, error checking can be
done again. This makes it possible to distinguish errors orig-
inating within a component from errors introduced during
proof combination.

3.4 Producing proofs e�ciently
SMT solver performance is critical, so it is important to en-
sure that it is minimally impacted by the proof infrastructure.
One powerful technique for controlling proof overhead is
lazy proof generation. The idea is to generate only a proof
sketch at solving time—a high-level proof composed of sim-
pler, unproven lemmas—and then to convert this to a full
proof after the solver determines the unsatis�ability of the
input. There are two main advantages to this approach.
• It is simpler and less invasive to generate proof sketches.
This helps not only with performance but also with keep-
ing the implementation e�ort low.

• During the search phase of solving, many directions are
explored and lemmas generated that end up being irrel-
evant for the �nal proof. By delaying the generation of
detailed proofs, only the lemmas actually required in the
�nal proof need to be expanded.

Lazy proof generation is a key feature of the DRAT proof
format [23] used by SAT solvers, and several ways of ex-
panding (also known as elaborating) DRAT proofs have been
proposed [17, 25, 27]. Lazy proof generation has also been
explored in the context of SMT [24] to generate proofs in
���5’s predecessor, CVC4 [9].2 In that work, the only infor-
mation kept during solving is the list of derived lemmas and
explanations. The elaboration process then consists of invok-
ing a separate proof-producing instance of the component
associated with each lemma or explanation.

We improve on this approach in several ways. First, we use
a more general notion of a lazy proof. In particular, we intro-
duce a new kind of proof node, a lazy proof node, containing
the conclusion � as well as a reference to a proof generator.3
The proof generator encapsulates the information necessary
to compute a standard proof node # concluding � , possi-
bly including references to other lazy proof nodes.4 Proof
generators can be con�gured to compute # eagerly, when
the lazy proof node is �rst constructed, or later, during the
elaboration of the lazy proof. As a general rule, a proof step
should be generated eagerly only when the cost of doing
so is less than or comparable to that of storing the informa-
tion needed by the corresponding proof generator. A theory
solver for equality and uninterpreted functions, for example,
could produce proofs eagerly, since its explanation method
2Previous CVC systems, including CVC4, used capital letters. With the
introduction of ���5, we moved to lower-case letters.
3This is analogous to the notion of futures or promises in some programming
languages.
4Similar methods for improving proof elaboration via the recording of key
information during solving have recently been employed in the context of
SAT solving as well [4].
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typically already generates all the information necessary for
proof-production (see, e.g., [29]).

Another important innovation is the use of macro steps. A
macro step compresses the result of applying several proof
rules into a single proof node. An example would be deriving
¬� from � ) ⌫ and ¬⌫. This step can be justi�ed in terms
of basic proof steps as follows: locally assume �; derive ⌫
from � ) ⌫; derive a contradiction with ¬⌫; conclude ¬�
from the contradiction. Using macro rules reduces the size of
proofs and eases the implementation burden when trying to
capture multi-step reasoning. On the other hand, such rules
complicate the job of the proof checker. To avoid this, we
propose expanding macro steps into their more basic parts as
a post-processing step. The post-processing is invoked after
solving is complete and also includes invoking the proof
generators of lazy proof nodes and connecting sub-proofs
produced by di�erent components. A useful byproduct of
our approach is that it can support proofs at di�erent levels
of granularity (e.g., with or without macro steps).

3.5 Proof certi�cates and proof checking
A proof certi�cate is a textual representation of a proof. Check-
ing a proof certi�cate for the unsatis�ability of a set F of for-
mulas amounts to checking that it represents a well-formed
proof of ? from F . Whereas there is an extensive literature
on proof procedures in SMT, as well as some consensus on
how best to implement them, there is much less consensus
on what speci�c form a proof certi�cate should take.
We can agree that a proof certi�cate for an unsatis�able

set F should be in a formal language and provide convincing
evidence of F ’s unsatis�ability. This is a minimal require-
ment for the certi�cate to be checkable by a separate tool.
Even so, the certi�cate could still take many forms, each
di�ering in syntactic structure, or level of detail, or both. A
pragmatic criterion for the acceptability of a proof certi�cate
format, which we espouse and propose here, is that check-
ing proof certi�cates must be fundamentally simpler than
�nding the proof in the �rst place. It is reasonable to expect,
for instance, that certi�cates be checkable in time polyno-
mial (ideally, linear) in their size. A proof checker should not
need complex data structures or, worse, expensive search
algorithms to check a certi�cate. Such needs would greatly
increase the checker’s complexity, thereby defeating the pur-
pose of making the checker easy to trust.
An orthogonal challenge for identifying a suitable proof

certi�cate format is that di�erent SMT solvers rely on di�er-
ent solving techniques and proof procedures. Since a proof
is a record of the arguments used internally by the solver,
these di�erences mean that solvers may have highly diverse
requirements for a proof certi�cate format.5

5This is a major reason it has been di�cult to identify and establish a
common format for SMT proof certi�cates.

Ultimately, proof certi�cates must be understood by a
proof checker, so the design of the proof checker also in-
�uences design decisions about the format. One appealing
approach for proof checking is to embed a proof checker
within an existing trusted system such as a proof assistant.
Proof assistants are powerful interactive theorem proving
systems that rely on manual e�ort and expertise to produce
proofs. So-called skeptical proof assistants are designed with
a small trusted kernel, a designated part of the system whose
correctness must be trusted. By design, all other parts of
the system inherit their correctness from the correctness of
the kernel. Widely-used skeptical proof assistants such as
Coq [40] and Isabelle/HOL [31] have time-tested kernels gen-
erally regarded as highly trustworthy. The input languages
of proof assistants are typically quite powerful (i.e., both
Turing-complete and feature-rich) in order to facilitate the
construction of proof scripts and tactics for guiding proof
search tasks.6 These features make skeptical proof assistants
an attractive environment for developing a proof checker.
Proof checkers embedded in proof assistants can be proved
correct within the proof assistant itself. Alternatively, they
can be used to translate proof certi�cates into trusted the-
orems based on the proof assistant’s kernel. In either case,
the only trusted component of the entire tool chain (includ-
ing the proof-producing SMT solver) is the proof assistant’s
kernel. Alethe [36] is an emerging format for SMT proofs de-
signed with proof assistant integration in mind. The Alethe
format currently supports proofs for a subset of SMT theo-
ries and has been co-designed with proof checkers written
within Coq and Isabelle/HOL. This means that for problems
in the SMT fragment supported by Alethe, one can use proof
checkers embedded in proof assistants to achieve the highest
level of con�dence currently possible for SMT solver results.

Alternatively, proof checking can be performed by stand-
alone checkers whose trustworthiness must be established
independently. Such checkers are more easily extensible,
since the new extensions do not have to be formally veri�ed
in a proof assistant. Furthermore, stand-alone checkers are
typically much more e�cient than checkers built within
proof assistants, especially when dealing with large proof
certi�cates. The main reason for this is that the execution
speed of programs in proof assistants can be quite slow.7 An
e�ort to address this issue is part of the motivation behind a
more recent proof assistant called Lean [18].

A successful example of a format speci�cally co-designed
with an accompanying, high-performance stand-alone check-
er is LFSC [39], a logical framework with side conditions.8

6The functional programming language ML was originally designed as the
tactic language (or Meta Language) of an early proof assistant, LCF.
7Optimizing this has historically not been a priority, since proofs are typi-
cally constructed manually and interactively.
8Recently, a high-performance stand-alone checker for the Alethe format
was also introduced [2].
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Though the full LFSC checker must be trusted, it is never-
theless fairly small, comparable in size to a trusted kernel of
a proof assistant. A distinguishing feature of the LFSC proof
checker is that it takes as input not just a proof certi�cate but
also a logical speci�cation, referred to as a signature, of the
proof system (essentially, the proof rules) used to build the
proof. This feature makes it possible to specify any proof sys-
tem used by a speci�c SMT solver without having to change
the proof format or the checker. This great level of �exibil-
ity comes at the cost of having to trust also the signature
provided to the checker, in addition to the checker itself.

4 Implementation
We have implemented our approach in ���5, an e�cient and
full-featured open-source SMT solver [6]. In this section, we
provide some insights gained by this implementation e�ort.
Additional details can be found in Barbosa et al. [8].

4.1 Instrumenting modules to produce proofs
We instrumented each of the modules mentioned in Sec-
tion 3.2 in ���5 to produce proofs.

The preprocessing module in ���5 consists of 34 distinct
passes, each of which presents unique challenges. As an ex-
ample, in one pass, an input of the form G = C, �1, . . . , �= (with
G not occurring in C ) is transformed into � 01, . . . , �

0
= where, for

8 2 [1,=], � 08 is the result of replacing all occurrences of G in
�8 by C . Notably, this preprocessing pass has resisted previous
attempts at proof production. In particular, it is mentioned
in Barbosa et al. [7, Section 4.6] as beyond the scope of their
approach. ���5 fully supports proofs for this pass with neg-
ligible overhead during solving by leveraging a macro step
for substitution coupled with lazy proof generation.

���5 uses a modi�ed version of MiniSat [20] for its SAT en-
gine, which we have instrumented to be proof-producing. As
mentioned earlier, modern SAT solvers have native support
for the DRAT proof format. Integrating such a SAT engine
in ���5 is part of the roadmap for future work.

The theory solvers and rewriters in ���5 implement theory-
speci�c reasoning, and for non-trivial theories, they can be
quite involved. Instrumenting these modules thus requires
a commensurate amount of e�ort, which can be signi�cant.
To better understand what is required, we consider a speci�c
theory, the theory of strings (which was highlighted in the
example in Section 2.1).

The string solver in ���5 comprises approximately 20,000
lines of C++ code. The theory solver takes as input a set
of literals and deduces new literals from that set. For each
deduced literal ; , the solver is able to produce an explanation
of the form ;1 ^ · · · ^ ;= ) ; , where {;1, . . . , ;=} is a subset
of literals from the current input set. Internally, the solver
consists of several di�erent layers, each providing a solver
for a di�erent fragment of the theory [14]. The layers are
invoked in sequence, with more costly layers used only if

Congruence Closure

Word Equations

Length Constraints

Extended Functions

Membership Constraints

Linear Time

PSPACE

Unknown

Undecidable

Figure 2. An example of layering string constraints and the
computational complexity of each layer.

the cheaper ones fail to make new deductions. This is impor-
tant for performance because the worst-case computational
complexity of constraint solving in di�erent fragments of
the same theory can vary greatly, as shown in Figure 2 for
the theory of strings over a �nite alphabet.

At the core layer of ���5’s solver for the theory of strings
is a procedure that infers consequences of the basic axioms
of equality. For instance, from the literals G = G2, G1 = G2,
and G1 ·~1 < G2 ·~2 (here, _ · _ denotes string concatenation),
it is able to infer G ·~1 < G ·~2. The next layer performs a basic
form of string-speci�c reasoning based on word equations,
i.e., (dis)equalities between concatenations of string variables
and string literals [28]. This layer is able to infer ~1 < ~2
from G ·~1 < G ·~2, or? from �abc� ·~1 = �b� ·~2. Reasoning
about string length constraints is done in cooperation with
a theory solver for linear integer arithmetic. Another layer
processes constraints containing string operators other than
concatenation by simplifying them based on the current set
of literals [34] and lazily reducing them to word equations,
length constraints, and quanti�ed constraints [33]. Across
the various layers in the string solver, we currently distin-
guish between 72 string-speci�c inferences, each captured by
a proof rule. Additional non-string-speci�c rules are used to
capture inferences for the equality, arithmetic, and quanti�er
reasoning proof steps the string solver relies on.
The theory rewriter for strings in ���5 consists of 183

individual rewrite rules. A detailed proof requires proof steps
for each of the relevant applications of these rewrite rules.
We do this lazily using a rewrite rule DSL coupled with a
proof-reconstruction algorithm [32].

4.2 Proof certi�cate formats
Given the existence of various proof certi�cate formats, as
discussed in Section 3.5, each with their own trade-o�s, we
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built ���5’s proof infrastructure to be �exible enough to sup-
port multiple formats. We achieved this by applying proof
post-processing mechanisms similar to those described for
lazy proofs. The �nal proof produced by ���5 in its internal
proof system is converted, step by step, to a proof tree data
structure that captures the abstract syntax of proofs in the
target proof certi�cate format. Since the level of granularity,
the term representation, and the allowed proof rules may
vary signi�cantly between the internal and the target for-
mats, the conversion is more than just a syntactic translation.
In fact, it often requires elaborate transformations.9 Once the
proof has been converted, a pretty printer is used to produce
a proof certi�cate in the concrete syntax of the target format.
We have implemented proof converters in ���5 for both

Alethe and LFSC. For the LFSC format, we have also de-
veloped signatures that capture ���5’s own proof system,
making the conversion fairly direct. Note that these signa-
tures are more general than the ones developed for CVC4,
which also generated LFSC proof certi�cates [24, 39]. At
the same time, we are collaborating with the developers of
Alethe, Isabelle/HOL, and Coq to improve and extend both
the Alethe format itself, as well as Isabelle’s and Coq’s sup-
port for it, in order to increase the range and expressiveness
of SMT formulas that can be checked with these tools.
Finally, we have taken promising initial steps towards a

third proof converter for the Lean proof assistant. Our Lean
converter is similar in spirit to the LFSC one in that it relies
on a formalization in Lean of ���5’s proof system. The goal
in this case is to achieve the �exibility and proof-checking
performance a�orded by LFSC’s stand-alone checker while
also being able to prove the correctness of ���5’s proof
system in Lean itself.

5 Applications
The most obvious bene�t of proof production is the ability
to reduce the size of the trusted code base. However, there
are many other potential advantages. Our experience with
���5 suggests that instrumenting a solver to produce proofs
improves the quality of its code. This is because proof in-
strumentation requires the code to be clear and modular and
often uncovers bugs and other issues with it. Additionally,
proof infrastructure is a valuable debugging aid not only
for proofs but also for the SMT solver itself. For example, if
the solver incorrectly �nds an input formula unsatis�able,
then either the attempt to produce a proof will fail or an
incorrect proof will be generated. In the �rst case, the place
in the solver’s code where proof generation fails provides
a good indication of where the problem is; in the second, a
proof checker (either internal or external) can identify the
problem, serving e�ectively as a test oracle for the solver.

9A simple, and very frequent, example of the need for such transformations
is the conversion of proof steps with multiple premises into a proof using
rules with at most two premises.

Beyond these bene�ts to SMT solver developers, proofs
open the door to many potential novel applications. Here,
we mention just two: automation for proof assistants; and
regulatory compliance automation.

5.1 Automation for proof assistants
As discussed in Section 3.5, proof assistants can be used to
construct highly trustworthy proof checkers for SMT proofs.
However, the ability to communicate between SMT solvers
and proof assistants is also useful in the other direction, as a
way to bring more automation to proof assistants.

Proof assistants allow users to formulate conjectures and
then prove them using a sequence of steps. Each step consists
of the application of a proof rule built into the assistant or
the application of a previously proved lemma. A limited
degree of automation is provided by tactics, small programs
that attempt to prove conjectures by systematically applying
di�erent rules and lemmas. However, these tactics fall short
of the degree of automation provided by an SMT solver.
This gap can be addressed with a proof-producing SMT

solver and a proof checker embedded in the proof assistant.
When a proof step requires only reasoning in a logical frag-
ment understood by SMT solvers, a lemma required to com-
plete the proof step is automatically extracted and translated
into an SMT formula. The formula is then sent to the SMT
solver (used as a theorem prover as described in Section 2)
which produces a proof certi�cate for it. This certi�cate can
then be fed to the proof checker in the proof assistant. If the
check is successful, the checker will have produced precisely
the lemma needed to complete the original proof step.
The SMTCoq [21] and Sledgehammer [12] tools imple-

ment this work�ow (for fragments of the full SMT language)
for the Coq [40] and Isabelle/HOL [31] proof assistants, re-
spectively. Ongoing e�orts by the authors and others aim to
extend these tools and to provide similar functionality for
the Lean [18] proof assistant.

5.2 Regulatory compliance automation
Government regulation and industry standards are designed
to give us con�dence that the products and infrastructure we
use are safe. For companies that build, operate, or use infor-
mation technology (IT), various regulations apply, depending
on which technologies they use, which industries they are a
part of, and which countries they operate in. The Payment
Card Industry Security Standards Council, for example, de-
�nes the “Payment Card Industry Data Security Standard”
(PCI-DSS) for organizations that handle branded credit cards
from the major card schemes. As the world increasingly re-
lies on information technology, more government regulation
and industry standards will be common.

Regulation comes at a cost, and organizations today take
on time-consuming and expensive processes to ensure com-
pliance with these regulations. Moreover, since irrefutable
evidence is hard to construct, compliance audits often need
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Figure 3. Overview of automated compliance checking using proof certi�cates: 1� auditors and auditee agree on a model
of the system and the controls for ensuring a compliance requirement; 2� a solver proves that the model complies with the
controls and produces a proof certi�cate; 3� an independent proof checker ensures the validity of the proof certi�cate.

to be performed by independent and industry-trusted third-
party organizations. AWS, for example, works with inde-
pendent third-party auditors on thousands of certi�cations,
frameworks, and requirements worldwide. These audits are
typically manual and slow. The result, both for AWS and
other organizations that use IT, is that their products and
services are more costly to launch, operate, and maintain.

Compliance automation has the potential to provide safety
guarantees that are comparable to—or even stronger than—
those provided by current techniques while dramatically
lowering the cost and time required. The challenges for com-
pliance automation in this context are usually computational
in nature. In particular, showing compliance typically re-
quires reasoning about the reachability of states in a com-
puter system. PCI-DSS 1.3.1, for example, asks if there exists
an execution that would allow unauthorized access into the
de�ned DMZ.10 If we attempt to check this with exhaustive
testing, we must test all possible interactions of the branch-
ing behaviors of the underlying programs and hardware
systems, and thus the size of the set of scenarios quickly
grows intractably large.
Fortunately, automated reasoning tools can solve many

of these kinds of problems e�ciently in practice. Collins
Aerospace, for example, uses them in the certi�cation of
airborne systems and air tra�c management systems [41].
In AWS’s spring 2021 audit for PCI-DSS, automated reason-
ing solvers were used to automatically check PCI controls
on ingress and egress (PCI-DSS requirements 1.3.x), default
deny-all for logical access (requirement 7.2), network secu-
rity (requirement 4.1) and required logging metadata (re-
quirements 10.x). The solver-based approach decreased the
time for evidence collection and audit for relevant controls
by a factor of 10.8. Furthermore, the solver-based approach
10In a computer network, a DMZ, or demilitarized zone, is a subnet that
separates a local network from external networks.

provided exhaustive coverage, whereas the previous audit
techniques were based on sampling.
While these initial e�orts are extremely promising, a re-

maining challenge is to convince auditors to accept the solver
results as evidence of compliance. This is where proof certi�-
cates play a key role. If the solver produces a result that can
be independently con�rmed by a trusted proof checker, this
provides the assurance required for the result to be accepted
as evidence by auditors. Indeed, in the aforementioned AWS
audit, the 3rd-party auditor extended its criteria for evidence
to include the output of automated reasoning solvers that
produce auditable proofs [1]. Figure 3 shows the envisioned
scheme for automated regulatory compliance based on proof
production and proof checking. Currently, ���5 is the only
SMT solver compatible with this work�ow, and as a result,
it is being used by AWS to produce evidence for compli-
ance whenever possible (in particular, it is being used for the
PCI-DSS requirements mentioned above).

6 Conclusion
Independently checkable proofs are an exciting new emerg-
ing capability in automated reasoning tools. In addition to
vastly improving the trustworthiness of these tools, they
have the potential to enable a host of new directions and
applications, including better integration of tools and auto-
matic generation of evidence for IT regulatory compliance.

Implementing proof production is a signi�cant challenge.
We have presented several key ideas to help address the chal-
lenge, includingmodular proof design, online error-checking,
and the use of lazy proofs and macro steps. We have imple-
mented these ideas in the ���5 SMT solver, and our initial
e�orts have already con�rmed its usefulness and viability for
improving proof assistant automation and for automating
regulatory compliance in an industrial setting.
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