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ARTICLE INFO ABSTRACT

Keywords: Strain localization and cracking in porous media are significant issues in engineering and science. Peri-
Cosserat poromechanics is a strong nonlocal framework for modeling the mechanics and physics of porous media
P:“PO;"‘T::CM‘““ with evolving discontinuities. In periporomechanics, the horizon that usually lacks a physical meaning serves
Shear banding

as a nonlocal parameter. In this article, as a new contribution, we formulate a Cosserat periporomechanics
paradigm incorporating a micro-structure related length scale for modeling shear banding and eracking in
dry porous media. In this new Cosserat-periporomechanics framework, each material point is endowed with
both translational and rotational degrees of freedom following the Cosserat continuum theory. We formulate
a stabilized Cosserat constitutive correspondence principle through which classical micro-polar constitutive
models for porous media can be used in Cosserat periporomechanics. We have numerically implemented the
Cosserat periporomechanics paradigm through an explicit Lagrangian meshfree algorithm. We first present
numerical examples to validate the implemented computational Cosserat periporomechanics paradigm for
modeling shear bands and cracks. We then present numerical examples to demonstrate the efficacy and
robustness of the Cosserat periporomechanics for modeling the shear banding bifurcation and crack branching
in dry porous media.

Cracking
Porous media

1. Introduction force state concept (Silling et al., 2007; Song and Silling, 2020). This
salient feature of periporomechanics makes it a legitimate numerical

Strain localization and cracking in porous media are significant in tool for modeling discontinuities and progressive failure in deformable
engineering and science (e.g., Terzaghi and Peck, 1948; Lewis et al., porous media such as shear bands and cracks. It is noted that the

1998; Zienkiewicz et al., 1999; Cheng, 2016). For instance, shear previous periporomechanics was developed for non-polar porous ma-
banding in geomaterials can significantly compromise the integrity of terials in which material points have two kinds of degrees of freedom,

geo-infrastructure (Terzaghi and Peck, 1948; Coussy, 2004). Knowledge i.e., translational displacement and pore fluid pressure. It is known
of cracking in porous media is instrumental in predicting and mitigating

reservoir-related hazards and enhancing oil and gas harvest in porous
geological formations (e.g., Zoback, 2010; Pollard and Fletcher, 2005;
Sun et al, 2021a,b). Poromechanics is an essential tool to study the
mechanics and physics including shear banding and cracking in porous
media (Lewis et al., 1998; Zienkiewicz et al., 1999). Periporomechanics
is a strong non-local reformulation of classical poromechanics (Coussy,
2004; Cheng, 2016) for modeling the mechanics and physics of vari-
ably saturated porous media with evolving discontinuities (e.g., Song L. .
and Menon, 2019; Song and Khalili, 2019; Song and Silling, 2020; and cracking in porous media.

Menon and Song, 2021a,b, 2022a,c,b). In line with the peridynamics for In this a.r.tlcle, as é nevtr contrlhui.:mn, we.formulate a Cosserat peri-
solids (Silling, 2000; Silling et al., 2007; Madenci and Oterkus, 2014), ~ Poromechanics paradigm incorporating a micro-structure based length
scale for modeling shear banding and cracking in dry porous media.

The viscosity is included to study the rate dependency of shear banding

that shear bands in porous media such as soils have a finite thickness
on the order of several particle sizes and involve particle rotations
in the banded deformation zone (e.g., Miihlhaus and Vardoulakis,
1987; Sulem and Vardoulakis, 1995). Meanwhile, in periporomechan-
ics the horizon that serves as a non-local parameter usually lacks
a direct relation to the micro-structure of deformable porous media
(e.g., soils). Therefore, the formulation of a visco-Cosserat periporome-
chanics paradigm can contribute to realistically modeling shear bands

the motion equation and mass balance equations of periporomechanics
are in the form of integrodifferential equations (integration in space and Y - ’
difference in time) through the peridynamic (PD) state and effective and cracking in porous media (e.g, Terzaghi and Peck, 1948; Taylor,
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1948; Lambe and Whitman, 1991; Terzaghi et al., 1996). In this micro-
polar periporomechanics framework, each material point under the
dry condition has translational and rotational degrees of freedom. It is
noted that the Cosserat continuum theory has been successfully applied
for modeling shear bands in porous media using the classical finite
element method while mitigating its pathological issue (e.g., De Borst,
1991; De Borst and Sluys, 1991; Tang et al., 2021, 2022). We refer to
the distinguished literature on this subject (e.g., de Borst, 1993; Sulem
and Vardoulakis, 1995). Cosserat continuum theory has also been used
in peridynamics (PD) for modeling the mechanical behavior of solids
(e.g., Gerstle, 2015; Chowdhury et al., 2015, and among others). For
instance, in Gerstle (2015) a micropolar PD formulation following
standard Cauchy elasticity was proposed for modeling brittle materials
like concrete. The extended bond-based PD model that incorporates the
bond rotation has been proposed to model fracture problems in brittle
materials (Zhu and Ni, 2017; Li et al., 2020). We note that the bond-
rotation enhancement proposed in those studies has been focused on
remedying the limitation of Poisson’s ratio (i.e., one quarter) in the
original bond-based PD framework (Silling, 2000). In Chowdhury et al.
(2015), a micropolar state-based PD framework was formulated for
modeling cracks in which a standard correspondence material model
was proposed. It is noted that the framework in Chowdhury et al.
(2015) is limited for isotropic elastic materials. It is known that porous
media could show a rate dependency (e.g., viscosity) in the process
of shear banding and cracking (e.g., fault creep) (Sleep and Blanpied,
1992; Steinbrugge et al., 1960; Noda and Lapusta, 2013). In this
study, as an original contribution, we develop a visco-Cosserat peri-
poromechanics framework for dry porous media. This new framework
incorporates a physics-based material length scale (i.e., Cosserat length
scale) and rate-dependency for more realistic modeling of progressive
localized failure and cracking of porous media under dry conditions.

We note that no PD material model in the periporomechanics
framework is available for modeling porous media. Thus, in this new
visco-Cosserat periporomechanics framework, the multiphase corre-
spondence principle for non-polar porous media (Song and Silling,
2020; Menon and Song, 2021b) is reformulated to include the ro-
tational degree of freedom. Through the Cosserat multiphase corre-
spondence principle, advanced elastoplastic constitutive models for
geomaterials (e.g., Tamagnini et al.,, 2002; Borja, 2013; Song et al.,
2018a) can be reformulated for micro-polar porous media (de Borst,
1993) and then incorporated into the Cosserat periporomechanics
paradigm. Nonetheless, the standard Cosserat correspondence prin-
ciple inherits the zero-energy mode instability from the non-polar
constitutive correspondence principle. In this study, we formulate a
stabilized Cosserat constitutive correspondence principle to circumvent
this issue using the energy method (e.g., Silling, 2017; Menon and Song,
2021b). With this stabilized micro-polar correspondence principle,
classical constitutive and data-driven material models (e.g., Song et al.
(2018a), Masi et al. (2021)) for porous media can be incorporated
into the proposed Cosserat periporomechanics. We refer to Menon and
Song (2022c¢) for a comprehensive review of methods for mitigating
zero-energy mode instability associated with the original constitutive
correspondence principle in PD for solids. We have numerically imple-
mented the proposed Cosserat periporomechanics paradigm through an
explicit Lagrangian meshfree algorithm for dynamic problems (Silling
and Askari, 2005; Menon and Song, 2022c; Zienkiewicz et al., 1999;
Hughes, 2012; Belytschko et al., 2014). Two numerical examples
inspired by experimental works in the literature are presented to test
the implemented computational micro-periporomechanics paradigm in
modeling shear banding and mode I cracking in porous media. We then
present two numerical examples to demonstrate the efficacy and robust-
ness of the Cosserat periporomechanics for modeling the characteristics
of shear banding bifurcation (e.g., inclination angle and thickness of
the two conjugate shear bands) and dynamic crack branching (e.g., the
timing of branching) in dry porous media (i.e., single-phase porous
media).

The reminder of this article is organized as follows. Section 2 deals
with the mathematical formulation of the visco-Cosserat periporome-
chanic paradigm that includes the governing equations, the stabilized
Cosserat constitutive correspondence principle, and the Cosserat visco-
plasticity and visco-elasticity, and a bilinear damage model. Section 3
presents the numerical implementation of the proposed Cosserat peri-
poromechanics paradigm through an explicit Newmark scheme with
an augmented energy criterion for numerical stability. Section 4 deals
with numerical examples to validate the implemented Cosserat peri-
poromechanics model and demonstrate its efficacy and robustness in
modeling shear banding and crack branching in dry porous media. For
sign convection, the assumption in continuum mechanics is adopted,
i.e., the tensile force and deformation under tension is positive.

2. Mathematical formulation

In this section, we present the mathematical formulation of the
Cosserat periporomechanics for dry porous media. First, we present
the governing equations of Cosserat periporomechanics for dry porous
materials. Second, we develop a Cosserat constitutive correspondence
principle through which the classical visco-Cosserat material models
can be incorporated into the proposed Cosserat periporomechanics.
Third, we present an energy-based stabilization scheme in the Cosserat
periporomechanics framework to mitigate the zero-energy mode de-
formation instability. Finally, the classical Cosserat visco-plasticity,
visco-elasticity, and damage models are presented.

2.1. Governing equations of Cosserat periporomechanics

In periporomechanics, a porous material body can be conceptual-
ized as a collection of a finite number of material points with porome-
chanical and physical interactions at a finite distance. The scope of the
present contribution is to formulate visco-Cosserat periporomechanics
for a dry porous material. In line with the classical Cosserat contin-
uum theory (e.g., Cosserat and Cosserat, 1909; Malvern, 1969; Sulem
and Vardoulakis, 1995; Eringen and Eringen, 1999) in the proposed
Cosserat periporomechanics (CPPM) each material point is endowed
with translational and rotational degrees of freedom. Let X denote
a material point and let X' denote its neighboring material point in
the initial configuration. For notations, a state or parameter without
a prime is associated with material point X, and a state or parameter
with a prime is associated with material point X’. For example, we can
define y and y’ as the spatial locations of material points X and X’ in
the deformed configuration. The partial density of a solid skeleton is
defined as

P =dp, (6]

where ¢ is the volume fraction of the solid skeleton (i.e., one minus
porosity) and p, is the intrinsic density of the solid skeleton. Here, the
porosity is the fraction between the pore space and the porous media’s
total volume.

Fig. 1 plots the kinematics of CPPM for material points. In line with
the non-polar PPM, the deformation state and the relative displacement
state associated with bond £ = X’ — X at material point X' read

Y=y -y (@)
U=u'—u, 3)

where u and ' are the displacement vectors of material points X and
X', respectively. It is assumed that material points have no macro
rotations. Given the micro-rotations w and @’ at X and X', respectively,
the micro-rotation state and the mean micro-rotation state associated
with bond ¢ at X can be defined as

=0 -o, (4)
2= +a), ©)
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Fig. 1. Kinematics of two material points X and X' in Cosserat periporomechanics.
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Fig. 2. Schematic of composite states in Cosserat periporomechanics.

Fig. 2 plots the composite state in Cosserat periporomechanics.
Referring to Fig. 2, the composite deformation and displacement states
in Cosserat periporomechanics can be respectively defined as

Y=Y-2xX. (6)
U=U-2xX, @)
where x is the cross product operator of two vectors, and X = ¢

stands for the bond between material points X and X’ in the reference
configuration. We note that following the assumption of the small
deformation that (6) and (7) can be rewritten as

rY -Q2XY, (8)

~ XY, ©)
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Next, we derive the governing equations from a free energy of a
polar porous body following Song and Silling (2020). Assuming no
heat flux, the free energy density of the solid skeleton in Cosserat peri-
poromechanics under dry condition (i.e., single phase) can be defined
as

V=7T.Q. (10)

Let  be the effective force state and . be the moment state. Through

Fréchet derivatives (Silling et al., 2007; Song and Silling, 2020), the

effective force state and moment state on a Cosserat periporomechanics

bond can be defined as

7=, an
Yy

o
M= —. 12
£=3%a (12)
Then, the variational form of the free energy of the solid skeleton
can be written as
oW  AQ
o T

A7 =22 AT +

¥

=T AV + M+ AQ, i)

where « is the inner product of vector states (Silling et al., 2007).
From (8) the variational form of the composite deformation state ¥
can be written as

AY =AY — AR XY — AR x AY
=AY - AQ %Y (14)

where the second-order term on the second line is omitted following
the small deformation assumption. It follows from (14) that Eq. (13)
can be written as

AW =T o (AY — AR XY) + M « AQ. 15)

The total energy % (i.e., the summation of the potential energy
and kinetic energy) of a bounded single-phase porous body % can be
written as

W:fg—p’g-y—!-m+p’ii-y+]’&}-a)dlf, (16)
@

where p* is partial density of the solid skeleton as defined in (1), g is
gravity acceleration, I is body couple density, & is velocity, and .#¢ is
the micro-inertia of the solid skeleton. Note that the kinetic energy is
considered through inertial loads (Malvern, 1969).

Next, we derive the equilibrium equation of the Cosserat peri-
poromechanics for a dry porous body from (16). The first-order varia-
tional form of %" can be written as

0- [ [F-wr-saxv+a-s0-p5 ty-1-0
+ pfii- Ay + F°0 - de| aV
=f [/ E-(dy'—dy)dlf'+/ fxz-(w) av’
& LJ# ¥ 2
+[Wﬁv(dm’—d&))a‘V’—p’g-dy—l-dm-}—p‘ii-dy
+ S0 Ao| dV. a7

By interchanging the dummy variable X «— X' (Song and Silling,
2020) in the first, third and fifth terms in the integrand of (17) leads

to
- F_F ’, 1 -7 ’.
0_/%[/2(2 7)av Ay+2£v£x(z T)av' o
+f (M — ) dV' - Ao - p’g - Ay — 1 Ao + p'it - Ay
#

+ Fé- de)| dV. 18)

Note that Eq. (18) must hold for any Ay and A which can vary in-
dependently. Thus, it follows from this requirement and the assumption
of small deformation that we have

0= f (T -%) av' -rg+ou 19
F

0=f (M - ) dV’+1[§x(§'—§) dV' — 1+ 5. (20)
F 2 Ju

It follows from (19) and (20) that the equations of motion and rotation
in Cosserat periporomechanics under the dry condition can be written
as

p’ii=/y(

J’&}:/ (M — 4" dV’+5/ gx(?—?) dv'+1. 22)
P 2w - =

[l

- E’) dv’ +p's, 1)
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Note that in (22) #*@ represents the angular momentum of a spinning
material point (Sulem and Vardoulakis, 1995).

To complete Egs. (21) and (22), we need to introduce the consti-
tutive models for the effective force state and the moment state. In
this article, as a new contribution we develop a stabilized Cosserat
correspondence principle through which classical local constitutive
models for micro-polar porous media can be incorporated into the
proposed Cosserat periporomechanics. In what follows, we derive the
Cosserat correspondence principle through an equivalence of inter-
nal energy between local micro-polar poromechanics and Cosserat
periporomechanics.

2.2. Cosserat periporomechanics correspondence principle

This part deals with the Cosserat correspondence principle following
the lines in non-polar periporomechanics (Song and Silling, 2020).
To achieve this task we first derive an expression of internal energy
density for micro-polar porous media in the framework of Cosserat
periporomechanics By ignoring the heat source and/or heat flux, let

us multiply (21) by & and integrate over a finite sub-region % within
bounded micro-polar porous body &, and we have

fp’ii-ﬁa‘V:/[ (E—E’)vudV’dV+/p’gvudV. (23)
il @ JF P

Similarly, multiply (22) by & and integrate over ?, and we have
fj*@-ci:dlf:f/ {ﬁ—g')-ﬁ)dV’dV+/!v(im'V
F o Jx P
1 =AY
+ 5 //Kx(z—z)vmdl/'a'l«’ (24)
2 Jolw

Summation of (23) and (24) gives the balance of energy as

/(p*ﬁ-a+f*a>-¢)dv=[/ (E—f)-ndv‘dv
P FJSFE
+/f (. —4')-@dV'dV
@ J®
1 T 7). 0dv"
+2/L;/%1x(g g) bdV'dV

+ / (p'g-u+l-a@)dVv. (25)
P

The first three terms in the right-hand side of (25) can be rewritten

as
f/(E—f)de’dV:/f(i,u*—f-a)dv’dv
PIE S SR
—//E(u’—u} av'dv
P J R
=/f (E-u’—f-u) dv'dv
2 Jag
—//E(u’—n} av'dv (26)
PSR

LL(&—&’)'ﬂdV'dV=/f(ﬁ-ﬂf—ﬁ'
f/.,ﬂ (& - @) dV'dv
//;\9 Mo — M o) dVIdV

7//ﬁv(ci:’—cb)dlf’dlf 27)
P S G

@) dv'dv

— o —! @ '
= XY -F = xY | dV'dV
//%\9 (_ 2 = — 2 _)

It fo]lclws from (25), (26), (27), and (28) that we can express the
balance of energy as

xng'a'V (28)

*f: + W;ms = me! {29)

where % is the rate of kinetic energy, #,,, is absorbed power, and %,
is supplied power. The three terms are written as

f:/%fwa+y%,mau (30)

W, = // lg (U—&";mx}’)+£-(&}'—a‘))] av'dav,  (31)
M gr 4 __’, 7 @ ’
Wy //j\ﬁ[ (u+2xg) T (u+2xg)]¢wa‘v

+// (M@ — M @) dV’dV+/(p‘gv&+l-ci))dV.
@ Jae P
32)

The absorbed energy is equal to the internal energy without consid-
ering other sources of energy (e.g., thermal energy) (e.g., Song and
Silling, 2020). Thus, it follows from (31) and the assumption of small
deformation that the internal energy density can be written as

=/§;[§-(g—§xz)+&-£] av’
= [ [E-(g-2xx)+a 2] o

- [(F Graa)av
)
=T U +.M0. G3)

It is implied from (33) that the two peridynamic constitutive relation-
ships can be postulated between the two energy conjugate pairs, re-
spectively, i.e., ¥ and U, and # and £2. Note that the two constitutive
relationships are consistent with the second-law of thermodynamics
(e.g., Silling et al., 2007; Song and Silling, 2020), for conciseness whose
derivation is omitted here.

In the present study, thermal energy is not considered for simplicity.
We refer to the related literature on modeling the shear banding in-
stability of porous media considering fully thermomechanical coupling
(e.g., Wang and Song, 2020; Song et al., 2018b). Under the isothermal
condition and assuming small elastic strain, the internal energy of the
skeleton of a micro-polar elastic porous material can be written as

é=0 1 é+m: K, (34)

where o is the effective micro-polar stress tensor, £ is the micro-
polar strain tensor, m is the couple stress tensor, and x is the wryness
tensor (De Borst and Sluys, 1991; Sulem and Vardoulakis, 1995; Erin-
gen and Eringen, 1999). The micro-polar strain tensor (Eringen and
Eringen, 1999) assuming an elastic deformation in the classical Cosserat
continuum theory can be written as

£ =l j — Epywy, (35)
Kij = @y j» (36)

where u; is the displacement vector, w, is the micro-rotation vector,
é;; is the third-order permutation tensor (Malvern, 1969), and i, j, k =
1,2,3. Given (35) and (36), the effective micro-polar stress tensor
and the couple stress tensor can be computed by the relationships
in (63) and (64), respectively, in Section 2.4.1. Following the lines
in periporomechanics (Song and Silling, 2020), given U and £ the
nonlocal versions of £ and x can be written as

£= [/ E@@.ﬁ)dl”] x, 37)
. 1
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K= [ / o(2® :)dV’] x (38)
> 3

where w is a weighting function and % is the shape tensor (Silling
et al., 2007). The shape function is defined as

35:/ wE@EAV. (39)
g

It follows from (34), (37), and (38) that the rate of the internal
energy of a micropolar porous medium can be written as

é=/ wo ! (ﬁ®§)W‘IdV’+f am: (@®OHF V'
& - # 2

=/5;‘(EE.%’_1£).idV"-{—‘/y(Emﬁ?‘_]é),QdV" (40)

From the periporomechanics correspondence principle
(Song and Silling, 2020), we have
& =0¢ (41)

where & is the internal energy density in the Cosserat periporomechan-
ics and its rate form as written in (33). It follows from (41), (33) and
(40) that the effective force state and the moment state in Cosserat
periporomechanics can be written in terms of the effective stress tensor
and moment tensor as

=wox ', (42)
=om¥Z L. (43)

From (42) and (43) the Cosserat effective force state and the moment
state can be computed from the classical constitutive models given
the composite deformation state and micro-rotational state follow-
ing the lines in classical Cosserat continuum mechanics for solids. In
what follows, we first demonstrate the Cosserat periporomechanics
correspondence principal suffers from the zero-energy deformation in-
stability mode as in the non-polar periporomechanics. Then we present
a stabilization scheme for the Cosserat periporomechanics through
which classical micro-polar constitutive models can be incorporated
into the Cosserat periporomechanics developed in this article.

2.3. Zero energy modes and stabilization scheme

In this part, we first demonstrate the Cosserat periporomechanics
correspondence principal suffers from the zero-energy deformation
mode (both translational and micro-rotational) under non-uniform de-
formation. Then, we present a stabilization scheme to circumvent the
zero-energy deformation modes. In what follows, we show the origin
of zero-energy deformation modes of the Cosserat periporomechanics
correspondence principal. Let us first define the non-uniform composite
(micro-polar) displacement state and non-uniform micro-rotation state
as follows.

2,
R, =2 - K¢, (45)

where ¢ and k are defined in (37) and (38), respectively. Substituting
(44) into (37), i.e., by replacing E by ELY[ in (37), we have

=U - ¢, (44

l/ o, @&)zﬂf’] = [/ g@—fr‘:;l:)@:w'] !
F - F - -

= [ / g(ﬁ@@drf’] FH!
. ¢
- [ / zs:@édv'] !
, T
= —eFHF!
=f — E

Similarly, substituting (45) into (38) we have

U’;’ @(R, ®£]dV'l F1= [/ﬁ; (2 - R,8) @é]dV"] F!

=[f E@@é)dV’] x!
. ¢
- [/ Ehﬁ@fdl”] Fx!
, 2KE®
=x —xFF!
=K —-K
=0, 47)

Through (46) and (47) we have demonstrated that the nonuniform
micro-polar displacement state and micro-rotational state are smoothed
out in the micro-polar periporomechanics correspondence principal.
Therefore, the zero-energy deformation mode instability occurs in
Cosserat periporomechanics that incorporates the correspondence ma-
terial models. To resolve this issue, following the lines in Menon
and Song (2021b) we develop a stabilization scheme based on an
energy method. We refer to Menon and Song (2019) for a compre-
hensive review of other methods for stabilization schemes of corre-
spondence materials models in the original peridynamics for solids. In
this method (Menon and Song, 2021b), the internal energies related to
the non-uniform composite displacement state and non-uniform micro-
rotational state are considered in (33). In this case, the total internal
energy & is written as

sé=s’+3g_?l +8g,, (48)

where SQI and %’QI are the energy terms of the non-uniform compos-
ite displacement state and non-uniform micro-rotational state, respec-
tively. The two terms are defined as

Ea, =3 @) 2, “9)
€a, =y (02, 2, (50)

where @ and § are the two scalar states. Following the lines in Menon
and Song (2021b), assuming a micro-polar bond-based periporome-
chanics the two scalar states can be written as

= ——m, (51)
W,
%
p= ﬂg, (52)
L —
where
@ = f wdv’, (53)
£

and ¥, and %, are positive constants on the order of 1, %, and %,
are two material parameters. For a three-dimensional case, the two
parameters can be written as (Menon and Song, 2021b)

-5
o

G =—, 55

2 i (55)

where @ is a parameter that depends on the internal length scale
(i.e., the horizon and material properties). In the three-dimensional
case it reads
E(1-4v)
= — 56
Ar82(1 — v —2v2) ©6)
where E and v are Young’s modulus and Poisson’s ratio, respectively.
It follows from (49), (50), (42), and (43) the effective force state and
moment state with stabilization removing zero energy modes can be
written as

5

7 =woX 't +a,, (57)
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Fig. 3. Schematic of Maxwell viscoelastic model.

M =TmFE '+ PR, (58)

Substituting (57) and (58) the governing equations for Cosserat peri-
poromechanics can be written as

i = / (f—z‘) AV’ + g, (59)
P

j’ﬁ}:/ (,gs_,g%) de.,_l/ Y x (JF;—§S) av' +1. (60)
T 2w -

In what follows, we introduce the classical micro-polar visco-plastic,
visco-elastic, and damage models that will be implemented in the
proposed Cosserat periporomechanics paradigm.

2.4. Micro-polar rate-dependent constitutive and damage models

We first introduce the classical visco-plastic model and visco-elastic
model cast in the framework of the Cosserat continuum theory that take
into account the rate-dependency of porous geological materials (Terza-
ghi et al., 1996). We then present a micro-polar bilinear damage
model and an energy damage criterion that incorporates micro-rotation
energy.

2.4.1. Micro-polar visco-plastic model

The micro-polar visco-plastic model is cast using the Drucker-Prager
yield surface. Assuming infinitesimal deformation, the strain tensor &
and the wryness tensor x are additively decomposed into elastic and
visco-plastic parts as

£ =" +€"P, (61)
K =x° + k"P, (62)

where ° and €"? are the elastic and visco-plastic strain tensors, re-
spectively, and x* and x'P are the elastic and visco-plastic wryness
tensors, respectively. Given elastic strain and elastic wryness tensors,
the effective stress tensor ¢ and couple stress tensor m can be expressed
as

G = Atr(e)L + (u + u e + (= )e | (63)
m = a;tr(x®)] + ayx® + asxer, (64)

where A and u are Lame’s first elastic constant and elastic shear
modulus, respectively, which can be determined from Young’s modulus
and Poisson’s ratio (Malvern, 1969), the superscript T is the transpose
operator, and y,, @, o, and a4 are the micro-polar parameters (Gauthier
and Jahsman, 1975; de Borst, 1993; Eringen and Eringen, 1999).

The stress tensor and couple stress tensor can be written in a vector
form as form

& ={511,622, 633,612, 621,013, 031,623, 632} (65)
i =(myy 1, my 1, ms [1myy f1,myy [, myg J1,mag JLmas [T msy /1Y, (66)

where / is the Cosserat length scale (de Borst, 1993). In this study,
only one Cosserat length scale is assumed. We refer to Sulem and
Vardoulakis (1995) for more discussions on Cosserat length scales. It
follows from (65) and (66) that the mean stress p and the deviatoric
stress g (Miihlhaus and Vardoulakis, 1987; de Borst, 1993) can be
written as

p=(6|+62+63)/3, (67)

1

0= [%(&"‘1‘?& + i )| 2, (68)
In (68),
[2 -1 -1 |
-1 2 -1
-1 -1 2
3/2 32
B= 3/2 312 , (69)
32 32
32 32
3/2 32
| 32 3/2]
and
P =314, (70)

where I, is the 9-dimensional second-order identity matrix (i.e., 8 T
with i,j = 1,...,9). Given p and g, the Cosserat Drucker-Prager yield
function (Li and Tang, 2005) is written as

f=a+V3dp+, 71
In (71)
2sing
y=— (72)
" V3G -sing)
—6¢ cos @
o= — (73)
* VaG-sing)

where ¢ is the frictional angle. Here, we adopt a linear isotopic hard-
ening as

¢ =cy+ hé. 74)

where ¢, is the initial cohesion, A is the linear isotropic hardening
modulus, and £7 is a visco-plastic internal variable, as defined in (79).
Assuming the non-associative plasticity, the plastic flow potential (De
Borst and Sluys, 1991; Li and Tang, 2005) can be defined as

8=q+\/§-ﬁ’33+ﬂ’2s 75)
where

2 sin
oy = v 76)

V30 - sin(w)’

and y is the dilatancy angle.
Given (75), the visco-plastic strain and wryness tensors can be

determined as

pr 2 28 a7
N do

UP = ) og , (78)
n dm

where n is the viscosity of the skeleton and { ) is the Macaula

bracket (Malvern, 1969), i.e., a ramp function defined as (x) = %

The internal viscoplastic variable can be defined as

‘ . 12

b= (e emeer i ant 4 2er ir) 79)

where " is the deviatoric part of the visco-plastic strain tensor. By
substituting (77) and (78) into (79) the internal visco-plastic variable
can be written as

A (f) . —. 'ﬂ’s
& == |1+sign(p)—| . (80)
P |rawo ]

2.4.2. Micro-polar visco-elastic model
In this subsection, we introduce the micro-polar visco-elastic model
(Lakes and Lakes, 2009) for the simulations of cracking in Section 4.
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The strain and wryness tensors are additively decomposed into elastic
and visco-elastic parts as

£ ="+ €%, (81)
x =x° + k" (82)

where £¢ and k% are visco-elastic strain and wryness tensors, respec-
tively. Given the elastic strain and wryness tensors, (63) and (64) can
be used to compute the stress and couple stress for the micropolar
viscoelastic model.

Following the simple Maxwell model as shown in Fig. 3, the evo-
lution equation for the micro-polar visco-elastic model (Marques and
Creus, 2012) can be written as

v £ g, (83)
T}‘
e

£+ 5 =k, (84

Tr

where r, is the relaxation time.
It follows from (83), (84), (63), and (64), the stress and couple stress
in the integral form (Marques and Creus, 2012) can be written as

d 1 T
fexp((r—r)f ])[ dir©)l +(y+m - c)‘% dr,
(85)

dr. (86)

d 1
m =[ exp [(T - I)/r,,] [ Ir(x) +a; Zx + a3 ddx

For the micro-polar visco-elastic correspondence model, the effective
force and moment states (Silling et al., 2007) can be written as

_ (7

7-i (;) ®7)
i
o

«n (i) ©

where ¢ and m are the scalar effective force and moment states, re-
spectively, and U, /|U,| and £2/|62| denote the directions of the ef-
fective force and moment vector states, respectively. For a bond-based
visco-elastic micropolar material model, the effective force state can
be decomposed into the part parallel to the bond 7, and the part
perpendicular to the bond 1, as

= 30, (89)

[, = 320, (90)

where u; and w, are the displacements in the axial and the nor-
mal directions of the bond, respectively. Fig. 4 presents a schematic
of the decomposition of deformation states and force states for the
micro-polar visco-elasticity model.

For a bond-based micro-polar visco-elastic model, the bond stretch
rate §; and the shear deformation rate §, (Yu and Chen, 2021) can be
defined as
14|

12l
= e 2] (92)
83 ‘El B

Fig. 5 sketches the concept for a special case of the visco-elastic
material model. We note that a summary of the pairwise deformation
mechanisms of the model can be found in Diana and Casolo (2019).

Following the linear micro-polar elasticity, it is assumed that the
total bond stretch s, shear deformation s,, and the relative micro ro-
tation A (magnitude) can be decomposed into elastic and visco-elastic
parts as

(91)

&5 =

sp =5 +5]° (93)

Fig. 4. Schematic of the decomposition of deformation states and force states for the
micro-polar visco-elasticity model.

- k] m -
b—pW—L— b

_él_ﬁ}fl_ :

??1

Fig. 5. Schematic of a simple viscoelastic micropolar model.

3= 55+ 5, ©4)
Aw = Aw® + Aw™. (95)

where s{ and s{* are elastic and visco-elastic stretches, respectively, s;
and s are elastic and visco-elastic shear deformations, respectively,
and Aw® and Aw" are the elastic and visco-elastic relative rotations
(magnitude), respectively. The scalar axial and normal force and scalar

moment states can be defined as

] | =kis5, (96)
1, =kys5, ©7)
m =k, Aw®, (98)

where k,, k,, and k,, are the material constants. They can be deter-
mined from the elastic modulus and the horizon (Chen et al., 2019;
Gerstle et al., 2007) as

3E 1

k= 22541 — ) |€] ©9)
E(l-4v) 3

- 3 100

P as2 (1-v-22) | (100)

E(Q-4) 1 .

T and? (1—v—22) &I’

The evolution equations for the bond-based micro-polar visco-elastic
model can be written as
ve

FLLRE (102)
1
s;‘
8+ = (103)
Ao
Ad" + —— = dad. (104)

Tm

where 7, 7, and 7,, are the relaxation time for the axial force, normal
force, and moment, respectively. For simplicity, in this study it is



X. Song and H. Pashazad

3] 32 m
il,P "-".".".: —
/i bap | m
H o L B
/ /./ AN
0 / i 5 o/ s, 0 ) »Aw
0 Sip Sie 0 Sap S2.e 0 Awy A,

(a)

(c)

Fig. 6. Schematic of the bilinear micro-polar damage model: (a) axial force, (b) normal force, and (c) moment.

assumed that ; = » = 1, = 1. This constitutive model in the
integration form can be written as

t

- d

i = / kyexp (e~ /5 SLar, (105)
] T
1

. d

i = / kyexp (e~ /5] S2ar, (106)
[i] T
1

m= A kexp [i7 = 0)/7,] 442z, 107)

In what follows, we introduce a bilinear micro-polar damage model.

2.4.3. Ordinary micro-polar damage model

In this study, we present an ordinary micro-polar bilinear damage
model (Silling et al.,, 2010) for modeling the softening behavior of
quasi brittle porous media. Fig. 6 presents a schematic of the bilinear
micro-polar damage model

It follows from Fig. 6 that the micro-polar bilinear damage model
can be written as

kys if s <8y

t=9 (10— 5)/(510— siplty, s, <8 <sp. (108)
0 if 51 2 5y,

) kas3 ) %f 51 < 82

=9 (20 =5 (82— 52,05, 82, <55 <583, (109)
0 if L) = 52.(.‘!
k,,Aw® if Ao < dw,,

m=1 (dw, — Aw)/(Aw, — Awy)m, if dca; < Aw < Aw,, (110)

0 if Aw 2 dw,,

where s, , 5, ,, and 4w, are the axial and shear deformation and the
relative rotation corresponding to the peak values of El, Ez: and m,
respectively, and s, ., s,,, and 4w, are the critical values of s, s,,
and Aew, respectively. These material parameters can be determined and
calibrated by comparing numerical results with experimental testing
data for given materials.

In this study, it is assumed that the bond breakage for the bond-
based micro-polar model is determined by the axial stretch for its
simplicity. In this case, the weighting function w for the bond can be
calculated as

1 if 5, < S p
S1e— 8 .
@ = if s, <s; <5 (111)
Sie ~S1p
0 if 5) 25 ,.

Given w, the local damage parameter at a material point (Silling and
Askari, 2005) can be defined as

[ wav’

D=1 .
S aV’

(112)

2.4.4. Energy-based bond breakage criterion

In this study, we also formulate an energy-based criterion to detect
the bond breakage for the micro-polar visco-elastic correspondence
material model. We note that an energy-based criterion for the bond-
based micro-polar model accounting for the axial, shear and eventually
micro-bending can be found in Diana (2023). The energy-based bond
breakage criterion will be used for detecting the crack propagation
in example 4 in Section 4. In this case, the bond-breakage criterion
depends on the deformation energy in a bond. The effective force state
and the moment state (the energy conjugates of the composite state
and relative rotation state, respectively) are used to determine the
deformation energy (Menon and Song, 2022d). Therefore, the energy
density in bond & can be written as

T s s .
w:/ (z—z)gdw/ (M — 4" )82d1. (113)
0 0

where ¢ is the loading time. In this case, the weighting function for a
bond ¢ can be defined as
(114)

W=

1 ifw<w,,
0 ifw=w,.

Given (114), the local damage parameter at a material point can be
expressed by (112).

It is noted that the critical energy density for bond breakage can be
calculated from the critical energy release rate as

4G,
w6t
In the linear elastic fracture mechanics for mode I fracture the critical
energy release rate reads

-2

R
where K, is the fracture toughness of mode I crack. In this study, it
is assumed that the crack propagation (including branching) is due to
individual bond breakage at the crack tip. The mode I fracturing energy
is adopted for the correspondence micro-polar material model for its
simplicity. For mode II and mode III cracks, the corresponding fracture
toughness can be used following the linear elastic fracture mechanics.
It follows from (114) that the local damage parameter at a material
point can be determined from (112).

The field equations of CPPM in this study are formulated based
on the peridynamic states in which the fundamental unknowns are
displacement and micro-rotation of each material point. The classical
micro-polar material model for the solid skeleton is used to compute the
effective force state and moment state in the field equations through
the Cosserat periporomechanics correspondence principle. Therefore,
the formulation in this study can be used to compute a field, such as
displacement and micro-rotation, in a problem domain. In the following
section, we present the numerical implementation of the proposed
Cosserat periporomechanics paradigm for deformable porous media
under dry conditions.

W, = (115)

(116)
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Fig. 7. Global flowchart for the computational Cosserat PPM paradigm for dry porous media.
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Fig. 8. Problem setup for example 1.

3. Numerical implementation

We have numerically implemented the proposed Cosserat peri-
poromechanics paradigm through an explicit Lagrangian meshfree
scheme (Menon and Song, 2022c). Fig. 7 presents a schematic of
the global flowchart of the numerical implementation. The energy
conservation criterion (Belytschko et al., 2014) is adopted to guarantee
the convergence at each time step. In what follows, we first present the
spatial discretization, followed by the temporal discretization of the
governing equations.

3.1. Discretization in space

The motion equation (59) and the moment equation (60) are dis-
cretized in space by the total Lagrangian meshfree scheme (Menon and
Song, 2021b, 2022a,c). In this method, a porous continuum material
is discretized into a finite number of mixed material points (i.e., solid
skeleton and pore water). Under the dry condition, each material point
has two kinds of degrees of freedom (i.e., displacement and micro-
rotation). The uniform grid is used to spatially discretize the problem
domain in which all material points have the same dimensions. The
spatial discretization forms of (59) and (60) are written as

0= ﬂ’f_—’.(Eﬁ; = Er +F)),

0=o? (Fid, ~ M, + M, + L),

(117)
(118)

where  is a global linear assembly operator (Menon and Song, 2021a;
Hughes, 2012), .#; is the mass matrix at material point i, 5, is the
vector of effective force, F, is the vector gravity force (Menon and Song,
2022c), ., is the vector of rotational moment, J}T is the moment by the

Force (kN)

0 2 -4 -6 -8
Vertical displacement (mm)

Fig. 9. Loading curve on the top boundary. Note: The displacements at points 1, 2, 3
are u,; = 3.5 mm, u,; =35 mm and u,; = 6.5 mm, respectively.

effective force state, and L, is the body couple vector. At material point
i, these five vectors through the stabilized correspondence material
model can be written as

E! = p;(ﬁ!%l, (119)

N

Ti=2 (z{u} - z{m) 77 (120)

Ji = ST (121)
N

M, = E (ﬁgm ﬁan) 77 (122)

£, = Z [z—tm (—(w me)] 77 (123)

where 7; and 7} are the volumes of material points i and j, re-
spectively, in the reference configuration. In (120), (122) and (123),
the effective force state and the moment state through the stabilized

correspondence principle are written as

Ty = L4300 % Sy + iy (124)
EJ'FJ = QUJ)EU}‘%_I‘E +@luu’ (125)
M = D maF &+ PRy (126)
My = DMy £ Ty (127)

The micro-polar strain tensor and the wryness tensor can be written as

N,

Eu = Z—{u)(—(:n@iu)) i {JJ (128)
N,

K = E—{u)(—{u §)7i | %o - (129)

Given £ and x;, classical constitutive models can be used to com-
pute o, and mg, as described in Section 2.4. In what follows we
present the discretization in time through an explicit Newmark scheme
(Zienkiewicz et al., 1999; Hughes, 2012).
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Fig. 10. (a) Shear band in the experimental test (Mithlhaus and Vardoulakis, 1987) and the contours of the equivalent plastic shear strain at the three loading stages: (b)

u,; = 3.5 mm, (c) u,y =5 mm, and (d) uyy = 6.5 mm.
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-

Fig. 11. Contours of the plastic volumetric strain at three loading stages: (a) u,, =

3.5 mm, (b) Uy, =5 mm, and (¢) w,; = 6.5 mm.

3.2. Discretization in time

The Newmark scheme (Hughes, 2012) is applied to integrate the
equations of motion and moment in time. Let u,,u, and i, be the
displacement, velocity, and acceleration vectors at time step n. The
predictors of displacement and velocity in a general Newmark scheme
read

U,y =i, + (1= f)di,, (130)

- Al "

Uyyy = Uy + Aty + == (1= 2,) iy, (131)

By =0, + (1 - f)Ad,, (132)
2

By = 0, + M, + ATI (1-28) @, (133)

where §, and §; are numerical integration parameters. Given (130) and
(131), the accelerations i,,, and @ are determined by the recursion
relation

— -3
Gty =l (Frp — T i (134)

0.1
0.08
0.06
-0.04
0.02
0
(a) (b) (©)

Fig. 12. Contours of the micro rotation (rad) at three loading stages: (a) u,, = 3.5 mm,
(b) u,» =5 mm, and (c) u, 3 = 6.5 mm.

Dyyy = "_+]| (Lnpr = My + M), (135)

where ?H, , 41, and ., are determined from (131) and (133) and
the local constitutive models. From (134) and (135), the displacement,
velocity, rotation, and rotation rate at time step n+ 1 can be updated
as

gy = Uy + P At (136)
Upyy = Upyy + B A ity . (137)
yyy = By + Py At (138)
Oppy = By + P A (139)

In this study, we adopt the explicit central difference solution
scheme (Hughes, 2012; Zienkiewicz et al,, 1999) in which g, = 1/2
and f, = 0. We note that the explicit method is efficient and robust to
model dynamic problems (Silling and Askari, 2005).

The energy balance check is used to ensure numerical stability of
the algorithm in time (Belytschko et al., 2014). We define the internal
energy, external energy, and kinetic energy of the system at time step
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Fig. 13. (a) Shear band in the experimental test (Miihlhaus and Vardoulakis, 1987) and the contours of the displacement magnitude (mm) at three loading stages: (b) u,; = 3.5 mm,

(c) U,y =5 mm and (d) u,y = 6.5 mm.
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Fig. 14. Comparison of the vertical loading curves from the simulations with two
spatial diseretization schemes.

n+1 as
At . Ar . = ,=
Wiﬂt,ﬂ+1 =Wi.m,n + E (un + ?un) (Fn + yn+l)
At 1, At r
4 (o 4o,) [ )
+ ("drﬁl - -&:H )] . (140)
At At .
W;axt,r&l =Wext.n + E (un + ?un) (Pn + Pn+l)
At 1, ar
+3 (cn,, + E“’") (Ly+Lot)s (141)
1. = 1, .
Winn+1 =£un+1"ﬁn+lun+] + Emn+1“7n+]&}n+l‘ (142)

Then it follows from the energy conservation criterion that

|Wim,n+l + min,r&l - Wext,nﬂ | < € max (%nt,nﬂ! Wkin.nﬂ! W;axt,r&l) '
(143)

where £ is a small tolerance on the order of 102 (Belytschko et al.,
2014).

For the numerical implementation algorithms for the micro-polar
visco-plastic and visco-elastic models, we refer to the related literature
on the subject (e.g., de Borst (1993), De Borst (1991), Simo and Hughes
(1998)). Algorithm 1 summarizes the detailed steps in the explicit
numerical scheme.

4. Numerical examples

This section presents four numerical examples to validate and
demonstrate the efficacy and robustness of the proposed Cosserat peri-
poromechanics model in simulating the shear banding and fracturing in
porous media. Example 1 deals with the single shear banding in a sand
specimen. Example 2 concerns the cracking of a quasi-brittle porous
medium under a three-point bending test. Example 3 deals with the
conjugate shear banding under the dynamic loading condition. Example
4 concerns crack branching in porous media under high loading rates.
In all examples, the boundary conditions (i.e., essential and natural
boundary conditions) are prescribed through the fictitious boundary
layer method (Silling, 2000; Menon and Song, 2021a). For all examples
in this section, the material points on the boundary layers are free to
have micro-rotations. In this study, the horizon — the nonlocal length
scale is assumed to be correlated to the Cosserat length scale. The latter
is related to the particle micro-rotation. In this sense, the nonlocal
length scale in CPPM has a physical meaning related to the materials’
microstructure (Sulem and Vardoulakis, 1995).

4.1. Example 1: Single shear banding

This example simulates a single shear banding in granular materials
under non-symmetrical loading conditions. The numerical results are
compared with the experimental testing of shear banding of granular
materials in Sulem and Vardoulakis (1995). Fig. 8 shows the specimen
dimensions, boundary conditions, and the loads. The constant confining
pressure is 0.196 MPa. The total vertical displacement imposed on the
top boundary is u, = 8 mm. The lateral displacement u, = 1.6 mm is
applied on the top boundary to induce the single shear band in the
specimen. The rates of the two displacement loads are 4, = 0.2 m/s
and &, = 0.04 m/s, respectively. As in Sulem and Vardoulakis (1995),
the input material parameters are: the density p° = 1650 kg/m?, shear
modulus u = 50.4 MPa, Poisson’s ratio v = (.1, Cosserat shear modulus
#, = 2 p, initial volume fraction ¢, = 0.65, and Cosserat length scale
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Algorithm 1 Explicit Newmark time integration scheme

-o =

Given: “nr“mmmwmﬂmfm At. COIIlplltE: I“rﬂ—]v“r1+il'“1't+l!L""r1+]"'““"n+il'mn+1: Dn+]

1: Update time t,,, =1, + At

2: whiler,, <t, do

3: Compute ;:,,H and 5ﬂ+] using (130) and (132), respectively
Update boundary conditions at 7,
Compute #,,, and &,,; using (131) and (133), respectively

Compute 4, and 7, .,
Compute i,,; and &, using (134) and (135), respectively

4
5
6: Compute inﬂ, jrﬁ_l, and jnﬂ using (120), (122), and (123), respectively
7
8
9

: Update u,,; and &,,, using (136) and (138), respectively
10: Compute Fiip py1, #;
11: Check energy balance
12: Update u,,, and @, using (137) and (139), respectively
13: for all points do

intas1, and Fey o using (142), (140), and (141), respectively

14: for each neighbor do

15: Compute W for energy-based bond breakage criterion

16: Compute s,, 5, and Aw for stretch-based bond breakage criterion
17: Update =

18: Update D, ,

19: end for

20: end for
21: end while
22: n+—n+1

0.3
.25

0.2
§ 0.15
il
0.05
0
(b)

Fig. 15. Contours of the equivalent plastic shear strain from the simulations with two
spatial discretization schemes.

[

(a)

I = 0.85 mm. For the visco-plastic model, initial cohesion ¢; = 0.1 MPa,
frictional angle ¢ = 43°, dilation angle w = 14°, softening modulus
h = -2 MPa, and viscosity n = 0.005 MPa s. The stabilization parameter
% = ¥, = 0.02. The sample is discretized into 47 x 165 material
points with the uniform grid size Ax = 0.85 mm. The Cosserat length
scale is assumed to equal Ax. In the experimental test (Miihlhaus and
Vardoulakis, 1987), the thickness of shear band for the medium-grained
sand is about 4.3 mm. Thus, in our numerical modeling the horizon is
assumed 4.3 mm, i.e., about 54x. The time increment is Ar =3 ps.

Fig. 9 plots the loading curve on the top boundary, which shows a
softening stage following the peak load. The three points on the loading
curve are selected to demonstrate the shear band formation in what
follows. Figs. 10, 11, 12 and 13 present the snapshots of equivalent
plastic shear strain, plastic volumetric strain, micro-rotation and the
displacement magnitude at the three loading stages, respectively. The

0.06

71 0.04

0

(a) (b)

Fig. 16. Contours of the plastic volume strain from the simulations with two spatial
discretization schemes.

results in Figs. 10 and 13 show that the shear band develops gradually
with an inclination angle of 60° with respect to the x-direction. The
inclination angle of the shear band is close to the biaxial test results,
i.e., 59°, as in Sulem and Vardoulakis (1995), Vardoulakis and Graf
(1985). Fig. 11 shows that the plastic volumetric strain is positive
within the shear band, which is typical for a medium-dense granular
material. Fig. 12 plots the contour of the micro-rotation at the three
loading stages. The results show the micro-rotation mainly occurs with
the material points within the shear band (Sulem and Vardoulakis,
1995). It is noted that the shear band thickness of the numerical
simulation is 4.3 mm which agrees well with the experimental testing
result (Miihlhaus and Vardoulakis, 1987). Fig. 13 compares the con-
tours of the displacement magnitude with the experimental results that
demonstrates our numerical simulation can replicate the shear banding
observed in the laboratory testing.
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Fig. 17. Contours of the micro rotation (rad) from the simulations with two spatial
discretization schemes.

|

Fig. 18. Contours of the displacement magnitude (mm) from the simulations with two
spatial diseretization schemes.
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Fig. 19. Model setup for example 2.

Next, we study the influence of spatial discretizations on the results.
We consider two spatial discretization schemes, i.e., 47 x 165 points
with Ax = 0.85 mm and 37 x 130 points with 4x = 1.07 mm. The same
horizon § = 4.3 mm is assumed for the two cases. The others input

1 - Experiment
06 I\ —Numerical result]|

Force (kN)

0 1 2 3 4 5
Vertical displacement (mm)

Fig. 20. Comparison of loading curves of the numerical result and the experimental
data.

Fig. 21. (a) Crack path from the experimental test (Lenci et al., 2012) and (b) erack
path from the numerical model.

parameters remain the same. Fig. 14 shows the loading curves of the
two simulations. The loading curves are exactly the same before the
peak load and are lightly different after the peak load. Figs. 15, 16,
17 and 18 compare the contours of the equivalent plastic shear strain,
plastic volumetric strain, micro rotation, and displacement magnitude
at u, = 6.5 mm, respectively. The results in Figs. 15-18 demonstrate that
the numerical results is insensitive to the spatial discretization scheme
due to the same horizon assumed for the two simulations.

4.2. Example 2: Cracking in a three-point bending test

This example simulates crack propagation in a quasi-brittle porous
material under the three-point bending test (Lenci et al., 2012). Fig. 19
shows the model setup for this example. The specimen is discretized
into 10314 uniform material points with Ax = 2 mm. The horizon size
is chosen as & = 3.015 Ax. The vertical displacement load u, = 5 mm is
imposed at the center of the top boundary under the rate i, = 3.55 m/s.
The time increment is 4t = 2 ps. The bilinear visco-elastic damage
model is adopted in this example. The material parameters (Lenci et al.,
2012) are: solid density p* = 2500 kg/m?, initial volume fraction ¢, =
0.85, Young’s modulus E = 350 MPa, Poisson’s ratio v = 0.3. We assume
that Cosserat shear modulus u, = /3, relaxation time 7, = 8§ x 10% ps,
and Cosserat length scale is I = 2 mm. The damage parameters for the
axial bond stretch are assumed as 5, , = 0.004 and 5,, = 0.225. It is
further assumed that the bilinear damage model for the shear force and
moment follows the bilinear damage model for the axial force in terms
of the timing of peak and null values at the critical shear deformation
and micro-rotation.

Fig. 20 plots the loading curve of the experimental test and the
numerical simulation in this study. The results in Fig. 20 show that the
numerical result agrees well with the experimental data. Our numerical
model can reasonably predict the softening regime in the loading curve.
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Fig. 22. Crack propagation in the deformed configurations at (a) u,, =05 mm, (b) u =15 mm, (c) u,y =25 mm, and (d) u,, = 3.5 mm.
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Fig. 23. Contours of micro-rotation (rad) in the deformed configurations at (a) u,, =05 mm, (b) u,, = 1.5 mm, (¢) u,, =2.5 mm, and (d) u = 3.5 mm.
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Fig. 24. Contours of the displacement magnitude (mm) in the deformed configurations at (a) u, = 0.5 mm, (h) u,, = 1.5 mm, (c) u, = 2.5 mm, and (d) u, = 3.5 mm.
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Fig. 25. Comparison of the loading curves from the numerical simulations with two
spatial diseretization schemes and the experimental data.

Fig. 21 compares the crack path from the numerical model with the
experimental data. As shown in Fig. 21, the crack path predicted by
the numerical model is consistent with the experimental data. Next, the
results at the four loading stages shown in Fig. 20 are presented to show
the crack propagation under loading. Figs. 22 and 23 plot the contours
of crack path and micro-rotation in the deformed configurations at
the four loading stages, respectively. Fig. 22 shows that the crack
propagates upward tortuously. Fig. 23 shows that the material points
with micro-rotations are concentrated on the crack tip. The magnitude
of micro-rotation increases as the crack propagates upward. Finally,
Fig. 24 plots the contours of the displacement magnitude at the four
displacements.

In what follows, we present the results of the simulations with two
spatial discretization schemes with the same horizon § = 6 mm. For
the two cases, the specimen is discretized into 10314 uniform points
(4x; = 2 mm) and 4584 uniform points (4x, = 3 mm), respectively.
Fig. 25 compares the loading curves of the two simulations with the
experimental result. The point corresponding to u, = 1.5 mm is marked
in Fig. 25. The two loading curves from the numerical modeling are
consist and a slight discrepancy occurs at a later loading stage after
the peak load. Figs. 26 and 27 plot the crack propagation and the
contours of micro-rotation in the deformed configuration at u, =
1.5 mm, respectively. Fig. 28 compares the contour of displacement in
the deformed configuration at u, = 1.5 mm. The results in Figs. 27-28
demonstrate that with the same horizon the numerical results are less
influenced by spatial discretization schemes.

4.3. Example 3: Conjugate shear banding

This example deals with the conjugate shear banding in viscoplastic
porous media under dry conditions. We investigate the impact of the
dilation angle on the directions of the two conjugate shear bands in the
specimen under symmetrical loading conditions. Fig. 29 plot the model
setup for this example.

The specimen is discretized into 40 x 80 material points with a
uniform grid size Ax = 2.5 mm and the horizon size § = 2.05 Ax.
The lateral confining pressure of 0.1 MPa is applied on the left and
right boundaries. A vertical displacement is applied on the top and
bottom boundaries u, = 4.5 mm with the rate &4, = 0.05 m/s. The
simulation time 7 = 1 x 10* ps with a stable time increment At = 7 ps.
The stabilization parameters ¥ = 0.01 and % = 0.001 are used
for stabilization in the pre-localization and post-localization stages,
respectively.

Table 1
Comparison of the inclination angles (*) from the close-form solution
and the numerical results.

(") ¥y Roscoe Numerical solution
solution

is 0 45 41.3

is 10 50 46.6

is 20 55 50.9

The micro-polar visco-plastic material model is adopted for this
example. The input material parameters are as follows. The density
p* = 2000 kg/m3, Young’s modulus E = 50 MPa, Poisson’s ratio v = 0.2,
Cosserat shear modulus g, = 2 p, initial volume fraction ¢, = 0.65, and
Cosserat length scale / = 2 mm. The viscoplastic parameters are initial
cohesion ¢, = 0.5 MPa, softening modulus » = —1 MPa, and viscosity
n =0.01 MPa s.

First, we investigate the influence of the dilatation angle on the
inclination angle of the shear band. We consider three dilatation angles
w = 0°,10°, and 20° assuming the same frictional angle ¢ = 35°.
Fig. 30 plots the loading curves from the simulations with the three
dilation angles. Fig. 30 shows that the loading curves are the same until
the peak load. In the post-localization regime, the dilatation angle has
little influence on the loading curve. At the same last load step, the
simulation with the null dilation angle generates the smallest reaction
force. Figs. 31 and 32 plot the contours of equivalent plastic shear
strain and plastic volumetric strain from the simulations with three
dilation angles at the same last load step, respectively. Fig. 33 plots
the micro rotation contours on the deformed configurations from the
three simulations at the same end load step. The results in Figs. 31,
32, and 33 demonstrate that the dilation angle affects the inclination
of the two conjugate shear bands. Fig. 33 shows that the micro rotation
of material points is localized within the shear band.

Table 1 compares the inclination angle of the shear band in this
example with the classical Roscoe solution. Our numerical solution is
consistent with the Roscoe solution (Sulem and Vardoulakis, 1995).
The second-order work is useful to detect shear bands in porous me-
dia (Kakogiannou et al., 2016; Hill, 1958; Menon and Song, 2022e).
Therefore, the second-order work criterion is used to validate our
numerical results. The second-order work d% for a micropolar PPM
material can be written as

dW =do : de+dm : dx. (144)

Fig. 34 plots the contours of the second-order work from the three
dilation angles. The results show that the second-order work within the
shear band is negative for all three cases.

Second, we study the influence of loading rates on the formation of
shear bands with three loading rates, &, ; = 0.083 m/s, i, = 0.067 m/s
and i, ; = 0.05 m/s. The frictional angle ¢ = 35° and the dilatation
angle y = 15°. The other material parameters remain the same. Fig. 35
presents the loading curves from the three loading rates. It shows that
the loading rate mainly affects the peak and post-localization regimes.
Figs. 36, 37, and 38 present the contours of equivalent plastic shear
strain, micro rotation, and plastic volume strain at the same final load-
ing stage, respectively. The results show that the loading rate affects
the width of shear bands, e.g., decreasing loading rates decreases the
width of shear bands. This loading rate impact on the shear-band width
is due to the visco-plastic constitutive model adopted in this study. For
a rate-independent porous media, it can be conjectured that the shear-
band width is independent of the loading rate. Furthermore, Fig. 39
demonstrates that the zone of negative second-order work is consistent
with the location of shear bands. We note that the second-order work is
computed at each material points through (144). Following the second-
order work criterion the second-order work become zero or negative
when a material loses its stability. Thus, in the post-localization stage,
the second-order work in the shear band become negative. In this exam-
ple, the negative second-order work in the shear band demonstrates the
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Fig. 26. Crack propagation at u, = 1.5 mm from the simulations with two spatial discretization schemes: (a) 4x =2 mm and (b) 4x = 3 mm.
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Fig. 27. Contours of the micro rotation (rad) in the deformed configurations at u, = 1.5 mm from the simulations with two spatial discretization schemes: (a) 4x =2 mm and (b)

Ax =3 mm.
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Fig. 28. Contours of the displacement magnitude (mm) in the deformed configurations at u, = 1.5 mm from the simulations with two spatial discretization schemes: (a) 4x =2 mm
and (b) Ax =3 mm.
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Fig. 30. Loading curves assuming three dilatation angles w = 0°, w = 10°, and w = 20°
(the same frictional angle @ = 35°).

Fig. 29. Geometry, boundary conditions, and the loading of the conjugate shear
banding.
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Fig. 31. Contours of the plastic shear strain assuming three dilatation angles: (a) w = 0° (inclination angle 8 = 41.3°), (b) w = 10° (inclination angle # = 46.3°), and (c) y = 20°

(inclination angle # = 50.9°) (the same frictional angle ¢ = 35°).
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Fig. 32. Contours of the plastic volume strain assuming three dilatation angles: (a) w = 0°, (b) w = 10°, and (c) w = 20° (the same frictional angle @ = 35%).
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Fig. 33. Contours of the micro rotation (rad) assuming three dilatation angles: (a) w = 0°, (b) w = 10°, and (c) w = 20° (the same frictional angle ¢ = 357).
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Fig. 34. Contours of the second order work assuming three dilatation angle: (a) w = 0°, (b) w = 10°, and (c) w = 20° (the same frictional angle ¢ = 35°).
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Fig. 35. Loading curves from three loading rates, i, = 0.083 m/s, &, = 0.067 m/s,
and @, = 0.05 mfs.

material in the bands lost its stability. It is implied that the augmented
second-order work can be used to detect the formation of shear bands
through the proposed micro-polar periporomechanics framework.

4.4. Example 4: Crack branching under high loading rates

This example deal with the crack branching in a dry visco-elastic
porous material under high loading rates through the proposed energy-
based cracking criterion considering the micro-rotation of material
points at the crack tip. Crack branching in porous media such as clay
can be related to the mechanical properties of the clay layers. When the
stress in a fracture zone is high in porous materials, the material cannot
dissipate the energy, and the crack starts to branch due to a small
critical energy release rate G,. The crack branching can be observed
when the crack reaches the critical speed of propagation (Ozbolt et al.,
2011). The inertia forces at the crack tip can prevent crack propagation
when the crack propagates fast, resulting in branching. We refer to
the literature (e.g., Sun et al. (2021b), Chen et al. (2020)) for a
comprehensive review of crack branching and hydraulic fracturing in
porous media. In this example, we study the impact of loading rates,
Cosserat length scales, and initial volume fractions on crack branching.
We also investigate the micro rotation of material points along the
crack path in crack branching.

Fig. 40 shows the model setup for this example. The initial crack
length is 50 mm, as shown in Fig. 40. The tensile stress in the vertical

direction is applied on the top and bottom boundaries by the following
equations.

ayl .
L ifr<y,
oy = Iy .

o, ift =1,

(145)

where 1, = 625 ps, and o; = 8 MPa. A stable time step 4r = 0.025 ps.
The specimen is discretized into 200 x 80 uniform material points with
Ax = 0.5 mm. The horizon size is § = 4.054x (Bobaru and Zhang, 2015).

The micro-polar visco-elastic material model in Section 2 is adopted
for this example. The input material parameters are summarized as
follows. The solid density p* = 2650 Kg/m®, initial volume fraction
¢, = 095, Young’s modulus E = 35 MPa, Poisson’s ratio v = 0.25,
Cosserat shear modulus u, = u/3, Cosserat length scale / = 2 mm,
relaxation time 7, = 100 ps.

For this example, ., = 160 N/m is assumed for the energy-based
bond criteria. The stabilization parameters ¥; = 0.1 and %, = 0.01 are
used.

Fig. 41 plots the applied loading-time curve. The four points shown
in Fig. 41 are at times t; = 1275 ps, 1, = 2975 ps, 13 = 35 ps,
and 1y, = 42.5 ps. The results of the base simulations are presented in
Figs. 42 and 43. Fig. 42 plots the snapshot of the crack propagation and
branching on the deformed configuration at the four loading stages. The
damage variable greater than 0.35 is in red (Ha and Bobaru, 2010). The
results show that at time ¢, = 12.75 ps the crack starts to grow and at
time 1, = 29.75 ps the crack start branching. Fig. 43 plots the snapshots
of the contours of micro-rotation of material points in the specimen.
The results in Fig. 43 show that the micro-rotation of material points
is concentrated on the crack tip and crack propagation and branching
paths, and its value increases with the crack growth. In what follows,
we study the influence of the loading rate, the Cosserat internal length
scale, and the initial volume fraction on the crack branching in this
example.

4.4.1. Influence of loading rates

In this part, we analyze the results of crack branching under three
loading rates assuming the same conditions. For the three loading rates,
tgy = 2.5 ps, 1y, = 6.25 ps, and 1,5 = 12.5 ps. For all three simulations, it
is assumed that ¢y = 0.85 and / = 2 mm. The other material parameters
are the same as the base simulation.

Table 2 summarizes the timing of the crack propagation, the begin-
ning of crack branching, and the end of crack branching. As the loading
rate increases, the times for crack growth and the start of branching
decrease. Figs. 44 and 45 compare the contour of the damage variable
at t = 42.5 ps and the contour of micro-rotation of material points at
t = 35 ps for the three loading rates, respectively.



X. Song and H. Pashazad

(b)

Fig. 36. Contours of the plastic shear strain from three loading rates: (a) ,; = 0.083 m/s, (b) u,,
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Fig. 37. Contours of the plastic volume strain from three loading rates: (a) a,, = 0.083 m/s, (b) i,, =0.067 m/s, and (c) u,; = 0.05 m/s.
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Fig. 38. Contours of the micro rotation (rad) from three loading rates: (a) i, = 0.083 mfs, (b) ity = 0.067 mfs, and (c) i, =0.05 mfs.

Table 2
Summary of the timing of crack growth and branching for the
three loading rates.

1y (ps) Start of Start of End of
crack branching branching
growth (ps) (ps) (ps)

2.5 10 26.55 50.62

6.25 12.25 28.25 53.75

12.5 16 32.75 58

4.4.2. Influence of cosserat length scale

We study the impact of the Cosserat length scale on the crack-
ing branching. The three Cosserat length scales adopted are ! =
1 mm,2 mm and 3 mm. It is assumed that ¢, = 0.85 and i, = 6.25 ps
while the other parameters are the same as the base simulation. Table 3
summarizes the timing of crack propagation and the start and end of
crack branching. The results show that the Cosserat length scale has
less effect on crack propagation and branching. Figs. 46 and 47 plot
the contour of the damage variable at r = 42.5 ps and the contour
of the micro-rotation of material points at + = 35 ps for three cases,
respectively. As shown in Fig. 47, the micro rotation of material points
decreases considerably as the Cosserat length scale increases. The
results in Fig. 46 show a similarity between the three cases. In contrast,
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Fig. 39. Contours of the second-order work from three loading rates: (a) u,, = 0.083 m/s, (b) @,, = 0.067 m/s, and (c) &, = 0.05 m/s.
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Fig. 40. Model setup for example 4.
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Fig. 41. Applied load versus time.

the simulations with a larger Cosserat length scale show that the crack
branching advances further from the initial branching point. This may

be due to the same horizon size adopted for the three simulations.

Table 3
Summary of the timing of crack growth and branching for
different Cosserat length scales.

{(mm) Start of Start of End of
growth (ps) branching branching
(ps) (ns)
1 12.25 28,5 55.5
12.25 28.25 52.75
3 1212 28.12 48.75

To show the impact of the horizon on the cracking branching, we
present the results of the two simulations with different horizons, i.e., 5
= 2 mm and 2.5 mm, and the same Cosserat length scale, /=1 mm.
It is assumed that ¢, = 0.85 and 1, = 6.25 ps. The other parameters
remain the same as for the base simulation. The results are shown in
Figs. 48 and 49. Fig. 48 plots the contours of the damage variable at t
= 42.5 ps for the two simulations. Fig. 49 presents the contours of the
micro-rotation at t = 35 ps for the two simulations. Fig. 48 shows that
the horizon affects crack propagation and branching. For the simulation
with § = 2 mm, the crack propagates at time t = 12.25 ps and starts
branching at time t = 28.5 ps. For the simulation with é = 2.5 mm, the
crack propagates at time t = 12.75 ps and starts branching at time t =
29.25 ps. It is implied from the results that increasing the horizon could
delay the branching time. The results in Fig. 49 show that the horizon
has no significant effect on the magnitude of micro-rotation.

4.4.3. Influence of the initial volume fraction

This part analyzes how the initial volume fraction can affect the
crack branching. Three initial volume fractions considered are 0.75,
0.85, and 0.95. It is assumed that / = 2 mm and 1, = 6.25 ps and
the other parameters remain the same as the base simulation. Table 2
summarizes the timing of crack propagation and branching. It can be
concluded from the results in Table 2 that the increase of the initial
volume fraction of the porous material demands a larger load to initiate
crack growth and branching. Figs. 50 and 51 plot the contours of the
damage variable at r = 42.5 ps and the contours of the micro rotation
of material points at r = 35 ps for the three cases, respectively. As
indicated by the results in Figs. 50 and 51, the model with the largest
initial volume fraction generates the smallest crack propagation and
branching and the micro-rotation of material points around the crack
(see Table 4).

5. Closure

In this article, we formulate a Cosserat periporomechanics paradigm
(CPPM) for modeling shear banding and cracking in dry porous media.
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Fig. 42. Contours of the crack path on the deformed configurations (magnification factor = 10) at (a) t; =12.75 ps, (b) t; =29.75 ps, () t; =35 ps, and (d) 1, =42.5 ps.
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Fig. 43. Contours of the micro rotation (0.001 rad) on the deformed configurations (magnification factor = 10) at (a) t, =12.75 ps, (b) t, =29.75 ps, (c) t; =35 ps, and (d) 1,

=425 ps.
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Fig. 44. Contours of the damage variable at r = 42.5 ps for three loading rates: (a)
1y, = 2.5 ps, (b) 1,5, =6.25 ps, and (c) 13 = 12.5 ps. Note: the vertical dashed lines are
plotted to compare the difference of crack branching.

Table 4
Summary of the timing of crack growth and branching for three
initial volume fractions.

¢ Start of Start of End of
growth (ps) branching branching
(us) (us)
0.75 11.62 26.75 49.5
0.85 12.25 28.25 52.75
0.95 12.75 29.75 55

In CPPM, a micro-structure based length scale, i.e., the Cosserat length
scale, is incorporated. In this micro-periporomechanics paradigm, each
material point has both translational and rotational degrees of freedom
as in the Cosserat continuum theory. The two field equations consisting
of the force balance equation and the moment balance equation are cast
using the effective force state and moment state. The energy method is
used to formulate the Cosserat periporomechanics correspondence prin-
ciple for incorporating the classical micro-polar viscoplastic and vis-
coelastic constitutive models. We have demonstrated that the Cosserat
periporomechanics correspondence principle inherits zero-energy mode
instability. To circumvent this stability issue, we formulate a stabilized
Cosserat constitutive correspondence principle through which classical
micro-polar material models for porous media can be used directly in
CPPM. This new periporomechanics paradigm has been numerically
implemented through an explicit Lagrangian meshfree algorithm for
modeling dynamic failure in dry porous media. Numerical examples are
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Fig. 47. Contours of the micro rotation (x17 rad) at + = 35 ps for three Cosserat
internal length scales: (a) /, = 1 mm, (b) I, =2 mm, and (¢) /; = 3 mm.

Fig. 45. Contours of the micro rotation (x17° rad) at t = 35 ps for three loading rates:

(a) ty, =2.5 ps, (b) 1y, = 6.25 ps and (c) 1,5 = 12.5 ps.
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Fig. 48. Contours of the damage variable at t = 42.5 ps for the simulations with (a)
6 =2mm and (b) § = 2.5 mm.
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Fig. 46. Contours of the damage variable at ¢ = 42.5 ps for three Cosserat length scales: (a)
(a) I, =1 mm, (b) I, =2 mm, and (c) {; =3 mm. ! 5
presented to validate the computational Cosserat periporomechanics ; * > 0
paradigm in modeling shear bands and mode-I cracks and demonstrate
its efficacy in modeling dynamic shear banding and crack branching
in dry porous media. In this study, the classical second-order work -5
(b}

criterion for detecting material instability is enhanced to incorporate
micro-rotations of material points and is utilized to validate the numeri-
cal results of shear banding. Through the numerical examples, we have
analyzed the factors that can impact the dynamic shear banding and

Fig. 49. Contours of the micro rotation (1 x 10~* rad) at t = 35 ps for the simulations
with (a) § = 2 mm and (b) § = 2.5 mm.
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Fig. 50. Contours of the damage variable at + = 42.5 ps for three initial volume
fractions: (a) ¢y, = 0.95, (b) ¢, = 0.85, and (¢} ¢y = 0.75.
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Fig. 51. Contours of the micro rotation of material points (x1~* rad) at 1 = 35 ps for
three initial volume fractions: (a) ¢, = 0.95, (b) ¢,, = 0.85, and (c) ¢, =0.75.

crack branching in dry porous media, such as loading rates, Cosserat
length scales, and initial volume fractions.
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